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RESUMO

HEBLING, G. M. Uma Implementação Esparsa e Numericamente Estável de
um Estimador de Estado para Sistemas de Distribuição. 2022. 73p. Dissertação
(Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2022.

O Estimador de Estado é a principal ferramenta para operação em tempo real de sistemas
de potência. O estimador tem como principal função obter a condição operacional da
rede dado um conjunto de medidas e seu processamento é o primeiro passo de uma série
de ferramentas automáticas que fazem parte dos sistemas de gerenciamento da energia.
Algoritmos especializados foram desenvolvidos para a estimação de estado em sistemas
de distribuição uma vez que o Estimador de Mínimos Quadrados Ponderados (MQP),
comumente usado em sistemas de transmissão, enfrenta dificuldades para o uso devido a
características específicas de Sistemas de Distribuição (SDs). O Estimador MQP requer a
solução de um sistema linear que pode ser mal condicionado em função de particularidades
dos SDs como ramos mono, bi e trifásicos desbalanceados, grande número de barras e
conexões entre linhas curtas e longas, entre outros.

A matriz Ganho, matriz de coeficientes do sistema linear obtido com o estimador MQP,
é fatorada e a técnica usual chamada fatoração Cholesky pode criar elementos não-
nulos induzindo ainda mais perturbações num sistema potencialmente mal condicionado,
diminuindo a qualidade da solução. Dada a característica esparsa da matriz Ganho, técnicas
específicas podem ser utilizadas para obter melhor perfomance computacional.

Nesse contexto, esse trabalho propõe uma formulação ortogonal do estimador MQP que
visa melhorar a acuracidade da solução bem como a estabilidade numérica do processo de
estimação. A fatoração QR é utilizada para obter uma matriz triangular superior que leva
a substituições para solucionar o sistema linear. Técnicas dedicadas a matrizes esparsas são
usadas para preservar essa característica e melhorar o tempo computacional do estimador.

Esse trabalho apresenta as bases teóricas da estimação de estado, as técnicas dedicadas a
matrizes esparsas que permitem melhorar o desempeneho computacional e a formulação
ortogonal que melhora a estabilidade numérica da estimação. Os resultados compilam
métricas de performance e acuracidade da proposta e comparações desta com algoritmos
dedicados para SDs e também formulações alternativas do MQP.

Palavras-chave: Sistemas de Distribuição, Estimação de Estados, Métodos Numéricos,
Esparsidade, Métodos Ortogonais.





ABSTRACT

HEBLING, G. M. A Sparse and Numerically Stable Implementation of a
Distribution System State Estimator. 2022. 73p. Dissertation (Master) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2022.

The state estimator is the main analysis tool in real-time operation of power systems. It
obtains the operating condition of the network given a set of measurements and this is the
first step in a series of automated applications in energy management systems. Specialized
algorithms have been developed to perform Distribution System State Estimation (DSSE)
since the Weighted Least Squares (WLS) estimator, commonly used in transmission
systems, faces challenges due to specific characteristics of Distribution Systems (DSs). The
WLS estimator requires the solution of a linear system which may be ill-conditioned due to
a set of particularities of DSs such as the one, two and three-phase unbalanced branches,
large number of nodes and connections between long and short lines, among others.

The Gain matrix, the coefficient matrix of the linear system obtained with the WLS
estimator, requires factoring and the usual technique, the Cholesky factorization, may create
a large number of non-zero elements adding perturbations to an already ill-conditioned
system which may impact the solution obtained. Since the Gain matrix is sparse, specialized
techniques may be used to extract peak computational performance.

In this context, this work evaluates the use of an orthogonal formulation of the WLS state
estimator which aims to improve the accuracy of the solution as well as the numerical
stability of the estimation process. The QR factorization obtains an upper triangular
linear system that can be solved with simple substitutions. Dedicated techniques are used
to preserve the sparse structure of the matrices and with a sparse-oriented algorithm to
obtain the QR factorization, the state estimation is executed in a very short running time,
even for large test systems.

This work presents the theoretical background of state estimation, an overview of the sparse
techniques that allow for higher computational performance and the orthogonal formulation
which improves the numerical stability of the state estimation. Results are presented with
performance and accuracy metrics for the proposed estimator and comparisons with a
dedicated algorithm for DSs and alternative formulations of the WLS estimator.

Keywords: Distribution Systems, State Estimation, Numerical Methods. Sparsity, Or-
thogonal Methods.
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1 INTRODUCTION

1.1 Context

The power grid is an interconnected system whose main function is to deliver
electrical energy generated via different sources to a wide range of consumers. The
transmission system is responsible for transporting the energy from the generators, which
can be coupled to different energy sources such as hydro, thermal, solar or wind, to
populated areas where the consumers are located. The distribution system makes the
interface between consumers and the transmission systems. Therefore, a safe, reliable and
continuous power grid operation is required. These complex systems require monitoring
tools to ensure a safe and reliable operation and the State Estimator is the main tool used
to obtain the real-time condition of the network given a set of measurements originated
from meters located on the grid (ABUR; EXPóSITO, 2004; PRIMADIANTO; LU, 2017).

Historically, the application of State Estimation in Distribution Systems (DSs) was
hindered because the total number of available real time measurements was lower than
what is normally available for transmission systems. Therefore, the operational condition
of distribution systems was inferred using load estimates based on each type of consumer:
industrial, commercial or residential, and the quality of the inferred operational condition
was dependent on the quality of the load profiles used to represent the feeders. More
recently, however, the operating environment has been changing due to the penetration of
renewable energy sources, energy storage, electric vehicles, and demand response. Given this
scenario, the utilities face new challenges in real-time operation because of the large amount
of data generated from new sensors, such as smart meters. In this context, accuracy and
computational efficiency become two requirements of Distribution System State Estimation
(DSSE) in order to obtain a reliable estimate of the network operational condition.

The state estimator is the first step to perform a wide range of automated appli-
cations in energy management systems, such as power flow, contingency analysis, load
forecasting, stability margin calculations, short-circuit calculations and others. Since many
of these applications provide the situational awareness of the grid in real time, the research
on a fast and reliable state estimator for DSs is desired even more so with the expected
increase in date volume at DSs operation centers.

Despite the consolidated position of the Weighted Least Squares (WLS) state
estimator for transmission systems, specialized algorithms have been developed to perform
DSSE because there are limitations to the WLS approach due to particular characteristics
of DS such as (SINGH; PAL; JABR, 2009; BARAN, 2012; LEFEBVRE; PRéVOST;
LENOIR, 2014; KANJUH, 2016; AHMAD et al., 2018a): 1) DSs are usually operated at a
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radial structure, that is, with one path from the substations to the consumers; 2) There are
one, two (residential loads) and three-phase branches (commercial and industrial loads); 3)
Lines are usually short, and untransposed; 4)Lines are unbalanced since the loads cannot
be distributed symmetrically in the feeders; 5) There can be a large number of nodes and
branches, even for small cities, which result in large dimensions for the matrices associated
with the estimator; 6) The status of switches and capacitor banks, as well as transformers
taps are not directly monitored;

These specific characteristics of DSs result in severe ill-conditioning of the coefficent
matrix obtained with the WLS estimator, called Gain Matrix which must be factorized
to obtain the estimated state when using the conventional WLS estimator. Besides the
characteristics previously cited, the ill-conditioning is also associated with connections
between long and short lines (ATANACKOVIC; DABIC, 2013) and the presence, in
large numbers, of pseudo measurements given the scarcity of real-time measurements
(MONTICELLI; MURARI; WU, 1985). The specialized algorithms for DSSE are alternative
formulations that try to deal with the previously shown characteristics of DSs. Some
approaches use a formulation based on the admittance matrix of the system (ALMEIDA;
OCHOA, 2017), others use current flowing in the branches as state variables instead of
nodal voltages (PAU; PEGORARO; SULIS, 2013a). These approaches are fundamentally
different than the WLS estimator that uses the Gain matrix to obtain an update to the
estimated state, instead, they solve an approximate problem that may not correspond
fully to the original one (FENG; YANG; PETERSON, 2012).

The aforementioned dedicated formulations for DSSE make transformations on
the measurement set, in (BARAN, 2012) the power flow and injection measurements are
converted into equivalent current measurements. Since branch currents in rectangular
coordinates are used, the Jacobian matrix becomes linear. The proposoal in (ALMEIDA;
OCHOA, 2017) also converts active and reactive power measurements in equivalent current
measurements since node voltages in rectangular coordinates are used as state variables
and this, in turn, makes it so that the Jacobian matrix is constant between iterations.
(PAU; PEGORARO; SULIS, 2013a) presents a comparison in terms of computational
performance between formulations that use node voltages or branch currents as state
variables. Each of these formulations is also evaluated using polar versus rectangular
coordinates. The conclusion is that the Branch Current State Estimator (BCSE) is the
fastest, however, certain modifications in the original formulation are necessary to improve
accuracy which can decrease performance.

There are alternative WLS formulations that aim to solve one specific drawback
associated with virtual measurements: their higher weights compared to other types of
measurements can induce ill-conditioning. Some proposals such as (LIN; TENG, 1996)
and (THORNLEY; JENKINS; WHITE, 2005) suggest modelling virtual measurements
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as equality constraints that are included in the WLS formulation using Lagrangian
Relaxation. This, however, produces excessive fill-in and can lead to some numerical
instability. Aiming specifically at the ill-conditioning and numerical instability that can
occur when factorizing the Gain matrix, (MONTICELLI; MURARI; WU, 1985), (SIMOES-
COSTA; QUINTANA, 1981b) and (SIMOES-COSTA; QUINTANA, 1981a) suggest using
orthogonal transformations that lead to solving the least-square problem via backwards
substitution.

Backwards substitution is a technique used to obtain a solution to a linear system
where the matrix of coefficients is upper triangular. Upper or lower triangular systems
are obtained via factorization and there are a few methods to choose from. Usually, the
Cholesky factorization is applied to the symmetric, positive-definite Gain Matrix when
the system is observable. In DS, when the system is observable, the Cholesky factorization
can also be applied, however, the Gain matrix can be highly sparse meaning that there
are a much larger number of zeros than non-zero elements. Depending on the way that
the factorization process is performed, it can create a lot of fill-in, which are non-zero
elements in the factors that were originally zero in the matrix being factorized. In addition
to the ill-conditioning associated with specifics of DS, fill-in created by the factorization
can further decrease the numerical stability of the iterative process required by the WLS
estimation.

In summary, the specifics of DSs such as the large number of virtual measurements,
three-phase and unbalanced nature among others which have been shown contribute to the
ill-conditioning of the associated Gain matrix. When applying the usual techniques used
to factorize this matrix, further numerical instability can be induced by the creation of
fill-in. Computational performance also suffers because the usual factorization techniques
are not fully optimized to deal with the sparse nature of the matrices. The alternatives
to the WLS estimator have not been able to sufficiently solve the ill-conditioning issue
and with expected increase in date volume there appears to be a need for robust, sparse
oriented techniques applied to DSSE in order to obtain a reliable state estimation subject
to the constraints of real-time operations.

The objectives and expectations of this work are outlined in the next section.

1.2 Objectives

In light of the previous section, DSs face challenges to the application of the WLS
state estimator on one side because of inherent characteristics that result in ill-conditioning
of the Gain matrix and on the other side because the usual methods for solving linear
systems are not suitable to deal with this higher condition number, resulting in numerical
problems. The scope of this work is, therefore, to evaluate the application of sparse-oriented
techniques to solve linear systems and the use of a more robust formulation for DSSE
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based on orthogonal transformations that allows the application of state-of-the-art solvers
to obtain a reliable WLS solution. Test systems from the literature are used with their
complete three-phase models and also different measurement sets are built to represent
some network conditions that the operators might face.

The state estimator processes an amount of data, which are the available measure-
ments as well as the network topology and parameters, in order to obtain the estimated
state that represents the real-time condition of the network. The increase in these available
measurements for DSs in the form of smart-meters and other monitored devices means
that the amount of data that needs to be processed will increase as well. Since DS can have
a large number of nodes and branches, the processing of these large volumes of data needs
efficient storage and sparse-oriented techniques to speed up computations and decrease
computational effort. This work shows the application of a technique that reorders a matrix
before the factorization step necessary in the WLS solution. This, in turn, reduces the
number of non-zero elements created in this process maintaining the sparsity of the matrix
being factorized. This work presents some of these reordering methods and evaluates them
with the test systems.

The sparse techniques are one part in the scope of this work. Another part is the
use of robust factorization methods, namely the QR factorization, in order to improve the
reliability of the solution and decrease the numerical instability of the WLS estimation
process, which is caused by the ill-conditioning of the Gain matrix. This work presents
a formulation that uses the numerical properties of the QR factorization to avoid the
calculation of the Gain matrix in the WLS state estimation process. In order to extract
peak computational performance, a state-of-the-art implementation of the QR factorization
is presented and evaluated with the test systems. This implementation takes advantage
of the sparse storage and sparse techniques mentioned and it also has other possible
improvements in terms of parallelism that can be looked into in the future.

In summary, this work will implement an orthogonal formulation of the WLS state
estimator with focus on accuracy and performance. This metrics will be compared with a
dedicated DSSE algorithm as well as alternative formulations of the WLS state estimator.

1.3 Work Structure

This work is organized as follows:

Chapter 2 presents the mathematical formulation of the WLS state estimator and
definitions for the associated ill-condition of the Gain Matrix. A section is dedicated to
present the three phase mathematical models of the components present in DSs. The
measurement types present in DSSE as well as their impact on the state estimation
are presented in another section. The formulation of the dedicated DSSE algorithm
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implemented in this work is also presented as well as the alternatives to the WLS formulation
that aim to improve the ill-conditioning of the Gain matrix

Chapter 3 is dedicated to discussing linear system solvers applied to sparse problems.
Sparse techniques are presented as well as algorithms to maintain said sparsity during the
factorization process. A formal discussion of ill-conditioning and stability is also presented
as well as an algorithm dedicated to performing the QR factorization of sparse matrices.

Chapter 4 proposes an orthogonal formulation of the WLS Estimator that avoids
the use of the Gain matrix and, in turn, greatly decreases the condition number of the
system being factorized. This formulation requires a QR factorization such as the one
presented in Chapter 3.

Chapter 5 shows results obtained and presents the test systems used. The majority
of the results were obtained with the formulation shown in Chapter 4 as well as the
technique presented in Chapter 3. Results obtained with fill-in reducing methods are also
present. Comparisons are carried between the proposed orthogonal formulation and the
dedicated DSSE algorithm, other WLS formulations are evaluated as well.

Finally, the plans for future works are in Chapter 6. Conclusions are presented as
well as the published articles based on this work.
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2 DISTRIBUTION SYSTEMS STATE ESTIMATION

In this chapter, the traditional formulation of the WLS state estimator is presented.
This formulation is sufficiently generic to be used with three as well as single-phase
(positive sequence) models. In this work, the focus is on three phase modelling, therefore,
the formulation of the models used for the electrical components are presented in a
dedicated section. There is also a section dedicated to presenting the different types of
measurements available for DSSE.

A dedicated section presents the Branch Current formulation for DSSE. The
necessary approximations are shown as well as the algorithm implemented. Another
section extends the presented WLS formulation, showing two alternatives that aim to
improve the ill-conditioning of the Gain matrix. The first of these alternatives model
virtual measurements as equality constraints and the second, called Augmented Hatchel
Matrix, includes the measurement residuals as equality constraints in addition to the
virtual measurements.

The complete state estimation process can be viewed as a series of steps: the
first one is to obtain the topology of the system given information about is electrical
devices, equipment as well as the state of switches in the network. The second step, called
observability analysis, checks if it’s possible to obtain all state variables given the available
measurements and if it is, the system is called observable. Combining both network
topology and available measurements, the third step, which is the focus of this work,
performs the necessary calculations in order to obtain the state variables. Finally, there
is a fourth step that’s called Gross Errors Processing. This step evaluates the estimated
state and aims to identify any measurements with gross errors and if any are found, this
step eliminates them so that the state variables can be calculated again.

2.1 WLS State Estimator

DSSE is based on the nonlinear model of measurements:

z = h(x) + e, (2.1)

where z is the measurement vector (mx1), x is the state variables vector (n x 1), h(.)
is the nonlinear state estimation function (m x 1) that relates the measurements to the
states variables, and e is the vector of measurement errors (m x 1) usually considered as
independent random Gaussian variables with zero mean and diagonal covariance matrix
Rz (Rz = diag {σ2

z1, σ2
z2, ..., σ2

zm}, where σzi is the standard deviation of measurement zi).

Through the classical WLS estimator, the state estimate vector x̂ is obtained by
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minimizing the index J(x) given by:

J(x) = [z − h(x)]T W [z − h(x)], (2.2)

where W = R−1
z .

The minimum value for J(x) is obtained when its derivative is equal to zero which
can be written as:

∂J(x)
∂x

= 2HT (x̂)W [z − h(x̂)] = 0 (2.3)

The matrix H(x̂) is known as the Jacobian matrix and it is the matrix of first derivatives
of h(x) evaluated at the x = x̂ point. Given the nonlinear nature of the index J(x), an
iterative algorithm is used to obtain a solution to a linear equation, which calculates a
correction, △xk, to the state vector where k is the iteration index. The linear approximation
at the point xk is:

h(xk+1) ≈ h(xk) + H(xk)△xk (2.4)

Rewriting (2.1) considering the linear approximations presented beforehand we
obtain:

z = h(xk) + H(xk)△xk + e (2.5)

Which is equivalent to:

△z(xk) = z − h(xk) = H(xk)△xk + e (2.6)

From the linear approximations, it is possible to write a new objective function
J(△x):

J(△x) = [△z(xk) − H(xk)△xk]T W [△z(xk) − H(xk)△xk] (2.7)

The minimum of J(△x) is obtained when:

∂J(△x)
∂x

= 2H(xk)T W [△z(xk) − H(xk)△xk] = 0 (2.8)

The correction △xk is then given by the solution of:

△xk = [H(xk)T WH(xk)]−1H(xk)T W△z(xk) (2.9)

Equation 2.9 is known as the Normal Equation and to obtain its solution it’s necessary to
invert, or more commonly, factorize H(xk)T WH(xk) which is called the Gain Matrix.

Since this work focuses on three phase networks and models, for the state estimation
of a distribution system with nnodes and nphases, the state variables are defined as:

x = [V p
ϕ θp

ϕ] p ∈ {1, ..., nnodes}; ϕ ∈ {1, ..., nphases} (2.10)
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The nonlinear state estimation function h(x) represents the available measurements
in terms of the state variables. These measurements can be active and reactive power
flow in a branch, active and reactive power injections in a node and voltage magnitude
also in a node. The following model presents all these measurement types, the subscript
km means active (P) or reactive (Q) power flow in the branch connecting nodes k to m

and the single subscript k means either and active or reactive power injection or voltage
magnitude (V) at node k.

h(x) =



P km
ϕ (x)

Qkm
ϕ (x)

P k
ϕ (x)

Qk
ϕ(x)

V k
ϕ (x)


(2.11)

The aforementioned WLS state estimator requires the calculation of the Jacobian
matrix H(x) which is the matrix of first derivatives of the nonlinear measurement model
h(x). Taking into account the possible measurement types as presented in equation 2.11,
the Jacobian matrix can be constructed as follows:

H(x) =



∂P km
ϕ (x)
∂V k

ϕ

∂P km
ϕ (x)
∂θk

ϕ

∂Qkm
ϕ (x)

∂V k
ϕ

∂Qkm
ϕ (x)
∂θk

ϕ

∂P k
ϕ (x)

∂V k
ϕ

∂P k
ϕ (x)

∂θk
ϕ

∂Qk
ϕ(x)

∂V k
ϕ

∂Qk
ϕ(x)

∂θk
ϕ

∂V k
ϕ (x)

∂V k
ϕ

0


(2.12)

The nonlinear equations and its derivatives requires the modelling of the components
of the DS, in this work specifically, the three-phase models are used.

2.2 Three Phase Models

The three-phase network modelling to perform DSSE in this work consists on the
representation of each element of the DS by its two-port admittance matrix. Different types
of equipment and connections can be incorporated in the measurement model by simply
changing the respective admittance matrix, which is an implementation advantage when
representing complex distribution networks with several different components (AHMAD
et al., 2018b). Each element is modelled by the following two-port model (HEBLING et
al., 2020):

 İk

İm

 =
Ykk Ykm

Ymk Ymm

 .

 V̇k

V̇m

 , (2.13)



28

where, k and m denote the terminals of the branch element, İk and İm are the current
phasor injected in each terminal of the branch element, V̇k and V̇m the voltage phasor
of each terminal, and Ykk, Ykm, Ymk and Ymm are the 3x3 admittance sub-matrices that
represent each equipment and the respective parameters.

The power flow equations can be written for the respective branch as the following
matrix expression for the terminal k:

Skm = Pkm + j.Qkm = V̇k ⊙ (İk)∗ = V̇k ⊙ (Ykk.V̇m + Ykm.V̇m)∗, (2.14)

where, Skm is a vector with the per-phase complex power at terminal k (active and
reactive power flows, Pkm and Qkm), ⊙ denotes the Hadamard product (element-wise),
and ∗ denotes the complex conjugate. Separating the voltage phasor in its exponential
representation according to the following expression:

V̇k = Vk ⊙ θk = diag(Vk).θk = [Vk].θk, (2.15)

where [.] denotes, for the sake of notation simplification, a diagonal matrix formed by the
elements of a vector. As an example, for a three-phase terminal k with phases abc, the
following equation can be written trough the matrix notation of the two-port model and
the above product:

Skm = V̇k ⊙ (İk)∗ =


V̇ a

k (İa
k )∗

V̇ b
k (İb

k)∗

V̇ c
k (İc

k)∗

 = diag(V̇ )(İk)∗ =


V̇ a

k 0 0
0 V̇ b

k 0
0 0 V̇ c

k




(İa
k )∗

(İb
k)∗

(İc
k)∗

 (2.16)

Expanding the power flow matrix expression, it is possible to obtain the classical
active and reactive power flow equations for a three-phase component (ARRILLAGA;
HARKER, 1978):

P i
km =V i

k

∑
j∈Φkm

V j
k

(
gij

kk cos(θi
k − θj

k) + bij
kk sin(θi

k − θj
k)

)
− V j

m

(
gij

km cos(θi
k − θj

m) + bij
km sin(θi

k − θj
m)

) (2.17)

Qi
km =V i

k

∑
j∈Φkm

V j
k

(
gij

kk sin(θi
k − θj

k) − bij
kk cos(θi

k − θj
k)

)
.

− V j
m

(
gij

km sin(θi
k − θj

m) − bij
km cos(θi

k − θj
m)

) (2.18)

where, i and j denote different phases of the component; gij
kk and bij

kk are the real and
imaginary parts of the ij element from the two-port model submatrix Ykk; gij

km and bij
km
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are the real and imaginary parts of the ij element from the two-port model submatrix
Ykm; Φkm is the set of existing phases at branch k-m.

In order to build the Jacobian matrix presented in Equation 2.12, it’s necessary
to calculate the derivatives of power flow and power injection measurements. Since the
derivative of a power injection at node k can be calculated as the sum of the power flows
from node k to all its adjacent nodes, only the power flow derivative are presented, for
state variables as node voltages they are as follows:

∂Skm

∂V i
k

= J ii[θk]Y ∗
kk[Vk]θ∗

k + [Vk][θk]Y ∗
kkJ iiθ∗

k + J ii[θk]Y ∗
km[Vm]θ∗

m

∂Skm

∂V i
k

= [Vk][θk]Y ∗
kmJ iiθ∗

m (2.19)

∂Skm

∂θi
k

= jeθi
k [Vk]J iiY ∗

kk[Vk]θ∗
k − j[Vk][θk]Y ∗

kk[Vk]J iiθ∗
k + jeθi

k [Vk]J iiY ∗
km[Vm]θ∗

m

∂Skm

∂θi
m

= −j[Vk][θk]Y ∗
km[Vm]J iiθ∗

m (2.20)

where, J ii is a matrix with the same size as the number of phases and only the ii element
equal one and the others equal zero. The above equation yields derivatives for all phases
of the active and reactive power flow at once.

It is noteworthy that the above equations can be used for different types of
equipment, connections and number of phases, composing a general model for steady
state analysis such as DSSE. In this work, the modelling of the electrical circuits and
transformers for a three-phase abc system will be presented.

2.2.1 Power lines and Transformers

Using Carson’s equations (KERSTING, 2001), it is possible to obtain the parameters
of the cables so that the behaviour of the electrical and magnetic fields through the lines
are correctly represented. The three-phase branches are, therefore, represented using
impedance matrices with series as well as shunt components. Figure 1 shows a three-phase
branch with the electrical parameters necessary to build the two-port model.

The two-port model for the three-phase branch shown in Figure 1 is as follows:

Y kk = Y mm = Z−1
series + Yshunt (2.21)

Y km = Y mk = −Z−1
series (2.22)
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Figure 1 – Three-phase branch circuits. The impedance and capacitancy self pa-
rameters (Zaa, Baa, Zbb, Bbb, Zcc, Bcc) as well as mutual parameters
(Zab, Bab, Zbc, Bbc, Zca, Bca) are given by specific characteristic of the ca-
bles. Source: Author

The impedance matrix Zseries contains the series elements of the circuit, following
the notation presented in Figure 1:

Zseries =


Raa + j.Xaa Rab + j.Xab Rac + j.Xac

Rbb + j.Xbb Rbc + j.Xbc

Rcc + j.Xcc

 (2.23)

The shunt elements are represented by the matrix Yshunt, which contains the following:

Yshunt =


j.Baa j.Bab j.Bac

j.Bbb j.Bbc

j.Bcc

 (2.24)

2.2.2 Transformers

Transformers are a central equipment in DS. They are responsible for regulating the
voltage levels across the network in order to deliver the energy safely to the end consumers.
Transformers connect the DS with the sub-transmission system, safely interfacing voltage
levels. Within the network, these devices are also responsible for the connection between the
primary and secondary networks which operate in the medium and low voltage respectively.
Different connection windings present in the network are represented by different matrices
in the two-port model. The connections of the primary and secondary windings can be
Delta (D), Wye (W) and Grounded Wye (Gw) for a total of 9 possible combinations. Each
combinations has a different formulations for the submatrices Y kk, Y mm, Y km and Y mk

and these formulations are shown in Table 1.
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Connection type Submatrices
Primary Secondary Y kk Y mm Y km Y mk

Gw Gw α2.YI β2.YI −α.β.YI −α.β.YI

Gw W α2.YII β2.YII −α.β.YII −α.β.YII

Gw D α2.YI β2.YII α.β.YIII α.β.Y T
III

W Gw α2.YII β2.YII −α.β.YII −α.β.YII

W W α2.YII β2.YII −α.β.YII −α.β.YII

W D α2.YII β2.YII α.β.YIII α.β.Y T
III

D Gw α2.YII β2.YI α.β.YIII α.β.Y T
III

D W α2.YII β2.YII α.β.Y T
III α.β.YIII

D D α2.YII β2.YII −α.β.YII −α.β.YII

Table 1 – Submatrices of the two-port model based on the different connection type of
the windings

In Figure 2, the connections between primary and secondary windings are shown.
The two-port model for this specific transformer can be obtained with the formulation in
Table 1. The parameters α and β are the primary and secondary taps which are either
fixed or variable in the case of voltage regulators. The matrices YI , YII and YIII are based
on the admittance yt, as shown in Figure 2, and are build using equation 2.25.

Wye / Wye

(A)

(C)

(B)

(N)

(a)

(c)

(b)

(n)

Delta / Delta

(A)

(C)

(B)

(a)

(c)

(b)

Delta / Wye

(a)

(c)

(b)

(n)

Wye / Delta

(A)

(C)

(B)

(N)

(A)

(C)

(B)

(a)

(c)

(b)

Figure 2 – Three-phase transformer connections of the primary and secondary windings.
Source: Author.

YI = yt.


1 0 0
0 1 0
0 0 1

 YII = yt

3 .


2 −1 −1

−1 2 −1
−1 2 −2

 YIII = yt√
3

.


−1 1 0
0 −1 1
1 0 −1


(2.25)

Details of three-phase models and respective admittance matrices to build each
two-port model for other equipment that are present in DSs such as voltage regulators,
capacitor banks among others can be found in (LOURENçO E. M.; LONDON JR., 2022)

In addition to the three-phase models that directly impact the nonlinear formu-
lations of the WLS, DSs can have different measurement types with varying precision.
This variation is one of the causes of ill-condition is DSSE, as is the case with virtual



32

measurements that have a high weight associated with them. Understanding the differences
between the measurements is essential to the characterization of DSSE as a whole and the
next section is dedicated to presenting the specifics of each measurement type.

2.3 Measurement Types

The measurement vector z aggregates all measurements available in the network.
The state estimator will then process all these measurements and its result will be the
estimated state of the network. In order to obtain a reliable estimate and also to guarantee
that the system is observable, a redundant set of measurements is necessary and these can
be characterized in one of three: real-time, pseudo or virtual measurements.

Supervisory Control and Data Acquisition (SCADA) systems gather the Real-time
measurements that consists of monitored electrical quantities in the system which are
typically power flows, power injections, voltage and current magnitudes across the network.
Usually, the information given by the SCADA systems is updated every few seconds.
Another recent source of information in DSs is the smart meter: a device that has started
to be widely deployed in the low voltage networks. These smart meters typically provide
power injections and voltage magnitudes at a consumer level and report the demand data
every 15 or more minutes. Another important kind of measurements are the synchronized
phasor measurements obtained by Phasor Measurement Units (PMUs) which monitor the
voltage and current phasor (magnitude and angle) and these can have a variable rate of
messages sent, from 1 to 60 per second.

Pseudo measurements are usually active and reactive power injections in the
distribution transformers. These measurements are built using typical load curves, energy
consumption data, load profiles and climate data. Nowadays, pseudo measurements are
the majority of information available about the operational state of the DSs and their
qualities have a direct impact on the DSSE accuracy (MASSIGNAN et al., 2018). These
pseudo measurements are necessary in such large quantities, in relation to other types of
measurements, to ensure the observability of the system and enable the application of
state estimation (PRIMADIANTO; LU, 2017). In order to generate these kind of pseudo
measurements, consumers are divided into classes: residental, commercial or industrial.
Each class has a typical load pattern associated and a statistical process is used to obtain
a load curve which will, then, generate the pseudo measurement for a given time of
day. Historical data can also be used to generate pseudo measurements and the weights
associated with these generated measurements are lower when compared with the other
types of measurements

Virtual measurements represent known electrical quantities in the system such
as zero-injection nodes (nodes without loads or generation) and are incorporated as
measurements with low standard deviations. This is because these measurements are
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known electrical quantities despite there being no actual meter present. The differences
among the variance values of the real-time, virtual and pseudo-measurements are another
well-known source of ill-conditioning in DSSE (LIN; TENG, 1996; THORNLEY; JENKINS;
WHITE, 2005) and also an essential motivation for using a stable approach such as the
method proposed in this work. It is noteworthy that other approaches may also be applied
for dealing with virtual measurements, such as using equality constraint formulation by
Lagrangian methods for DSSE (LIN; TENG, 1996).

2.4 Alternative WLS formulations

The ill-conditioning of the Gain matrix motivated researchers to develop modifica-
tion on the WLS formulation in order to improve the robustness of the estimation, mainly
in the presence of a large number of virtual measurements. Since these measurements have
a larger weight associated to them, as they are known zero quantities in the network, the
discrepancy between higher and lower measurement weights compromises the numerical
stability of the solution because the measurement weights are the diagonal elements of
R−1, that is, the weight of a measurement is the inverse of its variance.

2.4.1 WLS with Equality Constraints

The first alternative formulation of the WLS estimator includes virtual measure-
ments as a constraint to the following optimization problem:

min J(x) = [z − h(x)]T R−1[z − h(x)]
s.t. c(x) = 0

(2.26)

where c(x) is the vector of non-linear equations which represent the zero power injections.
Using the Lagrangean function, it’s possible to rewrite the optimization problem as the
following, where λ is the vector of Lagrangean multipliers:

L(x, λ) = [z − h(x)]T R−1[z − h(x)] − λT c(x) (2.27)

Applying the first order optimality conditions, the following system of derivatives is
obtained:

∂L(x, λ)
∂x

= 0 ⇒ HT (x)R−1[z − h(x)] + CT (x)λ = 0

∂L(x, λ)
∂λ

= 0 ⇒ c(x) = 0
(2.28)

In this system of equations, C(x) = ∂c(x)
∂x

is the vector of first derivatives of the
non-linear equations of the vector c(x) with respect to the vector os state variables x. In
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the same way as the WLS state estimator formulation, an iterative method is applied to
obtain a correction for the state variables at each step which requires the solution of the
following:

HT R−1[z − h(xk) − H(xk)△xk] + CT (xk)λk = 0
c(xk) + C(xk)△xk = 0

(2.29)

In matrix form, the system becomes:

HT (xk)R−1H(xk) CT (xk)
C(xk) 0

 ·

△xk

−λk

 =
HT (xk)R−1[z − h(xk)]

−c(xk)

 (2.30)

In order to solve this linear system, it’s necessary to pivot the rows of the coefficient matrix
during the factorization. A 2 x 2 pivoting is recommended to improve numerical stability
(GJELSVIK; AAM; HOLTEN, 1985). Although the conditioning of the coefficient matrix
improves, because the larger weights associated with virtual measurements are removed
from the matrix R−1, this formulation does not completely solve the ill-conditioning
problem. It’s possible to reduce the ill-conditioning of the system by applying a scaling
factor in equation 2.27. This equation then becomes:

L(x, λ) = [z − h(x)]T R−1[z − h(x)] − λT
s c(x) (2.31)

where λT
s = αλT and α is a scalar that can be chosen as:

α = 1
max{R−1

ii }
or α = m∑m

i=1 R−1
ii

(2.32)

Other factors inherent to DSs and not related to the presence of virtual mea-
surements still affect the condition number of the Gain matrix, mainly related to the
topology of the network as was previously discussed. Therefore, this formulation may not
solve entirely the ill-condition problem of the Gain matrix. Also, the addition of equality
constraints increases the size of the linear system that needs to be solved which may
impact computational performance for larger systems.

2.4.2 Hatchel Augmented Matrix Method

The Hatchel Augmented Matrix Method extends the formulation of the WLS with
Equality Constraints by considering the vector of residuals r in the optimization problem,
such as:
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min J(x) = [z − h(x)]T R−1[z − h(x)]
s.t. : c(x) = 0,

r − z + h(x) = 0

(2.33)

Using the Lagrangean function, it’s possible to rewrite the objective function as:

L(x, r, λ, µ) = [rT R−1r] − λT c(x) − µT [r − z + h(x)] (2.34)

Where, analogous to the previous formulation, λ and µ are Lagrange multipliers. The first
one is associated with the virtual measurements constraint and the second is associated
with the residuals constraint. Applying the first order optimality condition, the following
derivatives are obtained:

∂L(x, r, λ, µ)
∂x

= 0 ⇒ CT (x)λ + HT (x)µ = 0

∂L(x, r, λ, µ)
∂r

= 0 ⇒ R−1r − µ = 0

∂L(x, r, λ, µ)
∂λ

= 0 ⇒ c(x) = 0

∂L(x, r, λ, µ)
∂µ

= 0 ⇒ r − z + h(x) = 0

(2.35)

The second derivative, ∂L(x,r,λ,µ)
∂r

, simplifies to r = µR which eliminates this variable.
The linear system to be solved becomes:


R H(xk) 0

HT (xk) 0 CT (xk)
0 C(xk) 0

 ·


µk

△xk

−λk

 =


[z − h(xk)]

0
−c(xk)


(2.36)

In order to solve this linear system a factorization method is applied. A 2 x 2
pivoting is recommended to improve numerical stability, similar to the WLS formulation
with Equality Constraints. The formulation in 2.36 is able to reduce even further the
condition number of the coefficient matrix, however, it becomes larger and more sparse and
efficient factorization algorithms are necessary to maintain computational performance.

2.5 Dedicated Distribution System State Estimators

Given the context presented, the usual state estimators applied to transmission
systems such as the WLS estimator presented, face challenges when applied to DSs. There
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is an increasing need for monitoring of the DS with the development of Smart Meters
and Smart Grids and the utilities rely on the state estimator to provide the operational
condition of the network which is then used as a starting point for other static analysis
tools. The complexities related to DS motivated researches to develop dedicated state
estimators with different formulations, for example, using branch currents in rectangular
form as state variables. In this section, some of these formulations will be presented as
well as their limitations and strenghts.

2.5.1 Branch-Current State Estimator

The Branch-Current State Estimator is based on the WLS formulation presented
in equation 2.1. Instead of node voltages in polar coordinates, currents flowing in the
branches in rectangular form are used as state variables. This decouples the phases and
also reduces ill-conditioning problems (BARAN; MCDERMOTT, 2009).

In order to exploit a linear relationship between the measurement model and the
state variables, the vector z is converted in equivalent current measurements. (BARAN,
2012) assumes that actual power measurements and/or pseudomeasurements are available.
Real and imaginary parts of the equivalent current measurement at a node m are:

Im
r + jIm

x = P m + jQm

V m
(2.37)

where the subscripts r and x denote the real and imaginary part, respectively. P m

and Qm are either active and reactive power injections at node m or active and reactive
power flows originating from node m to its adjacent nodes. V m is the complex voltage.
Transforming the measurement vector using 2.37 allows the Jacobian matrix to be constant.
Its elements are either 1, -1 or zero.

The estimated state x can then be obtained in a single step, solving:

HT R−1Hx = HT R−1z (2.38)

where H is the Jacobian matrix and z is the equivalent measurement vector.

Even though the currents can be obtained by solving equation 2.38 the entire
Branch Current estimation process requires more steps. First, in order to calculate the
equivalent current measurements, the node voltages need to be initialised. Then, the
branch currents can be estimated using equation 2.38 and these estimated currents are
used to updated the node voltages using the forward sweep method. These steps are
performed until convergence is obtained which means a low enough difference between
estimated currents from two iterations.

In order to exploit the computational performance from having a constant Jacobian
matrix, only power flow and injections measurements are used. When current or voltage
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measurements are included, the Jacobian matrix becomes non-linear and an iterative
process is required to obtain the estimated currents x. Including the information of the
voltage at the substation, that is, a voltage measurement of the reference node can improve
the quality of the estimation (PAU; PEGORARO; SULIS, 2013b).

Another important aspect of the Branch Current state estimator is that it is
better suited for radial networks. Even though distribution system networks are usually
radial, some meshes can occur and the application of the estimator in this weakly meshed
networks requires the addition of an equality constraint in the formulation. This constraint
represents the Kirchoff’s Voltage Laws applied to the closed loop in the network. In the
presence of loops, the estimated vector x is obtained via an iterative process and the phases
become coupled. Both changes can negatively impact the computational performance.

2.5.2 Admittance Matrix Based State Estimator

This estimator is based on the WLS formulation presented in 2.1. The measurement
vector z, however, contains equivalent currents and voltages in rectangular form. The
state variables are node voltages also in rectangular form, therefore, the Jacobian matrix
corresponds to the Admittance matrix of the system and is constant. The constant matrix
is achieved if the variances of the equivalent measurements are considered constant, which
is an approximation (LIN; TENG, 1996).

The equivalent measurements are obtained by converting active and reactive power
measurements in real and imaginary equivalent currents and voltage measurements in
complex equivalent voltages and they are updated at each iteration of the estimator.
Voltages are initialised as a flat start and a correction is obtained by solving a normal
equation similar to equation 2.9. Convergence is obtained when the voltage difference
between iterations falls below a predetermined tolerance.

Voltage magnitude measurements are converted to equivalent complex voltages
which can lead to convergence problems. Also, since the real and the imaginary part of the
equivalent complex voltage are considered as separate measurements, the total number
of available measurements is artificially increased. The imaginary part of the equivalent
measurement can be discarded as proposed in (ALMEIDA; SCHINCARIOL; OCHOA,
2015), however this can only be applied to the one-phase estimator. (ALMEIDA; OCHOA,
2017) proposes an estimator that deals with virtual measurements without associated larger
weights and proposes a different method for obtained the equivalent voltage measurements
for three-phase DSSE with the goal of improving convergence.

In terms of computational performance, the Branch Current formulation has
proven to be better than the AMB (PAU; PEGORARO; SULIS, 2013b) even though both
have constant coefficient matrices. Contrary to the Branch Current estimator, the AMB
estimator can be applied to weakly meshed networks without further modifications but
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there are approximations in this formulation and some convergence difficulties may occur,
requiring extensions.

2.6 Summary

This chapter presented the topics necessary to characterize DSSE. The WLS state
estimator formulation was presented which calculates the Gain matrix and solve a linear
system in order to obtain the next estimated state xk. The Gain matrix is calculated
using the matrix of weights associated with the measurements as well as the Jacobian
matrix which is the matrix of first derivatives of the non-linear measurement model with
respect to the state variables. The non-linear model that relates the measurement set with
the state variables contains the three-phase representations of the electrical equipment
such as electrical circuits, transformers and others that may be part of DSs. In this work
these equipment are modelled using three-phase two-port model as was shown in the
previous sections. The three-phase, two-port model is adopted first because it constitutes
a sufficiently general model for different equipment or transformer connections that may
be present is DSs and second because of ease of implementation, given its matrix nature.

The different types of measurements usually used in DSSE were presented. SCADA,
pseudo and virtual measurements may be available to DSs operators to perform the state
estimation. These different types of measurements can impact the conditioning of the
Gain matrix given their difference in weight: pseudo measurements have a lower weight,
but may be present in large numbers in order to provide observability, whereas virtual
measurements have a much higher weight associated with them because they represent
know zero quantities in the network. This discrepancy in weights may cause ill-condition
in the Gain matrix.

There are alternative formulations that aim to improve the ill-conditioning of the
Gain matrix. These formulation treat virtual measurements as equality constraints removing
the larger weights associated with them. The Hatchel Augmented Matrix Formulation
extends this concept further by adding the residual in the formulation which decreases the
condition number even further. On the other hand, however, these formulations increse
size and sparsity of the coefficient matrix which may require efficient techniques to solve
the linear systems.

Dedicated state estimators were proposed to DSs. These estimators rely on ap-
proximations and simplifications in order to counter the obstacles that the WLS state
estimator faces. The Branch-Current State Estimator uses currents in rectangular form as
state variables, which enables it to decoupled the phases as well as making the Jacobian
matrix linear. Another formulation presented is based on the Admittance Matrix and
uses node voltages in rectangular form. These formulations have advantages in terms
of computational performance, mainly because the coefficient matrix becomes constant,
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however, because of the simplification made these estimators solve an approximate problem
which may not correspond to the original WLS formulation.

In summary, obtaining the estimated state of a DS with the WLS estimator requires
the solution of a linear system that may be ill-conditioned because of various factors. The
next chapter will present factorization methods and sparse techniques that may be used
in DSSE.
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3 THE PROPOSED ORTHOGONAL WLS STATE ESTIMATOR

3.1 Motivation

The main issue for the application of the WLS State Estimator in DSs is the
ill-conditioning of the Gain matrix which can impact the estimation process as well as the
numerical quality of the solution. Besides the inherent tendency of the normal equation to
ill-conditioning, other factors pertaining to DSs contribute to it: the three-phase unbalanced
nature, connections between long and short lines, the presence of virtual measurements as
well as other factors regarding the topology of DSs which were previously mentioned.

The measurement set can also impact the condition number of the Gain matrix:
larger weights are associated with virtual measurements because they represent known
quantities in the network. These higher weights mean lower standard deviations in the
matrix Rz in relation to the other types of measurements. Such disparities between weights
can lead to ill-conditioning and there are proposals that model these virtual measurements
as equality constraints (LIN; TENG, 1996; THORNLEY; JENKINS; WHITE, 2005).

Recall that the Normal Equation requires the factorization of the Gain matrix,
given by H(xk)T WH(xk) where H is the Jacobian matrix evaluated at the point xk and
W = R−1

z . The aforementioned factors regarding the particularities of DSs can impact the
condition number of the Jacobian matrix and this, in turn, greatly impacts the condition
number of the Gain matrix. It is possible to show that, if A = F T F , the condition number
of A is:

K(A) = λmax(A)
λmin(A) ≈ K(F )2 (3.1)

Therefore, if the Jacobian matrix is slightly ill-conditioned, the Gain matrix will be ill-
conditioned. In cases where the Jacobian matrix is already ill-conditioned, high condition
numbers can be expected for the Gain matrix meaning it will be ill-conditioned. More
details about the condition number will be presented further.

Obtaining the estimated state in a DS requires the solution of a possibly ill-
conditioned system. Usual factorization methods are not prepared to deal with such
systems in a stable way. In this chapter, the theoretical background of linear systems
and how to solve them is presented as well as a technique to reduce fill-in during the
factorization process. A brief discussion of error analysis is presented in order to introduce
the Multifrontal QR algorithm which is used in this work’s proposed estimator.
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3.2 Sparse Linear Systems

The previous chapter presented the traditional formulation of the WLS state
estimator as well as the specifics of its application to three phase distribution networks.
Since the estimated state is obtained via an iterative process, at each step it is necessary
to solve a linear system. The focus of this section is on the problems faced at the linear
factorization step of the WLS state estimator, when the Gain matrix must be factorized
to obtained the correction of the state vector. An overview of the condition number is
given which can greatly impact the quality of the solution, that is, the estimated state.
Special focus is given to ordering methods which are used to maintain the sparse structure
of the matrix being factorized and are specially useful in problems such as DSSE where
matrices are highly sparse. Finally, there is a section dedicated to the more commonly
used factorization methods, their algorithms and mathematical formulations.

3.2.1 Theoretical Background

The state estimation process, using the WLS state estimator formulation, requires
the solution of the linear system given by equation 2.9, also called the Normal equation.
This system can become ill-conditioned because of the specific characteristics of distribution
systems as previously mentioned. The condition number K of a matrix A can be defined
as:

K(A) = ∥A∥∥A−1∥ (3.2)

Where ∥.∥ is the euclidean norm. This number represents how close a matrix is to singularity.
A perfectly conditioned matrix would have a condition number of 1, whereas a singular
matrix has an infinite condition number. When using the Euclidian norm, (QUARTERONI;
SACCO; SALERI, 2000) shows that the condition number can be expressed as:

K(A) = λmax(A)
λmin(A) (3.3)

where λmax is the largest eigenvalue and λmin is the smallest eigenvalue.

A large condition number implies a greater sensitivity of the solution of the
linear system to small perturbations in the inputs. Small errors caused by floating point
calculations can result in much larger distortions in the result vector. In order to solve the
Normal equation, it is necessary to invert or factorize the Gain matrix. Inverting the Gain
matrix is too costly in terms of computational effort and, because of the ill-conditioning,
errors and numerical problems could be induced. Factorization methods are then applied
and these methods perform operations on the matrix in order to obtain a lower, or upper,
triangular system. An upper, or lower, triangular matrix, is a matrix that has all non-zero
elements below, or above, the main diagonal.

The triangular system can then be solved using forwards or backwards substitution,
for upper and lower systems respectively. Considering the linear system Lx = b where L is
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lower triangular, forwards substitution algorithm gives each element of vector x by:

xi =
(bi − ∑i−1

j=1 Lijxj)
Lii

(3.4)

Upper triangular systems, however, can be solved via backwards substitution.
Considering the system Ux = b, where U is upper triangular, its solution is given by:

xi =
(bi − ∑n

j=i+1 Uijxj)
Uii

(3.5)

When dealing with dense matrices, which are those that have a lot of non-zero
elements, the solution to the linear system boils down to the factorization, since the
substitution step is quite straightforward. Sparse matrices, however, may demand a few
more steps in order to obtain a solution when computational performance is desired.
These steps aim to preserve sparsity, as is the case of the ordering methods which will be
presented in the next section, or increase efficiency even further with additional structures
and operations specific to sparse matrices.

In the next sections, it will be presented an overview of the most commonly used
methods for obtaining the factorization of Gain matrix in the Normal equation as well as a
QR factorization that has a property that is central to the topic of this work. In addition to
factorization methods, ordering algorithms are presented in a dedicated section. Normally
applied as a step before the proper factorization, these reordering methods reduce the
number of fill-in elements and decrease memory usage.

3.2.2 Linear System Solvers

A linear system is a set of equations that can be written in matrix format as:

Ax = b (3.6)

where A is the coefficient matrix, b is a column vector and x is a column vector of the
variables to be determined. This system admits a solution if A is invertible which follows
that the solution x is given by:

x = A−1b (3.7)

Computing the inverse of a matrix is, however, far too costly in terms of computational
effort. When dealing with large systems factorization methods are preferred so that the
solution can be obtained by forwards and/or backwards substitution using equations 3.4
and 3.5. There are two classes of methods for solving linear systems, direct methods that
factorize the matrix A in equation 3.6 and iterative methods that aim to obtain successive
approximations at every iteration. In this work, only direct methods will be discussed and
applied. In order to exist a unique solution to the linear system, the matrix A has to be
invertible, which means that its determinant has to be different than zero: det(A) ̸= 0.
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The first factorization method to be presented is the LU decomposition. If det(A) ̸= 0
there exists a decomposition such that:

A = LU (3.8)

with L being lower triangular and U being upper triangular. The solution to the linear
system is obtained in two steps, first let y = Ux, then:

Ly = b (3.9)

where y is solved by forwards substitution using 3.4. The second step obtains x using:

Ux = y (3.10)

and backwards substitution using 3.5.

Another factorization method widely used in state estimation is the Cholesky
factorization. This method produces a decomposition of the matrix A of the form:

A = LLT (3.11)

Where L is lower triangular and LT is its transpose. This decomposition exists if the
matrix A is positive definite which means that xT Ax > 0 for all vectors x. The solution x

is obtained via two triangular systems, analogous to the LU factorization. Let y = LT x,
the first system to be solved is Ly = b which gives the vector y. Then, LT x = y is solved
to obtain the desired x vector. The Cholesky factorization is widely used in the WLS
estimator because, for observable systems, the Gain matrix is symmetric and positive
definite.

Additionally, there is the QR factorization. The definition of the QR factorization
states that a matriz A ∈ ℜmxn, with m ≥ n admits a QR factorization if there exists
an orthogonal matrix Q ∈ ℜmxm and an upper trapezoidal matrix R ∈ ℜmxn such that
(QUARTERONI; SACCO; SALERI, 2000):

A = QR (3.12)

Since this factorization can be applied in a rectangular matrix, R is trapezoidal and
therefore has null rows from the n + 1 row up to m. The orthogonality property of the
matrix Q means that QT = Q−1, therefore a linear system Ax = b can be solved with the
following:

QRx = b (3.13)

Multiplying both sides by QT and using the orthogonality property:

QT QRx = QT b (3.14)
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Q−1QRx = QT b (3.15)

Rx = QT b (3.16)

Which is an upper triangular system that can be solved via backwards substitution using
equation 3.5. Obtaining the QR factorization can be done by two main methods: Givens
Rotations and Householder Reflections.

One important aspect of the QR factorization is the error analysis. In this topic,
two concepts are important: forward and backwards stability. The first one is related
to forward error which is a measure of how much the computed solution deviated from
the real solution. Backwards stability is related to backwards error which is the error
associated with the computed value given a small perturbation in the input data. The
concept of backwards stability is specially important to DSSE because, as was shown,
there can be a lot of factors that cause small perturbations on the input data leading to
ill-conditioning. The QR factorization method is backwards and forwards stable as will be
shown next.

The corresponding QR factorization satisfies:

Q̃R̃ = A + δA (3.17)

Where ∥δA∥
∥A∥ = O(ϵmachine). Q̃R̃ is the computed QR factorization of a slightly perturbed A,

where the perturbation is represented as δA. The notation O(ϵmachine) represents an upper
bound of this perturbation that is within the round-off error of floating point arithmetic
(ϵmachine).

The forward step is stable (TREFETHEN; BAU, 1997) and proving the backwards
stability means that:

(A + △A)x̃ = b (3.18)

where ∥△A∥
∥A∥ = O(ϵmachine). In other words, the computed solution x̃ is exact even in the

presence of an error in input data, represented by △A.

In order to prove the backwards stability of the QR factorization, it’s necessary to
show that the error △A is sufficiently small when the QR factorization is used to solve
the linear system. The first step in the proof is to write A + △A as:

(Q̃ + δQ)(R̃ + δR)x̃ = b (3.19)

[Q̃R̃ + Q̃(δR) + (δQ)R̃ + (δQ)(δR)]x̃ = b (3.20)
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Since Q̃R̃ = A + δA, and δA is small when compared to A, we can write:

∥R̃∥
∥A∥

≤ ∥Q̃T ∥∥A + δA∥
∥A∥

= O(1) (3.21)

Using equation (3.21) and adding the terms of equation (3.20) we can show that:

∥△A∥
∥A∥

≤ ∥δA∥
∥A∥

+ ∥(δQ)R̃∥
∥A∥

+ (3.22)

+ ∥(δR)Q̃∥
∥A∥

+ ∥(δQ)(δR)∥
∥A∥

= O(ϵmachine)

which concludes the proof of backwards stability.

Regarding the solution to the linear system Ax = b, one important consequence of
the backwards stability of the QR algorithm is that the obtained solution x̃ follows:

∥x̃ − x∥
∥x∥

= O(K(A)ϵmachine), (3.23)

where K(A) is the condition number of the matrix A and x is the exact solution of the
system. Equation 3.23 shows that the error on the computed solution is a function of the
condition number of the matrix A. In the context of the state estimator, this means that
reducing the condition number of the coefficient matrix is an essential step to improve the
accuracy of the solution. The proposed estimator in this work will acomplish this in later
sections.

It was shown that small perturbations in the input data can have an effect on the
computed solution and a backwards stable factorization method is important to reduce the
backwards error, the next section will present ordering methods that reduce the creation
of non-zero elements in the factorization process. These created elements can perturb the
input data, increasing the ill-conditioning as well as increasing the memory necessity.

3.2.3 Ordering Methods

Usually, before the factorization process, the rows and columns of the matrix being
factorized are reordered to reduce the number of fill-ins created. Theses fill-ins are elements
originally zero that, because of the operations done by the factorization process, become
non-zero. This problem is formulated as a optimization problem: obtain a permutation
matrix P such as the factorization of P T AP , where A is the matrix being factorized,
produces the minimum amount of fill-in. (DAVIS, 2006; DAVIS; RAJAMANICKAM;
SID-LAKHDAR, 2016). It has been shown by (YANNANAKIS, 1981) that this problem is
NP-Complete and heuristics are used to solve it.
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Some of these heuristics are based on the undirected graph associated with the
matrix being factorized since a factorization step is equivalent to a node elimination. Fill-in
is, therefore, new edges created in this graph after an elimination. This can be better
visualized by Figure 3 where, after node 2 is eliminated, three new edges, in red, are
created.

Figure 3 – Node elimination resulting in fill-ins. Source: Author

Choosing a different node to eliminate first in Figure 3 would result in another
reduced graph, possibly with less fill-in. This is the basis of the heuristics which operate
on the undirected graph, they produce an order of elimination that aims to minimize the
fill-in created. The permutation which corresponds to this elimination order is then applied
to the matrix so that the factorization steps occur in the same order as the elimination
steps. What differs among heuristics is the criteria for choosing the next node to eliminate.

The MD (Minimum Degree) ordering produces a permutation matrix P that
corresponds to the order obtained when the next node to be eliminated is the one with the
minimum degree, that is, the one with the least amount of incident edges. In Figure 3, that
node would be node 1 as a first choice to be eliminated. During the elimination process,
it’s possible that two or more nodes will have the same degree and some strategies to
break these ties have been proposed in (GOMEZ; FRANQUELO, 1988). The first strategy
selects among the nodes with the same minimum degree, the one with fewer adjacent nodes
that have already been eliminated. Another strategy, called MD-ML (Minimum Degree,
Minimum Lenght), builds a structure called path graph and selects among the tied nodes
the one with minimum length or depth, as presented in (BETANCOURT, 1988). Since
these first implementations of the minimum degree ordering, the method has improved
a lot in terms of memory usage and performance but still maintains the basic idea of
selecting the node with minimum degree as the next one in the elimination process. The
Approximate Minimum Degree (AMD) ordering is the state-of-the-art method widely used
in commercial packages and implementations and it is proposed in (AMESTOY; DAVIS;
DUFF, 2004).

Another ordering method based on the graph of the matrix being factorized is
called Nested Dissection. This method is iterative and uses the concept of divide and
conquer to obtain a graph separator at each iteration that divides the original graph in
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a manner that any path between the subgraphs passes through the separator. After a
sufficient amount of iterations, any nodes not present in any separators are ordered first
whereas the first separators are ordered last. Other heuristics can be used to order nodes
in the subgraphs and separators that are not ordered by the Nested Dissection method.

Solving an ill-conditioned system requires a suitable method and, if possible, the
use of sparse-oriented techniques such as ordering methods. The QR factorization is a
backwards stable method, therefore, it is robust to small variations in the input data. The
ordering methods presented result in a permutation matrix that, when applied to the
coefficient matrix, result in less fill-in during the factorization process. The next section will
present an algorithm that combines the backwards stable method with highly optimized
sparse techniques. All of the previously mentioned reordering techniques can be used with
the algorithm shown in the next section.

3.2.4 Multifrontal QR

Combining the concepts presented in the previous sections, this work presents a
method that solves a linear system via QR factorization. The operations are optimized for
sparse matrices and the previously shown fill-in reducing techniques can be used. This
method is called Multifrontal QR. The major steps performed on this algorithm are shown
in Figure 4.

Figure 4 – Steps performed on the Multifrontal QR. Source: Author

The Multifrontal QR performs operations on groups of rows and columns of the
matrix being factorized in order to work the majority of the computations in parallel. In
contrast, traditional orthogonal methods are sequential, performing only on one row or
column at a time which causes an irregular access of memory reducing computational
performance (GEORGE; LIU; NG, 1988; GEORGE; HEATH, 1980). The Multifrontal
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QR consists of three main steps, as shown in Figure 4, that result in the solution to the
linear system. The first step is the reordering of the matrix in which a fill-in reducing
permutation is obtained and then applied. The second step takes this reordered matrix
and performs a symbolic analysis that results in the non-zero pattern of the resulting R
factor. This analysis is used to guide and manage the operations that will be performed
in the third phase which consists of the proper factorization and solving, via backwards
substitution. This last step, the numeric factorization, is applied on so called Frontal
Matrices which can be dense, that is, have a large number of non-zero elements.

Phase one of the Multifrontal QR, the reordering phase, consists mainly of applying
one of the methods discussed in section 3. In summary, a permutation of the matrix being
factorized is obtained which aims to reduce the number of fill-in required. Let A be the
matrix being factorized, a permutation P is obtained so that the number of fill-ins in
P T AP is minimized. For the sake of simplicity, the permutation matrix P is omitted from
the notation.

The second phase called symbolic factorization assumes that the matrix has been
reordered. In this second phase, a symbolic Cholesky factorization LLT is applied without
explicitly forming the matrix AT A, instead, the structure of A is analyzed. The first step
of this analysis is to obtain the elimination tree and compute the number of non-zero
elements in each row of the factor R (GILBERT et al., 2001). As is shown in Figure 4, the
symbolic factorization step builds structures that will guide the numeric factorization.

The elimination tree has one node per column of R and can also be called column
elimination tree. In order to build the tree, the nodes, which represent rows in the matrix,
are connected to other nodes (called parent nodes) by applying the following rule: the
parent node of i is k if k is the smallest row index greater than i where ri,k ̸= 0. After the
elimination tree is built and the row pattern of the R factor is obtained, it is possible to
group the nodes of the elimination tree that have the same pattern, here called supernodes.
The group of nodes in a supernode represents a set of adjacent rows of the matrix A and
this organization will later be used to form the so called frontal matrices in which the
numeric step of the QR factorization will be applied. A secondary tree is built after finding
the supernodes, this tree, called frontal matrix tree, has one node per supernode found
which corresponds to one frontal matrix. In order to better visualize the method, Figure 5
shows a sparse matrix and its resulting factor R. The elimination tree is also presented and
its supernodes are grouped together. As an example of the construction of this elimination
tree, note that node 1 is a parent of node 2 because r1,2 ̸= 0. Non-zero elements of the
factor R are denoted by r in Figure 5. The resulting supernodes are grouped on the
elimination tree by rectangles as well as the corresponding columns on the factor R in
order to show the connection.

One important factor of the Multifrontal QR that improves its performance is
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Figure 5 – A sparse matrix, its factor R and the elimination tree obtained with the
Multifrontal QR. Source: (DAVIS, 2015)

the possibility of parallelism in its operations. The first possibility of parallelism arises
from the frontal matrix tree assembly and factorization. In the example of Figure 5 the
three frontal matrices that produce the first two rows of the matrix R can be assembled
and factorized in parallel. The second possibility to take advantage of parallel routines
is within each frontal matrix. The implementation of the Multifrontal QR used in this
work is part of a state-of-the-art package named SuiteSparse that takes advantage of the
aforementioned possibilities for parallelism.

3.3 Proposed Formulation

In the process of WLS state estimation for distribution system, several different
factors can impact the solution as well as the iterative process, mainly the ill-conditioning
associated with the Gain matrix. Other formulations were proposed to deal with this
ill-conditioning but these alternatives formulations try to solve a modified problem, that
is, a modified version of the state estimation process, that may not be entirely equivalent
to the original problem (FENG; YANG; PETERSON, 2012). In this section, a orthogonal
factorization is detailed and, because of this factorization, it is possible to obtain a state
estimate via the WLS formulation without explicitly calculating the Gain matrix.

Using the notation from the Chapter 2, where the traditional formulation of the
WLS estimator was presented, it is possible to apply an orthogonal factorization obtaining:

W 1/2H(xk) = QT R (3.24)
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Rewriting the Normal Equation 2.9 as:

[RT QQT R]△xk = RT QW 1/2[z − h(xk)] (3.25)

Since QQT = I, where I is the identity matrix, we obtain:

[RT R]△xk = RT QW 1/2[z − h(xk)] (3.26)

Multiplying both sides by (RT )−1:

R△xk = QW 1/2[z − h(xk)] (3.27)

From equation 3.27, it is possible to obtain the vector △xk using backwards substitution
with the equation 3.5 since R was obtained via QR factorization and it is, therefore, upper
triangular.

This formulation’s main advantage in comparison with the WLS state estimator is
the better conditioning. As was shown the condition number of a matrix directly impacts
the quality and robustness of the solution of the linear system. Consider the condition
number K of the upper triangular matrix R:

K(R) = ∥R∥∥R−1∥ (3.28)

Substituting from 3.24:

K(R) = ∥[(QT )−1W 1/2H]∥∥[(QT )−1W 1/2H]−1∥ (3.29)

Using the following property of inverse matrices:

(AB)−1 = B−1A−1 (3.30)

It is possible to rewrite [(QT )−1W 1/2H]−1, obtaining:

K(R) = ∥[(QT )−1W 1/2H]∥∥[(W 1/2H)−1QT ]∥ (3.31)

Approximating:

K(R) ≈ ∥(QT )−1∥∥(W 1/2H)∥∥(W 1/2H)−1∥∥QT ∥ (3.32)

Since Q is orthogonal, the additional following properties are true: QT = Q−1 and
∥Q∥ = ∥(QT )−1∥ = 1, that is, the matrix Q is perfectly conditioned. Therefore we can
approximate the condition number of R as:

K(R) ≈ ∥(W 1/2H)∥∥(W 1/2H)−1∥ = K(W 1/2H) (3.33)

Equation (3.33) shows that the resulting system, when applying the proposed QR
factorization to the WLS formulation, has a condition number of the same order of
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magnitude as the Jacobian matrix whereas the system obtained with the Normal Equation
has a condition number approximately the square of that of the Jacobian matrix.

The application of this orthogonal formulation can be associated with dedicated
algorithms to take advantage of the sparse characteristics associated with the matrices of
DSSE such as the Multifrontal QR which was presented in Section 3.2. The main structure
of the State Estimator, however, remains very similiar to that of the WLS state estimator.
In summary: the network topology and measurement data are considered as inputs to the
state estimator, calculations are performed to obtain the Jacobian matrix (in the case of
the WLS state estimator, the Gain matrix is also calculated), the resulting linear system
is then solved via QR factorization and the estimated state is updated until convergence
is obtained. There are two main differences between the proposed orthogonal formulation
and the WLS estimator: first, the Gain matrix does not need to be calculated and second,
the QR factorization is used to solve the linear system instead of the commonly used
Cholesky factorization. The aforementioned steps are better visualized in the diagram
presented in Figure 6.

In order to use the orthogonal formulation, it is necessary to obtain the QR
factorization of the matrix W 1/2H, which will be referred to as orthogonal QR matrix
from now on. In Section 3.2, it was shown that the QR factorization is backwards stable,
therefore, the advantages in terms of stability of this orthogonal formulation are twofold:
the condition number of the orthogonal QR matrix is smaller than that of the Gain matrix
and the process to obtain an estimated state makes use of a backwards stable factorization.
This QR factorization can be obtained via Householder reflections or Givens rotations but,
in order to extract peak computational performance, a dedicated algorithm is necessary. In
this work, such algorithm was presented in Section 3.2 and this algorithm takes advantage
of the sparse structures inherent to DSSE and uses state-of-the-art techniques to obtain
the factorization in the least amount of time.
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Figure 6 – Steps performed to obtain the estimated state with the orthogonal formulation
of the state estimator.
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4 RESULTS

4.1 Test Systems

In this chapter, the results obtained with the application of the sparse-oriented
techniques mentioned in previous chapters will be presented. First, we present results
with the application of fill-in reducing ordering with the intent to show what to expect
in terms of memory improvement and computational efficiency. Since the application of
these fill-in reducing ordering alone does not solve the central issue of DSSE, that is, the
ill-conditioning of the Gain Matrix, it is necessary to apply a factorization method that
can take advantage of the sparse structures. This method was presented in the previous
chapter and because of the formulation presented that avoids the calculation of the Gain
matrix, better-conditioned matrices are expected as well as improved performance while
maintaining accuracy.

The simulations were performed in a machine that has a 2.7 Ghz core i5 with
8Gb of RAM on a Unix OS. All implementations were made with the C language. Three
IEEE three-phase unbalanced test systems (SCHNEIDER et al., 2017), widely used in the
literature, were used to evaluate both the fill-in reducing ordering as well as the Multifrontal
QR implementation. These systems have 34, 123 and 342 nodes and, along with a diverse set
of measurements for each one, they represent different operating conditions and topology
for distribution systems. In Table 2, the quantities of each measurement type contained
in each test system is presented. The 34 nodes system has only SCADA measurements,
whereas the 123 nodes system has a large number of virtual and pseudo-measurements
with only a few SCADA measurements. The 342 nodes system has the greatest number
of virtual measurements as well as smart meters, some SCADA measurements and no
pseudo-measurements. All of these measurements are considered to be available at the
same time, that is, different sampling rates are not in the scope of this work.

Table 2 – Measurements sets for the three different test systems
34 nodes 123 nodes 342 nodes

SCADA measurements 632 72 575
Smart Meters 0 0 929

Pseudo-measurements 0 183 0
Virtual Measurements 0 316 1230

In terms of topology, the three systems have a very diverse set of characteristics.
The 34 and 123 nodes systems are radial systems, that is, there is only one path from the
substation to the terminal nodes or consumers. The first operates at a voltage level of 24.9
kV with a short 4.19 kV section. The second system has a nominal voltage of 4.16 kV. The
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342 nodes system presents a complete scenario of operation since the low voltage network
is modelled as well as the medium voltage network. The primary network operates at 13.2
kV. In Figure 7, the topology of the 342 nodes test system is presented where the medium
voltage network is red and the low voltage network is blue, it is important to note that
this system contains meshes which is unusual for distribution systems.

Figure 7 – Topology of the 342 nodes system

4.2 Evaluation of Ordering Methods

The fill-in reducing ordering methods presented in Chapter 3 were evaluated using
the three test systems with the measurements sets shown in Table 2. The main goal of this
simulation is to verify the improvement in data storage necessary and also computational
performance in both the traditional formulation using the Gain matrix and also the
proposed QR formulation. For the 342 nodes system without fill-in reducing ordering,
the sparsity pattern of the Gain matrix as well as the W 1/2H matrix obtained with the
orthogonal QR method are shown in Figure 8. The sparse structure of the L factor obtained
with the Cholesky factorization of the Gain matrix as well as the R factor obtained with
the QR factorization of W 1/2H are shown.

In Figure 8, it is also possible to see the influence of the topology of the system.
Since the 342 nodes system has meshes, there are a high number of elements away from
the diagonal. In contrast, Figure 9 presents the sparse structure of the Gain matrix as
well as the W 1/2H for the 123 nodes system and since this is a radial system, much fewer
off-diagonal elements are present.
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Figure 8 – Sparse pattern of the matrices of the 342 nodes IEEE test system and its
corresponding factors

Figure 9 – Sparsity pattern of the matrices of the 123 nodes IEEE test system

The ordering methods presented in Chapter 3 were evaluated on the three test
systems. AMD and Nested Dissection ordering methods were applied to both the Gain
matrix and the W 1/2H matrix of the orthogonal method presented in Chapter 3. It is
important to note that, since the orthogonal matrix is not square, only its columns are
reordered. In order to better illustrate the effect of this reordering, Figure 10 presents the
sparsity structure of the 342 node system of the reordered Gain matrix and the L factor
obtained with Cholesky factorization for the two ordering methods considered. At first
glance, it is remarkable the reduction in fill-in when compared with the sparsity pattern
when no ordering method is used, in Figure 8.

The reduction in fill-in is also expressive when considering the orthogonal QR
formulation shown in Chapter 3. The sparsity pattern of the 342 nodes system of the
matrix W 1/2H and its factor R, from the QR factorization are shown in Figure 11. Since
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Figure 10 – Sparsity pattern of the ordered Gain matrix and its corresponding L factor,
342 nodes test system.

the ordering is only applied to the columns of the matrix, the sparse structure is not as
organized as those observed in the ordered Gain matrix in Figure 10. Even though it is
not possible to observe the effect of the ordering quite as clear with the matrix W 1/2H,
the reduction of fill-in in the corresponding factor R is pretty extensive.

Figure 11 – Sparsity pattern of the ordered orthogonal QR matrix and its corresponding
L factor, 342 nodes test system.
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The results shown so far are from the 342 nodes system however, all systems were
evaluated with the three ordering methods presented. The compiled results can be seen in
Tables 3 and 4. The percentages represent the reduction of non-zero elements present in the
Gain matrix, for Table 3, and in W 1/2H, for Table 4 compared to these matrices without
a fill-in reducing ordering. Just as can be seen with the sparsity patterns, the numbers
show a significant reduction in fill-in when ordering methods are applied. The minimum
reduction obtained was 65,29% in the 34 nodes system when using Nested Dissection,
specifically with the orthogonal QR formulation. For the 123 nodes system, fill-in was
reduced by at least 88,96% and the largest system, with 342 nodes, showed a minimum
reduction of 68,99%.

Table 3 – Relative fill-in reduction with the Gain Matrix formulation
34 nodes 123 nodes 342 nodes

AMD 77.44% 90,97% 87,52%
Nested Dissection 71,73% 90,20% 87,80%

RCM 77,44% 90,97% 73,19%

Table 4 – Relative fill-in reduction with the proposed QR formulation
34 nodes 123 nodes 342 nodes

AMD 72,30% 89,84% 85,55%
Nested Dissection 65,29% 88,96% 85,89%

RCM 71,29% 89,79% 68,99%

With the results shown so far, it becomes clear that using a fill-in reducing ordering
is essential to improve performance both in terms of memory usage and also computational
time. Memory usage is reduced because fewer elements need to be kept and the execution
time is improved because fewer operations need to be performed. However, to obtain even
more expressive gains in performance, the ordering methods need to be coupled with
factorization methods that take advantage of sparse structures and optimizations. One of
those methods was shown in Chapter 3, the Multifrontal QR is an algorithm specialized in
dealing with large sparse matrices and because of that it uses the fill-in reducing ordering
as one of the steps in the factorization process.

4.3 Evaluation of the Proposed QR Estimator

The following results were obtained in order to evaluate an implementation of
the Multifrontal QR along the orthogonal factorization proposed in Chapter 3. Both the
accuracy of this proposed formulation and the performance gains are metrics to evaluate
the proposals and a methodology of tests was designed. This methodology, in summary,
uses Monte Carlo simulations to create different measurement values from reference values
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obtained with a power flow calculation. Each simulation results for a given Monte Carlo
repetition, the estimated state values, are stored in order to evaluate the accuracy of the
proposed algorithm using metrics such as the MAE (Mean Absolute Error):

MAEi = 1
ntrials

ntrials∑
k=1

|x̂k
i − xref

i |, (4.1)

where x̂i is the i-th estimated variable xref
i is its corresponding reference value, k represents

each repetition of ntrials simulations of the Monte Carlo method. Another useful metric
evaluated is the Kema, based on (KEMA, 2006):

Kemak = 1
nbus

√√√√√nbus∑
j=1

nphases∑
ϕ=1

(| ⃗
V ϕ

j − ⃗
V ϕ,ref

j |) (4.2)

where ⃗
V ϕ

j is the complex voltage of phase ϕ at bus j and ⃗
V ϕ,ref

j is the reference voltage
value of the same phase ϕ and at the same bus j. Also, k represents each repetition of
ntrials simulations of the Monte Carlo method and nbus is the total number of nodes in the
system.

In more details, the test methodology consists of creating a measurement set that
is different from that of the Table 2. A reference value for the measurements was generated
from an exact load flow solution and random errors were included in each Monte Carlo
simulation using the formula:

zi = zlf
i + ui.σzi, (4.3)

where zi is the value of the i − th measurement that will constitute the input data for a
given simulation of the proposed algorithm, zlf

i is the corresponding reference value for
i − th measurement obtained from an exact load flow solution, ui is a random variable
that follows ui ∼ N(0, 1), that is, zero mean and unitary standard deviation and finally
σzi is the standard deviation of the i − th measurement given by:

σzi =

∣∣∣zlf
i

∣∣∣ pri

3 , (4.4)

where pr is the precision associated with each type of measurement. In this work, the
following values were used: 30% for pseudo-measurements, 5% for smart-meter measure-
ments, 2% for active and reactive power injection measurements, 1% for voltage magnitude
measurements and 0.0001% for virtual measurements.

This methodology was specifically applied to the 342 nodes system and three differ-
ent sets of measurements were created. The first one contains mostly pseudo-measurements
and no smart-meter measurements. In the second one, a high number of smart-meter
measurements were used and, in the third scenario, SCADA measurements of power flow in
transformers were added to the measurement set of the second scenario. Simulations were
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performed with 100 Monte Carlo repetitions for each measurement scenario previously
presented. The condensed results, average MAE and KEMA metrics, are presented in
Table 5, which also contains the condition number of the corresponding matrices W 1/2H

and G. As it is expected, the condition number of G is approximately the square of the
condition number of W 1/2H.

Table 5 – Performance metrics obtained with the proposed estimator for each simulation
scenario with the 342 nodes test system.

Scenario MAE Kema K(W 1/2H) K(Gain)
1 0.0005851 3.5981e-05 6.6843e+09 5.5326e+18
2 0.0004079 2.0207e-05 1.3536e+10 1.4447e+18
3 0.0004130 1.7887e-05 8.7496e+11 6.4480e+21

The MAE and Kema metrics were also graphed in order to visualize the simulation
results for each Monte Carlo simulation and also for each state variable. In Figure 12,
is presented the average value of the MAE metric for each state variable, this metric is
also condensed on Table 6 where the average MAE is presented for each scenario as well
as the Global Redundancy (GR) of the measurement set used. Also in Figure 12, the
state variables in the high voltage (HV) system are highlighted as well as medium voltage
(MV) and low voltage (LV). In Figure 13 the KEMA metric obtained in each Monte Carlo
repetition is presented.

Table 6 – Detailed errors for all simulation scenarios obtained with the proposed estimator
using the 342 nodes test system.

Scenario Magnitude Error (p.u.) Angle Error (p.u.) GR
1 6.0290e-04 5.6715e-04 1.12
2 4.2891e-04 2.9507e-04 1.28
3 3.9800e-04 2.4537e-04 1.50

The proposed algorithm returned the worst performance when applied for Scenario
1, mainly because of the reduced number of measurements (the global redundancy (GR)
of Scenario 1 is lower than the others.

4.4 Comparisons with Other Estimators

The results presented so far show that the proposed QR estimator, using the sparse
oriented factorization and the Multifrontal QR algorithm is accurate in a diverse set
operational conditions. It has been shown as well that the reordering techniques have a
significant impact in fill-in created during the factorization which can impact computational
performance. Since performance is one of the requirements for the state estimator in the
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Figure 12 – Average MAE metric for all state variables

Figure 13 – KEMA metric for each Monte Carlo repetition

context of real-time operation of distribution system, simulations were carried to evaluate
the computational aspects of the proposed QR estimator in comparison with the WLS
state estimator with the Normal Equation (WLS-NE) and also the alternative formulations
that were presented in previous chapters. These formulations are the WLS with Equality
Constraints (NEC) and the Hatchel Augmented Matrix Method (Hatchel).

4.4.1 Numerical Aspects

The first result obtained was the condition number of the coefficient matrix in
each of the estimators. In the case of the WLS-NE state estimator, this matrix is the
Gain matrix. In the Proposed QR, this matrix is the W 1/2H that is factorized to solve the
corresponding linear system. For the NEC and Hatchel estimators, these matrices are the
ones shown in equations 2.30 and 2.36, respectively.
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Table 7 presented the results obtained for the three IEEE test systems used. At
first glance it’s possible to see the high condition numbers associated with the Gain matrix.
The proposed QR estimator reduces the condition number as is expected since the Gain
matrix is not built. The NEC estimator, however, did not reduce the condition number
which shows that the higher weights associated with virtual measurements are not the
only factor that impact the condition number. The Hatchel estimator greatly reduced the
condition number, even more so than the Proposed QR for the smaller systems whereas
for the 342 nodes system the numbers are pretty close.

Table 7 – Condition number of the coefficient matrix for different estimators.

System WLS-NE Proposed QR NEC Hatchel
IEEE34 3.4340e+18 1.0930e+10 1.0570e+26 2.3107e+06
IEEE123 1.7140e+17 1.0910e+09 2.4250e+18 6.1264e+05
IEEE342 1.6460e+21 8.7520e+11 8.4320e+23 7.3182e+10

Further simulations were performed on the NEC estimator since a scaling factor
can be used to decrease the condition number of the matrix. Two options for factors were
evaluated, the first one, α1, is:

α1 = 1
max{R−1

ii }
(4.5)

And the second one, α2 is:

α2 = m∑m
i=1 R−1

ii

(4.6)

The results are shown in Table 8, the scaling factor α1 performed better than α2 on
reducing the condition number of the coefficient matrix. It’s noteworthy that the second
factor increased the condition number of the matrix for the larger, 342 nodes, test system.
Preliminary simulations showed that even though the condition number is improved, using
a scaling factor impacts on the convergence of the estimator. Because of this, all future
simulation will not be using any scaling factor.

Table 8 – Condition number of the coefficient matrix of the NEC estimator for different
scaling factors.

System α1 α2

IEEE34 1.009+17 2.060e+24
IEEE123 2.040e+14 6.800e+17
IEEE342 3.920e+17 1.160e+36
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4.4.2 Computational Aspects

The first metric for computational performance that was evaluated was the number
of iterations necessary for convergence, given a specified tolerance, of the estimators. In
these simulations, in addition to the previously mentioned estimators, the Branch Current
formulation was also included given that it is a dedicated estimator for distribution systems
and it has been shown to be pretty fast. Tables 9, 10 and 11 presents the results in three
different simulations: in the first one the coefficient matrix was not reordered, in the second
one the AMD method was used to reduce fill-in and in the third one the Nested Dissection
method was used to reorder the matrix. The Branch Current converged in the smallest
number of iterations in the 34 and 123 nodes systems however it did not converge for
the larger 342 nodes system. The main reason is the presence of meshes in this network.
(BARAN, 2012) proposes a solution to weakly meshed networks in which an equality
constraint is added to represent Kirchoff’s law of currents in the loop. This addition could
help convergence at the expense of performance.

Between the three results, with and without reordering, it’s possible to see that the
use of the both ordering methods greatly impacted the convergence of the NEC estimator.
Without reordering, this estimator did not converge for the largest two systems whereas
with the AMD method, it converged. When using the Nested Dissection method the NEC
estimator converged for the two smaller systems. This result indicates that the fill-in
impacts the factorization process and can lead to a non-convergence.

Table 9 – Number of iterations necessary for convergence for each estimator without
reordering the coefficient matrix.

System WLS-NE Proposed QR NEC Hatchel Branch Current
IEEE34 NC 5 NC 5 3
IEEE123 NC 4 NC 4 3
IEEE342 NC 4 NC 4 NC

Table 10 – Number of iterations necessary for convergence for each estimator using the
AMD ordering method.

System WLS-NE Proposed QR NEC Hatchel Branch Current
IEEE34 NC 5 6 5 3
IEEE123 NC 4 9 4 3
IEEE342 NC 4 8 4 NC

The second performance metric evaluated was the time necessary for convergence.
Tables 12, 13 as well as 14 show the results without ordering of the coefficient matrix and
with the AMD and with the Nested Dissection methods applied. Although the number
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Table 11 – Number of iterations necessary for convergence for each estimator using the
Nested Dissection ordering method.

System WLS-NE Proposed QR NEC Hatchel Branch Current
IEEE34 NC 5 4 5 3
IEEE123 NC 4 3 4 3
IEEE342 NC 4 NC 4 NC

of iterations did not change for the Proposed QR and Hatchel methods between these
scenarios, the estimation time changed significantly between the ordered and non ordered
simulations. For the 342 nodes system, for example, the Hatchel estimator needed 11.3
seconds for convergence without ordering and approximately 1.5 seconds when either
method of ordering was applied. Between the AMD and Nested Dissection method there
is a small difference in execution times but neither is significantly faster than the other.

The expressive difference in times obtained with and without ordering shows the
impact of the fill-in reduction in computational performance of these estimators. The
Branch Current estimator, on the other hand, does not improve with the ordering possibly
because its coefficient matrix is constant and linear. Overall, as was expected, the Branch
Current estimator was the fastest among the two smallest systems. For the 342 nodes test
system, with the AMD reordering, the Proposed QR obtained the smallest estimation
time.

Table 12 – Time necessary for convergence for each estimator without reordering the
coefficient matrix.

System WLS-NE Proposed QR NEC Hatchel Branch Current
IEEE34 NC 0.1180 NC 0.07713 0.006769
IEEE123 NC 0.2131 NC 0.2939 0.02374
IEEE342 NC 2.5949 NC 11.3795 NC

Table 13 – Time necessary for convergence for each estimator using the AMD ordering
method.

System WLS-NE Proposed QR NEC Hatchel Branch Current
IEEE34 NC 0.09730 0.1013 0.06324 0.006065
IEEE123 NC 0.1721 0.1269 0.1368 0.01891
IEEE342 NC 1.1994 3.5580 1.5488 NC

The previous comparisons were performed to evaluate computational aspects of
different state estimators that may be applied to distribution systems. Previously in the
chapter, results were also presented that show the accuracy of the Proposed QR in three
simulation scenarios as shown in Table 5. The next results extend these simulations using,
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Table 14 – Time necessary for convergence for each estimator using the Nested Dissection
ordering method.

System WLS-NE Proposed QR NEC Hatchel Branch Current
IEEE34 NC 0.1065 0.05183 0.05638 0.006842
IEEE123 NC 0.1886 0.2073 0.1381 0.02016
IEEE342 NC 1.2207 NC 1.4417 NC

for the 342 nodes test system, the measurement scenario 1 and 100 Monte Carlo repetitions
for each test system. The condensed results are presented in Table 15 where for each
estimator, the maximum MAE value obtained in shown. The NEC estimator did not
converge for some of the measurement sets created during the Monte Carlo repetitions and
therefore, no MAE value could be calculated. This shows that this formulation may be
highly sensitive to variations in the input data. The most accurate estimation, according
to Table 15, is the Proposed QR formulation closely followed by the Hatchel formulation.
The Branch Current formulation, on the other hand, has shown the highest MAE value
although it showed the fastest times on Tables 12, 13 and 14.

Table 15 – Maximum MAE considering all Monte Carlo simulations.

System WLS-NE Proposed QR NEC Hatchel Branch Current
IEEE34 NC 0.006590 0.08828 0.01201 0.08603
IEEE123 NC 0.003703 NC 0.003436 0.03850
IEEE342 NC 0.001293 NC 0.002114 NC
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5 CONCLUSIONS

The state estimator is the main tool for real-time analysis of power systems.
Given the recent increase in smart meters usage, distributed generation and even electric
vehicles, the utilities now face a new challenge to obtain the operating condition of
distribution systems. Historically, the absence of measurements was a hindrance to DSSE
and the operating condition of the network was obtained with load profiles which can vary
substantially from feeder to feeder. The WLS estimator, commonly used in transmission
systems, faces difficulties in distribution systems caused mainly by the ill-conditioning
associated with the Gain matrix. The causes of this ill-condition were detailed in chapter 3
and alternative formulations have been proposed. In chapter 3, an orthogonal factorization
was proposed that uses the WLS formulation but avoids calculating the Gain matrix and,
as presented in chapter 4, greatly improves computation performance while maintaining
accuracy. The improvement in computational performance, however, cannot only be
attributed to the orthogonal method presented in chapter 3. The use of ordering methods
to preserve the sparse nature of the matrices as well as a factorization algorithm specialized
in sparse structures also greatly improves performance.

The results show that taking advantage of the sparse nature of the matrices
associated with the WLS state estimator in distribution systems can be beneficial to
improving computational efficiency without losing accuracy. If a robust factorization
method is coupled with a reordering step, using for example the AMD or METIS method,
fill-in is greatly reduced which in turn decreases computational effort and increases
performance. Another important aspect of this work is the use of detailed two-port model
for the network equipment which better represents their electrical characteristics while
also being flexible enough to be used with a diverse set of networks configurations and
infrastructure.

Simulations were performed comparing the WLS state estimator with the Normal
Equation and its variations such as the WLS with Equality Constraint (NEC) and Hatchel
Augmented Matrix Method with the Proposed QR method. A well established dedicated
estimator for distribution systems was also simulated, the Branch Current state estimator.
The results obtained showed that it is the fastest among all estimator considered but,
because of its simplifications in the measurement set, it obtained the lowest accuracy
among all simulations.

The conclusion of this work is that, given the ill-conditioning of the WLS-NE,
it is not a suitable choice for distribution systems. An alternative formulation, either
the NEC or Hatchel, is necessary in order to obtain convergence for the IEEE test
systems considered and the use of a reordering method greatly improves computational
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time. Further performance gains can be achieved with the use of the dedicated Branch
Current Estimator however these gains come at the expense of accuracy. The Proposed
QR estimator presented in chapter 3 is a great balance between speed and accuracy: it
obtained adequate times for all test systems while showing good accuracy.

5.1 Future Research

Given what was presented in this work, there are a few possibilities for future
research: since the two-port model is quite flexible, other network configurations and
types of equipment could be studied such as DC links in the distribution network. Further
research is necessary to understand how these links would impact the two-port model and
how the simulation would perform. Another benefit of the three-phase model flexibility
is the possibility to extend the application of the Proposed QR estimator to a more
complete system, including transmission and sub-transmission systems. How it was was
presented, the algorithm is numerically robust and performs quite well when applied to
large distribution systems and future research with more complete systems may show that
it can also be applied with satisfactory results.

Other measurement models could be studied. For example, there are extensions of
the estimators presented that include PMU (Phasor Measurement Units) measurements
with different sampling rates than those of SCADA measurements. When used with the
dedicated Branch Current Estimator, these measurements have been shown to increase
accuracy. On the other hand, the proposals to include PMU measurements in the WLS
estimator enter the domain of Dynamic State Estimation which is not the author’s main
area of study. It would be interesting to see if any of the techniques presented here could
be used with these dynamic estimators.

5.2 List of Publications

The author has submitted some papers that present direct results of the research
developed in this work. The main published work consists of the partial results presented
in Chapter 5 as well as the orthogonal formulation presented in Chapter 4. The paper
was presented in an international conference and published in a special edition of Electric
Power Systems Research:

• HEBLING, G. M., MASSIGNAN, J. A. D., LONDON JR. J. B. A., CAMILLO, M.
H. M. "Sparse and numerically stable implementation of a distribution
system state estimation based on Multifrontal QR factorization". Electric
Power Systems Research, 2020.

The ordering methods presented in Chapter 3 as well as the results obtained with
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their application in different test systems were also submitted to a national conference.
The following paper was published and presented at the conference:

• HEBLING, G. M., MASSIGNAN, J. A. D., LONDON JR. J. B. A., DANTAS, L.
B. "Análise de padrões de esparsidade e métodos de ordernação para
estimação de estado em sistemas de distribuição". Congresso Brasileiro de
Automática - CBA, 2020.

As an extension of the work presented here, the author has published a paper using
the orthogonal framework to detect bad data. The following paper was presented in an
international conference showing that using an orthogonal formulation is also effective
when detecting bad data as well as being quite fast.

• HEBLING, G. M., MASSIGNAN, J. A. D., LONDON JR. J. B. A., RENATO,
R."Sparse and Orthogonal Method for Fast Bad Data Processing in Dis-
tribution System State Estimation". IEEE Madrid PowerTech, 2021.

In parallel with the research presented in this work, the author has submitted a
paper applying network equivalents to meshed distribution systems. The following paper
has been accepted:

• HEBLING, G. M., MASSIGNAN, J. A. D., CAMILLO, M. H. M., LONDON JR. J.
B. A. "Aplicação de Equivalentes de Rede em Sistemas de Distribuição com
Malha entre Subestações". Simpósio Brasileiro de Sistemas Elétricos (SBSE),
2020.
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