• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.18.2009.tde-27052009-144709
Document
Author
Full name
Augusto Cesar dos Santos
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2009
Supervisor
Committee
Bretas, Newton Geraldo (President)
Carvalho, André Carlos Ponce de Leon Ferreira de
Delbem, Alexandre Cláudio Botazzo
Lázaro, Rubén Augusto Romero
Takahashi, Ricardo Hiroshi Caldeira
Title in Portuguese
Algoritmo evolutivo computacionalmente eficiente para reconfiguração de sistemas de distribuição
Keywords in Portuguese
Algoritmos evolutivos
Representação nó-profundidade
Restabelecimento de energia
Sistema de distribuição de grande porte
Abstract in Portuguese
O restabelecimento de energia em sistemas de distribuição de energia elétrica radiais geralmente envolve a reconfiguração de redes para restaurar eletricidade à(s) área(s) fora de serviço. As principais técnicas para restabelecimento de energia em sistemas de distribuição de grande porte têm sido os algoritmos evolutivos (AEs). Após a falta ter sido identificada e a zona em falta ter sido isolada do sistema, o algoritmo deve encontrar soluções em que: 1) supra com energia o maior número de consumidores possível, 2) minimize o número de operações de chaveamentos, 3) não viole restrições operacionais do sistema, 4) reduza o total de perdas resistivas, 5) a configuração da rede seja radial e, 6) obtenha tal solução em tempo real. Este projeto emprega uma nova estrutura de dados para manipular grafos produzindo exclusivamente configurações radiais e conexas, chamada representação nó-profundidade (RNP), garantindo que todas as soluções potenciais geradas pelo algoritmo satisfaçam os itens (1) e (5). Além disso, propõe-se um AE utilizando a RNP capaz de encontrar planos de restabelecimento adequados para sistemas de distribuição de larga-escala, com milhares de chaves e barras, em tempo real.
Title in English
Evolutionary algorithm computationally efficient for distribution system reconfiguration
Keywords in English
Energy restoration
Evolutionary algorithms
Large-scale distribution systems
Node-depth encoding
Abstract in English
Energy restoration in radial distribution systems usually involves the network reconfiguration to restore the electricity to the out-of-service areas. The main approaches for energy restoration in large-scale distribution systems have been the evolutionary algorithms (EAs). After a fault has been identified and isolated, the algorithm must find solutions that: 1) supply energy to the larger number of consumers, 2) reduce the number of switching operations, 3) respect operational constraints of the system, 4) reduce the amount of power losses, 5) generate exclusively radial configurations and 6) find solutions in real time. This work uses a new data structure, called node-depth encoding (NDE), to manipulate graphs producing exclusively radial and connected configurations, and guaranteeing that all potential solutions generated by the algorithm satisfy items (1) and (5). Moreover, we propose an EA using the NDE that is capable of finding adequate restoration plans in real time for large-scale distribution systems, with thousands of switches and buses.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Augusto.pdf (1.92 Mbytes)
Publishing Date
2009-06-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.