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ABSTRACT

MASSIGNAN, J. A. D. A Bayesian Perspective for Distribution System State Estimation:
Theoretical and Practical Considerations. 2021. 237p. Thesis (Doctor of Science) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2021.

Massive and heterogeneous data sources are becoming incrementally available at power distri-
bution networks, due to enhancements on traditional SCADA monitoring, including advanced
metering infrastructures, and installing new sensors such as phasor measurement units. Data
management then becomes a crucial process for operation and control of such power networks,
for processing such diverse information, performing network assessment and optimizing deci-
sions. Within such a perspective, distributions operators rely on state estimation applications,
bridging the information from measured data with detailed physics-based models of power grids.

This Thesis extends the concepts of distribution system state estimation under a Bayesian Infer-
ence perspective, exploring a probabilistic interpretation for the state variables and associated
randomness instead of only seeking to calculate a fixed state vector. This work employs this
conceptual framework under three distinct and novel applications in the context of electrical distri-
bution networks: dealing with non-Gaussian noise models under a Correntropy Extended Kalman
Filter in power system state estimation, both from measurement noise and state behaviour; the
proposition of a Bayesian information fusion to merge data gathered from pseudo-measurements,
smart meters, SCADA and phasor measurements in distribution networks; the exploration of
scalability of the three-phase unbalanced state estimation under a multiarea procedure based on
Bayesian spatial fusion.

Besides, a high-resolution and detailed model for distribution network is presented in the form
of a generic component model based on a two-port admittance matrix formulation, improving
the resolution of digital twin models for three-phase, unbalanced and asymmetrical distribution
networks from the high voltage substations and primary feeders to low voltage secondary circuits.
The proposed Thesis also employs an orthogonal formulation and sparsity treatments to overcome
numerical conditioning issues, a well-known challenge for classical state estimation formulations,
while enhancing computational efficiency to ensure real-time performance.

The developed algorithms and frameworks are evaluated on the IEEE test feeders and by the
application of the proposed methods on real Brazilian test systems (both at distribution and trans-
mission levels). The results corroborate the crucial task of including temporal characteristics on
the state estimation while dealing with more generic noise characteristics under a kernel density
concept, while properly tunning the kernel’s bandwidths under different system’s transitions. The
use of information fusion shows itself as an essential practical resource to deal with different sam-
pling and updating rates of the diverse set of measurements employed in distribution networks,
especially when abrupt transitions are present while improving computational performance.
Besides, the multiarea decomposition methods, along with sparse orthogonal formulations, are



prominent in ensuring scalability and numerical stability of the estimation as a whole, a crucial
practical contribution for large-scale distribution networks assessment.

Keywords: State Estimation, Distribution Systems, Power Systems, Bayesian Inference, Infor-
mation Fusion, Decomposition Methods, Information Theory, Smart Grids.



RESUMO

MASSIGNAN, J. A. D. Uma Perspectiva Bayesiana para Estimação de Estado em
Sistemas de Distribuição: Aspectos Teóricos e Práticos. 2021. 237p. Tese de
Doutorado - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2021.

Massivas e heterogêneas fontes de dados estão se tornando cada vez mais disponíveis em redes de
distribuição de energia, devido a aprimoramentos nos tradicionais sistemas de monitoramentos
SCADA, incluindo infraestrutura de medição avançada, e instalando novos sensores como as
unidades de medição fasorial. Gerenciamento de dados torna-se então um processo crucial
para operação e controle das redes elétricas, para o processamento dessas diversas informações,
realizar avaliação da rede elétrica e otimizando a tomada de decisões. Dentro desta perspectiva,
os operadores dos sistemas de distribuição dependem de aplicações de estimação de estado,
conectando a informação obtida de dados telemedidos com detalhados modelos físicos das redes
elétricas.

A presente Tese estende os conceitos de estimação de estado para sistemas de distribuição
sob a perspectiva de Inferência Bayesiana, explorando uma interpretação probabilística para as
variáveis de estado e incerteza associada ao invés de buscar o cálculo de um vetor de estado fixo
e determinístico. Este trabalho emprega este arcabouço conceitual em três distintas e inovadoras
aplicações no contexto de redes de distribuição de energia elétrica: tratamento de modelos de
ruído não Gaussianos através de um Filtro de Kalman Estendido por Correntropia em estimação
de estado para sistemas elétricos, tanto ruido de medida como comportamento estocástico do
estado; a proposta de Fusão Bayesiana de Informações para mesclar dados provenientes de pseudo
medidas, medidores inteligentes, SCADA e medidas fasoriais em sistemas de distribuição; a
exploração de escalabilidade de estimação de estado trifásica e desbalanceada em procedimentos
multiárea e baseados em fusão espacial Bayesiana.

Além disto, modelos detalhados e de alta resolução para redes de distribuição são apresentados
na forma de um modelo genérico baseado na formulação da matriz de admitância de quadripólos,
aumentando a resolução de modelos digital twin para redes elétricas trifásicas, desbalanceadas e
assimétricas, desde as subestações de alta tensão e alimentadores primários até os circuitos de
baixa tensão da rede secundária. A Tese proposta também emprega uma formulação ortogonal e
tratamentos de esparsidade para superar problemas de condicionamento numérico, um conhecido
desafio para formulações clássicas de estimação de estado, ao mesmo tempo que aumentando
eficiência computacional para aplicações em tempo real.

Os arcabouços e algoritmos desenvolvidos são avaliados em alimentadores de teste do IEEE
e pela aplicação das metodologias em alimentadores reais brasileiros (tanto em sistemas de



distribuição como de transmissão). Os resultados corroboram com a necessidade crucial de
se incluir características temporais sob conceitos de estimação de kernel, em conjunto com
ajustes adequados das bandas para representar transições sistêmicas. O uso de fusão de infor-
mações demonstra-se como prática essencial para lidar com as diferentes taxas de amostragem
e atualização dos conjuntos de medidas em toda sua diversidade nos sistemas de distribuição,
especialmente quando transições abruptas se fazem presentes e ao mesmo tempo aprimorando
a performance computacional. Além disto, técnicas de decomposição multiárea, em conjunto
com formulações ortogonais esparsas, São proeminentes em garantir escalabilidade e estabili-
dade numérica do processo de estimação como um todo, uma contribuição prática crucial para
avaliação de redes de distribuição de larga escala.

Palavras-chave: Estimação de Estado, Sistemas de Distribuição, Sistemas ELétricos, Inferência
Bayesiana, Fusão de Informações, Métodos de Decomposição, Teoria da Informação, Redes
Inteligentes.
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1 INTRODUCTION

1.1 Motivations

Energy management is a decisive technology on modern electric power systems, and it
enables secure and optimized operation of this complex infrastructure. But, what can you manage,
if you cannot measure it? Or, in the case of power systems, estimate it? The crucial processes
of energy management and monitoring are in the spotlight of digitalization to accomplish the
decarbonization goals, since they can, for instance, optimize the integration of renewable and
distributed energy resources to meet the rising electricity demand and enable novel market
dynamics in the electricity sector.

The International Energy Agency and the European Green Deal point to digital technolo-
gies as a critical enabler for realizing sustainability goals. For instance, Artificial Intelligence
(AI), 5G, cloud and edge computing and the internet of things all together are the heart of
data-driven innovation, providing monitoring and optimizing energy usage in the medium and
low-voltage electricity distribution networks (EU Commission, 2019; IEA, 2019). The digital-
ization of distribution grids in this new context means a cyber-physical system accommodating
high levels of renewable energy resources, electric vehicles, energy storage and local markets,
monitored by widespread sensors, and supported by advanced analytics for decision-making
(Kezunovic et al., 2020; Kadurek et al., 2014; Lopes et al., 2020; Haque et al., 2019; Miranda et
al., 2019).

In the above context, real-time monitoring of power systems has a pivotal role in ensuring
the energy management, intimately connected to the digitalization of the electricity sector. This
is a fundamental need, especially at the distribution level of the power systems, where a vast
and diverse set of new green technologies are expected to be included. The computational
tool responsible for the real-time monitoring of power system is the State Estimator, which
comprises the objective, in a succinct overview, of obtaining the state of the power grid by
processing the information gathered from telemetry sensors along with a mathematical model of
the electrical networks.

Thereby, the state estimation problem emerges as a bridge between measured information
and physics-based network model to accurately assess the network operational condition in
real-time (Abur; Gómez-Expósito, 2004; Monticelli, 1999). The conceptual background for
power system state estimation was mainly proposed in the 1970s, 1980s and 1990s, with few
modifications on the fundamental concepts since then, but with a large number of enhancements
of complementary features such as alternative formulations, integration of new types of sensors
to the Supervisory, Control and Data Acquisition (SCADA) systems, increasing computational
performance, and extending models to capture the power system dynamics. Even though the



28

state estimator consolidated itself as an essential computational tool in transmission systems
operation, this is not the primary reality on distribution systems.

Historically, one of the main challenges for the real-time determination of the distribution
system operating state is the lack of real-time measurements in distribution feeders. Therefore,
the operating condition of distribution feeders is usually determined through statistical charac-
terization of their loads performed by a process called load aggregation (Feng; Yang; Peterson,
2012; Massignan et al., 2018; Džafić et al., 2013). This process is based on customer monthly
energy consumption (kWh), customer classification, e.g., residential, commercial and industrial,
and typical load profiles for each customer class, typically called pseudo measurements. As such
profiles are only a rough approximation to given load demand, the quality of the feeder operating
state obtained is low and does not have similar precision for distribution system monitoring
compared to measured values along the feeder.

In recent years, smart grids initiatives have been developed and created new data sources
at unprecedented volumes in distribution systems (e.g., phasor measurement units, intelligent
electronic devices and smart meters). These initiatives have motivated the proposition and devel-
opment of distribution system state estimators to provide the real-time monitoring capabilities
required by the many new automatic functionalities. Several works in distribution system state
estimation pointed some crucial challenges yet to be dealt with, from both a theoretical as
well as practical requirements (Gómez-Exposito et al., 2011a; Lefebvre; Prévost; Lenoir, 2014;
Della Giustina et al., 2014; Liao; Milanovic, 2016; Primadianto; Lu, 2017; Ahmad et al., 2018;
Dehghanpour et al., 2019):

1. Incorporation of new equipment related to the automation of distribution systems, as the
inclusion of smart meters and synchronized phasor measurements in the state estimation
process;

2. Improvements on the models employed in the estimation process, such as new statistical
models for the measurement set, including uncertainty in the parameters and topology of
the network, and extending models to represent the low voltage secondary systems;

3. Computational aspects for real-time monitoring of the wide area and large scale of distri-
bution networks, along with the possibility of decentralization of monitoring and control
of microgrids;

4. Increasing the integration among different operators from transmission and distribution sys-
tems, especially regarding the exchange of information, to increase operational flexibility.

Such challenges are consonant to the paradigm shift in distribution system operation
under the context of Smart Grids initiatives, which also relies on distribution system state
estimation to provide accurate and detailed information about the network in real-time. For
instance, a significant shift is the advanced metering infrastructure, through the deployment of
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many smart meters and providing a high volume of information at the low voltage networks,
since they are often installed directly at the consumer units. This deployment increases the
amount of measured information about the network condition, reducing the state estimation
dependence on pseudo measurements and sensibly enhancing accuracy.

Although it has been the topic of many recent scientific research efforts, the state estima-
tion problem for distribution systems still presents many enhancement opportunities and open
challenges. Due to the complexity and scale of real distribution systems, the developed methods
do not always comply with practical requirements. Often multiple different methodologies are
integrated to deal with specific parts of the distribution networks, without a unified theoretical
framework to bring them together in a coherent manner. The recent advances in advanced data
analytics and artificial intelligence also enlarge the knowledge frontier for the real-time operation
of power systems. In view of the above considerations, this Thesis brings a new perspective to
improve distribution system state estimation by employing Bayesian Inference concepts to tackle
such practical and theoretical issues.

1.2 Objective and Contributions

The main objective of this Doctoral Thesis was to develop and implement software for
Distribution System State Estimation, which can be applied to large scale distribution networks,
deal with heterogeneous sources of information and their particularities, and enhance accuracy
while dealing with Non-Gaussian noise characteristics. The developed Distribution System State
Estimators are featured to deal with three-phase, unbalanced, asymmetrical, untransposed, radial
or meshed networks without loss of precision.

The main contributions of this Thesis can be devised as:

1. a new probabilistic perspective for power system state estimation based on the Bayesian
Inference framework, primarily directed to deal with distribution systems practical chal-
lenges;

2. the development of a Bayesian Information Fusion methodology to deal with the lack
of synchronism and different sampling rates of measurements in modern distribution
systems, processing pseudo measurements, smart meters, SCADA measurements and
phasor measurement units in a single framework;

3. the proposition of a Multiarea State Estimation in the form of Bayesian Spatial Fusion
method to deal with large scale distribution networks, by a decomposition of the distribu-
tion grid into sub-areas and processed in a hierarchical architecture;

4. the application of Information Theory concepts to deal with Non-Gaussian noise character-
istics in power system state estimation, as a smoothed Bayesian non-Gaussian estimator,
able to capture dynamic features of the estimation aided by a first-order state-space model.
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Along with such contributions, some minors were also derived from this work, that can
be summarized as:

• A new matrix formulation for the two-port admittance matrix model for representing
power flow equations in a diverse set of components in distribution grids without loss of
generalization, such as substations, primary feeders and low voltage networks;

• The application of orthogonal methods in the state estimation problem for distribution
systems, associated to sparsity concepts to increase computational efficiency, to deal with
numerical ill-conditioning of practically sized distribution networks;

• The introduction of a concept of sampling layers for dealing with multiple unsynchronized
and different sampling rates of the diverse sources of information in modern distribution
systems, as pseudo measurements, smart meters, SCADA measurements and phasor
measurement units;

• The exploration of the concept of Bayesian credibility intervals to provide more meaning to
the estimates and as detection threshold for state transitions due to systemic changes on the
distribution networks, as in the case of sudden load changes and generation intermittency;

• The demonstration of scalability on real and practical sized distribution systems, dealing
with different parts of the distribution grid, primary feeders, substations and low voltage
circuits, in a new hierarchical estimation architecture;

• A new method to update Parzen windows in the context of Maximum Correntropy estima-
tion for suppressing suspect samples that may be contaminated with gross errors or also in
case of different kind of state transitions, such as sudden load changes, contingencies and
the presence of gross errors.

1.3 Thesis Structure

Following this Introduction, the structure of this Thesis is summarized as follows:

Chapter 2 presents the literature review of the leading research efforts on distribution
system state estimation. The intent is to provide an overview of fundamental challenges and
novel advances for distribution system state estimation.

Chapter 3 introduces the new Bayesian perspective for power system state estimation.
The exploration of the Bayesian Inference paradigm moves the conceptual interpretation of the
state variables in the pure probabilistic sense, which is the main underlying framework employed
by this Thesis.

Chapter 4 introduces the three-phase unbalanced component models proposed in this
Thesis based on the proposed generic two-port admittance matrix formulation for multiple phases
and electrical quantities measured.
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Chapter 5 demonstrates a tracking state estimation algorithm based on Information
Theory concepts to deal with non-Gaussian noise characteristics in a state-space formulation. In
the Bayesian sense, the method consists of a smoothed version for non-parametric models in the
variational sense, based on kernel density estimation principles along with a novel Kalman Filter
formulation.

Chapter 6 presents a Bayesian information fusion method for distribution systems to
deal with temporal aspects of the metering systems and time-varying systems. The concept of
sampling layers treats each set of sensors separately according to the respective sampling and
updating rates.

Chapter 7 lays out a Bayesian spatial fusion concept to support multiarea state estimation
in large scale distribution networks. The decomposition of sub-areas is supported by the inclusion
of prior knowledge that guarantees observability for local estimation.

The main conclusions and final considerations are provided in Chapter 8. Different
future work possibilities are also highlighted, showing the diverse set of possible research paths
associated with this Thesis.

Appendix A provides the theoretical background regarding power system state estimation.
This chapter intends to provide a quick reference for readers with the main concepts and basic
theory of traditional algorithms for distribution system state estimation.

Appendix B presents details about the sparse orthogonal formulation to perform state
estimation employed in this work. This content is essential to ensure numerical and computational
efficiency to deal with ill-conditioned distribution systems.

Appendix C introduces an application example of the Bayesian Inference concepts in
the form of a Linear Bayesian Information Fusion procedure for integrating PMUs and SCADA
state estimators according to the respective sampling rates.

Appendix D provides detailed models for most distribution system components, such as
distribution circuits, transformers, voltage regulators, shunt capacitors and loads.

Finally, the Annex presents the main results in terms of publications obtained during the
Doctoring period.
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2 LITERATURE REVIEW

This chapter presents a literature review regarding power system state estimation, empha-
sizing applications and methods developed to deal with distribution networks. The objective is to
provide an overview of the research efforts developed across the years and the many challenges
still open, both in a theoretical and practical implementation. Therefore, clarifying the literature
gap and contributions achieved by this work.

2.1 Power System State Estimation

Since its conception in the 1970s by the seminal work of Schweppe (Schweppe; Wildes,
1970), power system state estimation became an essential part of energy management systems. It
extended several research and application efforts across the years and established state estimation
as a crucial computational tool for the real-time operation of transmission systems (Abur;
Gómez-Expósito, 2004; Monticelli, 1999; Zhao et al., 2020). Power system state estimation
is the computational tool that enables, in real-time, obtaining the state variables of a power
system, thus fully characterizing its operational condition. It consists of a network model that
comprises component parameters and models, the updated topology of the power system, and
redundant measurements of different electrical quantities of a power system, such as active and
reactive powers, voltage magnitudes, or even voltage phasors and current phasors. It typically
encompasses a static analysis of the power system associated with statistical models to represent
measured information in real-time and may also incorporate dynamic features of the power
system. The measurement system is comprised by the Supervisory, Control and Data Acquisition
(SCADA) systems, that gather measured information from instrumentation devices and sensors
spread across the electrical networks, mainly through automation protocols and communication
with Remote Terminal Units (RTUs) and Intelligent Electronic Devices (IEDs) (Thomas, 2015).

The main definitions and concepts in power system state estimation were consolidated
shortly after the proposition, fomenting new technological aspects throughout the years and
mainly based on transmission system operators experience and requirements. Complementary
functionalities were proposed for the state estimator: the network and topology configurator;
observability analysis; the state estimation numerical process; and a bad data processing final
validation (Abur; Gómez-Expósito, 2004; Monticelli, 1999). Each of these aspects were tackled
with different theoretical perspectives, such as: decentralized state estimation with Multiarea
concepts (Falcao; Arias, 1994; Gómez-Exposito et al., 2011b); enhancing robustness against
bad data with non-quadratic functions (Mili; Phaniraj; Rousseeuw, 1991; Celik; Abur, 1992;
Mili et al., 1996; Baldick et al., 1997; Pires; Costa; Mili, 1999; Miranda; Santos; Pereira,
2009); including temporal relations in the estimation process (Debs; Larson, 1970; Falcao;
Cooke; Brameller, 1982; Bretas, 1989; Zhao et al., 2019); incorporating high sampling rate
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measurements (Zhou et al., 2006; Zhu; Abur, 2007; Simões Costa; Albuquerque; Bez, 2013);
introducing artificial intelligence support in the estimation process (Zhang; Wang; Giannakis,
2019; Zamzam; Sidiropoulos, 2020); improving observability with optimal meter placement
(London Jr; Alberto; Bretas, 2007; Vigliassi et al., 2019); and many others. Appendix A presents
details about the main concepts and formulations of power system state estimation, and readers
may refer to it for additional theoretical background information.

Despite such rapid development and consolidation for transmission systems, there was a
delayed interest toward distribution systems, which began only in the 1990s, with specialized
methods for distribution system state estimation. The first research works began to explore distri-
bution systems, and several characteristics reduced the application of the consolidated methods
for transmission systems, requiring new methods and models more suitable to accommodate
the distribution system peculiarities. Some of these peculiarities are well-known challenges for
distribution system state estimation, such as (Hansen; Debs, 1995; Baran, 2012; Singh; Pal; Jabr,
2009; Primadianto; Lu, 2017; Ahmad et al., 2018; Švenda; Strezoski; Kanjuh, 2017; Huang; Lu;
Lo, 2015; Pau; Pegoraro; Sulis, 2013; Lefebvre; Prévost; Lenoir, 2014; Massignan et al., 2018):

• diversity of connections, with single, two, and three-phase circuits, and transformer con-
nections;

• unbalanced loads;

• short distance and untransposed lines with high resistance/reactance ratio;

• typically very large scale radial networks;

• presence of discrete variables, such as switching devices statuses and voltage regulators
not directly monitored;

• reduced number of real time measurements, usually located at the substation and some
particular components along the feeders;

• presence of current magnitude measurements instead of active and reactive power mea-
surements;

• as a consequence of the above, the distribution system state estimation often is numerically
ill-conditioned;

Although each approach for distribution systems state estimation has its own particulari-
ties and contributions, there are three primary research lines regarding the estimation algorithms,
which encompass different definitions of electrical quantities as the state variables (Primadianto;
Lu, 2017):
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1. Weighted Least Squares (WLS) State Estimator: the three-phase version of the conventional
state estimator for transmission systems, initially applied for distribution networks in
(Baran; Kelley, 1994; Whei-Min Lin; Jen-Hao Teng, 1996), that uses the complex nodal
voltages in polar coordinates as state variables;

2. Admitance Matrix Based (AMB) State Estimator: initially proposed in (Lu; Teng; Liu,
1995), this estimator is based on the nodal admittance matrix of the electrical network
and in transformations of active and reactive power measurements in equivalent current
phasor measurements, in rectangular coordinates, and also the complex nodal voltages in
rectangular coordinates as state variables;

3. Branch Current (BC) State Estimator: initially proposed in (Baran; Kelley, 1995), this
estimator is also based on equivalent current measurements in rectangular coordinates, but
it uses the branch currents in rectangular coordinates as state variable, what makes the
measurement model basically build upon an adjacency matrix of the system while voltage
phasors are updated by an additional step based on a forward sweep method.

In addition, Figure 1 organizes such main topics in a timeline for the appearance and
consolidation of transmission system state estimation and distribution system state estimation,
highlighting the main research topics discussed in each period.

Figure 1 – Brief timeline of transmission systems and distribution system state estimation.

In general, the approaches and methodologies for real-time monitoring of distribution
systems, based on state estimation, were also divided into different interconnected processes,
similarly to transmission systems: Network Configurator; Observability Analysis; State Esti-
mation; Bad Data Processing; and also often including a fifth process related to the pseudo
measurements models, referred as Load Estimation. The flowchart in Figure 2 illustrates these
processes and their relations and a typical information flow available for the state estimation in
distribution systems. Like the state estimators, it is noteworthy that specific approaches were
developed in the literature for the Network Configurator, Load Estimator, Observability Analysis,
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and Bad Data Processing for distribution systems. However, they will not be highlighted in this
review, keeping the main focus on state estimation itself.

Figure 2 – Process flowchart of a typical Distribution System State Estimation framework and
its main inputs.

The low amount of real-time measurements at the distribution systems, almost lacking
real-time information, is the primary limiting factor for the widespread deployment of state
estimators in distribution networks. This way, the operation centres typically use complementary
tools to monitor their networks in real-time, mainly including several pseudo measurements in
the state estimation process. Such pseudo measurements are based on the estimates of the active
and reactive power injections of unmonitored nodes of the distribution systems (distribution
transformer loads). This estimation process, conceptually near the state estimation problem,
lead to the so-called Load Estimators (or load allocator) that can be used as a direct real-time
monitoring tool for distribution networks or as pseudo measurements generator to aid the
state estimators. This latter approach will not be discussed in this work, and more information
regarding load estimation may be referred to in (Ghosh; Lubkeman; Jones, 1997; Youman Deng;
Ying He; Boming Zhang, 2002; Džafić et al., 2013; Massignan et al., 2018).

Besides, different parts of the distribution systems also present their particularities
regarding steady-state analysis and state estimation, which can be divided in the following
(Kersting, 2001; Sallam; Malik, 2018):

• High Voltage Substation: comprises the power transformer with both high voltage and
medium voltage nodes, as well as feeder’s bays. Typically contains a high number of
measurements from the Supervisory Control and Data Acquisition (SCADA) systems, and
Phasor Measurement Units (PMUs) with a small number of state variables;

• Medium Voltage Primary Feeders: comprise the medium-voltage circuits and compo-
nents typically spread across a large area, including urban and rural feeders. Contain a
small number of measurements, typically from the SCADA system at specific equipment
as automatic reclosers, voltage regulators, and shunt capacitors, or at particular consumers
directly connected at medium voltage level. Moreover, it requires a large number of state
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variables to be properly represented. Observability of such networks may be obtained
through typical load curves in the form of load pseudo measurements or through new
procedures capable of incorporating and processing new measurement technologies, such
as Intelligent Electronic Devices (IEDs);

• Low Voltage Secondary Circuits: comprise the final connection with consumers at
the low voltage level, with a diverse set of connections, grounding systems, and neutral
conductors. Typical load profiles usually characterize the pseudo measurements. In the
context of Advanced Metering Infrastructure (AMI) may present smart meters installed in
all loads and at the local controller of the power transformers. They also present a relatively
large number of state variables.

Figure 3 illustrates the typical structure and different components of a distribution
network. A diverse set of equipment and components comprise the network, and different
connections can lead to structural asymmetries in the distribution system. Meanwhile, different
load connections and distinct load values in each phase result in additional unbalance.

Medium Voltage Primary FeedersHigh Voltage Substation

Low Voltage Secondary
Circuits

Two-phase
laterals

Single-phase
laterals

Three-phase
laterals

Four-wire low
voltage system

Feeder #1

Feeder #2 Center-
Tapped

Trasnformer

Energy
Storage

G

Photovoltaic
Generators

Syncronous
GeneratorsLoads

Voltage
Regulators

(HV) (MV)

Figure 3 – Three-phase diagram of a generic distribution system comprising a high voltage
substation, medium voltage primary feeders, and low voltage secondary circuits.

The advances in the Smart Grid concepts, associated with increasing computing power
and new digital technologies, starting in the 2000s and emphasized in the last decade, gave new
thrust for more research, applications and pilot projects of distribution system state estimation.
The interest in deploying new measurements to the distribution systems reignited the interest in
state estimation at the operation centres. These new measurements became available with the
growing level of automation of distribution systems, fomented by the consolidation of standards
like IEC 61850, installation of new controllers, an increase of flexibility with more switching
devices, the inclusion of PMUs, and also by the evolution of the Smart Grids concept (Gómez-
Exposito et al., 2011a; Della Giustina et al., 2014; Lefebvre; Prévost; Lenoir, 2014). In this sense,
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it is noteworthy that the state estimator has a crucial role for distribution operators to take a more
active posture in controlling distribution networks by transforming the data gathered from the
many measurements across the network into tangible knowledge for decision making by the
operators.

As for the state-of-the-art of the state estimation problem for distribution systems, the
following topics are highlighted as the main challenges for research according to (Gómez-
Exposito et al., 2011a; Lefebvre; Prévost; Lenoir, 2014; Della Giustina et al., 2014; Liao;
Milanovic, 2016; Primadianto; Lu, 2017; Ahmad et al., 2018; Wang et al., 2019; Dehghanpour
et al., 2019):

1. The incorporation of new measurement information from automation systems of dis-
tribution networks, along with the inclusion of smart meters and synchronized phasor
measurements into the state estimation process;

2. Improvement of the mathematical models employed in the state estimation problem, as new
probabilistic models for pseudo measurements, modelling uncertainty of network topology
and parameters, and also comprehending low voltage circuits into the state estimation;

3. Computational aspects for wide-area monitoring, related to the large scale of distribution
networks and also the decentralization of the control and operation of distribution networks;

4. The increased integration among distribution system operators and transmission system
operators, both at the level of information exchange as increased flexibility requirements
from novel market strategies;

5. The technical alignment with modern techniques of data science and machine learning
algorithms, providing more knowledge about the grid in real-time as well as recognizing
patterns in the system condition;

In the above context, new methods and algorithms for state estimation were proposed for
distribution systems. Among such methods, the following topics are highlighted:

• new numerical methods for the solution of the state estimation problem and the extension
of the state vector, such as: application of heuristics based on particle swarm optimization
to solve the estimation problem in (Nanchian; Majumdar; Pal, 2017b); non-linear mixed
integer programming to deal with discrete variables such as voltage regulators taps in
(Nanchian; Majumdar; Pal, 2017a); extension of optimal power flow methods to state
estimation (Duque et al., 2017); extensions of the Hamiltonian graph cycle theories for
dealing with meshed distribution networks (Leite; Mantovani, 2016); the application of
intelligent systems as neural networks (Manitsas et al., 2012) and also autoencoders (Bar-
beiro et al., 2015) to support the state estimation problem; with deep learning approaches
for state estimation problem as in (Mestav; Luengo-Rozas; Tong, 2019); applying sparse
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and orthogonal methods to deal with ill-conditioning as in (Hebling et al., 2020); and also
in association with long short-term recurrent neural networks as surrogates functions for
the state estimation problem in (Cao et al., 2020); estimation methods based on symmetric
components in (Fernandes; Venkatesh; Almeida, 2021);

• new formulations and statistical theory for measurement model: closed-loop formulations
for state estimation and pseudo measurements model (Hayes; Gruber; Prodanovic, 2015);
extension of the state variables to accommodate active power injections (pseudo mea-
surements) in the state estimation process (Džafić et al., 2013; Rousseaux et al., 2015);
representation of correlation among measurements and pseudo measurements (Muscas
et al., 2014); non-Gaussian statistical models for the pseudo measurements (Singh et al.,
2011); non Gaussian measurement models with Monte Carlo based estimation methods
(Pegoraro et al., 2017); state estimation based on new robust theories as M-estimators
(Zhao et al., 2020), least absolute value (Göl; Abur, 2014) and information theoretic learn-
ing (Freitas; Costa; Miranda, 2017; Pesteh et al., 2019); and closed-loop dynamic state
estimation with Kalman Filter approaches (Picallo; Bolognani; Dörfler, 2020); applications
of artificial intelligence to support state estimation methods (Zhang; Wang; Giannakis,
2019; Zamzam; Sidiropoulos, 2020);

• variations of state estimators to accommodate new measurement technologies: inclusion
of synchronized phasor measurements from PMUs (also referred as micro-PMUs for
Distribution Systems) (Pau; Pegoraro; Sulis, 2013; Silva; Laburu; de Almeida, 2017)
in distribution systems; approaches that include smart meters into state estimation for
low voltage systems (Huang; Lu; Lo, 2015; Angioni et al., 2016a; Melo et al., 2016;
Ni et al., 2018); approaches that include smart meters into state estimation for primary
medium voltage feeders (Chen et al., 2016; Al-wakeel; Wu; Jenkins, 2016; Ni et al., 2018);
treatment of the lack of synchronism and different time scales among smart meters and
SCADA or PMU measurements (Alimardani et al., 2015; Gómez-Expósito; Gómez-Quiles;
Džafić, 2015a);

• scalability and practical perspectives for distribution system state estimation: incorporation
of practical perspectives into the state estimation problem (Švenda; Strezoski; Kanjuh,
2017; Fantin, 2016); propositions of large scale architectures based on multiarea state
estimation (Nusrat et al., 2015; Pau et al., 2017); extension of new computing environments
for real-time monitoring such as IoT and Cloud-based state estimation (Gonzaga et al.,
2018; Pau et al., 2019; Meloni et al., 2018);

• solutions of correlated problems to state estimation: topology estimation methods (Singh
et al., 2011); optimal meter placement (Xygkis; Korres, 2017); and bad data processing
(Bretas et al., 2017; Krsman; Sarić, 2017).
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Among the many exciting and promising research topics, this work explores mainly three
lines inside the state-of-the-art distribution system state estimation, which will be presented in
details in the following. The perspective for this choice is that both practical and theoretical
contributions can be explored in these topics.

1. The problem of the lack of synchronism in the measurement set, due to different sampling
and updating rates among the diverse set of sensors of distribution systems;

2. The large scale of distribution networks, alongside numerical and computational challenges
associated with distribution system state estimation;

3. The need for suitable methods for non-Gaussian characteristic of measurement error, as
well as for the state of the system.

2.2 Diversity of Sampling Rates and Temporal Aspects

The lack of synchronism in the measurement set arises from the different sampling and
updating rates among the sensors installed in the electrical network. Essentially, by sampling the
electrical quantities in different periods, each group of sensors monitors different operational
conditions, different states, perceiving events on the grid that can be faster or slower according
to the type of measurement.

The first attempts to deal with different sampling rates in the state estimation for DSs were
based on the so-called hybrid approaches. Typically, these approaches assign different weights
according to the sampling rates of measurements and introduce them directly in specialized
DSSE algorithms, as in (Pau; Pegoraro; Sulis, 2013), and (Almeida; Ochoa, 2017). Indeed the
majority of state estimators proposed for distribution systems (Lu; Teng; Liu, 1995; Baran, 2012),
often do no tackle the problem of different sampling rates, mixing all measurements in the same
measurement vector, thus pertaining to this class of hybrid algorithms.

The work in (Pau; Pegoraro; Sulis, 2013) deals with including Phasor Measurement units
in the BC estimator formulation, with a hybrid perspective, including PMUs directly into the
measurement vector model for the state estimator. The work tackles both estimation procedures
based on polar and rectangular coordinates, exploiting the fast computation characteristic of
the BC estimator under radial and weakly meshed distribution networks. The authors present
a classical result on incorporating phasor measurements in the estimation process that their
increased accuracy on measuring complementary information enhances the accuracy of the
estimation process. As practice in hybrid state estimation, the authors neglect different sampling
rates and lack of synchronism among measurements.

The work in (Fantin, 2016), that tackled such efforts to include PMUs in the WLS
estimator for distribution systems, using a hybrid state estimator as well. Practical considerations
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of three-phase unbalanced models are incorporated in the model, and the work brings an observ-
ability analysis to support three-phase systems with PMUs. Despite the effort in representing
practical aspects, the work does not deal with scalability and ill-conditioning of distribution
system state estimation. Besides, temporal aspects are also neglected in this work.

Another exciting work that employs the WLS estimator assigns larger measurement
variances to compensate for the lack of synchronism of SCADA measurements is presented
in (Alimardani et al., 2015). The work introduces additional variance to measured values to
accommodate possible load variation and additional bias on the measurement model. The
additional bias is based on the mean value of load variation in past estimations, which is not
representative in case of sudden load changes or generation intermittency, far from the mean load
variation. Besides, the additional variance reduces the estimation model’s statistical consistency,
which may hamper, for instance, bad data processing and artificially enlarges the estimator
variance in stationary conditions. A similiar approach is also proposed in (LIU et al., 2012)
specifically for smart-meters. Also, such works do not address different sampling rates, neither a
diverse set of sources of information as expected in distribution systems.

In another perspective, the work in (Gómez-Expósito; Gómez-Quiles; Džafić, 2015b)
employs an interpolation approach to deal with two time scales in distribution system state
estimation, the first scale from SCADA and the second one from pseudo measurements. The
work interpolates pseudo measurements value to increase its sampling rate, matching the updating
time of SCADA measurements. A WLS state estimator is employed considering updates in
the latest measured SCADA values and the set of interpolated pseudo measurements. Such
application can reduce bias of estimation if the system follows the expected load curve, but it
is susceptible to reduced pseudo measurement quality and may lose accuracy on sudden load
changes. Besides, the paper does not address any faster sampling rates such as PMUs or smart
meter in the networks, and it lacks a three-phase model for the application, reducing its practical
perspective.

A different approach in (Ni et al., 2018) deals with aggregating smart meter data into the
estimation. This aggregation is a common practice to surpass real time-communication issues for
a large number of smart meters, thus only dealing with aggregated values at the medium voltage
transformers. It introduces a pre-processing stage to compensate for unsynchronized smart meter
data during the aggregation. The work presents an increase in the accuracy of a WLS estimator.
However, it does not address the different temporal scales between SCADA and the aggregated
smart meters, employing a hybrid approach in its essence.

Although these hybrid methods exhibited good results in theory, they face practical issues
since they neglect the temporal aspect of the estimation process, mixing measurements gathered
at different instants in a single set (Simões Costa; Albuquerque; Bez, 2013; Zhao et al., 2016).
The problem arises from the fact that essentially each different measurement set, for instance,
SCADA and PMUs, are sampling electrical quantities at different instants. This intrinsically adds



42

systematic error to the filtering process, from the fact that each type of measurements provides
information about different instants of the grid condition. It is noteworthy that this approach is
the most common in the literature and applications, and few authors deal with practical issues of
different sampling rates so far.

Such limitation encouraged distribution system state estimation that could model the
temporal aspect of the measurements and state. The first formulations of dynamic state estimation
in transmission systems were proposed shortly after the consolidation of static state estimation
in transmission system operation centres (Debs; Larson, 1970; Falcao; Cooke; Brameller, 1982;
Bretas, 1989; Zhao et al., 2019). However, the computational burden of the algorithms, and the
lack of fast updating measurements in the SCADA system, limited the practical applications
of these first attempts in realistic power systems (Rousseaux; Van Cutsem; Dy Liacco, 1990).
Only in the late 2000s, dynamic state estimators regained significant interest, with the advent
of faster computer architectures, by the allocation of new instrumentation and communication
technologies with faster updating and sampling rates, and finally, due to the acute power system
operational requirements carried by a more volatile environment with renewable energy resources
(Zhao et al., 2019; Zhao et al., 2020).

Regarding distribution networks, the Forecasting-Aided State Estimation (FASE), a type
of dynamic state estimation method, established the ground base for modelling these temporal
relations (Coutto Filho; Souza, 2009; Zhao et al., 2019). FASE is a recursive estimation method
based on several measurement snapshots in a time sequence in the form of state-space equations.
The standard dynamic state estimation approach of the FASE procedure is based on the Kalman
Filter algorithm for state estimation, widely explored in many research efforts, such as in (Huang;
Lu; Lo, 2015; Sarri et al., 2016; Carquex; Rosenberg; Bhattacharya, 2018; Louis et al., 2020),
especially in the context of monitoring active distribution systems. Few of them, however, deal
with practical aspects from the diversity of sampling rates and its effects on the estimation
process, primarily relying only on a single type of measurements, such as the Unscented Kalman
Filter in (Nguyen et al., 2013) with advanced SCADA measurements, or with linear formulations
relying solely on PMUs, with the discrete Kalman Filter in (Sarri et al., 2016; Kettner; Paolone,
2017).

The work in (Huang; Lu; Lo, 2015) explores the synergy between advanced metering
infrastructure and SCADA measurements with a FASE procedure. It employs previous day
information to build the state transition matrices and load forecasting model, while the arrival
of new measurement updates the state variables from SCADA and smart meter data every 15
minutes. The Iterated Extended Kalman Filter and the Unscented Kalman Filter are compared in
a quasi dynamic framework. The results show fundamental tracking capabilities for real-time
operation of both low voltage and medium voltage systems, increasing accuracy when compared
with the standard static approach. However, the method neglects full three-phase coupled models,
and the results also show a large variability of the load values that are not properly captured by
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the method, which may be related to the smoothing properties of the Kalman Filter approach.

In a different perspective, (Carquex; Rosenberg; Bhattacharya, 2018) propose an Ensem-
ble Kalman Filter to mix PMU information with pseudo measurement information. The method
does not compute a fully model-based procedure to perform the estimation. Instead, an ensemble
is performed with empirical covariance matrices and a load flow calculation. The Ensemble
consists of assimilating pseudo measurements’ information and PMUs independently, with the
power flow calculation results. A trade-off is made to reduce the complexity of measurement
equations modelling into the estimation, using conventional power flow tools, which may hamper
accuracy. The authors show an interesting aspect of introducing faster PMU samples, increasing
the performance gain on the estimation. The method, however, does not include other sources of
information in the estimation process. Besides, from a practical perspective, the work neglects
three-phase network models and measurements information in different phases, improving the
Ensemble, and the computational timescale assumed is far from real-time applications.

A drawback from the Kalman Filter approaches is they rely on the accuracy of the
transition matrix in the forecasting stage (Zhao et al., 2019), which is largely affected by
the occurrence of system abrupt changes, such as load switching, contingencies, trends and
intermittences (Zhao et al., 2019; Massignan; London Jr; Miranda, 2020). Such a problem is
aggravated, especially when dealing with phasor measurement units that can capture several
types of transient responses of the system, including different sorts of load changes (sudden
or trends). Besides, proper tuning of the Kalman Filter approaches is difficult to achieve, and
the association of these methods with different anomaly detection methods also reduce their
generalizations.

In a similar perspective, data fusion has been proposed for integrating fast sampling
measurements. It consists of a two-step method for merging the results of independent estimators,
based on the statistical error propagation theory (Simões Costa; Albuquerque; Bez, 2013).
Different works propose new objective functions towards dealing with the lack of synchronism
among measurements, such as the weighted least absolute value (WLAV) (Gol; Abur, 2015), the
generalized maximum likelihood estimators (GMLE) in (Zhao; Mili, 2018a) and also information
theory concepts in (Freitas; Costa; Miranda, 2017). Such methods are also promising to deal
with non-stationary changes in the system, as in the case of sudden load changes, since the
fusion method works with a non-causal state-space, that is, dismisses the transition matrix to
model temporal relations, focusing on a model to mix the different sources of data, as presented
in (Massignan et al., 2019). So far, such methods were applied in transmission systems with a
certain redundancy, far from the reality of distribution systems. Besides, none of them tackled
larger sampling differences than between SCADA and PMUs.

In this context, this thesis explores the following novel perspectives to aid the distribution
system real-time monitoring tools:
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• Incorporation of multiple sources of information from pseudo measurements, smart meters,
SCADA measurements and Phasor measurement units, while dealing with the lack of
synchronism and their different sampling rates, through formulations that adequately
capture temporal relations on the state estimation process;

• tracking distribution system changes captured by fast samples on the state estimation
process to aid operators with more knowledge about their grid condition.

2.3 Scalability of Distribution System State Estimation

Besides the challenge of dealing with multiple time scales and sampling rates from
diverse sources of information in distribution systems, another critical practical challenge is
the large scale of distribution networks, which may hamper real-time processing requirements.
Distribution systems are networks spread into vast areas, usually with hundreds of different
primary feeders that correspond to thousands of three-phase unbalanced buses. The inclusion of
new sensors at the level of the low voltage circuits further requires an extension of the network
models until the consumer units, which may lead to hundreds of thousands of variables. In this
sense, a large scale comprises both the number of nodes in each feeder, as typically dealt in
the standard IEEE benchmarks and numerous feeders, from various substations and may share
interconnections.

In this context, two characteristics are highlighted as requirements for distribution sys-
tems state estimation: computational performance to deal with the complexity of distribution
systems; and maintaining accuracy while dealing with the scalability of practical distribution
networks. In conventional state estimators, the measured information is processed in a centralized
manner. Given the dimension and natural subdivision of distribution systems into different feed-
ers, the multiarea state estimation approaches are an exciting solution for the scalability problem
(Primadianto; Lu, 2017; Ahmad et al., 2018). Right after the conception of state estimation
in the 1970s started the idea to operate the transmission systems with a decomposition into
areas and in a decentralized manner (Cutsem; Ribbens-Pavella, 1983). The primary motivation
was the presence of different operators for each region of the power systems and improved
computational efficiency of the estimators. This way, along the years, several estimators were
proposed using the concept of decomposition of the power systems into areas for the transmission
systems (Gómez-Exposito et al., 2011b). Although this topic has been brought by the leading
state-of-the-art and review research papers (Primadianto; Lu, 2017; Ahmad et al., 2018), it is a
consensus among the different authors that few works have effectively dealt with such concepts
in their implementations (Muscas et al., 2015; Pau et al., 2017).

In (Garcia; Grenard, 2011), a multiarea distribution system state estimation approach
is presented from a scalability perspective. The work seeks for a methodology to deal with
the large scale of distribution networks. The conventional state estimation is explored under a
computational scalability perspective. This is one of the main motivations to seek multiarea state
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estimators for large scale distribution networks. The authors also show enhancements on the
numerical conditioning of the problem by performing local estimations in smaller networks. Be-
sides the obtained computational gain, the authors dismiss important practical scalability issues,
such as the need for three-phase models and dismiss the secondary low voltage networks, which
may not sustain the method’s real-time feasibility. Another essential and common requirement is
that the method requires observability for each local area.

In another architecture perspective, in (Nusrat; Irving; Taylor, 2011), a distributed com-
puting multiarea approach is applied for distribution networks. Besides the computational and
numerical advantages already pointed, this approach follows a trend on the decentralized op-
eration of distribution networks. However, the method requires many measurements on the
distribution grid and does not consider the three-phase unbalanced nature of distribution systems,
a common limitation in these first propositions of multiarea state estimators for distribution
systems. The proposed solution method is based on a heuristic differential evolutive algorithm,
which increases information exchange among processors and the iterations in the estimation pro-
cess, usually based on fast convergence with theoretical convergence proof such as the Newton
method.

In (Nusrat et al., 2015), the authors continue their work but now exploring the solution
Newton method with a more conventional solution approach. The method also enhances the
decomposition of the distribution network by using an overlapping zone concept in the distributed
estimation process, extending the areas to share one level of state variables of adjacent areas.
However, still without dealing with the three-phase unbalanced nature of distribution systems,
and with an iteration-based exchange of boundary variables that increases the exchange of data
and the number of iterations for convergence.

The work in (Muscas et al., 2015), which started a solid track of researches in the topic
by the authors, introduces the use of specialized distribution system state estimation to deal with
the unbalanced nature of the networks in the local estimation stage, the BC estimator. Due to
its computational efficiency to deal with primary medium voltage feeders, the method enables
fast processing of the local estimation step. This research also incorporates correlations that
may arise between boundary nodes in adjacent areas. Among the limitations, the scalability
of the method has not been addressed, focusing the applications only in primary feeders and
dismissing the secondary low voltage networks. Besides, the proposition requires that each area
is observable and does not tackle with decentralized operation perspectives.

In a similar perspective, in (Angioni et al., 2016b) another approach with the BC esti-
mator is presented. The work considers automation equipment and communication protocols
in a practical implementation tested in a power systems real-time digital simulator. Different
characteristics are discussed for the integration at SCADA level and state estimator processing,
especially latency and data exchange. Despite the exciting results, the authors do not tackle the
significant scalability problem, employing a reduced test scenario, which hampers its practically
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sized networks.

In (Pau et al., 2017), another effort from the same research group as in (Muscas et al.,
2015), the authors enable sharing measurement data among adjacent areas in the coordination
step of the hierarchical multiarea state estimator, enhancing the achievable accuracy in a two-step
method. Authors also reduce communication requirements among adjacent areas by simply
exchanging the estimated voltages at the boundary nodes. Nonetheless, the method disregards the
low voltage systems, limiting the scalability conclusions for real-time operation. An interesting
aspect of such a method is that there is an accuracy gap between the multiarea and the centralized
algorithm, showing that the coordination approach may still be further enhanced.

In a different perspective than the hierarchical estimators, a decentralized multilevel
approach is proposed in (Pau et al., 2019) based on cloud computing and IoT integration to
deal with the different parts of the distribution system, the medium and low voltage systems
together. The distributed approach consists of exchanging the results of low voltage, where
coordinators are installed at the substations, to the upstream medium-voltage feeders. The
algorithm is proposed under a cloud computing framework, making it attractive for integrating
aggregators and decentralized local markets. The limitation of such an approach is that it requires
a physical structure of data concentrators to be installed in all medium voltage/low voltage
transformers, and latency on cloud access was not considered, which may hamper real-time
integration with operation centres. Nonetheless, the algorithms employed are very scalable and
present high computational performance.

Amidst such interesting researches that captures the scalability of the state estimation
process, two open challenges are addressed in this thesis:

• Improving multiarea distribution system state estimation to deal with the area decomposi-
tion and local observability issues, encompassing multiple primary feeders and various
low voltage networks in single implementation;

• Including practical characteristics of unbalanced and asymmetrical distribution networks,
while solving the three-phase state estimation problem without loss of precision and ap-
proximations assumptions, even for meshed networks, for large scale networks comprising
high voltage, medium voltage and low voltage systems.

2.4 Probabilistic Characterization for State Estimation

The third research topic brought in the spotlight by this thesis consists of dealing
with non-Gaussian probabilistic models for the measurement noise characteristic. This context
often emerges in power systems state estimation in the context of robust state estimation since
gross errors can be interpreted as a particular case o non-Gaussian heavy-tailed probability
distributions for the measurement noise. Regarding distribution systems, the predominance of
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pseudo measurements also favours the exploration of such models since they are often based on
forecasts with a reduced quality compared to real-time measurements, introducing additional
uncertainty to the process.

This probabilistic context characterization of load models have been explored under
different perspectives, employing Beta, Gamma, and Weibull distribution (Ghosh; Lubkeman;
Jones, 1997), nonparametric regression based on artificial neural networks (Manitsas et al.,
2012) and also by employing flexible Gaussian Mixture Models (Singh; Pal; Jabr, 2010). Such a
method essentially seeks for improving the fitness of load models with historical and measured
data, to be further employed as pseudo measurements in distribution system state estimation.
However, they do not encompass such hypothesis of non-Gaussian models in the state estimation
theoretical framework and solution. For instance, the work in (Ghosh; Lubkeman; Jones, 1997)
accommodates only the expected values and variances of different probabilities in a probabilistic
load flow method as the state estimation procedure. In (Singh; Pal; Jabr, 2010; Manitsas et
al., 2012), a Gaussian mixture and artificial neural network characterization are employed
for the pseudo measurement models. However, during the state estimation procedure, only a
marginal Gaussian distribution is considered, that is, a single element of the mixture that is
closer to the expected value at a certain instant. Thus, despite exploring more robust and flexible
characterizations of the pseudo-measurement values, such methods do not include them or
enhance the state estimation and formulation.

In this sense, robust estimation appears as an appealing topic to deal with non-Gaussian
noise. For instance, formulations based on the weighted least absolute value (Celik; Abur, 1992),
using non-quadratic loss functions (Baldick et al., 1997) and by the projection statistics method
(Mili et al., 1996). Such methods often aim at increasing robustness against outliers and have been
recently considered to support distribution system state estimation (Zhao et al., 2020). Similarly
to the propositions for transmission systems, by focusing on outliers, essentially, these methods
do not change the primary hypothesis of the noise characteristics and practically enhance the
estimation accuracy under heavy-tailed probability distributions.

In this sense, a kernel density estimation formulation presented in (Miranda; Santos;
Pereira, 2009) provides a complementary perspective for the state estimation problem. By
introducing a kernel model for the measurement noise characteristic is possible to increase
generalization for other distributions. The method employs a non-quadratic formulation to
support the estimator objective function in a more suitable form to deal with the kernel models,
based on the Correntropy concept from Information Theory. Such concept has been explored
under the power system state estimation problem in (Freitas; Costa; Miranda, 2017; Freitas;
Simões Costa; Miranda, 2020), exploiting the Parzen Window concept to enhance robustness
against outlier and from an algorithmic perspective to integrate the bad data processing inside
the static state estimation process flow. More recently, important results have shown favourable
properties of Generalized Correntropy associated with the Interior Point Method to deal with
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challenging situations of bad data processing (Pesteh et al., 2019; Pesteh; Moayyed; Miranda,
2020). However, the kernel density estimation perspective has been focused on applications for
transmission systems and the goal of increasing robustness against outliers.

One of the few works that address such a challenge of non-Gaussian models in the
distribution system is the work in (Pegoraro et al., 2017). It explores the Bayesian Inference
background in order to provide estimates under non-Gaussian error distributions. A Monte-Carlo-
Markov-Chain (MCMC) method is employed along with the Metropolis-Hastings sampling
algorithm to perform posterior inference with non-Gaussian measurement noise. Despite a
promising characteristic for generalizing the statistical description of the noise characteristic, the
work demands a high number of samples to converge, and the authors do not provide sensitivity
for different initial samples. This aspect results in a large computational time for small test cases
with four nodes, which would be intractable for real-time applications in larger systems.

This leads to the main theoretical background employed by this thesis, the exploration
of the Bayesian Inference framework applied in distribution system state estimation. Despite
a consolidated topic in statistics, few works explore the Bayesian framework in power system
state estimation (Lourenco; Costa; Clements, 2004; Pegoraro et al., 2017; Mestav; Luengo-
Rozas; Tong, 2019). The Bayesian perspective has been brought in the first propositions of state
estimation already in the 1970s (Schweppe; Wildes, 1970; Schweppe; Handschin, 1974). Despite
its strong probability theory background, it never got the attention of future research due to
additional challenges related to the tractability of required computations and model complexity,
as occurred in other different scientific areas. More recently, such methods have reignited interest
in many scientific areas, ranging from biostatistics, machine learning, astrophysics, and the
pursuit for causal models (Congdon, 2007; Sivia; Skilling, 2006; Puga; Krzywinski; Altman,
2015).

In the context of distribution system real-time monitoring, the interesting work in (Singh
et al., 2011) brings the Bayesian Inference framework to deal with the detection of topology
changes inside substations and distribution networks. The perspective of Bayesian Inference is
employed as model verification to track the most probable topology of the network, based on
previously stored possibilities and the results of a WLS estimator. High accuracy of topology
identification is obtained by successive iterations of the method upon convergence to the most
probable network. However, the authors do not address the response of the method against
different transition that may occur on the system, which may mislead the interpretation of a
topology change with different levels of load variations.

Regarding the process itself of distribution system state estimation, a recent work brings
a Deep Learning based approach, supported by Bayesian inference as an estimator that seeks
the expectancy of then state variables given the measurements (Mestav; Luengo-Rozas; Tong,
2019). A regression learning approach based on deep neural networks provides a data-driven
net power injections model based on a historical training set. By associating a Monte Carlo
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method with a Newton Raphson power flow, a second model for state estimation can be learned
and associated with the first one. Estimation consists of computing the expectancies of the
learned models according to measured data in real-time. Also, bad data processing is performed
as a pre-processing stage, sampling the learned models with the prior knowledge for the state
variables, and then associating conditional probabilities for the measurements and performing a
hypothesis test. Despite the method provides interesting results, it address a high computational
burden, a strong influence of parameter tuning and a significant influence of prior knowledge on
the Bayesian approach.

A different and recent work in (Dobbe et al., 2020) presents a Bayesian approach for
linear three-phase state estimation that works together with a forecasting stage based on the
Gaussian process. A linearised load flow method evaluates historical active and reactive power
data to forecast possible voltage levels in a distribution system. A linear least-squares estimator
then updates the voltage phasors according to few PMUs measurements installed in the network.
The Bayesian framework is employed as an innovation method to update previous forecasted
values but restricted to PMU measurements. Despite a good integration of different levels of
information, linearized power flow models may reduce the accuracy.

In a different perspective, (Zhou et al., 2020a) explores the harmonic state estimation
problem with sparse Bayesian learning from Smart Meter and PMU data. The method is based
on load flow calculation results aided by a regression analysis to incorporate PMU information
in the estimation process, focusing on a frequency-based distribution system model. It employs
interpolated smart meter data to accommodate the faster samples of PMUs, which may hamper
accuracy under sudden changes. The Bayesian inference background is employed basically as
regression analysis, without further investigation of its conceptual characteristics.

Finally, such direction points to two research gaps that will be addressed in this thesis:

• Dealing with non-Gaussian noise characteristics in distribution system state estimation
while maintaining computational tractability for real-time applications, not only related to
pseudo measurements and gross errors but also able to deal with different uncertainties
from smart grid scenarios, such as intermittency and more considerable load variability
from sudden changes;

• Exploring the conceptual gap on Bayesian Inference framework for power system state
estimation, providing additional support and new concepts from a probabilistic perspective.

2.5 Concluding Remarks

Although the essential and recent research development, there is no consensus about
which methodology is the most adequate for distribution system state estimation. While the
first propositions aims to enable the numerical solution of the state estimation problem and
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improve the quality of the estimation, the recent challenges are brought by emerging smart grid
technologies. Besides, many practical aspects of real-life distribution networks increase the
complexity for a single methodology to emerge as the most adequate.

In this context, the literature review shows there are many opportunities related to
distribution system state estimation yet to be explored, both at the practical reality of nowadays
passive distribution networks and the upcoming future of the smart grids. In this sense, this thesis
explores the following literature gaps primarily:

• Incorporation of different sources of information from pseudo measurements, smart meters,
SCADA measurements and Phasor measurement units, while dealing with the lack of
synchronism and different sampling rates.

• Improving multiarea distribution system state estimation to deal with multiple primary
feeders and various low voltage networks in a single implementation, dealing with practical
characteristics of unbalanced and asymmetrical ill-conditioned distribution networks;

• Dealing with non-Gaussian noise characteristics in distribution system state estimation
while maintaining computational tractability for real-time applications;

• Including practical characteristics of unbalanced and asymmetrical distribution networks,
solving the three-phase state estimation problem without loss of accuracy and approxima-
tions assumptions, even in meshed networks, for large scale networks;

• The conceptual gap on Bayesian Inference framework and tools for power system state
estimation.

It is noteworthy that this thesis’s main effort and contribution rely on the proposition of
a computational tool able to deal with practical challenges of distribution systems, fully repre-
senting three-phase component models, and with a high-resolution network model comprising
the substations, primary feeders and low voltage networks. The Bayesian Inference framework
provides the theoretical support for different applications related to the above literature gaps.
Additional challenges are also addressed, such as numerical stability, computational efficiency
and detailed modelling of a diverse set of distribution system components.
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3 BAYESIAN INFERENCE PERSPECTIVE FOR POWER SYSTEM STATE ESTIMA-
TION

This chapter presents the main theoretical concepts applied in this Thesis, providing a
new perspective for power system state estimation under Bayesian reasoning. The objective is
to provide an overview of the Probability Theory and Bayesian Inference concepts and how
they layer over the power system state estimation. Three novel applications related to power
systems state estimation are devised from the Bayesian Inference framework in this Thesis,
exploring new features from the perspective of information fusion, spatial fusion and dealing
with non-Gaussian noise characteristics. All three concepts are further explored in the subsequent
chapters corresponding to the practical application in distribution systems.

3.1 Probability Theory and Bayesian Inference Concepts

The objective of probabilistic methods is to capture the effects of randomness in math-
ematical models that may represent a particular phenomenon or system or to evaluate more
abstract concepts. Typically, the purpose is to predict future outcomes, perform regression of
unknown variables, explore stochastic behaviour, and quantify uncertainty. Conversely, a deter-
ministic approach assesses an exact solution without uncertainty on the models and variables.
This latter brings causal relations as the sole source of information to explore a particular system
or phenomenon, which typically implies assuming immutable boundary conditions and a closed
system, far from the reality of many engineered systems subject to all sorts of uncertainties.

There is a philosophical division between two major approaches for the concept of
randomness and probabilities in their fundamental essence in modern probabilistic theory. Such
division follows the two fundamental principles to interpret and represent randomness, the Fre-

quentist and the Bayesian. Both approaches have their particular perspectives and complementary
concepts and should not be interpreted as opposite sides, one being right and the other the wrong
one, but simply as different approaches to the same phenomenon of randomness characterized
by probabilities (Bayarri; Berger, 2004; Puga; Krzywinski; Altman, 2015).

The frequentist (sometimes refereed as objective) approach interprets probability as a
measure of repetition of specific outcomes within the range of possible values, characterized by
fixed but unknown parameters. Such interpretation yields the estimation problem as a search for
fixed parameters of interest considering a set of observations and based on the relative frequency
obtained by the repetition of several trials or samples. Regarding parametric models, inference
seeks to find the fixed parameters encompassed in a likelihood function to capture the best
goodness-of-fit that explain the underlying random effects observed.

The Bayesian (sometimes refereed as subjective) approach represents a degree of belief,
assigning probabilities for both hypothesis and data. The parameters are assigned as random
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variables in the Bayesian perspective, along with a degree of uncertainty and a probability
distribution. The inference is performed as a descriptive feature from a posterior distribution,
drawn from both likelihood model obtained from the data and a prior distribution for the
parameter, that may incorporate previous or expert knowledge for the random parameters.

Besides such philosophical arguments, the Probability Theory provides a common
mathematical background for both bayesian and frequentist approaches by formalizing random
variables, and the fundamental theoretical statistics quantify randomness and uncertainty. A
brief description of the most important concepts are described in the sequence. The concept of
a random variable is defined under a sample space Ω that represent all possible outcomes of a
particular random phenomenon ω ∈ Ω. In the strict probabilistic sense, a random variable X

can be defined as a function, continuous or discrete, that relates outcomes from a sample space
to a real number, X : Ω→ R. A measured outcome from such sample space is called an event
E, defined as a subset of the sample space. Finally, the probability is defined as a real-valued
function associated to events of the sample space P : E→R, that attends the Kolmogorov axioms
(non-negativity, unit measure and additivity on σ -algebra). Together, the sample space, the
events and the probability define a probability space (Ω,E,P), where the random variables are
characterized (Blitzstein; Hwang, 2019; Ash, 2008).

Different descriptive features are associated with a random variable in order to charac-
terize it. The first, and most important concept, is the distribution function (also referred to as
cumulative distribution function). It consists of a function defined on the sample space that has
the following properties:

Theorem: A function F : R→ [0,1] is a distribution function of some random variable if
and only if:

1. F is non-decreasing

2. limx→−∞F(x) = 0 and limx→∞F(x) = 1

3. F is right-continuous, i.e. limy↓xF(y) = F(x)

The distribution function may be parametric, where an analytically tractable mathematical
function fulfils the above properties, or non-parametric, defined as a probability metric without a
closed-form function. The probability density function f (x) derives from the above definition (in
the case of discrete variables is also called probability mass function) as the following:

F(x) =
∫ x

∞

f (t)dt (3.1)

Another important notion regards conditional probability, which can be interpreted by
the relation between different random variables in the situation whenever a hypothesis is given
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about one of them, and the other is treated as a variable. It encompasses their joint probability
function f (x,z) and the marginal density of the evidence f (z).

f (x/z) =
f (x,z)
f (z)

(3.2)

In addition, essential features of the random variables and the associated probability
distribution functions are employed to characterize them, such as the expected value, covariance,
and the moment generating function. Finally, two crucial and classic theorems arise from
Probability Theory and from the definitions of conditional probability and the sample space:

Theorem (Law of total Probability): This theorem relates marginal distributions to
conditional probabilities, while the marginal distribution can be represented by a set of disjoint
events and their conditional probabilities.

f (z) =
∫

f (x,z)dx =
∫

fZ|X(z|x) f (x)dx (3.3)

Theorem (Bayes’s Theorem): This theorem relates the a posteriori density of a random
variable with observed evidence and a priori knowledge (π(x)).

fX |Z(x|z) =
fZ|X(z|x)π(x)∫
fZ|X(z|x)π(x)dx

=
fZ|X(z|x)π(x)

f (z)
∝ fZ|X(z|x)π(x) (3.4)

The likelihood function fZ|X(z|x) captures the uncertainty associated with the obser-
vations (samples or measurements) for a given set of unknown parameters. It encompasses a
notion of goodness-of-fit between observed data and a model related to the unknown values (or
parameters). In essence, it encompasses a hypothesis that is being tested with given observations,
and the variables of interest are part of such hypothesis and not of the random outcomes inside
the likelihood function.

The prior distribution π(x) represents the probability distribution function associated
with the unknown variables (or parameters), now modelled as random variables instead of simply
assuming them as a fixed but unknown part of the hypothesis. In essence, it captures uncertainty
regarding the parameters of interest encompassed as random variables. In the Bayesian sense, it
can be constructed in the form of a non-informative prior whenever any information regarding
the parameters is known, and the likelihood (data) will provide such characterization. Examples
of such non-informative priors are improper constant priors, Jeffrey priors, or distributions with
very high variances. Conversely, the priors may also bring additional information based on
previous or expert knowledge or even a systematic description of the uncertainty associated with
the parameters of interest.

The evidence f (z) consists on the marginal probability of occurrence of the sampled
observations. In the context of Bayesian Inference is often omitted since it consists of a constant
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value that scales the product between the likelihood and prior, so the posterior attends the
properties of a distribution function.

Finally, the posterior distribution fX |Z(x|z) is a conditional distribution function for the
unknown values updated by the gathered data and considering the embedded prior knowledge.
Note that if any data is sampled, the prior knowledge keeps unchanged. Conversely, if any prior
knowledge is considered, the sample size will be a dominant factor in the hypothesis’s confidence.
This aspect draws an essential characteristic of the Bayesian reasoning, the ability to increase
confidence based on prior knowledge, a unique feature whenever sample sizes are small and
complementary information, with associated uncertainty, helps the inference problem. Note
that if x and z are independent, the posterior equal to the prior since the data does not provide
additional evidence to support or dismiss the hypothesis. This notion induces Bayesian Inference
as a powerful tool to evaluate causal inference.

Such theorems derive the fundamental concepts behind the Bayesian Inference frame-
work, which has been a very active research topic on many scientific applications (Congdon,
2007; Sivia; Skilling, 2006). Such a broad framework encompasses different features to perform
inference according to derivations from the above basic principles.

Some examples of such features are: the use of hyper-priors to extend random variables
components to multiple parameters of prior distributions; the application of numerical integra-
tion method such as the Monte Carlo Markov Chain method in order to evaluate analytically
intractable probabilistic models; the exploration of Bayesian networks to map causal relations
in models, by representing conditional relations among variables based on observed data; the
application of Bayesian hypothesis tests in the form of credibility intervals, Bayes factors or
model assessment through Bayesian Information criterion; learning spatial correlations trough
autoregressive models; the evaluation of predictive posterior distributions for the data, as a way to
perform forecasting or artificially sampling new observations to complement the characterization
of the previously gathered data; and also the assessment of risk functions in the decision theory
perspective; among others. More information on different aspects of Bayesian Inference can
be referred to in (Congdon, 2007; Sivia; Skilling, 2006; Rencher, 2003; Bayarri; Berger, 2004;
Albert, 2009; Puga; Krzywinski; Altman, 2015; Makowski; S. Ben-Shachar; Lüdecke, 2019).

3.2 Perspective for Power System State Estimation

The problem of power system state estimation emerges as a bridge between measured
data from sensors installed across the electric power systems and a network model that captures
the relations among measured electrical quantities and the network state. It is traditionally
formulated as static analysis, intending to obtain steady-state features of the network (Monticelli,
1999; Abur; Gómez-Expósito, 2004; Bretas N. Bretas, ). It has a strong relation with power
flow analysis, another vital tool to assess grid condition under known loading and generation
scenarios. Although both problems frequently share similar network models, they have some
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conceptual differences. The main one regards the input data. In the state estimation problem, the
steady-state is evaluated from measured values, assumed with some degree of uncertainty, and
able to deal with redundancy. In power flow analysis, a specified loading/generation condition is
evaluated, without any redundancy, a determined problem. The state estimation process supports
real-time evaluations if the system operates in one of the following conditions: (1) Normal and

secure state ; (2) Alert state; or (3) Emergency state (Monticelli, 1999).

The static state estimation problem for a power system with m measurements and n state
variables is usually formulated using the following measurement model (Abur; Gómez-Expósito,
2004) to obtain the steady-state condition of the network (system state):

z = h(x)+ e (3.5)

where z is the (m x 1) measurement vector; x is the (n x 1) vector of state variables (usually
the complex nodal voltages); h(x) is the (m x 1) set of nonlinear equations that relates the
measurements with the state variables; and e is the (m x 1) noise vector, typically assumed
as independent normally distributed random variables, with zero mean and known covariance
matrix R.

Although the static perspective is the traditional state estimation formulation, the in-
creased interest in dynamic state estimation models has reignited in recent years. The authors
in (Zhao et al., 2019) encompass a formal difference among types of dynamic state estimators,
primarily related to the definition of the state vector, and are briefly discussed in Appendix A. The
fundamental change is to encompass temporal relations among the state variables, represented in
a first-order state-space model, by the following:

xt = f (xt−1)+ω

zt = h(xt)+ e

where, the first equation is known as the process model, with xt−1 the state vector in a previous
instant (t − 1), f (xt−1) is the process equation that relates temporal transitions on the state
variables, ω is the process noise, typically assumed as normally distributed random variables,
with zero mean and known covariance matrix Q, and the second equation is the measurement
model presented previously.

Dynamic state estimation extends the state estimation problem under a state-space by
introducing temporal relations among state variables and incorporating system dynamics into
the estimation problem. This introduction of the relation between two different instants adds
a random component to the state. From the Bayesian perspective, it consists of introducing a
probabilistic model for the state vector, that is, modelling the state of the network as a random
variable. It changes the traditional overview of the estimation process as a "snapshot" of the
network condition towards a probabilistic characterization of the state. It encompasses the fact
that different state values can occur between updates of the slower measurements, observed by
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the faster ones (Massignan et al., 2019; Zhao et al., 2019). This thesis extends the temporal
abstraction of the first-order state-space model to accommodate a diverse set of conditional
relations for the state variables under a Bayesian Inference framework.

Such perspective induces a model where the state variables are interpreted as random
variables in the Bayesian Inference perspective and not as a fixed and determined vector. It does
not imply a lack of determinism in an electrical power system, much less in a lack of causality in
such an electrical network. Instead, it brings the estimation problem to seek a state vector among
a set of possible values closer to observed values from measurements and expert knowledge
about the system behaviour. The reasoning comes from the fact that it is not possible to know the
actual state of the power system in practical conditions, but only a marginal overview captured
by the measurements.

This way, equation (3.4) is repeated here in the context of power system state estimaiton.
A prior distribution π(x) is assumed for the state variables, and the state estimation is defined as
an inference problem regarding the posterior distribution obtained by Bayes’s Theorem:

fX |Z(x | z) =
fZ|X(z | x)π(x)

fZ(z)
∝ fZ|X(z | x)π(x) (3.6)

where, fZ|X(z | x) is the likelihood function obtained from the measurement model, π(x) is the
prior distribution for the state variables, fZ(z) is the evidence of the model, often omitted since it
is a constant and scaling value.

Note that not necessarily sequential temporal relations are captured by the posterior in
the proposed model, as performed in the dynamic state estimation approach. The prior can be
constructed according to different perspectives, including the previous instant as done in the
dynamic state estimation. Nevertheless, it also encompasses the possibility to enhance estimation
with different sources of information. In this sense, this prior knowledge can be informative or
non-informative priors designated in the Bayesian Inference framework (Sivia; Skilling, 2006;
Congdon, 2007). The first disregards any knowledge about the state and system behaviour, while
the second includes additional prior knowledge (that may come from historical context or expert
knowledge). Also, it represents a causal inference model, since in power system state estimation,
the observed values are electrical quantities physically related to the state variables, typically the
complex nodal voltages in all nodes of the electrical network.

Estimation consists of performing inference in the posterior distribution, rather than
only retracting a state vector from the measurement model and likelihood function, as done
in the traditional state estimation sense. Two main perspectives may provide the estimation
results: finding the full posterior distribution or finding pivotal quantities of such distribution.
The first one, despite exact in the probabilistic sense, might be intractable if nonlinear and
non-parametric models are considered and are only suitable for well-behaved models, which
often imply simplifications of real-world applications. Obtaining a non-parametric posterior also
requires special numerical integration methods that may be burdensome for real-time applications.
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The computational complexity and sampling spaces increases regarding the models’ scale, which
reduces the applicability of sampling methods like the Monte Carlo Markov Chain method.

The second approach yields the estimation of quantities of interest from the posterior dis-
tribution that, despite not providing a complete description of uncertainty, enables the extraction
of more tangible features in the sense of understanding the system behaviour and quantifying
uncertainty. This leads to the perspective explored in this Thesis, performing inference into a
pivotal quantity of the posterior and not the posterior distribution itself. Even though a more
accurate inference is performed with the full posterior distribution, as an engineering problem,
the development of state estimators for power systems must keep the real-time requirement in
mind.

In the proposed perspective, based on the Bayesian Inference framework, the estimation
process consists of updating the state variables values by a Maximum a Posteriori (MAP)
estimation given by (3.7) (Congdon, 2007).

x̂ = argmax
x

fX |Z(x | z)→ argmax
x

fZ|X(z | x)π(x) (3.7)

MAP estimation, in essence, provides the value that yields the maximum value posterior
probability density function, that is, the mode of the posterior distribution. According to the
assumptions made regarding the prior and likelihood functions presented in the following, the
fundamental aspect of MAP also enables a generalization of different state estimation methods
employed in power systems, according to the assumptions made regarding the prior and likelihood
functions presented in the following. This is important since the underlying distribution functions
assumed can often be omitted or neglected without fully understanding the consequences in the
probabilistic sense. Furthermore, under a common theoretical background, the interpretation of
such different estimators enables an extension of concepts and new methods, providing additional
flexibility to deal with practical challenges in power system real-time monitoring.

3.2.1 From Bayesian Inference to the Static State Estimation

The first theoretical result from this probabilistic perspective for the state estimation
problem lies in clarifying its relation to the traditional Maximum Likelihood Estimation (MLE)
approach employed in power system static state estimation. It is straightforward that the MLE is
a particular case of MAP estimation whenever the prior distribution assumes a constant value,
such as uniform distribution over an enlarged version of the domain of the state variables.

In essence, the Maximum Likelihood principle consists of the particular case of MAP
estimation with an improper prior as constant c. In such a case, the prior and likelihood are given
by the following expressions:
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π(x)∼ c

fZ|X(z | x) ∝

m

∏
i=1

e−
(zi−hi(x))

2

2Rii
(3.8)

In such a case, all values of x∈Rn are assumed to have an equal probability of occurrence.
The above relation enables a further understanding of an underlying assumption from traditional
state estimation formulation often omitted or sometimes neglected. The fact that the prior
distribution resembles an improper uniform distribution implies absurd prior knowledge about
the state, such as negative voltage magnitudes have equal probability of occurrence in such
model, or that phase angles larger outside the range [−π,π] are equivalent to the values inside
this range. Such examples are extreme cases, but common information to power engineers
about the system’s typical behaviour in steady-state conditions is neglected. For instance, that is
not probable that higher values than 1.2 p.u. or lesser than 0.8 p.u of voltage magnitude to be
steady-state values on the network due to over-voltage and under-voltage protection settings.

This omission, however, does not tend to hamper the static power system state estimation
in most cases, which will be fully guided by the likelihood function instead, but it also does
not provide any additional information regarding the system. This subjective notion of the state
variables as a random variable may not be clearly stated in traditional MLE but certainly reduces
the possibility to accommodate complementary information about the power systems.

In this sense, traditional state estimation assumes a Gaussian characteristic for the
measurement noise, which yields its likelihood function. The posterior distribution will be
a Gaussian distribution in the linear measurement model, but not in the nonlinear case, and
obtained by the following objective function:

x̂ = argmax
x

fX |Z(xSL|zSL) ∝
1√

(2π)m|R|

m

∏
i=1

e−
(zi−hi(x))

2

2Rii c (3.9)

The above maximization yields the traditional Weighted Least Squares (WLS) algorithm,
following the unconstrained minimization problem below. More details about this method and
deduction are provided in Appendix A as a reference.

x̂ = argmin
x

J(x) =
m

∑
i=1

(zi−hi(x))2

σ2
i

= [z−h(x)]T R−1[z−h(x)] (3.10)

3.2.2 From Bayesian Inference to the Kalman Filter State Estimation

Besides the widely employed static state estimation perspective, dynamic state estimation
provides an attractive increment of information about the state variables, as stated previously.
The first-order state-space model incorporates a significant result that has a direct interpretation
from a Bayesian Inference perspective.
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In essence, the Kalman Filter approach consists of a particular case of MAP estimation
with a Gaussian prior obtained by the previously estimated value, recursively (Barker; Brown;
Martin, 1995; Massignan et al., 2019). The likelihood is also assumed as a Gaussian distribution,
maintaining the assumption regarding the measurement model. The posterior distribution is also
Gaussian for linear models, and the MAP estimation yields the standard Kalman Filter approach.
The proof is obtained straightforwardly from the Gaussian-Conjugacy in the linear measurement
model, which yields the following relation:

π(x) ∝

n

∏
j=1

n

∏
k=1

e−(x j−x̂t−1,k)P
−1
t−1, jk(xk−x̂t−1, j)

fZ|X(z|x)(x) ∝

m

∏
i=1

e−
(zi−Hi:x)

2

Rii

(3.11)

where, H is the Jacobian matrix of the measurement model, and Hi: the respective i-th row.

Since the posterior is also Gaussian, due to the Conjugate linear model, the mode equals
the expected values, and the MAP estimate is given by:

x̂ = argmax
x

fX |Z(x | z) =
m

∏
i=1

e−
(zi−Hi:x)

2

Rii

n

∏
j=1

n

∏
k=1

e−(x j−x̂t−1,k)P
−1
t−1, jk(xk−x̂t−1, j) (3.12)

The above maximization yields the following unconstrained minimization problem:

x̂ = argmin
x

J(x) = [z−Hx]T R−1[z−Hx]+ [x− xt−1]
T P−1

t−1[x− xt−1] (3.13)

Applying the Woodbury formula for the sum of inverses and working algebraically with
the expected value of the posterior yields the Kalman estimation step and Kalman Gain Matrix
Kt as:

Kt = Pt|t−1HT(HPt|t−1HT +R
)−1

x̂ = x̂ t|t−1 +Kt
(
zt−Hx̂ t|t−1

)
Pt = (I−KtH)Pt|t−1(I−KtH)T +KtRKT

t

(3.14)

where Kt is the Kalman Filter Gain matrix, I is the identity matrix and P is the calculated state
covariance matrix, t is the current time step, and t|t-1 stands for the conditional relation between
two time-steps.

The Kalman Filter is recursive, in the sense that the calculated posterior yields the prior
distribution for the next instant, which yield the prediction step:

x̂ t|t−1 = x̂ t−1

Pt|t−1 = (P−1
t−1 +Q−1)−1 (3.15)

It is noteworthy that the above deduction and posterior probability is only valid for the
assumptions of the Gaussian process under linear models. The Kalman Filter does not provide
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the full posterior probability distribution for nonlinear models, but it does provide the MAP
estimation. In this sense, many variations of the above Kalman Filter algorithm are provided in
the literature. For instance, the Linear Kalman Filter (Sarri et al., 2016), the Extended Kalman
Filter and the Iterated Kalman Filters provide a nonlinear version for the above algorithm (Fan;
Wehbe, 2013), while the Unscented Kalman Filter (Valverde; Terzija, 2011), the Cubature
Kalman Filter (Sharma; Srivastava; Chakrabarti, 2017) and the Ensemble Kalman Filter (Zhou
et al., 2015) are based on sampling transformations. Essentially, these approaches relate to a
Bayesian approach since they all rely on a state-space model that encompasses a random variable
component to the state variables.

3.2.3 From Bayesian Inference to Tikhonov regression

One particular type of estimator that employs a Conjugate-Gaussian is the Tikhonov
regression, from which the so-called regularized estimator (Nocedal; Wright, 2006) explores this
perspective to reduce numerical ill-conditioning. Estimation is performed under the following
unconstrained optimization method:

x̂ = argmin
x

[z−h(x)]T R−1[z−h(x)]+ [x− x0]
T Q−1[x− x0] (3.16)

The above model implies the following choices of prior and likelihood as Multivariate
Gaussian distribution, much like the Kalman Filter approach, but without necessarily relying
on the previously estimated value recursively. In most applications, the matrix Q is chosen as a
multiple of the identity matrix (Q = αI), also referred to as Ridge regression. The main goal is
to increase numerical conditioning, so the choice of α is typically a small value.

The Bayesian interpretation is the same as the above for the Kalman Filter and is devised
in the prior and likelihood described below:

π(x) ∝

n

∏
j=1

n

∏
k=1

e−(x j−x0,k)Q
−1
jk (xk−x0, j)

fZ|X(z|x)(x) ∝

m

∏
i=1

e−
(zi−hi(x))

2

Rii

(3.17)

The Levenberg–Marquardt algorithm (Nocedal; Wright, 2006) obtains the solution based
on the nonlinear optimization theoretical background. This method has been employed in data
fusion algorithms to merge the results of two independent estimators accordingly. In this case,
the individual variance and the estimated state of each independent estimators are fused in a
Tikhonov regression-like method (Simões Costa; Albuquerque; Bez, 2013).

3.2.4 From Bayesian Inference to LASSO

Another estimator of interest is the Least Absolute Shrinkage and Selection Operator
(LASSO) estimator, which changes the prior distribution for a Laplace distribution instead of
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the Gaussian model (Akrami; Asif; Mohsenian-Rad, 2020). The objective is to reduce the effect
of state vector changes and has been mostly exploited for sparse learning algorithms to choose
which variables are most probable to enforce changes on the system. The following optimization
problem is formulated for the LASSO estimator:

x̂ = argmin
x

[z−h(x)]T R−1[z−h(x)]+λ |[x− x0]|1 (3.18)

where λ is a tuning parameter that controls the effect of the L1 norm in the second term, and
enforces or avoids changes on the state variables values.

This type of estimator has not been widely employed in power system state estimation
since it enforces sparsity on the state variables as if some states kept a fixed value disregarding
the measurement information. In the Bayesian interpretation, the following prior and likelihood
function is related to the above model under a MAP estimate perspective:

π(x) ∝

n

∏
i=1

e−
|xi−x0,i|

bi

fZ|X(z|x)(x) ∝

m

∏
i=1

e−
(zi−hi(x))

2

Rii

(3.19)

This sparsity enforcement for the state variables is not a typical feature exploited for
power systems. However, the application of a Laplace likelihood function yields a very well-
known robust state estimator, described in the following.

3.2.5 From Bayesian Inference to WLAV

Following the principle of the Laplace distribution, the Weighted Least Absolute Value
(WLAV) estimator also have an important role in power system state estimation (Celik; Abur,
1992). In this case, the formulation of such an estimator comprises the following objective
function:

x̂ = argmin
x
|R−1/2[z−h(x)]| (3.20)

Solving the above optimization problem, typically employing linear programming tech-
niques, yields the median of the sample distribution. This type of solution exploits that not all
residuals will be active as a base during the linear programming algorithm, essentially selecting
a reduced set of measurements to influence the final state estimation. In the Bayesian sense, such
formulation encompasses a constant prior (as assumed in static state estimation) and a Laplace
likelihood (Li; Arce, 2004), as the following:

π(x) ∝ c

fZ|X(z|x)(x) ∝

n

∏
i=1

e
− |zi−hi(x)|√

Rii
(3.21)
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The Laplace likelihood function assumption is as hard to prove as the Gaussian assump-
tion in a practical application. However, this estimator presents interesting properties regarding
robustness against bad data. The basic idea is that reducing the number of measurements that
impacts the final estimate increases the robustness against bad data. During the search for the
measurements that will compose the final set, the linear programming methods tend to neglect
measurements contaminated with gross errors (or outliers), as they will present high residuals
during the estimation process. This increases the robustness of the method and increases accuracy
in the presence of bad data. However, it tends to increase estimator variance in normal situations
without such contamination. A compromise solution typically employs a mid-term solution
between the WLAV and the WLS estimator, as will be described in the following.

3.2.6 From Bayesian Inference to SHGM

Following the idea of the Laplace distribution and its robustness against bad data, but
still trying to maintain a low variance estimator, the Schweppe-Huber Generalized M-estimator
(SHGM) (Mili et al., 1996) employs the following objective function:

x̂ = argmin
x

m

∑
i=1

ρi(zi−hi(x)) (3.22)

ρi(ri) =

{
1
2(zi−hi(x))2 i f |zi−hi(x)| ≤ aωi

aωi|zi−hi(x)|− 1
2a2ω2

i
(3.23)

The above objective function consists of trimmed version of the weighted least squares
approach according to the tuning a and weighting ωi factors. Once again, as in the static
formulation, any knowledge regarding the state variables is included in the estimation process,
also yielding an improper constant prior for the state variables.The function ρi(zi − hi(x))

generalizes the estimation process under the spectrum of the M-estimators, with the Huber loss
function typically employed, as described above.

π(x) ∝ c

fZ|X(z|x)(x) ∝

n

∏
i=1

e−ρi(zi−hi(x))
(3.24)

Finally, the solution of the above problem is obtained by either small numerical mod-
ifications of the Newton method or by the introduction of additional steps based on linear
programming (Mili et al., 1996; Abur; Gómez-Expósito, 2004). This estimator typically yields
good results in the presence of bad data while maintaining accuracy under normal situations.

3.3 A Bayesian Framework for Power System State Estimation

The fundamental change of perspective in this Thesis, inspired by Bayesian Inference
concepts, is to move towards a full probabilistic representation of the state estimation problem.
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This may seem redundant to state estimation efforts that already include random noise into
account with probabilistic models for the measurements. However, such traditional approaches
do not encompass the same level of probabilistic modelling for the state and the many parameters
involved in the estimation problem.

As shown before, maximum likelihood is a particular case of Bayesian Inference. Be-
sides, other commonly employed estimators also have a full interpretation under the Bayesian
framework. This way, this work explores new aspects from a fundamental background that
already encompass theoretically the main approaches employed in power system state estimation.
The intent is to leverage the versatility of probabilistic concepts under a Bayesian framework to
propose novel methods in power system state estimation, with a particular focus on distribution
systems. Distribution system often relies more on a diverse set of complementary information
(pseudo measurements) rather than real-time measurements to perform state estimation, due
to the lack of sensors in their networks. Besides, they comprise large scale networks that may
require additional methods based on exchanging information between areas to maintain scala-
bility. Finally, the high variability and stochastic behaviour associated with the complementary
information often require more generalized models instead of a Gaussian parametric model.

The proposition of extending Bayesian Inference for Distribution System State Estimation
follows the need of complementary information, but in this case, in the form of prior distributions
for the state variables. The influence of such prior distributions may be tuned, increasing or
reducing the effect of the prior distribution, which brings additional versatility to the estimation
process by moving the prior information between pure non-informative prior to informative one.

In this context, this Thesis explores three applications from the above Bayesian perspec-
tive for power system state estimation. They tackle practical limitations and current challenges
of the Distribution Systems, and also for power systems in general, and that consists of the main
practical contributions of this Thesis, presented in the context of distribution systems:

• Bayesian Information Fusion: prior knowledge comes from different sets of sensors,
according to their intrinsic temporal characteristics, related to sampling and updating rate.
In essence, the measurement vector is decomposed according to updating rates. Regarding
distribution systems, the information typically associated with the pseudo measurements
can be processed as a prior distribution for the state variables, and then updates on the
state variables are obtained by a MAP procedure only with the acquired measurements at
a given instant, without the need of mixing measurements from different instants in the
same measurement vector;

• Bayesian Spatial Fusion: in this second application, the aspect of scalability of power
system state estimation is explored under the concept of decomposition methods in the
form of a hierarchical multiarea state estimation procedure. The formulation of traditional
multiarea state estimation requires that each local area is observable. To complement such
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hypothesis, a prior distribution is employed to aid the decomposition of areas, and the
prior knowledge is iteratively updated during the coordination step;

• Estimation with Non-Gaussian Characteristics: finally, the fundamental hypothesis of a
Gaussian model is surpassed by a semi-parametric model using kernel density estimation.
A kernel smoothing on the posterior distribution bridges the Bayesian concepts of MAP
estimation and information theory concepts, as demonstrated in (Chen; Principe, 2012).
Both state variables and measurement noise are associated with kernel models, and estima-
tion is performed as a Maximum Correntropy Kalman Filter, also proposed as part of this
Thesis.

The Appendix C presents an illustrative example of the proposed Bayesian Framework,
to deal with Information Fusion between SCADA measurements and fast sampled PMUs using
linear models. A small example in a four nodes three-phase test system also provides the basic
features of such interpretation and how the priors may increase estimation performance and
integrate different measurement sets according to their sampling rates.

3.4 Concluding Remarks

State estimation carries a fundamental probabilistic formalization for power systems
analysis by dealing with the uncertainty feature on the real-time operational condition of power
grids. It bridges the detailed, non-linear, and physics-based model of electric power networks
with observed electrical quantities gathered in real-time, by different noisy measurements spread
across the power system. Nonetheless, such a perspective has fundamentally thought about the
uncertainty associated with the measurements, and few works extrapolated uncertainty as a part
of the state variables.

Briefly, the measurements are uncertain due to noise, but the state vector is often assumed
as fixed deterministic variables to be found. The Maximum likelihood principle, or variations of
it, provides the probabilistic characterization of such noise, and the estimation problem often
deals with by the optimization side. Neglecting complementary probabilistic features for the state
means assuming an underlying hypothesis during the inference problem, yielding the assumption
of an improper constant prior to the state variables. This results in probabilities for extreme and
unrealistic state values. The estimation is then entirely dominated by the likelihood function
and does not exploit any additional feature or prior expert knowledge about the state, neither
upper and lower physical bounds of the physical system. Besides, many approaches that focus
on increasing robustness indeed only assume a different parametric model for the noise and
likelihood function.

In a complementary perspective, Bayesian Inference naturally captures a broader proba-
bilistic notion of the estimation and such aspects. By extending the interpretation of the state
vector as a random variable, the estimation problem reduces to finding one of such possible val-
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ues, and not necessarily the exact deterministic one. This way is possible to introduce additional
and valuable information to perform estimation, especially under scenarios with constrained or
reduced measurements, as in the case of distribution systems.

The following Chapters present the conceptualization of the Bayesian perspective in
different applications of interest. Initially, three-phase modelling of distribution networks based
on two-port admittance matrices is devised, which can help software implementation of generic
detailed distribution system models. In the sequence, three different applications studied in this
thesis are presented and evaluated in details. The first introduces kernel density principles in the
estimation problem and exploits Information Theory concepts with a Maximum Correntropy
Kalman Filter. The second, dealing with the diversity of sampling and updating rates of mea-
surements employed in distribution systems, with a Bayesian information fusion method and
the concept of sampling layers. Finally, scalability issues are discussed under a Bayesian spatial
fusion method, a type of multiarea state estimation that incorporates prior knowledge in the
decomposition of the power grids.
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4 DISTRIBUTION SYSTEM MODELLING FOR STATE ESTIMATION

4.1 Introduction

At the core of any computational analysis of power systems, resides the electrical network
model. It consists of a mathematical representation of the relations among different electrical
quantities from the power grid and must capture the physical aspects of the power system. From
a steady state perspective, the network model faces the challenge of capturing the algebraic
relations among the electrical quantities from the network. The quantities of interest may
comprise electrical currents, voltage phasors, active and reactive power flows and loads, active
and reactive injections from generators, discrete controller’s conditions, the energy available
at storage devices, and so on. For distributions systems such challenge easily grows, as the
three-phase unbalanced nature and the large scale of these networks result in a diverse set of
possible connections, phase coupling, asymmetries, and topologies of the system.

This chapter introduces the basic concepts regarding three-phase network models for
distribution systems steady state analysis, emphasizing a state estimation perspective. A general
two-port branch model is formulated based on the admittance matrix of each component of the
distribution system. General equations to calculate current and power flows in the network as
well as their derivatives are presented. Finally, different types of equipment are exemplified along
with the respective particularities of their admittance matrix models.

4.2 Three-Phase Two-port Models

This section introduces the formulation of a generic three-phase unbalanced model able
to capture the main electrical quantities for steady state analysis. Power flow equations are
initially derived since they comprise the majority of information in this type of analysis . In the
sequence, a generic two-port model based on admittance matrices is formulated to simplify the
equations of a diverse set of possible connections, the number of phases, grounding conductors,
and asymmetries from different equipment.

4.2.1 Three-phase two-port admittance model

The three-phase network model may also be derived by representing each network com-
ponent by its two-port admittance matrix, using direct concepts from the classic linear circuit
theory, as illustrated in Figure 4. Different types of equipment and connections can be incorpo-
rated in the network model by properly defining their contribution to the respective admittance
matrix, which represent an implementation advantage when representing complex distribution
networks with several distinct components (Primadianto; Lu, 2017; Lefebvre; Prévost; Lenoir,
2014; Hebling et al., 2020).
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Node #k Node #m

(a)

(b)

(c)

(a)

(b)

(c)

(n)

Figure 4 – Generic component model based on a two-port admittance matrix. Four submatrices
relate the voltage and current phasors between both terminals, according to the type
of component.

Each element is modeled by the following two-port admittance system:(
İkm

İmk

)
=

(
Ykk Ykm

Ymk Ymm

)(
V̇k

V̇m

)
(4.1)

where, k and m denote the terminals of the branch element, İkm and İmk are the current phasor
injected in each terminal of the branch element, that flows from terminal k to m, and from m to k,
respectively, V̇k and V̇m the voltage phasor of each terminal, and Ykk, Ykm, Ymk and Ymm are the
admittance sub-matrices that represent each physical component and the respective parameters.

The power flow equations can be written for the respective branch as the following matrix
expression for the terminal k:

Skm = Pkm + jQkm = V̇k⊙ (İkm)
∗ = V̇k⊙ (YkkV̇k +YkmV̇m)

∗ (4.2)

where, Skm is a vector with the per-phase complex power at terminal k (active and reactive
power flows, Pkm and Qkm), ⊙ denotes the Hadamard product (element-wise), and ∗ denotes the
complex conjugate. As an example, for a three-phase terminal k with phases abc, the following
equation can be written trough the matrix notation of the two-port model and the above product:

Skm = V̇k⊙ (İkm)
∗ =

V̇ a
k (İ

a
km)
∗

V̇ b
k (İ

b
km)
∗

V̇ c
k (İ

c
km)
∗

= diag(V̇ )(İkm)
∗ =

V̇ a
k 0 0
0 V̇ b

k 0
0 0 V̇ c

k


(İa

km)
∗

(İb
km)
∗

(İc
km)
∗

 (4.3)

Besides, the voltage and current phasors can also be written with the following notation
to split magnitude and phase angle, for instance:

V̇k =Vk⊙θk = diag(Vk)θk = [Vk]θk =

V a
k 0 0
0 V b

k 0
0 0 V c

k


e jθ a

k

e jθ b
k

e jθ c
k

 (4.4)

where [.] denotes only in this section, for the sake of notation simplification, the diagonal matrix
operator diag(), which forms a diagonal matrix with the vector elements, Vk denotes the voltage
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magnitude vector in each phase of the node k of the two-port model, and θk is the vector
composed by the complex exponentials of the voltage phase angle in each phase of the node k of
the two-port model.

Expanding the power flow matrix expression, it is possible to obtain the classical active
and reactive power flow equations for a three-phase component (Arrillaga; Harker, 1978):

Pi
km =V i

k ∑
j∈Φkm

(
V j

k

(
gi j

kk cos(θ i
k−θ

j
k )+bi j

kk sin(θ i
k−θ

j
k )
)

−V j
m

(
gi j

km cos(θ i
k−θ

j
m)+bi j

km sin(θ i
k−θ

j
m)
))

(4.5)

Qi
km =V i

k ∑
j∈Φkm

(
V j

k

(
gi j

kk sin(θ i
k−θ

j
k )−bi j

kk cos(θ i
k−θ

j
k )
)

(4.6)

−V j
m

(
gi j

km sin(θ i
k−θ

j
m)−bi j

km cos(θ i
k−θ

j
m)
))

(4.7)

where, i and j denote different phases of the component; gi j
kk and bi j

kk are the real and imaginary
parts of the i j element from the two-port model submatrix Ykk; gi j

km and bi j
km are the real and

imaginary parts of the i j element from the two-port model submatrix Ykm; Φkm is the set of
existing phases at branch k-m.

Regarding voltage phasors as state variables, these are typically represented in polar
coordinates since there is a direct interpretation of both magnitude and phase angles, and as done
in transmission systems. There is, however, the possibility of working in rectangular coordinates
to represent the state variables, which may benefit estimators designed to deal with phasor
measurement units.

The next subsections describe in details the matrix equations for active and reactive
power flows and their respective derivatives for each two-port model. Distinct measurements
for a diverse set of components may be described using such equations, only by changing the
respective two-port admittance matrices according to the type of component and connections.

4.2.2 Polar Coordinates

Separating the voltage phasor in its exponential representation according to the following
expression:

V̇k =Vk⊙θk = diag(Vk)θk = [Vk]θk (4.8)

where Vk is a vector composed by the voltage magnitude in the i− th phase of the system
(V i

k = |V̇
i
k |) , and θk is a vector composed by the complex exponential part of the angle of the

phasor (θ i
k = e jθ i

k). Working algebraically, it is possible to obtain the following expression for
the power flow equations:

Skm = [Vk][θk]Y ∗kk[Vk]θk
∗+[Vk][θk]Y ∗km[Vm]θm

∗ (4.9)
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The above equation is used to build active and reactive power flow models for steady
state analysis. The derivatives of such an equation regarding the state variables (complex nodal
voltages in polar coordinates), in the same matrix representation, are:

∂Skm

∂V i
k
= Jii[θk]Y ∗kk[Vk]θk

∗+[Vk][θk]Y ∗kkJii
θ
∗
k + Jii[θk]Y ∗km[Vm]θm

∗

∂Skm

∂V i
m

= [Vk][θk]Y ∗kmJii
θm
∗ (4.10)

∂Skm

∂θ i
k
= jeθ i

k [Vk]JiiY ∗kk[Vk]θk
∗ (4.11)

− j[Vk][θk]Y ∗kk[Vk]Jii
θk
∗

+ jeθ i
k [Vk]JiiY ∗km[Vm]θm

∗

∂Skm

∂θ i
m

=− j[Vk][θk]Y ∗km[Vm]Jii
θm
∗ (4.12)

where, Jii is a matrix with the same size as the number of phases and only the ii element equal
one and the others equal zero. The above equation yields derivatives for all phases of the active
and reactive power flow at once.

At first glance, such equations may appear complex, but note that they represent general
equations for multiple phase systems and different types of components. They also are in full
vector and matrix format, which facilitates the implementation of generic models in a plug-and-
play manner for different types of components.

Similarly, it is possible to obtain the power flow equations in the opposite terminal m of
the two-port model:

Smk = [Vm][θm]Y ∗mk[Vk]θk
∗+[Vm][θm]Y ∗mm[Vm]θm

∗ (4.13)

And also its derivatives:

∂Smk

∂V i
k
= [Vm][θm]Y ∗mkJii

θk
∗ (4.14)

∂Smk

∂V i
m

= Jii[θm]Y ∗mk[Vk]θk
∗+ Jii[θm]Y ∗mm[Vm]θm

∗+[Vm][θm]Y ∗mJii
θm
∗ (4.15)

∂Smk

∂θ i
k
=− j[Vm][θm]Y ∗mk[Vk]Jii

θk
∗ (4.16)

∂Smk

∂θ i
m

= jeθ i
m[Vm]JiiY ∗mk[Vk]θk

∗+ jeθ i
m[Vm]JiiY ∗mm[Vm]θm

∗− j[Vm][θm]Y ∗mm[Vm]Jii
θm
∗ (4.17)
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Current magnitudes and current phase angles can also be modelled with this formulation.
Typically, distribution feeders present current magnitude measurements that are often neglected
on transmission system state estimation to avoid numerical issues. However, in distribution
systems, such practice reduces the already compromised observability and current magnitude
measurements are often modelled to increase real time information about the feeders. Current
phase angles are also a possible measurement by syncronized phasore measurement units,
although not so common in typical distribution systems so far.

Ii
km =

√
Pi

km
2
+Qi

km
2

V i
k

(4.18)

δ
i
km = θ

i
k− arctan

(
Qi

km

Pi
km

)
(4.19)

The derivatives can be obtained by applying the chain rule in the above equations together
with the previous equations shown for the derivatives of the power flows. They can be refereed to
in (Zhu; Abur, 2007; Korres; Manousakis, 2012). It is noteworthy that, in polar coordinates, the
derivative of current equations may present some numerical issues, especially for lightly loaded
circuits and at initialization of algorithms for steady state analysis (Zhu; Abur, 2007; Korres;
Manousakis, 2012).

4.2.3 Rectangular Coordinates

Based on the voltage phasor in rectangular coordinates, the following expression for the
power flow equation is obtained:

Skm =[Vre,k]Y ∗kkVre,k +[Vre,k]Y ∗kmVre,m +[Vim,k]Y ∗kkVim,k +[Vim,k]Y ∗kmVim,m

− j[Vre,k]Y ∗kkVim,k− j[Vre,k]Y ∗kmVim,m + j[Vim,k]Y ∗kkVre,k + j[Vim,k]Y ∗kmVre,m (4.20)

where Vre,k is a vector composed by the real part of the voltage phasor in each i− th phase of
the system (V i

re,k = ℜ{V̇ i
k}), and Vim,k is a vector composed by the imaginary part of the voltage

phasor in each i− th phase of the system (V i
im,k = ℑ{V̇ i

k}). The above equation is used to build an
active and reactive power flow model for steady state analysis. The derivatives of such equation
regarding the state variables (complex nodal voltages in rectangular coordinates) in the same
matrix representation are:

∂Skm

∂V i
re,k

= [Ji](Y ∗kkVre,k +Y ∗kmVre,m− jY ∗kkVim,k− jY ∗kmVim,m)+([Vre,k]Y ∗kk + j[Vim,k]Y ∗kk)J
i (4.21)

∂Skm

∂V i
re,m

= [Vre,k]Y ∗kmJi + j[Vim,k]Y ∗kmJi (4.22)
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∂Skm

∂V i
im,k

= [Ji]( jY ∗kkVre,k +Y ∗kkVim,k + jY ∗kmVre,m +Y ∗kmVim,m)+([Vim,k]Y ∗kk− j[Vre,k]Y ∗kk)J
i (4.23)

∂Skm

∂V i
im,m

=− j[Vre,k]Y ∗kmJi +[Vim,k]Y ∗kmJi (4.24)

where, Ji is a vector with the same size as the number of phases and only the i− th element equal
one and the others equal zero.

Similarly, it is possible to obtain the power flow equations in the opposite terminal m of
the two-port model:

Smk =[Vre,m]Y ∗mkVre,k +[Vre,m]Y ∗mmVre,m +[Vim,m]Y ∗mkVim,k +[Vim,m]Y ∗mmVim,m

+ j[Vim,m]Y ∗mkVre,k− j[Vre,m]Y ∗mkVim,k + j[Vim,m]Y ∗mmVre,m− j[Vre,m]Y ∗mmVim,m (4.25)

And also its derivatives:

∂Smk

∂V i
re,k

= [Vre,m]Y ∗mkJi + j[Vim,m]Y ∗mkJi (4.26)

∂Smk

∂V i
re,m

= [Ji](Y ∗mkVre,k− jY ∗mkVim,k +Y ∗mmVre,m− jY ∗mmVim,m)+([Vre,m]Y ∗mm + j[Vim,m]Y ∗mm)J
i

(4.27)

∂Smk

∂V i
im,k

= [Vim,m]Y ∗mkJi− j[Vre,m]Y ∗mkJi (4.28)

∂Smk

∂V i
im,k

= [Ji]( jY ∗mkVre,k +Y ∗mkVim,k + jY ∗mmVre,m +Y ∗mmVim,m)+([Vim,m]Y ∗mm− j[Vre,m]Y ∗mm)J
i

(4.29)

The current real and imaginary parts may also be modelled with this formulation. By
dealing both with the current phasor as well as the state variables in rectangular coordinates is
possible to build a linear model.

Ire,km = ℜ{Ykk}Vre,k−ℑ{Ykk}Vim,k +ℜ{Ykm}Vre,m−ℑ{Ykm}Vim,m (4.30)

Iim,km = ℑ{Ykk}Vre,k +ℜ{Ykk}Vim,k +ℑ{Ykm}Vre,m +ℜ{Ykm}Vim,m (4.31)

Ire,mk = ℜ{Ymk}Vre,k−ℑ{Ymk}Vim,k +ℜ{Ymm}Vre,m−ℑ{Ymm}Vim,m (4.32)

Iim,mk = ℑ{Ymk}Vre,k +ℜ{Ymk}Vim,k +ℑ{Ymm}Vre,m +ℜ{Ymm}Vim,m (4.33)
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The derivatives can be easily obtained from the real and imaginary parts of the two-port
model admittance submatrices. This is an important aspect in distribution systems, since it
motivated the pursuit of current-based state estimation formulations (Primadianto; Lu, 2017;
Pau; Pegoraro; Sulis, 2013; Almeida; Ochoa, 2017). This approach is also often employed when
dealing with PMUs, in order to simplify the representation and take computational advantage
without losing accuracy (Pau; Pegoraro; Sulis, 2013; Almeida; Ochoa, 2017).

Appendix D presents a detailed description of the main components and respective
two-port admittance models, that capture high-resolution details of the majority of traditional
equipment installed across distribution networks. The matrix representation of each component
along the physical description and theoretical foundations for each representation are also
provided.

4.3 Concluding Remarks

Power system computational analysis is essential for operating and planning of electrical
distribution networks. In their essence, distribution systems are unbalanced and asymmetrical
electrical networks, spread across large areas connecting a diverse set of components with
final consumers. The challenges associated with suitable distribution systems modelling, add
complexity to any analysis performed. They include the increase of variables that three-phase
representation carries and also encompasses detailment of component representation. From the
perspective of distribution system state estimation, the challenges rely on accurate network
models capable of dealing with measurements and information from all different elements of
the distribution systems to translate into adherent models that capture the reality nature of such
systems.

This chapter presented the fundamental equations to perform steady state analysis in
distribution networks based on the power flow of the network. The model comprises a three-phase
generic representation of different components and the main electrical quantities of such models,
as active and reactive power flows and voltage and current phasors. A two-port admittance model
facilitates the implementation of the steady state models of the distribution system components,
under a matrix implementation.

Details of the two-port models of the main components of substations, primary feeders,
and secondary low voltage circuits are shown in the Appendix section, such as power transform-
ers, distribution circuits, shunt capacitors, and loads. All these aspects, if adequately addressed
within the network models, can increase awareness of the system, providing accurate information
for all components in distribution systems. It is a crucial feature for state estimators to act more
actively in the operation of the modern distribution systems. This can be further explored into
specific future works, such as extending the implementations towards four-wire, detailed neutral
and grounding circuits, piecewise linear representation of power electronics converters, parallel
and coupled circuits, and three-phase representation of transmission systems as well.
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5 TRACKING POWER SYSTEM STATE EVOLUTION WITH MAXIMUM-
CORRENTROPY-BASED EXTENDED KALMAN FILTER

The content of this chapter have been published on the following Journal:

• © 2020 IEEE. Reprinted, with permission, from: J.A.D. Massignan, J.B.A. London Junior,
V. Miranda,"Tracking Power System State Evolution with Maximum-correntropy-based
Extended Kalman Filter". Journal of Modern Power Systems and Clean Energy, v. 8, p.
616-626, 2020.

5.1 Introduction

This chapter is an effort towards a new interpretation of the state estimation problem that
can encompass both the statistical robustness as well as flexibility to overcome system transitions
in a single framework. In this sense, by exploiting Information Theory concepts and modelling
the noise characteristic through a kernel density estimation approach, this paper proposes a
Maximum Correntropy Extended Kalman Filter (MCEKF) to track the state of power systems.
As shown in the initial work of Chen (Chen et al., 2017), by incorporating Information Theory
concepts within the traditional Kalman Filter it is possible to increase accuracy without relying
on the assumption of a Gaussian distribution for the measurement and process noise.

This chapter extends these efforts with a new MCEKF version, enabling the incorporation
of both SCADA and PMU measurements in the estimation process, a more practical approach to
represent realistic metering systems. It also presents a novel way to deal with suspect samples and
system transitions, by performing a new special adjustment on the kernel size in the estimation
process during the occurrence of such events. The main contributions can be summarized as:

• a new concept for the state variables, namely state evolution, formulated as a nonparametric
probabilistic model for the state, that encompasses the possibility of different state values
and transitions that may occur;

• the application of the Maximum Correntropy within an Extended Kalman Filter for the
tracking state estimation of power systems, a type of quasi-steady state estimator, based
on a Modified-Newton algorithm, able to deal with nonlinear models from both SCADA
and PMUs;

• a novel method to suppress the effect of suspect samples and abrupt system transitions
through a special adjustment of the kernel Parzen window sizes.

A few theoretical topics, presented in previous sections, will be revisited in the following
sections to provide a quick background of the fundamental details.
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5.2 Theoretical Background

5.2.1 Power System Static State Estimation

A nonlinear measurement model formulates the static state estimation problem for a
power system with m measurements and n state variables (Abur; Gómez-Expósito, 2004; Zhao
et al., 2019):

z = h(x)+ e (5.1)

where z is the measurement vector (m x 1); x is the state vector (n x 1); h(x) is the set of
nonlinear equations that relates the measured electrical quantities with the state; e is the random
error vector (m x 1) that represents noise in the measurements. Traditional state estimation
assumes the noise vector as multivariate Gaussian independent random variables, with zero mean
and known covariance matrix R (m x m). The state vector is typically composed by the complex
nodal voltage of the system, in this work represented in rectangular coordinates.

The maximization of the likelihood function results in the Weighted Least Squares (WLS)
criterion to find the estimated state, referred in this work as WLS Snapshot state estimator. Under
an independent multivariate Gaussian noise assumption, the following optimization problem is
written.

maxl(e|x) =
m

∏
i=1

f (ei|x) =
m

∏
i=1

1
2πR2

ii
e
− (zi−hi(x))

2

2R2
ii (5.2)

Working with the above equation, the estimated state x̂ can then be obtained by the
unconstrained minimization problem:

x̂= min[z−h(x)]T R−1 [z−h(x)] (5.3)

5.2.2 Tracking State Estimation

The fast sampling of PMUs (from 1 to 120 samples per second) and synchronization
via GPS time stamps is a strong motivation for the formulation of state estimation as a time-
dependent problem. Besides the PMU measurements, there are also measurements gathered
from the SCADA system, thereby still requiring a nonlinear measurement model in order to
include all the information available in the estimation. The authors in (Zhao et al., 2019) provide
a comprehensive definition of different methods and objectives to include temporal aspects in
the estimation problem. Basically, they can be separated in:

• dynamical estimators, which encompass differential equations, generators models, speed
and excitation controllers of synchronous machines, and aim at estimating the dynamic
state of the network and internal variables of loads and generators;
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Figure 5 – Hidden markov model representation of the state space model for the tracking state
estimation problem.

• forecasting-aided state estimators that use a forecasting model to predict the states in
a subsequent instant, through smoothing functions for the state transition, aiming at the
algebraic state of the network, the complex nodal voltages in the network;

• tracking state estimators, a particular case of the previous one where variations are
assumed small enough, so the prediction corresponds to the last estimated state.

This work explores the tracking state estimation problem, since it is one of the most
affected by abrupt state changes (Zhao et al., 2019). This approach may lead to fewer modifi-
cations in static estimators (and network database) currently implemented in control centers to
achieve the tracking model, while obtaining significant gains in terms of accuracy, which is a
practical advantage. The tracking state estimation consists in the following discrete time-variant
nonlinear model:

xt = xt−1 +ωt

zt = h(xt)+ et (5.4)

where ωt is the random error that represents process noise with zero mean and known covariance
matrix Q (nxn). Traditional tracking state estimation also assumes the noise vectors as multivari-
ate Gaussian independent random variables, and the state space corresponds to a Hidden Markov
Model, as described in (5.4) and illustrated in Fig. 5.

A notable conceptual trait in this formulation is that the state variables are now modeled
with a random component (ωt). Despite the fact that static state estimation in (5.1) carries
the notion of a state variance, as the resulting estimator variance, it does not encompass the
hypothesis of different possible values for the state within its formulation and during the solution
as an inference problem. The solution of the estimation problem in such state space model
corresponds to the well-known Kalman Filter algorithm, based on the WLS criterion (Abur;
Gómez-Expósito, 2004; Zhao et al., 2019). It consists of a two-step recursive algorithm, with the
following formulation for the tracking state estimation model:

Prediction Step: The prior mean and covariance matrix are given by:
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x̂ t|t−1 = x̂ t−1

Pt|t−1 = Pt−1 +Q (5.5)

Update Step: The Kalman Filter gain, the posterior state and posterior covariance are
then updated:

Kt = Pt|t−1HT(HPt|t−1HT +R
)−1

(5.6)

x̂t = x̂ t|t−1 +Kt
(
zt−Hx̂ t|t−1

)
Pt = (I−KtH)Pt|t−1(I−KtH)T +KtRKT

t (5.7)

where, H is the Jacobian matrix of the measurement model, Kt is the Kalman Filter Gain matrix,
I is the identity matrix and P is the calculated state covariance matrix, t is the current time step,
and t|t-1 stands for the conditional relation between two time-steps (t given t-1). The nonlinear
version of the above model corresponds to the WLS Extended Kalman Filter (EKF) that performs
linearization of the measurement equations, and the Iterated EKF (IEKF) that updates such
linearization iteratively, thus presenting more accurate results.

5.2.3 Information Theory Concepts

Based on Information Theory, the Correntropy concept arises as a measure of similarity
between two probability distribution functions (pdf) (Chen et al., 2017; Miranda; Santos; Pereira,
2009; Liu; Pokharel; Principe, 2006). It has a strong relation to the Entropy concept, which
measures the information content of a pdf. The Correntropy between two random variables A
and B is defined in (5.8) for a finite number of samples.

V (A,B) = E [kσ (A−B)] =
1
N

N

∑
i=1

kσ (Ai−Bi) (5.8)

where k()̇ represents a kernel for the random variable in the sampled value; σ is the kernel
bandwidth (or size of the Parzen window in the Parzen-Rosenblatt estimator (Freitas; Costa;
Miranda, 2017)); and the subscript i represents limited number N of samples of the random
variables. The concept of Correntropy induces a distance function to measure the similarity of
two pdfs, the Correntropy Induced Metric (CIM). Depending upon the choice of kernel and size
of the bandwidth, this metric may vary from the Linf to L0 norms. Because of such property, it
can be tuned to become insensitive to outliers, pushing it towards the L0 norm (indifference in
distance) (Pesteh et al., 2019).

Finally, the CIM distance motivated the creation of the Maximum Correntropy Criterion
(MCC) to perform inference. For instance, in a regression analysis, it aims at finding parameter
values that maximize the similarity among a set of observations (ri = Ai−Bi).

Ŵ = argmax
W∈Ω

1
N

N

∑
i=1

kσ (ri) (5.9)

where, Ŵ is the optimal parameter value, and Ω is the feasible set for the parameters.
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5.3 Tracking State Evolution with a Maximum Correntropy Extended Kalman
Filter

5.3.1 State Evolution Concept in Power Systems

The temporal aspect of the state estimation problem and the probabilistic interpretation
of the state variables provide a conceptual framework to evaluate the network condition under
both measurement and system uncertainties. However, it has a limitation related to the parametric
model typically assumed for the process and measurement noise under conventional Kalman Fil-
ter formulations. Many efforts have been made towards exploring Non-Gaussian noise situations
(Zhao et al., 2019; Wang et al., 2019; Zhao; Mili, 2018a), such as in the case of bad data, cyber
attacks or even particular noise characteristic of PMUs. This work proposes a new interpretation
regarding the process noise towards a generalist non-Gaussian model based on the kernel density
estimation principle. The notion that, during a sequence of observations from the measurements,
the state variables can present different possible values induces the proposed concept of State
Evolution. Such different values can be related to system’s transitions, and that can be:

1. Systemic: due to sudden load variations, generation dispatch or controller actions;

2. Structural: due to contingencies, switching operations or changes in the network;

3. Random: due to intermittency or failures;

4. Induced: due to cyber attacks or unsupervised switching.

An illustration of such transitions in a power system, observed by a measurement set,
monitored by a state estimation process is illustrated in Fig. 6. Due to contingencies, changes
in the controllers, natural load variation, generation intermittency, each algebraic state of the
network may assume different values over time. The state evolution aims at capturing such
different possible values within a single non-Gaussian pdf for the state.

A set of state vectors defines the state evolution concept, each element related to a
respective set of observations at the instant t, during an observation window ∆t.

x = {x0,x1, . . . , xt−1,xt ,xt+1, . . .x∆t}= xt |t∈∆t (5.10)

Associated with this set of state vectors, the underlying pdf of the state can be obtained
in a nonparametric manner with the introduction of a kernel density estimator. The Parzen-
Rosenblatt method (Freitas; Costa; Miranda, 2017) for kernel density estimation then obtains the
empirical pdf for the state through (5.11). Fig. 7 illustrates this concept for a single state variable
during different conditions of the network and the respective empirical probability distribution
function.
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Figure 6 – Example of a power system and respective estimated state during different system
transitions, monitored by SCADA and PMU measurements.
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Figure 7 – State evolution concept for a single state variable (e.g. voltage phase angle), under
different conditions, obtained by kernel density estimation.

x ∼ 1
∆t ∑

t∈∆t
kσ (xt) (5.11)

where, k()̇ represents a kernel for the random variable in the sampled value; σ is the kernel
bandwidth (or size of the Parzen window in the Parzen-Rosenblatt estimator (Freitas; Costa;
Miranda, 2017)).

Since the goal is capturing the state transitions, through the state space model in (5.4),
an observation kernel is associated with the process noise.

ω t ∼ kσ (xt− xt−1) (5.12)

Along with the state vector modelled as a nonparametric random variable, this work also
revises the hypothesis that the measurement noise follows a Gaussian distribution. In the case
of PMUs, Zhao (Wang et al., 2018) has shown with experimental results that such a hypothesis
does not hold and more robust models are a requirement for PMU-based state estimators. In a
different perspective, Miranda (Miranda; Santos; Pereira, 2009) showed that the presence of
gross errors (bad data) consists of a non-Gaussian noise situation. To encompass such general
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probabilistic model for the measurement model, in the same way as for the state vector, the
measurement noise is modelled under a kernel assumption related to each observation.

5.3.2 Extended Kalman Filter based on a Maximum Correntropy Criterion

The MCC Kalman Filter was first introduced by Chen (Chen et al., 2017), and it aims at
performing inference under a state space model without the assumption of Gaussian noise. The
only assumption about the noise vectors is the second-order moment is known and given by the
following:

B−1
P xt = B−1

P (xt−1 +ωt) (5.13)

B−1
R zt = B−1

R (h(xt)+ et) (5.14)

where, BP and BR are the Cholesky decomposition of the process and measurement
covariance matrices, respectively. The state space in (5.4) is rescaled by the respective decompo-
sition.

The MCEKF was then devised in (Zhang; Wang; Giannakis, 2019) for nonlinear models
in the context of power systems. This chapter applies the maximum Correntropy principle for
the tracking state estimation in power system, which yields the following optimization problem:

maxJMCC =
m

∑
i=1

kσ (zi,t−hi(xt))+
n

∑
j=1

kσ (x j,t− x j,t−1) (5.15)

A Gaussian kernel, shown in (5.16), is assumed to compose the process and measurement
noise. It is noteworthy that the assumption of the kernel function does not mean the same
assumption for the pdf of the random variable.

kσ (ri) = e−
r2
i

2σ2 (5.16)

Thereby, the estimation problem consists in the following optimization problem:

maxJMCC(xt) =
m

∑
i=1

e−
(zi,t−hi(xt ))

2

2σ2 +
n

∑
j=1

e−
(x j,t−x j,t−1)

2

2σ2 (5.17)

5.3.3 Numerical Solution Method

Since it is a nonlinear optimization problem, an iterative numerical procedure must
be employed to find the solution, that is, the state vector values at instant t. In this work a
Modified-Newton algorithm (Nocedal; Wright, 2006) is implemented to find the solution. It
is noteworthy that it consists in a different solution method than the first MCEKF proposed in
(Zhang; Wang; Giannakis, 2019) that applies a fixed-point iterative method, while this chapter
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employs a nonlinear numerical optimization method. The main advantage is solving the problem
under a fully optimization framework, with a globally convergent method (Nocedal; Wright,
2006). An initial condition for the state xk

t = x0
t starts the method at iteration k. The gradient

function is calculated as:

∂

∂x j
JMCC(xk

t ) =
m

∑
i=1

e−
(zi,t−hi(xk

t ))
2

2σ2

σ2

(
zi,t−hi

(
xk

t

))
Hi j−

e−
(xk

j,t−x j,t−1)
2

2σ2

σ2

(
xk

j,t− x j,t−1

)
(5.18)

where, Hi j =
dhi(xk

t )
dx j

the elements of the Jacobian matrix of the nonlinear measurement
model calculated at a specific point xk

t . This can be rewritten in a matrix representation as:

∇ JMCC

(
xk

t

)
=

[
I

H

]T

D

[
xt−1− xk

t

zt−h(xk
t )

]
(5.19)

where, I is an identity matrix (nxn), and

Dii (xt) =
e−

(xk
i,t−xi,t−1)

2

2σ2

σ2 , i f i < n

Dii (xt) =
e−

(zi,t−hi(x
k
t ))

2

2σ2

σ2 ,otherwise (5.20)

The Hessian matrix is calculated by the following:

∇
2 JMCC

(
xk

t

)
=−

[
I

H

]T

D [I−Rp]

[
I

H

]
+

m

∑
i=1

Dii (xt)

(
zi,t−hi(xk

t )
)

2σ2
∂ 2hi(xk

t )

∂x2 (5.21)

where,

Rpii =
1

σ2

(
xk

i,t− xi,t−1

)2
, i f i < n (5.22)

Rpii =
1

σ2

(
zi−hi(xk

t )
)2

, otherwise (5.23)

In order to create ascending directions (remind that the solution is the maximum Cor-
rentropy) the optimization method requires an approximation of the Hessian matrix (Mk), that
keeps negative definite during the entire optimization process. This way, a good approximation
candidate is given by (5.24), neglecting the second-order derivatives terms in (5.21).

∇
2 JMCC

(
xk

t

)
≈Mk =−

[
I

H

]T

D [I−Rp]

[
I

H

]
< 0 (5.24)
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With the gradient vector and the Hessian matrix approximation is possible to calculate
the directions pk to be followed by the maximization algorithm at each iteration k.

Mk pk = ∇ JMCC

(
xk

t

)
(5.25)

A backtracking algorithm is used to find step-size αk and satisfy the Armijo condition
(Nocedal; Wright, 2006) (the equivalent version for maximization problems), resulting in a
sequence of iterations to find the optimal value x̂t .

xk+1
t = xk

t +αk pk (5.26)

The convergence is given by the difference of the state vector values in two successive
iterations and a pre-specified tolerance (in this work 1.0E−6). This iterative solution corresponds
to the Prediction Step of the MCEKF. With the estimated state, the process covariance matrix is
also updated in the Update Step of the MCEKF. It can be deduced as follows:

Pt =
(
P−1

t−1 +HT R−1H
)−1

(5.27)

5.3.4 Suppression of Suspect Samples and System Transitions through Parzen Window Adjust-
ment

As shown in (Chen et al., 2017; Miranda; Santos; Pereira, 2009; Liu; Pokharel; Principe,
2006; Pesteh et al., 2019), the accuracy strongly depends on the strategy to choose the size of the
Parzen windows or kernel bandwidth. The current practice on Correntropy-based estimation is a
reduction of the kernel bandwidth towards an indifference of the suspect samples (for instance,
outliers). This approach of successively reducing the size of the Parzen windows to achieve
convergence when dealing with Correntropy is a method with widespread use, firstly proposed
for training mappers under Correntropy and Entropy cost criteria (Erdogmus; Principe, 2002).
This process, sometimes referred to as “kernel annealing”, was also adopted for the power system
state estimation (Mohiuddin; Qi, 2019; Wu et al., 2011). The goal was to suppress the effect of
gross errors in the estimation, encompassed as a particular case of non-Gaussian errors.

The effect of reduced bandwidth kernel is well-known and conceptually proved in (Liu;
Pokharel; Principe, 2006). In this situation, Correntropy reduces itself to the conditional expected
value of the residue equal zero for that sample. However, this approach has some difficulties,
from the algorithmic optimization point of view, one being that success depends on the iteration
starting point, with flat start voltages no longer being an universal good point. Another one is
the following: in order to create ascending directions (remind that the solution is the maximum
Correntropy) the optimization method requires the Hessian (or its approximation) to be negative
definite during the entire optimization process and at the optimal value of xt . as shown in (5.24).
Hence, [I−Rp]> 0, what implies the following lower bound for the Parzen window size:
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(
xk

i,t− xi,t−1

)2
< σ

2 (5.28)(
zi−h(xk

t )
)2

< σ
2 (5.29)

In practice, the reduction in the bandwidth cannot be severe, and is limited to a minimum
size σmin. Thereby such annealing strategy can create a bias on the suspect samples, even if it is
small, in the final estimate.

This chapter introduces a new strategy to update the Parzen windows of suspect mea-
surements, by enlarging the bandwidth of the suspect samples while maintaining the size of the
non-suspect samples. Shrinking the kernel was meant to place an outlier in a region with metric
similar to L0 (indifference). But a Gaussian kernel with σ enough large, when compared with
the remainder, reaches the same effect of indifference, because it has a smooth slope close to
zero, so its value is almost constant across the domain, and it does not introduce any spikes in
the optimization landscape. We take advantage of this property.

Note that, under the MCC Extended Kalman Filter, the suspect samples can be either
caused by gross errors and miss calibrated measurements (assumption of white noise is false) or
by large transitions on the system (encompassed in the state evolution concept). The effect is
shown directly on the objective function of the MCEKF, given a suspect set k ∈ S:

lim
σk→∞

JMCC =
m

∑
i=1

e
−(

zi,t−hi(xt ))
2

2σi2 +
n

∑
j=1

e
−(

x j,t−x j,t−1)
2

2σ j2 (5.30)

Expanding the summation for the suspect samples:

lim
σk→∞

JMCC = · · ·+ ∑
k∈S

lim
σk→∞

e
−(

zk,t−hi(xt ))
2

2σk
2 + . . .

lim
σk→∞

JMCC = · · ·+ ∑
k∈S

e0 + . . . (5.31)

And also,

lim
σk→∞

∂

∂x j
JMCC = · · ·+ ∑

k∈S
lim

σk→∞

e−
(zk,t−hi(xt ))

2

2σ2

σ2

(
zk,t−hi(xt)

)
Hk j + . . .

lim
σk→∞

∂

∂x j
JMCC = · · ·+ ∑

k∈S
0+ . . . (5.32)

The portion of the derivatives related to samples in the suspect set equals zero. Hence this
does not affect at all the rest of the optimization process and estimated values. In this situation
only the other measurements and the process equations are used to find the state estimates. Fig
8 shows an illustrative example of kernel density estimation and the effect of reducing and
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Figure 8 – Effect of different sizes of bandwidth (Parzen window size) for suspect sample on the
kernel density estimator.

enlarging the Parzen window size for suspect samples. An outlier is associated with a large
bandwidth and the other observations keep their initial window sizes. The effect of suspect
samples with large window sizes spreads along the real line (from − inf to + inf), and does not
influence the estimated pdf.

If the detected event is a systemic transition, such as sudden load change, then the suspect
set becomes the process noise equations. In this scenario, only the Parzen Windows related to
the state space model are enlarged. A similar demonstration obtains the following equation in
this situation:

lim
σ j→∞

JMCC =
m

∑
i=1

e
−(

zi,t−hi(xt ))
2

2σi2 +
n

∑
j=1

e0 (5.33)

The portion of the derivatives related to process equation on the state space then equal to
zero. Hence this does not affect at all the rest of the optimization process and the estimated values.
It has an effect of momentarily neglecting the state transition equations, thus the estimates rely
only on the current observed values, similar to the snapshot WLS state estimator. In practice this
is equivalent to breaking the time dependency on the Markov Chain, the same effect observed in
(Massignan et al., 2019) for treating non-stationary events. Another situation is simultaneous
process and measurement noise due to structural transitions, such as caused by topological
and parameter errors. In such situations, both the process noise equations and the adjacent
measurements of the affected part of the network become the suspect set and have their Parzen
window sizes enlarged.

A proper method for detecting and identifying suspect measurements is required. This
chapter will not treat these methods in detail, but can be obtained by a residual analysis, such as in
(Coutto Filho; Souza; Guimaraens, 2014) for bad data detection, or with other techniques based
on artificial intelligence such as in (Miranda et al., 2019) for system transitions. In this work,
the standard normalized residual analysis (Coutto Filho; Souza; Guimaraens, 2014) triggers the
identification of suspect samples for gross errors, while the system transitions are assumed as
known. It is noteworthy that there are other and perhaps even more suitable ways to detect and
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identify suspect samples in the context of Information Theory, such as using the Generalized
Correntropy along with the Interior Point Method (Pesteh et al., 2019; Pesteh; Moayyed; Miranda,
2020).

The algorithm consists basically on the MCC Kalman Filter recursive equations and the
Parzen window update strategy. The window size updating consists in multiplying the bandwidth
by a large value (in this work 1.0e4).

Algorithm 1: MCEKF WITH PARZEN WINDOW UPDATE

Input :Network Data, Network Topology, Measured Data, x0, P0
Output :System State

1 Begin
2 Initialize Parzen Windows σk =10.0
3 Set xt−1 as x0 and Pt−1 as P0
4 Repeat
5 Rescale the state space according to (17) and (18)
6 Calculate xt solving the MCC optimization in (21)
7 Update posterior state covariance according to (30)
8 Identify the suspect set S
9 Update the Parzen Window size according to the type of event:

10 Bad Data (gross error):
11 For each zk with k ∈ S σk = 10000σk
12 Systemic Transition:
13 For each x j in xt σ t

j +1 = 10000σk

14 Structural Transition:
15 For each x j in xt σ

t+1
j = 10000σk

16 For each zk with k ∈ S σ
t+1
k = 10000σk

17 Update to next instant t
18 Until t < ∆t;
19 End

5.4 Simulation Methodology

Monte Carlo simulations were performed to evaluate and validate the proposed MCEKF.
A sequence of load flow conditions creates the reference values for the state variables xre f

( j,t) and

measurements zre f
(i,t). The simulation consists in including random noise in the reference load flow

values to obtain the measured values and then perform state estimation (Singh; Pal; Vinter, 2009).
The noise characteristic is given based on the precision of the measurement (2% for SCADA and
0.1% for PMUs) and the following equation obtains the measured values:

zi,t = zre f
i,t +ui

∣∣∣zre f
i,t

∣∣∣ pri/3 (5.34)

where ui is the underlying pdf of the simulated noise added to the reference values.
This equation provides the diagonal elements of the measurement noise covariance matrix
Rii = pri|z(i,t)|/3, and pri is the metering device precision (Castillo et al., 2011).
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Different instants and the respective conditions are monitored by PMUs with a 60 samples
per second rate, while SCADA measurements are updated at a rate of a sample per second. Each
sample represents a different instant t and the respective measured values. Thus, the simulation
consists of a sequence of quasi-stationary conditions with the estimation process triggered by
the latest information available, sometimes monitored by SCADA and others by PMUs, with
different time scales and random noise. The Mean Absolute Error (MAE) evaluates the accuracy
of the estimated state variables through (5.35).

MAEt =
1

ntrials

ntrials

∑
trial=1

n

∑
i=1

∣∣∣x̂trial
i,t − xre f

i,t

∣∣∣ , (5.35)

where x̂i,t is the i-th state variable estimated. The MCEKF is then compared with two approaches
based on the maximum likelihood principle: the WLS Snapshot; the traditional WLS Extended
Kalman Filter.

5.5 Application in Transmission Systems

This section presents the application reults of the MCEKF method in a typical deployment
of transmission systems monitored by SCADA system and PMUs.

5.5.1 Effect of Non-Gaussian Measurement Noise

The first test was performed with the IEEE14 test system to show aspects of non-
Gaussian measurement noise, under a stationary condition, that is without process noise, using
the measurement set presented in Fig. 9. A Monte Carlo simulation with the addition of non-
Gaussian noise, in all SCADA and PMU measurements, evaluates the performance of the
MCEKF, during a sequence of 600 samples (equivalent to 10 seconds). The noise characteristic
added to the ference values to obatain measured values in the simulation follows the Gaussian
mixture in (5.36). This emulates a deviation from standard calibration (white noise with Gaussin
distribution).

ui ∼ 0.7N (0,1)+0.2N (3,3)+0.1N (0,20) (5.36)

Fig. 10 shows the performance metric over time in order to illustrate the effect of
including the temporal aspect in the estimation. Note that the snapshot approach does not
improve the estimation over time since it performs an independent estimation each instant
only with the respective sampled values, either from SCADA or PMUs. The traditional WLS
EKF does present an improvement by including the temporal relation of the state; however,
the MCEKF approach increases even further the accuracy, since it is more suitable to treat
non-Gaussian noise characteristics.

Table 1 presents the comparison in terms of the overall MAE performance index. A
different set of fixed values for the Parzen Window sizes is also compared. For the smaller
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Figure 9 – IEEE14 test system and respective SCADA and PMU measurement set for the
simulations.
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Figure 10 – MAE Performance index over the time.

window size, the lower bound is reached, and the estimation loses its performance. Another
aspect is that by choosing higher Parzen Window sizes, the MCEKF gets closer to the traditional
WLS based EKF, a known property on Correntropy estimation that it becomes the L2-norm
(similar to the WLS criterion) for high Parzen window size. Only with the Parzen Window
update strategy, by suppressing the suspect set based on the largest residual, that more accurate
estimation is achieved in this case.

5.5.2 Effect of Non-Gaussian Process Noise

The second test intends to evaluate the effect of process noise on the estimation. Process
noise was added in the form of random load variation. In order to obtain a sensitivity of the effect
of process noise, the percentage of load variation was increased gradually on this test, from 0.0%
to 10%. Fig. 11 presents the accuracy in terms of the empirical cumulative distribution function
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Table 1 – Comparison of the MAE performance index for the real and imaginary parts of the
state variables

Method Parzen Window MAE performance index (p.u.)
Real V Imag. V

WLS Snapshot - 2.5121 E-04 0.5899 E-04
WLS EKF - 0.9387 E-04 0.1941 E-04

MCEKF

σi = 0.1 p.u. 14.6335 E-04 23.0463 E-04
σi = 1.0 p.u. 1.6242 E-04 0.2897 E-04
σi = 10.0 p.u. 0.9119 E-04 0.1813 E-04
σi = 100.0 p.u. 0.9387 E-04 0.1941 E-04
With Parzen Update Strategy 0.5545 E-04 0.1024 E-04

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

State Variable Estimation Error (p.u.) ×10
-3

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

MCEKF10%
0.0%

Increase of

Load Variation

0.5%

5% 2.5%

1%

Figure 11 – Cumulative probability distribution of the estimation error for the MCEKF under
different load variation (process noise) levels.

Table 2 – MAE performance index for the state variables with different levels of load variation

Load Variation MAE performance index (p.u.)
WLS Snapshot WLS EKF MCEKF

0.5 % 1.5510 E-04 1.0368 E-04 0.6748 E-04
1.0 % 1.5510 E-04 1.2205 E-04 0.8533 E-04
2.5 % 1.5509 E-04 1.8705 E-04 1.4698 E-04
5.0 % 1.5507 E-04 3.0779 E-04 2.6412 E-04
10.0% 1.5503 E-04 5.6942 E-04 5.2730 E-04

of teh estimation error obtained by the MCEKF. Table 2 summarizes the results for the three
estimators.

The effect of the process noise is a progressive increase in the estimator variance, up to
a point that the most reliable estimator becomes the WLS snapshot, instead of the WLS EKF
and MCEKF approaches. It is noteworthy that large variations up to 5% of the load, in the short
interval of time between two consecutive PMU samples (1 cycle), can be considered as a very
abrupt and abnormal condition. Furthermore, such a scenario implies on a sensitive reduction
of the premise that the last observation is a good estimation for the current one, the underlying
hypothesis of the Markov Chain in the tracking state space model in (4). In a typical transmission
system, such scenario can be related to very large load variations or contingencies. In modern
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Figure 12 – MAE Performance index over the time.
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Figure 13 – Estimated voltage magnitude at node #14 during a load increase from t=2.5s to
t=8.5s and generation decrease from t=5.8 to t=7.2.

power systems, with the increase of intermittent distributed energy resources, such scenario can
occur more frequently. However, despite random variation may occur, it is more likely that such
large and abrupt changes happen less often in the time spam of the tracking state estimation
computing horizon.

This motivated the pursuit for a window size tuning strategy able to suppress the effect
of such large and abrupt variations. The proposition is suppressing the negative effect that such a
systemic transition has in the estimation accuracy by enlarging the Parzen window size of the
process noise equation, as shown in Section 5.3.4. The reasoning behind such strategy is that
an abrupt change on the system state can be interpreted as a particular case of process noise
with a heavy tailed pdf. Hence the process equations become the suspect set and their Parzen
window size are enlarged. In order to evaluate this strategy, we consider 0.5% of random load
variation and two sudden load changes in the simulation: (1) an increase of all loads by 10%
from t=2.5s to t=8.5s; and (2) a decrease of generation by 30% at node #2 from t=5.8 to t=7.2.
Fig. 12 presents a comparison of performance of the estimators regarding this scenario with a
sudden load change. The effect is also compared for one of the estimated voltage magnitudes at
nodes #2 and #14 in Fig. 13.
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The effect of updating the Parzen windows related to the previous state consists on
pushing momentarily the MCEKF towards the WLS snapshot. It counters the effect of the system
transition, by breaking the temporal relation of the Markov Chain within the method. Otherwise
it would propagate a false assumption that the previous instant is a good approximation for the
next one. Besides, it keeps a recursively improvement for estimating the steady state when the
transition ends.

5.5.3 Suppression of Gross Errors

This third test, performed with the IEEE 118-bus test system, addresses the effect of gross
errors and different measurement noise pdfs. In addition, the simulation considers process noise
with uniform load variation of 0.5%. The test assumes the non-Gaussian noise for the SCADA
measurements in 5.36 and different characteristics for the PMUs according to the proportion
and pdfs below: 80% of voltage phasor follows 5.37 and the remaining as 5.38; and 50% of the
current phasor follows 5.39 and the remaining as 5.40.

ui ∼ 0.9N (0,1)+0.1N (0,20) (5.37)

ui ∼ 0.6N (0,1)+0.3N (0.5,0.5)+0.1N (0,20) (5.38)

ui ∼ Gamma(0.2,4) (5.39)

ui ∼Uni f (−1,1) (5.40)

The simulation consists also in a SCADA and PMU observable metering system with a
5s horizon. It includes the following gross errors to illustrate the effect of bad data:

1. Addition of 30 standard deviations in PMU measurement V31 (voltage phasor measurement
at node 31) at t = 0.6s;

2. Reduction of 30 standard deviations in PMU measurement I63−59 (current phasor measure-
ment at branch between nodes 63 and 59) from t = 1.2s to t = 1.5s;

3. Addition of 30 standard deviations in SCADA measurement P76−118 and Q76−118 (active
and reactive power flow measurements at branch between nodes 76 and 118) at t = 2s;

4. Addition of 30 standard deviations in PMU measurement I63−59 and I49−66 (current phasor
measurement at branch between nodes 63 and 59, and at branch between 49 and 66) from
t = 2.5s to t = 2.8 s;

5. Addition of 30 standard deviations in SCADA measurement V100 (voltage magnitude
measurement at node 100) at t = 3s;

6. All the above simultaneously from t = 3.5s to t = 4.5s.
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The MAE performance index kept the same accuracy pattern as the previous tests, with
an overall value of 3.5317 E-05. In order to show the effect of the Parzen window update, Fig. 14
shows the largest normalized residue, initially before any size update, and after all updates are
done. Note that in the final estimates all normalized residues are less than the chosen threshold,
thus with a reduced influence in the final estimate. It is noteworthy there are instants where the
measurement noise is enough to trigger the Parzen window update, since the noise pdfs have
heavy tailed distributions.

To illustrate the effect of the Parzen window update in the normalized residue, Fig. 15
shows the noise characteristic and respective calculated normalized residue for measurement
V31 with the MCEKF. Not only are the gross errors properly suppressed by the Parzen window
updating strategy, but also heavy tailed noise from the underlying measurement pdf. This shows
that the method can sustain accurate estimates, in relatively large networks, even in the presence
of a series of bad data contaminating the measurement vector.

5.5.4 Accuracy during Structural Transitions

This section evaluates the effect of structural transitions, that is, abrupt changes on the
topology of the system that has a large impact on both state and measurement model. The
objective is to illustrate the state evolution concept and the state tracking through normal and
abnormal network conditions, with the Brazilian interconnected system (BR107). The network
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Figure 16 – Tracking state evolution pdfs for nodes 231 (minimum voltage) and 895 (terminal
from the transmission line that switched off).

consists of 107 nodes along with a hypothetical set of SCADA and PMUs observable sets. The
simulation emulates a voltage instability situation. It starts with 1s of steady state with random
load variation of 0.5%, followed by an increase of load at a rate of 0.5% per second. Then a
sudden load increase of 5% in all loads occurs at t=2.5s. After more 0.5s a contingency occurs in
one of the 500 kV transmission lines that connect the south to the southeast region. Following
the contingency, the load ramp increases to 1.0% per second, and voltage instability occurs in
less than one second.

Fig. 16 illustrates the empirical pdf for the estimated voltage magnitude at two substations
of the system. As it can be seen, the MCEKF provides an accurate estimation of the state pdf that
can be used in further analysis, for instance to calculate probabilistic voltage stability margins
in real time. Besides, the MCEKF presents a lot of flexibility, once by properly choosing the
Parzen window sizes suppressed the negative effects of both systemic and structural transitions
on the estimator accuracy. Such flexibility motivates the further exploration of improved tuning
methods for the Parzen Windows.

5.5.5 Computational Aspects

Finally, the computational aspects of the previous simulations are presented in Table 3.
The tests were performed using a microcomputer with a Core i7 3.60 GHz, 16GB RAM with
C programming language. The MCEKF shows good convergence characteristics in the power
system state estimation problem. However, computational burden must be taken into account for
real time applications, especially since PMUs can have sampling rate up until 1 per cycle. The
times shown in Table 3 were obtained without any concern on efficient programming and not
using sparse matrix techniques or other computing efficiency resources, so they should be seen
only as indicative of the feasibility of the technique.
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Table 3 – Computational Aspects of the MCEKF

Test System Mean Processing
Time (ms)

Iterations with
SCADA meas.

Iterations with
PMU meas.

IEEE14 31.0 4 to 5 2 to 3
IEEE118 360.0 5 to 7 2 to 3
BR107 313.0 5 to 7 2 to 3

5.6 Concluding Remarks

This work proposed a tracking state estimator based on an Extended Kalman Filter
under a Maximum Correntropy principle (MCEKF) that deals with both SCADA and PMU
measurements. A new update strategy for Parzen window suppresses the effect of suspect samples
that can be related to gross errors, process noise as well as system’s transitions. The importance
of expanding the static state estimation problem to include temporal aspects is emphasized in
this work.

Even though many efforts have been made towards dynamical models, it is clear that
currently implemented static state estimators can benefit a lot from simple modifications that
leads to the tracking model. However, special care must be taken in order to account for possible
system transitions, such as systemic and structural transitions. This was accomplished in this
work by treating both measurement and process noise within a non-Gaussian kernel density
estimation.

In this sense, the MCEKF outperforms the WLS snapshot, since it is based on a state
space model, and also the conventional WLS Extended Kalman Filter for treating non-Gaussian
process and measurement noise. With the proposed concept of state evolution, the state variables
also gain a non-parametric interpretation that can be further used in post-processing evaluation
of the condition of the network under a probabilistic framework.

The method still depends on a proper suspect sample detection and identification process.
In this sense, future work comprises the development of feature extraction methods to trigger
automatically the Parzen window updating strategy, based in a broader notion of the residual
analysis with Bayesian Inference concepts. An important direction is also to increase the ro-
bustness of the method by adopting as solver the Interior Point method, instead of relying on
Newton-Raphson iterations. Finally, the model should be extended for the dynamical estimation,
treating generators, loads, and controllers to evaluate detailed transient events.
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6 BAYESIAN INFERENCE APPROACH FOR INFORMATION FUSION IN DISTRI-
BUTION SYSTEM STATE ESTIMATION

The content of this chapter have been published to the following Journal:

• Bayesian Inference Approach for Information Fusion in Distribution System State Estima-
tion," IEEE Transactions on Smart Grid, vol. 13, no. 1, pp. 526-540, Jan. 2022";

6.1 Introduction

This chapter proposes a three-phase DSSE, based on a Bayesian inference approach,
which is able to perform information fusion from different kinds of sources that are usually
available in DSs, extending the initial work presented in (Massignan et al., 2019). Such sources
of information may consist of load profiles and forecasts (referred to as pseudo measurements),
passive buses with no generation or load (virtual measurements) and different kinds of sensors,
as smart meters, SCADA measurements and PMUs. They are installed across different parts of a
DS, from the low voltage consumers up to the primary substation. Despite a consolidated topic
in statistics, few works explore the Bayesian framework in power system state estimation, for
instance in the topology estimation problem (Lourenco; Costa; Clements, 2004).

Regarding DSSE, the work in (Pegoraro et al., 2017) exploits the flexible Bayesian
Inference background in order to provide estimates under non-Gaussian error distributions. A
recent work in (Dobbe et al., 2020) presents a Bayesian approach for linear three-phase state
estimation that works together with a forecasting stage based on Gaussian process. In a different
perspective, (Zhou et al., 2020a) explores the harmonic state estimation problem with sparse
Bayesian learning from Smart Meter and PMU data. This way, the contributions of this chapter
reside on:

• the proposition of a three-phase DSSE based on a Bayesian fusion procedure to deal with
nonlinear models of different kinds of measurements and their different temporal scales
with the concept of sampling layers;

• the application of an orthogonal method associated with sparsity treatment and an ordering
method into the Bayesian information fusion problem, to increase computational and
numerical efficiency to deal with ill-conditioned DSs;

• the exploration of credibility intervals concept to track state transitions caused by abrupt
system changes and to test if the vicinity of the prior distribution is a good approximation
for the state.
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A few theoretical topics, presented in previous sections, will be revisited in the following
sections to provide a quick background of the fundamental details.

6.2 Information Fusion with Bayesian Inference for DSSE

The static state estimation problem for a distribution network with m measurements and
n state variables consists of a nonlinear measurement model that can be formulated as (Abur;
Gómez-Expósito, 2004):

z = h(x)+ e, (6.1)

where z is the (m x 1) measurement vector composed by the measured values, virtual measure-
ments and pseudo measurements; x is the (n x 1) vector of state variables (usually the complex
nodal voltages in polar coordinates); h(x) is the (m x 1) set of nonlinear equations that relates the
measurements with the state variables; and e is the (m x 1) noise vector assumed as independent
normally distributed random variables, with zero mean and known covariance matrix R.

An exploration of the information that builds the measurement vector shows there is a
lack of synchronism among the measurement updating (∆t), ranging from a few miliseconds
(for PMUs) up to minutes (for smart meters). Thereby the measurements can be separated in
subsets according to their respective sampling rates. Each subset is grouped as a sampling layer
(SL), which is characterized by a common updating time interval (∆tzi = ∆tSL), given by (6.2). In
addition to a common sampling rate, typically each sampling layer consists of measurements
with similar relative accuracy.

SLi := {zi ∈ z | ∆tzi = ∆tSLi} (6.2)

The following sampling layers are proposed to deal with the typical sources of informa-
tion in modern DSs:

• Pseudo measurement Layer: includes historical data and typical load curves, as well as the
virtual measurements (nodes without load or generation), that guarantee observability of
the network (updated from 10 to 30 minutes);

• Smart Meter Layer: includes meters installed in low voltage consumers (updated from 1 to
15 minutes);

• SCADA Layer: encompasses the traditional SCADA system (updated from 2 to 10 seconds
up to 1 minute);

• PMU Layer: relates to fast syncronized phasor measurements (updated at each cycle up to
100 miliseconds).
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Figure 17 – Illustration of the location of different kind of measurements in DSs and the respec-
tive sampling layers according to updating time interval. The proposed sampling
layer concept decomposes the measurement set according to their respective sam-
pling rates, disregarding their location at the distribution network. An example of
an estimated state illustrates the variations that may occur between measurement
updates from slower sampling layers.

Fig. 17 illustrates the sampling layers of a typical set of measurements present in DSs.
The challenge consists of treating a vast number of measurements, spread across all parts of a DS,
and providing a reliable state vector for the DSO, denoted as x̂, while dealing with the temporal
aspect of each sampling layer. Due to the real time aspect of the DSSE, it is also important to
perform it in a tractable computational time.

A two-port component model provides a general three-phase measurement model for a
diverse set of DS components, such as distribution lines, transformers, voltage regulators and
shunt capacitors. A detailed description of the three-phase component model was presented in
Chapter 4.

6.2.1 Multi-Layered Posterior Estimation

The Bayesian Information Fusion consists on a multiple stage state estimation, triggered
by each new measurement update from the respective sampling layers. It decomposes the
measurement model into each separated sampling layer, and includes the relation between two
layers using a hierarchical model for the state variables as follows:

xSL = x̂SL−1 +ωSL−1 (6.3)

zSL = hSL(xSL)+ eSL (6.4)
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where, xSL is the state vector at the current sampling layer, x̂SL−1 is the estimated value at the
previous sampling layer with slower updating rate, zSL is the measurement vector of the respective
sampling layer SL, hSL(xSL) is the respective measurement model, eSL is the measurement error
vector associated with the measurements in the sampling layer, and ωSL is a random component
associated with the uncertainty between the time intervals of two sampling layers.

The introduction of the relation between two different layers adds a random component
to the state. From the Bayesian perspective, it consists of introducing a probabilistic model for
the state vector, that is, modeling the state of the network as a random variable. It changes the
traditional overview of the estimation process as a "snapshot" of the network condition towards
a probabilistic characterization of the state. It encompasses the fact that different state values
can occur between updates of the slower measurements, observed by the faster ones. A similar
approach has been applied in the tracking state estimation problem, as a state space model
formulation solved by the Kalman Filter (Massignan et al., 2019; Zhao et al., 2019).

Following the Bayesian perspective, each new set of observations of a sampling layer
then updates the posterior distribution for the state. The likelihood function is given by the
assumed noise model for the measurements. And the prior model for the state variable is given
by the previous sampling layer posterior distribution, a hierarchical prior model. The Bayes’
Theorem obtains directly the posterior probability function for the state variables, according to
the following:

fX |Z(xSL|zSL) =
fZ|X(zSL|xSL) fX(xSL)

fZ(zSL)
(6.5)

where, fX |Z(xSL|zSL) is the conditional probability function of the state given the measurements
in each sampling layer, fZ|X(zSL|xSL) is the likelihood function of the sampling layer according to
the measurement model, fX(xSL) is the prior distribution in the hierarchical model, and fZ(zSL) is
the measurements probability of occurrence, a constant value that scales the posterior probability
function and is often neglected.

The estimation process in each layer is triggered as soon as the respective measurements
become available. It updates the state by a Maximum a Posteriori (MAP) estimation given
by (6.6). The estimation result of each layer is then used as the prior distribution for the state
variables in the next layers, a Bayesian hierarchical model (Congdon, 2007).

x̂SL = argmax
x

fX |Y (xSL | zSL) (6.6)

As shown in (Massignan et al., 2019), this is much alike the FASE procedures, however,
in this case it only relates different sampling layers instead of instants in a sequential Markov
process. Thus the temporal relations within a specific sampling layer are discarded, what enables
maintaining accuracy during systems changes, that is, when leaps in the Markov process occur.
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Figure 18 – Probabilistic network representation of the multi-layered posterior estimation DSSE
to deal with measurements with different sampling rates (pseudo measurements,
smart meters, SCADA and PMUs). Each sampling layer deals only with measured
information from its group, and the final estimate is made available for the DSO and
to the following sampling layers.

This difference is illustrated in Fig. 18 with a probabilistic network representation of the multi-
layered information fusion process. The triggering strategy for the MAP estimate uses the latest
available information of each sampling layer and the prior state distribution obtained from
previous layers, as illustrated in Fig. 19.

Figure 19 – Illustration of the sampling layer triggering strategy for the multi-layered posterior
model. After a sampling layer is processed, the result is propagated in an updated
informative prior distribution to the subsequent faster sampling layer. As soon as a
new sample is available, a MAP estimation is performed to update each sampling
layer’s state variables. The faster layer obtains the current state of the network.

6.2.2 Multivariate Gaussian Prior Model for DSSE

In order to provide a fast solution for the state estimation problem, this work assumes a
Multivariate Gaussian prior distribution for the state variables, as assumed for the measurement
error in (6.1). This way is possible to maintain a tractable computational for the MAP estimate,
described in (6.6), a crucial aspect for real time applications. If the measurement model were
linear, such as in the case of PMUs, this approach would provide a closed-form solution for the
posterior distribution.
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Prior : xSL ∼N (x̂SL−1,PSL−1) (6.7)

Likelihood : zSL | xSL ∼N (hSL(xSL),RSL) (6.8)

where PSL−1 is the state covariance matrix estimated at the previous sampling layer and RSL

the measurement covariance matrix of the current sampling layer, a sub-matrix of R in the
original measurement model. Such prior model consists of a informative prior since it is based
on knowledge obtained from previous layers. Non-informative priors may be used, but care must
be taken since this increases the estimator variance.

It is noteworthy that many efforts have been made towards non-Gaussian noise character-
istic in the state estimation problem (Gol; Abur, 2015; Zhao; Mili, 2018a; Massignan; London Jr;
Miranda, 2020). Despite the Bayesian Inference framework can encompass different probabilistic
models, this work will only attain in a Gaussian prior model. The reason is that dealing with
non-Gaussian models, for the prior or the likelihood function, the Bayesian framework would re-
quire special numerical integration methods, such as the Metropolis Hastings or Gibbs sampling
methods (Congdon, 2007; Pegoraro et al., 2017). This would increase the computational burden
since so far such methods have not been scaled to deal with the practical size of DSs in real time.

The conjugate model assumes an approximation of the actual state behavior, at the vicinity
of the results from previous sampling layers, a trade-off between accuracy and computational
efficiency. Since it is an informative prior, whose values are updated as soon as new information
is gathered from the previous sampling layers, such approximation tends to follow the system
behavior. However, if abrupt changes occur, such hypothesis starts to lose accuracy and may
hamper the estimation accuracy. This work proposes a credibility interval to track such abrupt
transitions as an event detection method. It assesses if the prior distribution continues to provide
good information or not, further discussed in section III.

The posterior distribution for the above conjugate model can be written as the following,
by directly applying the Bayes’ theorem:

fX |Z(xSL|zSL) ∝
1√

(2π)m|RSL|

m

∏
i=1

e
− (zi−hi(x))

2

RSl,ii

1√
(2π)n|PSL−1|

n

∏
j=1

n

∏
k=1

e−(xSL, j−x̂SL−1,k)P
−1
SL−1, jk(xSL,k−x̂SL−1, j) (6.9)

The above expression can then be simplified to obtain the MAP estimate by dismissing
the constant values and exploring the posterior distribution’s kernel.

x̂SL = argmax
x

e−[zSL−hSL(xSL)]
T R−1

SL [zSL−hSL(xSL)]

e−(xSL−x̂SL−1)
T P−1

SL−1(xSL−x̂SL−1) (6.10)
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With this parametric hierarchical model to perform inference about the state variables
in each sampling layer, the MAP estimate is obtained by the following nonlinear minimization
problem:

min
x

JMAP(x) =(zSL−hSL(xSL))
T R−1

SL (zSL−hSL(xSL))

+(xSL− x̂SL−1)
T P−1

SL−1(xSL− x̂SL−1) (6.11)

The solution is obtained trough the iterative Modified-Newton method (Nocedal; Wright,
2006). An initial condition for the state variable xSL = xk starts the method at iteration k = 0. For
the first sampling layer it consists of the flat voltage profile. The following sampling layers may
use the results from the previous one as initial condition for the iterative procedure (known as
hot-start). The gradient function is calculated as:

∇JMAP(xk) =−(HT R−1
SL (zSL−hSL(xk))+P−1

SL−1(x
k− x̂SL−1)) (6.12)

where H is the Jacobian matrix of the measurement model evaluated at each iteration and respec-
tive state vector value xk. The Modified-Newton requires only a positive definite approximation
for the Hessian matrix, obtained by the derivative of the Jacobian matrix and neglecting the
higher order terms:

∇
2JMAP(xk)≈Mk = (HT R−1

SL H +P−1
SL−1) (6.13)

With both the gradient and the approximate Hessian matrix, the following linear system
provides the direction pk to update the state variables values. A backtracking algorithm is used to
find the step-size αk and to guarantee Wolfe’s sufficient decrease conditions (Nocedal; Wright,
2006), providing the iteration update in (6.15).

Mk pk =−∇JMAP(xk) (6.14)

xk+1 = xk +α
k pk (6.15)

The convergence is given by the difference of the state vector values in two successive
iterations becoming smaller than a tolerance (1.0x10−6). The final vector xk corresponds to the
MAP estimate for the sampling layer x̂SL.

Regarding convergence, the matrix Mk is always full rank if the prior covariance matrix
P−1

SL−1 is full rank. Also, since it is a sum of covariance matrices, Mk is a positive definite
matrix. Therefore, the unique requirement for the method to provide an estimation is that the
slowest sampling layer should be observable, which is accomplished by the virtual and pseudo
measurements in the first layer. Another aspect that can be exploited are scaling factors between
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two sampling layers, as done in (Massignan et al., 2019) to provide more flexibility to the MAP
procedure when incorporating faster measurements.

There are works that already use the notion of a prior information in the estimation
process, such as in (Simões Costa; Albuquerque; Bez, 2013). However, these works often assume
a diagonal matrix for the prior model and do not relate it to the MAP problem. The posterior
state covariance can also be calculated with (6.16), and is provided as the prior covariance matrix
in the next sampling layer. This approach captures correlations that naturally arise from the
electrical connection between nodes in the network, by fully representing off-diagonal elements
computed with previous information, further increasing observability of sampling layers with
few measurements.

PSL = (HT R−1
SL H +P−1

SL−1)
−1 (6.16)

6.2.3 Application of an Orthogonal Method in the Bayesian Information Fusion Problem

To counter the associated ill-conditioning of DSs, a new strategy is proposed for the
Bayesian information fusion problem. The method consists on first using an orthogonal factor-
ization of the following matrix according to (6.17), obtaining the orthogonal matrix Q and the
upper triangular R. (

P−1/2
SL−1

R−1/2
SL H

)
= QT R (6.17)

With this orthogonal factorization, it is possible to rewrite the iterative equation (6.14)
for the posterior estimation as:

RT QQT Rpk = RT Q

(
P−1/2

SL−1(x
k− x̂SL−1)

R−1/2
SL (zSL−hSL(xk)))

)
(6.18)

Since QQT = I, where I is the identity matrix, and multiplying both sides by (RT )−1,
we obtain :

Rpk = Q

(
P−1/2

SL−1(x
k− x̂SL−1)

R−1/2
SL (zSL−hSL(xk)))

)
(6.19)

Overall, the proposed algorithm, based on the orthogonal factorization, results in a
quadratically smaller condition number than that of the correspondent original fusion problem.
Stable numerical methods haven been pointed in the state estimation literature as a crucial
computational enhancement (Machado; Azevedo; Monticelli, 1991; Amerongen, 1991; Freitas;
Simões Costa; Miranda, 2020). This kind of orthogonal formulation also enables the application
on severe ill-conditioned three-phase DSs and in the Bayesian fusion approach. Besides, by
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exploring (6.18) it can be shown that RT R = P−1
SL . This promptly enhances the integration

between different sampling layers, since P−1/2
SL = R. A sparsity treatment is employed to

improve even further the computational efficiency and reducing fill-ins in the factorization
process through sparse matrix ordering, by the Approximate Minimum Degree (AMD) method
(Hebling et al., 2020). This work uses the sparse Multifrontal QR method of the SuiteSparse

C-library (Davis, 2011b), an efficient implementation for large scale sparse systems.

6.3 Convergence Analysis and Observability Requirements

The proposed MAP estimation in (6.6) consists of a nonlinear unconstrained optimization
problem. Two requirements are needed to guarantee convergence of the Modified-Newton
method(Nocedal; Wright, 2006). The first is to ensure that the method provides only descent
directions, that is: 〈

∇JMAP(xk)T , pk

〉
< 0 (6.20)

As a consequence:

∇JMAP(xk)T (Mk)−1
∇JMAP(xk)> 0 (6.21)

Thereby, the approximation for the Hessian matrix Mk must always be definite positive,
(Mk)−1 > 0 and Mk > 0. Remind that the first sampling layer (SL0), the pseudo measurement
layer, is built with enough information, so it is always observable, what implies in rank(HSL0)= n,
yielding:

P−1
SL0 = HT

SL0R−1
SL0HSL0 > 0 (6.22)

Also, for any other sampling layer:

HT R−1
SL H ≥ 0 (6.23)

The sum of a positive definite and a positive semi-definite matrix in (6.13), is positive
definite, and therefore full rank.

HT R−1
SL1H +P−1

SL0 > 0 (6.24)

By induction, any sampling layer will be algebraically observable (rank(HT R−1
SL H +

P−1
SL−1) = n) as long as the initial sampling layer is observable. It will also maintain subsequent

sampling layers observable, therefore providing descent directions:

P−1
SL = HT R−1

SL H +P−1
SL−1 > 0 (6.25)



104

The Wolfe conditions of sufficient descent (Armijo condition) and curvature condition
must also be satisfied (Nocedal; Wright, 2006):

JMAP(xk +α
k
∆x)≤ JMAP(xk)+ c1α

k

∇JMAP(xk +α
k
∆x)T

∆x≥ c2∇JMAP(xk)T
∆x (6.26)

where, c1 and c2 are constant values such 0 < c1 < c2 < 1. Such conditions are satisfied in the
proposed method by employing a backtracking technique for choosing the step-size αk in (6.15)
(Nocedal; Wright, 2006). These conditions ensure the algorithm will converge in a finite number
of iterations.

However, the convergence may be compromised in the presence of numerical ill-
conditioning. The matrix Mk can easily become ill-conditioned, since it is based on matrix
multiplication operations. Such a problem is further aggravated in distribution systems due to
the particularities of network parameters and scale. A complementary demonstration of an upper
bound for the condition number of the MAP estimation method is also provided. The condition
number k(·) of Mk is in the following order of magnitude:

k(Mk) = k
(
HT R−1

SL H +P−1
SL−1

)
= k

((
P−1/2

SL−1 HT R−1/2
SL

)( P−1/2
SL−1

R−1/2
SL H

))

≈ k

((
P−1/2

SL−1

R−1/2
SL H

))2

≤ k
(

R−1/2H
SL

)2
+ k
(

P−1/2
SL−1

)2
(6.27)

The major advantage of employing the orthogonal formulation is to avoid performing
explicitly computations of Mk, instead of dealing with (6.17), resulting in a near quadratic
improvement on numerical conditioning.

k(QR)≈ k(R)≈ k

((
P−1/2

SL−1

R−1/2
SL H

))
≤ k
(

R−1/2H
SL

)
+ k
(

P−1/2
SL−1

)
(6.28)

Besides, it can be shown, similar to (Higham, 2002; Hebling et al., 2020), that the
Multifrontal QR method, based on block householder reflections, is also backward stable in
the numerical sense. It yields the following relation to assessing the error of solution of the
Multifrontal QR method (x̃) to the real solution of (B.14) (x), according to the specified numerical
tolerance and the floating-point precision εmachine. Consequently, the obtained upper bound for
the condition number of R also enables an evaluation of the numerical stability in the algorithm.

∥x̃− x∥
∥x∥

= O(k(R)εmachine) (6.29)
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6.4 Event Detection based on Bayesian Credibility Tests

Another aspect that can be explored from the Bayesian perspective is the use of credibility
intervals (Congdon, 2007) to accommodate more meaning to the estimates. During the updates
of the probability model, due to the arrival of new measurements at each sampling layer, a
comparison between the posterior distribution with the prior distribution can be performed
trough their credibility intervals. Therefore, for a stationary condition, the test will indicate that
the inferred posterior probability is in accordance with the previous sampling layers. However, for
a non-stationary condition, as load ramps, contingencies or disruptive events on the grid captured
by the faster sampling rates, the test will indicate a disagreement with previous estimations. The
credibility intervals can be defined as the range containing a particular percentage of probable
values (Makowski; S. Ben-Shachar; Lüdecke, 2019). That is, the closed interval [x−SL,x

+
SL] and an

associated probability pci, such that:

∫ x+SL

x−SL

fX |Y (xSL | zSL)dxSL = pci (6.30)

The credibility intervals can be designed as equal-tailed intervals or as highest density
intervals. The first associating the interval such that the values outside its range (larger or smaller
than the interval limits) have an equal probability, and the second by incorporating the values
with larger probabilities (Makowski; S. Ben-Shachar; Lüdecke, 2019). This work employs a
credibility interval in the vicinity of the MAP estimated state x̂SL of each sampling layer for the
i-th state variable, using Chebyshev’s inequality:

x̂i
SL− k∗

√
Pii

SL ≤ xi
SL ≤ x̂i

SL + k∗
√

Pii
SL (6.31)

where, k∗ defines the probability level of the credibility interval, and in this work is set equal 3
yielding a 0.89 credibility interval, a stable value for any probability distribution and generally
adopted in practice (Makowski; S. Ben-Shachar; Lüdecke, 2019). Two approaches may be
applied to define the credibility test, comparing the intersection of credibility intervals from
different instants, and providing two level of non-stationary event detection:

1. Credibility Test with previous sampling layers: provides a detection of larger non-stationary
events, in the sense that the estimated state at a faster sampling layer is far from the previous
layer.

2. Credibility Test within the sampling layer: provides a detection of smaller non-stationary
events, in the sense that the estimated state at the latest instant is far from the previous
instant within the same sampling layer;

By treating the state variables as random variables, the test evaluates if the current
probable state belongs to the previous probability functions. Fig. 20 illustrates this concept, with
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an hypothetical set of variables and their respective transitions mapped by a point estimate and a
credibility interval.

Initial
condition

Final
condition

Estimated State and Credibility
interval from Sampling layer #2

Estimated State and Credibility
interval from Sampling layer #1

Layer level state
transtion detection

Figure 20 – An example of credibility interval concept to detect state transitions. Two variables
monitored by two sampling layers, are mapped with their respective joint point
estimates and credible intervals, during a change in state values from an initial to a
final condition.

6.5 Simulation Results

Simulations were performed with the IEEE test feeders to validate the proposed DSSE.
A load flow calculation gives the reference values for the state variables (xl f ) and measurements
(zl f ). Monte Carlo simulations were performed by including random noise in the reference load
flow values to emulate measured values for the DSSE (Silva, 2018). The i-th measurement
value was calculated by adding a random noise with Normal distribution ui ∼N (0,σi) in the
corresponding i-th measurement reference value, according to (6.32).

zi = zl f
i +ui (6.32)

Different precision levels, for each measurement, generates the noise standard deviation
σi according to (6.33) (Castillo et al., 2011):

σi =
∣∣∣zl f

i

∣∣∣ pri/3 (6.33)

where, pri is the precision of the i-th meter. In this study it was assumed 30% for pseudo
measurements, 5% for active and reactive power measurements from smart meters, 2% for active
and reactive power measurements from SCADA, 1% for voltage magnitude from SCADA, 0.1%
for voltage and current phasors measurements from PMUs. pseudo measurements represent
the network’s active and reactive loads and are obtained from typical load curves or historical
data. Virtual measurements represent zero-injection nodes (nodes without load or generation and
fictitious nodes) and are incorporated as power injection measurements equal to zero with the
very low standard deviations.
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Table 4 – Measurement set for the IEEE13 system and sampling layers.

Sampling Layer Type of Measurement Location

Pseudo
Measurement

Active/Reactive Power
Nodes: 632, 645, 646, 634, 671, 611

and 652
Virtual Measurement Nodes: 680, 684, 632, 692

Smart Meter Active/Reactive Power Nodes: 611, 634, 675

SCADA
Active/Reactive Power

Nodes: 650
Branches: (650 - 6550R), (650R - 650),

(671 - 692)
Voltage Magnitude Nodes: 650, 671

PMU
Current Phasor Branches: (650 - 650R), (633-634)
Voltage Phasor Nodes: 650 and 633

To simulate different sampling rates, a sequence of quasi-stationary conditions obtained
from successive load flow scenarios provides the reference value at each different instant t. Each
instant is monitored by a different set of measurements according to their respective sampling
rates and to the previously explained procedure to include noise. This work considers the
following sampling rates: pseudo measurements at 15 minutes (PSEUDO sampling layer); smart
meters at 1 minute (SMETER sampling layer); SCADA measurements at 2 seconds (SCADA
sampling layer); and phasor measurements at 100 ms (PMU sampling layer). The Mean Absolute
Error (MAE) metric evaluates the accuracy of the estimation:

MAEt =
trial = 1

ntrials

ntrials

∑
1

∣∣∣x̂trial
t − xl f

t

∣∣∣ , (6.34)

where x̂t is the estimated state in t, xl f
t is the reference state value in t, and ntrials is the number

of trials during the simulation (ntrials = 100).

6.5.1 Bayesian Fusion DSSE Accuracy

The first test intends to demonstrate the effect of the MAP estimation and to evaluate
accuracy aspects of the proposed DSSE with the IEEE 13 nodes test feeder. Table 4 presents the
respective metering system, and the associated sampling layers. This first simulation consists
in a fixed nominal loading along all observations, a stationary condition. To illustrate the effect
of the MAP estimation, Fig. 21 presents the absolute error boxplot for this simulation in each
sampling layer. Besides the reduction on the MAE indicator, a smaller error variance is also
obtained after the execution of MAP. This because of the higher precision of the faster sampling
layers, considered separately in the Bayesian Fusion approach.

The MAE indicator is also evaluated for each separate node of the system in Fig. 22.
There is an increase on the state estimation accuracy for all nodes as faster samples are processed,
mainly on the state variables of nodes associated with pseudo measurements. It is noteworthy
that only the pseudo measurement sampling layer is fully observable, and all other layers have a
small number of measurements.
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Figure 21 – Boxplot of the absolute estimation error for all state variables in each sampling layer.
The MAE indicator among all simulations is also highlighted.
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Figure 22 – MAE performance index for the estimation in each sampling layer, from the three-
phase state variables in each node of the system.

Finally, Fig. 23 presents the MAE for each phase of the system in each sampling layer.
Table 5 presents detailed three-phase MAE for voltage magnitude and phase angles, separately
for each phase. The results corroborate the previous analysis, demonstrating the estimation
improvement with information of the fastest sampling layers in all phases and state variables.

Figure 23 – MAE performance index for the estimation in each sampling layer, for each phase
of the system.

6.5.2 Effect of Load Variation and Sudden Change

This second test considers the IEEE 123 nodes test feeder associated with: SCADA an
PMU measurements located at the substation and at voltage regulators and switches; pseudo
measurements in all loads; virtual measurements in all zero injection nodes; and few smart
meters at eight nodes as special consumers. The simulation corresponds to 20 seconds with two
loading scenarios: first a stationary condition; and the second including a 1% of load variation
around the nominal loading and a subtle increase of 50 % in 14 randomly selected nodes. It is
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Table 5 – MAE performance per phase and state variable in the IEEE13 test system for each
sampling layer.

State
Variable Phase Sampling Layer

PSEUDO SMETER SCADA PMU

Voltage
Magnitude

Phase A 3.47x10−3 3.44x10−3 1.34x10−3 0.34x10−3

Phase B 3.38x10−3 2.82x10−3 1.51x10−3 0.27x10−3

Phase C 4.87x10−3 4.42x10−3 1.37x10−3 0.29x10−3

Voltage
Phase
Angle

Phase A 4.83x10−3 3.01x10−3 0.55x10−3 0.29x10−3

Phase B 4.27x10−3 4.27x10−3 2.51x10−3 0.49x10−3

Phase C 5.61x10−3 5.25x10−3 3.09x10−3 0.40x10−3

a more realistic condition, since there are no guarantee the loads keep a fixed value while new
samples arrive.

Figure 24 – IEEE 123 nodes test feeder and the respective measurement set grouped by sampling
layers. Virtual measurements are considered in nodes without loads, that is, zero
injection nodes.

The Bayesian Fusion DSSE is compared with a Hybrid DSSE, which simultaneously
processes all measurements in a single stage via the Weighed Least Square algorithm, and with
an Extended Kalman Filter (EKF) DSSE that uses recursively the estimated posterior to update
the prior belief. Fig. 25 presents the comparison using the MAE performance metric for this
three estimators. The MAE performance index per each phase for the three estimation methods,
in the stationary condition and with the load variation and sudden load change, are presented in
Table 6. Table 7 presents this comparison for different levels of load variation.
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Figure 25 – Estimation performance in two loading scenarios: the first, a stationary condition of
fixed load values; and the second with 2 % of load variation and subtle load increase
from t=9s to t=15s.

Table 6 – Comparison of estimation performance per phase for the Hybrid, EKF and Bayesian
Fusion DSSEs.

Loading
Scenario Phase DSSE method

Hybrid Kalman Filter Bayesian Fusion

Fixed
loading

Phase A 1.15x10−4 0.31x10−4 0.82x10−4

Phase B 1.57x10−4 0.34x10−4 1.36x10−4

Phase C 1.43x10−4 0.20x10−4 1.22x10−4

With load
variation

Phase A 6.21x10−4 32.47x10−4 1.41x10−4

Phase B 6.61x10−4 30.61x10−4 2.46x10−4

Phase C 7.43x10−4 31.36x10−4 2.15x10−4

With sudden
change

Phase A 6.16x10−4 56.26x10−4 1.57x10−4

Phase B 10.95x10−4 30.59x10−4 2.42x10−4

Phase C 8.74x10−4 30.91x10−4 2.01x10−4

The EKF approach presented a very good estimation for the fixed load scenario, but lost
its accuracy in the presence of load variation, specially for a subtle load increase. This is expected
since the EKF has good smoothing properties, and the fixed load value is the smoothest scenario
possible. When load variation was included, this premise became false, hampering its accuracy.
Besides, the hybrid approach noticeably loses accuracy whenever load variation is present,
since it essentially mixes measurements from different instants in the same set. Furthermore,
the proposed Bayesian Fusion DSSE keeps its accuracy level even in the case of a subtle load
increase, showing better results in the presence of load variation. This is related to the fact
that the prior distribution gives only an initial estimate of the state vector and its covariance.
Whenever faster samples are gathered, the MAP estimation uses the prior knowledge along with
only measured information of this latest sample to update the state vector.
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Table 7 – Comparison of estimation performance in the presence of load variation for the Hybrid,
EKF and Bayesian Fusion DSSEs.

Load
Variation

Hybrid
DSSE

Extended Kalman
Filter DSSE

Bayesian Fusion
DSSE

0.0 % 1.04x10−4 0.20x10−4 0.95x10−4

1.0 % 2.7x10−4 7.79x10−4 1.09x10−4

2.0 % 3.07x10−4 16.78x10−4 1.36x10−4

5.0 % 8.35x10−4 40.28x10−4 2.65x10−4

10.0 % 17.72x10−4 87.73x10−4 4.11x10−4

6.5.3 Influence of Bad Data

Another important aspect is the DSSE performance against bad data (gross errors), which
was evaluated using the previous IEEE123 test setup. Initially, the influence of gross errors at the
pseudo measurement layer was evaluated since pseudo measurements are prone to erroneous
information in their modelling, such as forecasting error, a misconstruction of typical load
curves or due to nontechnical losses. Fig. 26 illustrates the effect of bad data in the pseudo
measurement layer in different sampling layers. Gross errors of 10σ (10 times the respective
standard deviation) were included in randomly selected pseudo measurements, a case of multiple
bad data.

The effect appears to influence the smart meter layer, which strongly depends on the
pseudo measurement layer since only eight loads are monitored by smart meters. Meanwhile,
the faster sampling layers from SCADA and PMU enable reducing the harmful effect on the
final estimation. This reduction is due to the higher accuracy of such measurements and the
inclusion of information from pseudo measurements as prior conjugate distribution instead of
processing them together with the erroneous values. In essence, the pseudo measurement layer
shares only its processed state information with the faster layers and the associated covariance.
When SCADA and PMU measurements are processed, their accuracy is enough to improve the
estimation.

Figure 26 – Increase of bad data at the pseudo-measurement sampling layer and effect on the
estimation performance at each sampling layer.

A second simulation was performed to evaluate bad data in the SCADA measurements
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and their respective effects on the final PMU sampling layer. Fig. 27 illustrates the effect of
bad data on the final estimation of the PMU sampling layer for all state variables in each phase
(voltage magnitude and phase angle). Different values of gross errors in the range of 5σ to 15σ

were included in 10% of randomly selected SCADA measurements.

Figure 27 – Increase of bad data at the SCADA sampling layer and effect on the final estimation
performance for all state variables in each phase. The first half of state variables
correspond to the voltage magnitude and the second half to voltage phase angles.

In this case, bad data at the SCADA sampling layer significantly influence the final
estimate obtained by the PMU layer. Once again, the conjugate model assumes only a vicinity
of the estimated state from previous layers, reducing the bad data’s hampering effects in the
subsequent layers. The prior belief can be associated with additional flexibility to deal with the
faster sampling layers information without changing the initial hypothesis about the measurement
noise.

Different methods can further aid the estimation, such as employing the largest normal-
ized residue test to detect and identify gross errors (Abur; Gómez-Expósito, 2004; Massignan et
al., 2020). In this context, this final test illustrates the effect of bad data in the normalized residual
analysis in each sampling layer. The test is performed using the latest estimated state variables
and each sampling layer’s respective measurement model. This way, faster sampling layers
can aid the slower ones. The test considers the inclusion of different types of gross errors and
sampling layers, exploring the effect of single and multiple gross errors, along with a situation
of non-technical losses, a special case of bad data at load values from pseudo measurements or
smart meters. Fig. 28 illustrates the largest normalized residue in each sampling layers.
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Figure 28 – Effect of bad data on the normalized residual analysis at different sampling layers in
the presence of: (a) multiple gross errors of 25 σ at 5% of the SCADA sampling
layer; (b) single gross error of 10 σ at one PMU; (c) multiple gross errors of 15
σ at three PMUs; (d) nontechnical losses of 50% bias in 10% of the load pseudo
measurements; and (e) nontechnical losses as a no-load situation in two smart meters.

The method can properly aid several cases of gross errors at different sampling layers. It
is noteworthy that further exploration of the sensitivity and possibility of identifying gross errors
is required, as shown in low sensitivity situations such as on the few smart meters in this case. It
primarily relates to the amount of information available and redundancy in all sampling layers. In
this sense, new methods based on the Bayesian framework may complement bad data processing,
such as using hyper-prior models for the noise models, especially in low redundancy scenarios
such as in DSSE. Besides, the application of more robust numerical and statistical methods can
aid even further the DSSE performance, such as with kernel density estimation principles in
(Pesteh et al., 2019). These complementary efforts aim to provide better prior information for
the estimation process, a crucial feature to increase the Bayesian fusion DSSE accuracy.

6.5.4 Smart Meters Deployment and Credibility Intervals

This test explores the Bayesian Fusion DSSE under a full deployment of smart meters in
the IEEE US Low Voltage Test System (IEEE342). The SCADA measurements are located at
the substation and feeder’s bays, while PMU measurements, are at the high voltage nodes, as
ilustrated in Figure 29. Despite the DS being observable with the smart meters at the low voltage
loads, a pseudo measurement layer is kept, based on previous day information, to accommodate
possible loss of communication. The test validates the proposed method under a model that
comprises all parts of a DS, from the high voltage substation to a meshed low voltage circuit,
and the typically associated measurements.

To evaluate the concept of credibility intervals, the simulation considers the following
scenarios: (1) a normal condition with load variation of 0.5% for 5 minutes; (2) a momentary
loading increase to simulate a distributed resources intermittency amidst the normal condition; (3)
a medium voltage feeder contingency, where, during the first 30 seconds, the network model is
not updated, with the topology momentarily incorrect; and (4) the contingency with the updated
model.
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Figure 29 – IEEE US Low Voltage test system (IEEE342) and the respective measurement set
grouped by sampling layers. Virtual measurements are considered in nodes without
loads, that is, zero injection nodes.

Fig. 30 illustrates the temporal behavior of the estimated voltage magnitude at phase
A of one of the low voltage nodes, during the previous described scenarios. With an enhanced
observability due to the smart meters at the low voltage, the Bayesian Fusion DSSE provides
accurate estimates along almost the entire sequence of events. The effect of the generation
intermittency in (2) is properly assessed even tough the smart meters update their values each
minute. It shows the importance to complement them with SCADA and PMU measurements,
even if located at the medium and high voltage part of the DS, as in this case. This integration
enables sensing faster events and increase the DSO awareness of the system. Only during
the event span (3) the DSSE loses its accuracy, showing the negative effect of unmonitored
contingencies. During this event, the problem is in the network model as a case of topology error,
a medium voltage feeder is out-of-service while the network model says otherwise. Nonetheless,
the estimator provides a direction of state change, and detects an anomaly in the system from the
disagreement between the network model and measured values. After a proper update on the
model in (4), the proposed DSSE regains its accuracy.
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Figure 30 – Example of estimated state variable, voltage magnitude at phase A of the low
voltage node # 1132, during the events on the IEEE342. Each simulated scenario is
highlighted: (1) load variation; (2) generation intermitency; feeder contingency, (3)
before and (4) after network model update.

The estimated values of two state variables are illustrated in Fig. 31 along with the prior
and posterior credibility intervals. An important aspect of the proposed Bayesian Fusion DSSE
is that during the sequence of events, the credibility test detects the transitions on the network, by
properly assessing the intersection of credibility intervals with previous states. It accommodates
more meaning to the estimation process, since it also carries the notion of the most probable
values in the vicinity of each estimated state. The probabilistic interpretation of such result may
enable its integration with different identification methods, for instance with learning algorithms
based on historical data, as well as to accommodate real time risk analysis within the credibility
intervals.

(3) During contingency,
before udpating the model(2) During

generation
intermitency

(1) Normal Operation

(4) During
contingency, after

updating the model

Prior Credibility Interval

Posterior Credibility Interval

Estimated Value

Figure 31 – Estimated state and credibility intervals for two state variables at the low voltage of
the IEEE342. The Bayesian Fusion DSSE detects the occurrence of the highlighted
events if the latest estimated values falls within the region of previously estimated
values.
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6.5.5 Validation in a Real Distribution Feeder

Finally, the Bayesian Fusion DSSE was also applied in a real Brazilian test feeder
from the city of Londrina-PR, that comprises 1058 three-phase medium voltage nodes at 13.8
kV (Massignan et al., 2018). It is a traditional distribution feeder, monitored only by pseudo
measurements from typical load profiles at each 15 minutes, and a few SCADA measurements at
the substation (voltage magnitude and active and reactive power flow) and at a recloser (current
magnitude), with updating rate of 1 minute, as illustrated in Fig. 32. Each of the 192 MV/LV
transformers presents a three-phase pseudo measurement of active and reactive power injection.
The evaluation in this scenario corresponds to a one-day horizon, thereby 1440 SCADA updates
and 96 pseudo measurement values.

In order to validate the proposed approach, independent measurements were taken in
three different transformers to compare the estimated results with the measured ones (Massignan
et al., 2018). Table 8 presents an accuracy comparison between the Bayesian Fusion DSSE,
the Hybrid DSSE, the Kalman Filter DSSE and the previous results obtained by a Real Time
Load Monitoring, currently available at the DSO (Massignan et al., 2018), with respect to the
final voltage magnitude and active and reactive load estimates gathered from the validation
measurements.

It is noteworthy that all four estimators depart from the same set of initial typical load
profiles, which present poor quality. It is a common practice to employ the Load Estimator
results as refined pseudo measurements. However, utilities also employ such results directly as
a real-time monitoring strategy depending on the application. Hence, the comparison intends
to demonstrate similar setup conditions encountered in the DSO and illustrate the performance
enhancement due to the concept of sampling layers.

Substation

Pseudo
Measurement

Automatic
Recloser

SCADA

Transformer #1
Validation

Measurement

Transformer #2
Validation

Measurement

Transformer #3
Validation

Measurement

Voltage Magnitude
Current Magnitude

Active/Reactive Power Flow

Active/Reactive Power Injection

Figure 32 – Real Brazilian distribution feeder with 1058 three-phase nodes (blue). It presents
mainly pseudo measurements and few SCADA measurements. In-field measure-
ments were taken to validate the Bayesian Fusion DSSE.
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The lack of measurements limits the accuracy of the estimation process according to the
pseudo measurements quality, one of the main challenges for DSSEs. Interestingly, the proposed
approach improved the voltage estimation accuracy, the variable of the search space in the DSSE
algorithm, while the Load Estimator searches on load injection values. In this sense, to attend
the requirements of smart active DS, it is imperative to increase the quality of available data
for DSOs. This can be reached by incorporating smart meters and/or PMU measurements in
the estimation, as shown in the previous section. It will only be effective if employed with high
resolution models of the DS able to integrate different sampling rates as well as all parts of the
DSs.

Regarding the Hybrid and Kalman Filter performance, similar results than the previous
sections were observed. Despite the close voltage magnitude results, the same was not observed
in other estimated electrical quantities (such as the active and reactive loads, and consequently
the voltage phase angles). This further supports the claim that mixing information from different
instants may hamper DSSE performance.

Fig. 33 illustrates the validation results, comparing an estimated and measured voltage
magnitude at phase A of Transformer #1, along a whole day. Remind that this measured voltage
was not considered in the DSSE, and it is only used for comparison purposes. The Bayesian Fu-
sion DSSE enhance the estimations after processing the SCADA measurements, when compared
with the initial estimates based on the pseudo measurement layer.

This result shows also a similar behavior of the Bayesian DSSE when compared Hybrid
approach. This is a consequence of not including sequential relations for the state in the estimation
model, and even though the Bayesian DSSE presents better accuracy. In the Bayesian DSSE
only temporal relations among different sampling layers are captured in the model, while in
the Kalman Filter two subsequent instants are related by the transition matrix, which makes the
estimation more sensitive to sudden changes. Nonetheless, the other estimated electric quantities
did not present such similarity, as can be inferred by the accuracy comparisons for the active and
reactive loads in Table 8.

6.5.6 Numerical and Computational Aspects

The tests of the proposed Bayesian Fusion DSSE were performed using a microcomputer
with a Core i7 2.10 GHz, 8GB RAM and an implementation in C programming language in
a UNIX system. Table 9 presents the processing time in the test feeders for each sampling
layer. Regarding the credibility interval calculation, it takes around 20 % of the total DSSE
time. Thereby, the proposed Bayesian DSSE presented an adequate processing time for real time
applications, for both MAP estimation and the credibility test.

Fig. 34 shows the convergence rate in the IEEE123 test system of the proposed method.
The direct method for the information fusion problem with the matrix Mk is unable to converge
already at the first sampling layer, due to severe ill conditioning. Conversely, the orthogonal
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Figure 33 – Estimated voltage magnitude of Transformer 3 in the Brazilian real feeder, in phase
A, phase B and phase C, respectively, and the respective validation measurement.
The credibility intervals for the pseudo measurement and SCADA sampling layers
are highlighted for each instant.

formulation presents a quadratic convergence characteristic of the Modified-Newton method
in all sampling layers. Similar results were observed for the other test systems. The condition
number in each sampling layer are presented in Fig. 35 for the IEEE123, IEEE342 and the
real feeder. A near quadratic improvement on the numerical conditioning is observed with the
orthogonal formulation compared to the direct approach to solving the MAP estimation with
the Mk matrix. Numerical conditioning is an essential feature for any application in distribution
systems, which imply special care when choosing the numerical methods to perform DSSE.

Finally, the sparsity treatment also presents the crucial numerical feature of the imple-
mentation, as ilustrated in Figure 36. For instance, a reduction of more than 87% on fill-ins was
obtained by the AMD ordering in all cases. It increases numerical stability and computational
efficiency by reducing unnecessary operations with zero values, and also reduces memory alloca-
tion. With fast sampling rates and higher data volumes, such as those from PMUs, computational
burdens must be considered for scalability in any practical application. It is noteworthy that the
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Table 8 – Validation with available real time monitoring regarding final active and reactive
estimated loads.

Validation Percentage MAE Performance Metric
Transformer Load Estimator (Massignan et al., 2018) Bayesian Fusion DSSE

Voltage Active Reactive Voltage Active Reactive
Magnitude Power Power Magnitude Power Power

Transformer # 1 1.39 % 11.9 % 11.5 % 1.15 % 11.8 % 11.4 %
Transformer # 2 0.85 % 24.1 % 18.7 % 0.61 % 23.4 % 24.6 %
Transformer # 3 0.71 % 59.0 % 50.0 % 0.39 % 59.7 % 64.8 %

Hybrid DSSE Kalman Filter DSSE
Voltage Active Reactive Voltage Active Reactive

Magnitude Power Power Magnitude Power Power
Transformer # 1 1.17 % 29.0 % 23.1 % 1.49 % 71.1 % 78.5 %
Transformer # 2 0.64 % 29.8 % 26.0 % 0.82 % 76.2% 80.2 %
Transformer # 3 0.58 % 84.6 % 96.4 % 0.88 % 68.5 % 81.3 %

Table 9 – Mean processing time/number of iterations for the Bayesian Fusion DSSE sampling
layers.

System Sampling Layers
PSEUDO SMETER SCADA PMU

IEEE13 3.2 ms / 4 its 2.4 ms / 4 its 2.4 ms / 3 its 1.2 ms / 3 its
IEEE123 22.1 ms / 4 its 7.2 ms / 3 its 7.9 ms / 3 its 2.4 ms / 3 its
IEEE342 136.8 ms / 4 its 91.8 ms / 3 its 58.4 ms / 3 its 15.9 ms / 3 its
Real 1058 236.1 ms / 4 its ( NA ) 32.7 ms / 4 its ( NA )

Figure 34 – Convergence rate in each sampling layer for the IEEE123 test system.
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Figure 35 – Condition number of the matrix Mk and of the orthogonal factorization upper trian-
gular R for the IEEE123, IEEE342 and Real feeder with 1058 nodes. A quadratic
reduction is observed which translates in improved numerical stability.

implemented version of the proposed DSSE already presents a performance suitable to deal with
such scenarios, and it still has a significant possibility for computational enhancements, such as
using parallel computing and improving data structures and memory locality.

6.6 Concluding Remarks

This chapter presented a Bayesian inference approach to perform information fusion in
DSs, gathered at different sampling rates such as typical load profiles, smart meters, SCADA
and PMU measurements. The method is based on a sampling layer concept, that decomposes the
measurement set according to the respective updating rates. A MAP estimation with the latest
information available, based on a sparse orthogonal method, provides the estimated state, even in
very ill-conditioned DSs while keeping a tractable computational time. It enables the integration
of heterogeneous sources of information according to their respective accuracies and sampling
rates, providing estimation with smaller mean errors at each faster sampling layer. Comparisons
with the hybrid and EKF DSSE demonstrate the advantages of treating each sampling layer
separately, without mixing information from different instants.

Theoretical arguments and simulation results were provided to support the following
interesting features of the Bayesian fusion DSSE. By exploiting a sparse orthogonal factorization
method, it is possible to apply the Bayesian Fusion DSSE in very ill-conditioned DSs while
keeping a tractable computational time. The exploration of the Bayesian framework led also
to the proposition of an event detection method based on credibility intervals. Thereby main-
taining accuracy under small and large non-stationary events, such as load variations, subtle
generation intermittency and network contingencies. Comparisons with an hybrid and an EKF
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Figure 36 – Sparsity patterns of the matrix Mk and the orthogonal factorization upper triangular
R for the IEEE123, IEEE342 and Real feeder with 1058 nodes, obtained without
state variables ordering and after the approximate minimum degree ordering. A
significant reduction of fill-ins improves even further the numerical stability of the
implementation.

DSSE demonstrate the advantages of treating each sampling layer separately, without mixing
information from different instants. For stationary operating condition, it keeps its precision even
when the loads vary around their nominal values during the time interval between two SCADA
data scans

Moreover, it also enables a full integration of smart meters in the DSSE problem,
enhancing its performance and enabling the detection of events even at the low voltage networks
with the concept of Bayesian credibility intervals. Finally the practical application in a real
feeder validates the proposed approach with nowadays traditional DS feeder. Thereupon the
proposed DSSE provides high resolution information about the grid condition for DSOs in real
time. Future work comprises more exploration of the Bayesian framework such as the use of
hyper-prior models to capture random effects of the DSs, as well as to evaluate new methods for
bad data detection. The Bayesian framework may also be explored under different features of
topology estimation, fault location, spatial fusion for large scale networks, anomaly detection
algorithms and dynamic estimation. Another exciting direction is gathering more information
to compose the prior knowledge, such as exploring short-term historical values and different
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conjugate models. Besides, improving statistical robustness against non-Gaussian noise can
sensibly aid the quality of the prior information, such as in the case of bad data, and can be
further explored through concepts of kernel estimation and Information Theory.
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7 BAYESIAN SPATIAL FUSION FOR MULTIAREA STATE ESTIMATION IN LARGE
SCALE DISTRIBUTION SYSTEMS

The content of this chapter have been published in the following book chapter:

• Massignan, J. A. D.; London JR., J. B. A., P. Pegoraro, M. Pau, "Multiarea State Estimation
for Distribution Systems". Power Distribution System State Estimation, Book Chapter,
IET, 2022;

7.1 Introduction

This chapter presents a novel Multiarea perspective for DSSE based on Bayesian Infer-
ence principles. The proposed perspective enables dealing with large scale distribution systems,
from the high voltage substation to the low voltage networks in a single framework. A new
formulation for the Multiarea state estimation incorporates prior knowledge on the model as a
spatial fusion inference problem, complementing observability. The proposed Multiarea consists
of a two-step procedure, a Local Estimation followed by a Coordination Step, a hierarchical
architecture consonant with modern data centres for DS operation and control.

Concerning DSSE, the Bayesian Inference background has been employed to deal with
Non-Gaussian noise characteristics employing integration algorithms based on Monte Carlo
sampling (Pegoraro et al., 2017). It has also been employed along with Deep Learning algorithms
in the context of bad data processing along with the support of data-driven learning in (Mestav;
Luengo-Rozas; Tong, 2019). Recent works also explore temporal within information fusion
concepts, merging measured information according to the different sampling and updating rates
from diverse measurements (Massignan et al., 2019). Regarding spatial fusion, as far as the
author recall, this is the first proposition for DSSE. In this context, the contributions of this
chapter reside on:

• the demonstration of scalability of state estimation in a practical large scale distribution
system, with high resolution three-phase unbalanced models from the low voltage circuits
until the high voltage substations;

• a novel formulation for multiarea state estimation based on bayesian inference framework,
using the concept of spatial fusion, that enables decomposing the network without local
area observability constraints;

• a novel coordination scheme based on information fusion to obtain a probabilistic consen-
sus among local areas.
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A few theoretical topics, presented in previous sections, will be revisited in the following
sections to provide a quick background of the fundamental details.

7.2 Multiarea Distribution System State Estimation

Real time monitoring and operation of DSs require an accurate assessment of their
power grid conditions, to further support decision making at the DSOs, in a cyber-physical
perspective, such as fault location, service restoration, voltage control, loss reduction, and asset
management (Lefebvre; Prévost; Lenoir, 2014; CAMILLO et al., 2016; Primadianto; Lu, 2017;
Massignan et al., 2018; FANUCCHI et al., 2021). Due to the large scale of such networks, the
decomposition of the distribution systems and the application of MASE algorithms have been
an important direction to achieve computational performance and scalability. Typically MASE
approaches can be Hierarchical, as will be dealt in this papper (more adequate to a central DSO
to deal with large scale networks in parallel multiprocessor architectures) (Falcao; Wu; Murphy,
1995) or Distributed (more adequate to decentralized operation paradigm and cloud computing)
(Gómez-Exposito et al., 2011b; Pau et al., 2019).

This enables capturing the particularities, from both system as well as the available
information and measurements, of each part of the distribution networks spatially inside their
respective areas, briefly described below, and illustrated in Fig. 37:

• Primary Substations: high amount of real time measurements, low number of nodes (and
state variables) and typically sampled information each minute from the SCADA system;

• Primary Feeders: low amount of real time measurements, high number of nodes (and
state variables) and typically sampled information each minute from the SCADA system,
complemented with pseudo measurements;

• Secondary Circuits: typically represented as aggregated pseudo measurements in the pri-
mary feeders, based on typical load profiles for each consumer and electricity consumption
information, or as low voltage networks with medium amount of sensors (smart meters),
high number of nodes (and state variables) and typically sampled information each 5 to 30
minutes from smart meters;

Given a electric power network composed by a total of A connected sub-areas , that is, a
power system that if treated in a centralized state estimation would entail A= 1. As a consequence
of such decomposition, the following concepts related to the state variables (the three-phase
complex nodal voltages in all nodes of the network) and measurement vectors (sampled electrical
quantities from different sensors) arise. Depending on the level of overlapping the state variables
vector in each area may be composed by (Gómez-Exposito et al., 2011b):

• xik: state variables associated to the internal nodes of each area k;
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Figure 37 – Cyber-physical conceptualization of a distribution system in the context of cen-
tralized operation at the DSO. Different sources of information are gathered by
instrumentation devices and exchanged by the SCADA and Advanced Distribution
Management System (ADMS) to a central DSO to process them. Parallel computing
architectures then support fast and scalable algorithms for decision-making.

• xbk: state variables associated to the boundary nodes of each area k;

• xnk: state variables associated to the internal nodes of adjacent areas to the area k (areas
with extended overlapping zones).

Besides, the measurement vector can be devised for each area as:

• zik: internal measurements of each area k, that relate internal state variables xik and
boundary state variables xbk;

• zbk: boundary measurements of each area k, that relate boundary state variables xbk, as
well as the state variables of extended overlapping zones xnk;

The multiarea state estimation problem for a distribution network with m measurements
and n state variables consists of a nonlinear measurement model that can be formulated as (Abur;
Gómez-Expósito, 2004; Gómez-Exposito et al., 2011b; Bretas N. Bretas, ):

zik = hik(xik,xbk,xnk)+ ei (7.1)

zbk = hbk(xbk,xnk)+ eb (7.2)
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where z is the (m x 1) measurement vector composed by the measured values, virtual measure-
ments and pseudo measurements; x is the (n x 1) vector of state variables (usually the complex
nodal voltages); h(x) is the (m x 1) set of nonlinear equations that relates the measurements with
the state variables; and e is the (m x 1) noise vector assumed as independent normally distributed
random variables, with zero mean and known covariance matrix R.

The above nonlinear measurement model comprise different electrical quantities mon-
itored across the distribution systems. A three-phase unbalanced network model represents
the diverse components, with their respective connections and phases, and further details are
presented in previous chapters.

With the above decomposed measurement model, the Multiarea State Estimation problem
is formulated according to the maximum likelihood principle yielding the weighted least squares
formulation (Korres, 2011):

min J(x) =
1
2

r′b.R
−1
b .rb +

1
2

A

∑
k=1

r′ik.R
−1
ik .rik (7.3)

where the subscript b represents the boundary measurements for all sub-areas of the electrical
network with the respective noise covariance matrix Rb, rik = zik−hik(xik) is the internal mea-
surements residual for each area k and respective weighting matrix R−1

ik , rb = zb−hb(x) are the
boundary measurement residuals and respective weighting matrix R−1

b .

It is easily shown there is a requirement of observabilitity for each area of the decomposed
problem. It means that any subdivision of the power system must create observable local
networks. This can be acceptable whenever a large deployment of sensors is accomplished, far
from the reality of practical distribution systems (especially at the medium voltage feeders), or
by including pseudo measurements in the estimation, what may hamper accuracy due to their
relative poor quality. This work deals with such problem, enabling a more flexible decomposition
of distribution networks, to accommodate the possibility of local areas without a complete
observable measurement set.

As an example, Figure 38 illustrates such situation. The main motivation is to enable a
multiarea state estimation procedure aligned with the deployment of smart meters at the low
voltage secondary networks, while dealing with large scale unobservable primary feeders.

This work employs an overlapping-zone method as area decomposition, with a single
overlapping node among adjacent areas. In this proposition, such decomposition is based on
the natural spatial structure of distribution systems, going from the substation towards the
secondary low voltage networks, and bounded by power transformers, whose terminals are both
the boundary and overlapping boundaries for each area.

An illustrative example of the decomposition is illustrated in Figure 39, with details of
the extended boundaries, state variables and measurements. An overlapping-zone with one node
enables representing boundary measurements and injections locally. The boundary values are
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Figure 38 – Decomposition of distribution networks associated to each voltage level.

then exchanged in the Coordination Steps. The next section formulates the proposed multiarea
DSSE based on Bayesian Spatial fusion principles.
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Figure 39 – Illustrative example of details of the extended boundaries in the proposed decompo-
sition of distribution networks.

7.3 Bayesian Hierarchical Spatial Fusion for Multiarea DSSE

The Bayesian reasoning for multiarea power system state estimation extends the concept
of the state vector as a random variable, in the sense that a set o possible state values may occur in
the network given the measured observations and a prior knowledge about the system. Estimation
then becomes performing inference on the probabilistic model of the posterior distribution instead
of seeking for a fixed set of state values that yields the maximum likelihood. The proposed
Bayesian Spatial Fusion comprise two-stages, as a hierarchical approach:

1. Local Estimation Step: an independent estimation step is performed for each area, employ-
ing internal, boundary measurements and extended boundary state variables previously
exchanged;
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2. Coordination Step: a central processor gathers boundary information from local estimation,
and updates them to achieve consensual values among adjacent areas.

In the Local Estimation Step, the proposed spatial fusion extends the probabilistic model
for each local area by including a prior distribution for the state variables, as the following:

xik = xp
ik +ω

p
ik (7.4)

xbk = xp
bk +ω

p
bk (7.5)

xnk = xp
nk +ω

p
nk (7.6)

zik = hik(xik,xbk,xnk)+ ei (7.7)

where xp
ik, xp

bk and xp
nk are the expected values of the prior distribution assumed for the internal,

boundary and extended boundary state variables, along with a random component to represent
state variationsω

p
ik, ω

p
bk and ω

p
nk, respectively. Note that separate priors are given for the internal

variables, the boundary variables and the extended boundary variables, to accommodate a reduced
set of information exchange among areas, only the boundary and extended state variables and
their priors are exchanged.

Applying the Bayes Theorem, yields the posterior distribution for each local area:

fX |Z(xik,xbk,xnk|zik) =
fZ|X(zik|xik,xbk,xnk) fX(xik,xbk,xnk)

fZ(zik)
(7.8)

where, fX |Z(xik,xbk,xnk|zik) is the conditional probability function of the state given the mea-
surements in each local area, fZ|X(zik|xik,xbk,xnk) is the likelihood function of the local area
according to the measurement model, fX(xik,xbk,xnk) is the prior distribution in the hierarchical
model, and fZ(zik) is the measurements probability of occurrence, a constant value that scales
the posterior probability function and is often neglected.

The estimation process in each area is triggered as soon as the respective measurements
become available, or if there is an update on the boundary state variables. It updates the state by
a Maximum a Posteriori (MAP) estimation given by (7.9). The estimation result of each area
is then used as the prior distribution for the state variables in the adjacent areas, a Bayesian
hierarchical model (Congdon, 2007).

x̂k = argmax
x

fX |Z(xik,xbk,xnk | zik) (7.9)

In this formulation, both boundary as extended boundary states are updated in the local
estimation steps. Such estimation results are then exchanged with a central processor, that per-
forms spatial fusion with the locally estimated boundary variables and boundary measurements
neglected in the local stage. The essence of this coordination step it to obtain a probabilistic
consensus for the boundary variables among the local areas, searching for coherent values among
adjacent areas that are updated in next local estimation executions as new prior knowledge.
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The coordination stage also extends the boundary measurement vector to accommodate
a prior distribution for the boundary and extended boundary variables, as the following:

xb = xp−1
bk +ω

p−1
bk (7.10)

xb = xp−1
nk +ω

p−1
nk (7.11)

zb = hb(xb)+ eb (7.12)

where xp−1
bk and xp−1

nk are the expected values, and associated random characteristics ω
p−1
bk and

ω
p−1
nk of the prior distribution, for the boundary and extended boundary state variables obtained

in the previous local estimation execution (p− 1), and xb is the boundary state vector for all
areas. Note that, the extended boundaries obtained in the local estimations are also included,
but in this case modelled along with the conditional relations with the boundary state variables.
This introduces the results obtained by adjacent areas in the search for coherent values for the
boundary states, as complementary prior information.

The Coordination step yields a common boundary state vector for all different areas.
Such common boundary values are then exchanged back to the local areas to update their
internal state variables using the latest boundary state variables available. The Coordination is
iterative, in the sense that, boundary information keeps being exchanged between local areas
as new local updates are provided, until the boundary state variables update is reduced below
a numerical tolerance. Figure 40 illustrates the probabilistic model employed. Details about
the state estimation solution in the local and coordination steps are described in the following
subsections.

Coordination Step

Local Estimation Area #1 Local Estimation Area #A

Figure 40 – Probabilistic representation of the proposed Multiarea DSSE. Prior information are
included to complement local observability and also to coordinate the boundary state
variables at adjacent areas.

7.3.1 Local Estimation Step

The Local estimation step provides the state vector of each area k comprised of xk =

(xik,xbk,xnk). This Thesis assumes a conjugate-Gaussian prior model for the state variables, to
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accommodate prior knowledge while maintaining computational tractability. This assumption is
a simplification of the real behaviour of the state variables, but fair enough since the Multiarea
formulation is a decomposition of an original Gaussian process estimation. Besides, since
the Coordination step reduces the effects of such approximations, since it updates iteratively
the boundary state variables with the latest available information among different area. The
superscript p denotes the iteration of the coordination step that provides the prior information.

Prior : xik ∼N (xp
ik,P

p
ik) (7.13)

xbk ∼N (xp
bk,P

p
bk) (7.14)

xnk ∼N (xp
nk,P

p
nk) (7.15)

Likelihood : zik | xik,xbk,xnk ∼N (hik(xik,xbk,xnk),Rik) (7.16)

where Pp
ik, Pp

bk and Pp
nk are the state covariance matrices from the prior knowledge at each area,

also updated in the coordination step, and Rik the measurement covariance matrix for each area.

The prior knowledge in this local estimation can be represented by the following prior
state vector and prior state covariance matrix, with each prior expected values and respective
covariance from the above model:

xp
k =

[
xp

ik xp
bk xp

nk

]T

Pp
k =

Pp
ik 0 0
0 Pp

bk 0
0 0 Pp

nk

 (7.17)

By assuming a Gaussian conjugate model for the priors and likelihood function, the
following MAP estimation is obtained by the Bayes’ Theorem, formulated as an unconstrained
minimization problem:

x̂k = min
x
(zik−hik(xk))

T R−1
ik (zik−hik(xk))+(xk− xp

k )
T (Pp

k )
−1(xk− xp

k ) (7.18)

A nonlinear optimization algorithm, the Modified Newton method with backtracking
algorithm for the step length α , provides the local estimates, with an iterative update of the state
variables, according to the following equations:

(
HT R−1

ik H +(Pp
k )
−1)

∆xit
k = HT R−1

ik (zik−hik(xk)+(Pp
k )
−1(xit

k − xp
k ) (7.19)

xit+1
k = xit

k +α∆xit
k (7.20)

with, H the Jacobian matrix of hik(xk) evaluated at each iteration it point xit
k . The

algorithm is iterative until convergence is met according to a numerical tolerance (tol = 1.0E−5),
with |∆xit

k |inf ≤ tol.
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This Thesis also employs an orthogonal formulation to improve numerical conditioning
and computational performance in each local estimation step (Davis, 2011a; Hebling et al., 2020),
with the following factorization. (

(Pp
k )
−1/2

R−1/2
ik H

)
= QT R (7.21)

The iterative solution then becomes:

R∆xit
k = Q

(
(Pp

k )
−1/2(xit

k − xp
k )

R−1/2
ik (zik−hik(xit

k ))

)
(7.22)

Besides, exploring the above optimization model yields the advantage of the proposed
Multiarea method, the ability to include a prior knowledge to compensate for the lack of
local observability. The demonstration is straightforward by exploring the rank of the matrix
being factorized. Thus, if a complete prior knowledge is given about the state variables, that is
Pp

k > 0 and full rank, it is possible to perform separate and independent local estimation steps
disregarding the full observability in the decomposition. It is noteworthy that, if the full network
is not observable, then the prior knowledge will be the sole information to provide knowledge
about the local state variables. This shows the importance of the coordination step, that updates
the boundary information in order to include real-time information from adjacent areas into such
non-observable areas.

HT R−1
ik H +(Pp

k )
−1 > 0 (7.23)

After convergence, the boundary and extended boundary state variables are exchanged
with the central processor. Both the estimated values and posterior variance are shared with the
central Coordination, as the following:

xp
bk = x̂bk (7.24)

xp
nk = x̂nk (7.25)

(7.26)

Pp
bk =

[
(HT R−1

ik H +(Pp
k )
−1)−1]

bk (7.27)

Pp
nk =

[
(HT R−1

ik H +(Pp
k )
−1)−1]

nk (7.28)

(7.29)

For the boundary covariance matrices above, only the respective elements (rows and
columns) relative to the boundary and extended boundary state variables are considered, repre-
sented as a submatrix with the subscripts []bk and []nk.
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Prior knowledge may be constructed in a non-informative way, such as assigning large
variances (low weights) to a standard operational condition (or a flat start situation). It can also be
based on informative knowledge, from previous operational conditions, from load calculations,
or sampled from typical load behavior, with tuned variances to represent a flexible uncertainty
about the state. In this Thesis we assume a non-informative prior, based on a flat voltage profile,
and the boundary state variables are updated by the coordination step.

7.3.2 Coordination Step

The Local Estimation Step results on the state variables of each area, and values for their
own boundaries that are shared along with the central processor. The Coordination Step processes
these local boundaries information in order to provide common and coherent boundary values
among adjacent areas, thus providing a complete overview of the entire distribution networks,
from the primary substations to the low voltage secondary networks.

The solution of the coordination is obtained by employing the remaining boundary
measurements along with the boundary and extended boundary state variables estimated in the
local areas. The coordination state vector comprises the full set of boundary variables. The goal
in this step is to obtain coherent values among adjacent areas that will be exchanged back again
to each local area.

As performed in the local areas, the Coordination step also employs a conjugate-Gaussian
prior model for the boundary state variables. In this case, the state vector comprises xb =

[xb1,xb2, ...,xbA]
T , the boundary values among all areas. And the prior knowledge is arranged as

the following, using the local estimation results exchanged, from both the boundary and extended
boundary obtained in each area:

xp−1
bk =

[
xp−1

b1 xp−1
b2 ... xp−1

bA

]T

Pp−1
bk =


Pp−1

b1 0 ... 0
0 Pp−1

b2 ... 0
... ... ... ...

0 0 ... Pp−1
bA

 (7.30)

xp−1
nk =

[
xp−1

n1 xp−1
n2 ... xp−1

nA

]T

Pp−1
nk =


Pp−1

n1 0 ... 0
0 Pp−1

n2 ... 0
... ... ... ...

0 0 ... Pp−1
nA

 (7.31)

The coordination step is also comprised by a MAP estimate, given by the following
optimization problem:
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x̂b = min
x
(zb−hb(xb))

T R−1
b (zb−hb(xb))+(xb− xp−1

bk )T (Pp−1
bk )−1(xb− xp−1

bk )

+(xb− xp−1
nk )T (Pp−1

nk )−1(xb− xp−1
nk ) (7.32)

A nonlinear optimization algorithm, the Modified Newton method with backtracking
algorithm for the step length α , then provides the local estimates, with an iterative update of the
state variables, according to the following equations:(

HT R−1
b H +(Pp−1

bk )−1 +(Pp−1
nk )−1

)
∆xit

b = HT R−1
b (zb−hb(xb)+(Pp−1

bk )−1(xit
b − xp−1

bk )

+(Pp−1
nk )−1(xit

b − xp−1
nk ) (7.33)

xit+1
k = xit

k +α∆xit
k (7.34)

in this case, H is the Jacobian matrix of the boundary measurement model hb(xb).

If any measurement is left to be processed in the coordination step the above problem
becomes linear, only the updated prior knowledge among different areas is considered in the
above equations, and the boundary state variables are obtained in a single iteration. This is
accomplished by the extended boundary approach, where boundary measurements can be
included in each local estimation since the state vector is extended one node deep into adjacent
areas.

Another aspect that can be exploited is an hierarchical weighting during the coordination
step, increasing the prior weights (reducing the variance) in a Top-Down approach, or from areas
that are observable. This way is possible to reinforce the values obtained for the boundary state
variables at the first and highest voltage levels when compared to prior values from the medium
voltage levels and then to the secondary voltage levels, that is, from the substation to the low
voltage nodes.

Finally, the boundary state vector is exchanged back to the local estimation steps. Differ-
ent strategies to trigger the coordination step may also be employed, such as waiting for local
convergence or by a pre-defined number of local iterations. This exchange is performed after local
convergence is achieved. Distributed approaches may apply this strategy, by updating boundary
variables and performing the coordination step according to communication latency and data
volume constraints, but further exploration is required to define the best exchange strategies
according to practical constraints (communication bandwidth, refresh rate, data volume, etc.).

7.3.3 Implementation and Algorithm

This section presents implementation details and the algorithm of the proposed MASE
approach. This Thesis employs sparsity treatments to enhance numerical and computational
performance. As presented previously, the orthogonal formulation avoids the explicit matrix
multiplications in the Local Estimation and Coordination Steps, which by itself represents
an advancement in computational aspects for ill-conditioned distribution networks. By using
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sparse representation memory and computational operations are significantly reduced, improv-
ing even further the computational performance. Besides, by employing sparse ordering algo-
rithms reduces the total number of fill-ins in the factorization process, reducing even further
ill-conditioning and improving numerical stability. The SuiteSparse computational library (Davis,
2011a) is employed with a sparse Multifrontal QR method based on block-Householder factor-
ization, along with an Approximate Minimum Degree (AMD) ordering technique.

Another aspect that improve computational performance is performing local estimation
in parallel. This enables enhancing the computational time by performing burdensome tasks
in parallel. This Thesis employs a shared memory architecture to facilitate data integration
in modern multi-core processors. The OpenMP programming paradigm (OpenMP, 2020) is
employed to implement the local estimation in parallel, with special care in memory access
and data integration, in a shared-memory architecture. A synchronization barrier triggers the
coordination step after all local estimation steps converged.

The implemented algorithm is illustrated in the flowchart presented in Figure 41. The
flowchart illustrates the parallel computing paradigm along with the main database integration
required in practical deployment. The algorithm focuses on the exchange of information between
the local steps and the coordination, as well as the computations performed.

Area Decomposition

Initalize Multiarea
Measurement Model

Initialize Internal and
Boundary Priors Coordination Step

 

Update Boundary
Priors

Deploy local
estimation in

multiprocessors

Return state of the
whole network

Processor #1
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Local Estimation 
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Local Estimation 
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Local Estimation 
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Local Estimation 
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Local Estimation 
Area #2

Local Estimation 
Area #9

Local Estimation 
Area #A
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Initalization

OpenMP Enviroment

N

Y

Figure 41 – Flowchart of the proposed MASE implementation in a parallel computing architec-
ture with shared memory paradigm. Local estimations are executed in multiproces-
sors and coordinated sequentially by a central processor after local convergence.
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7.4 Simulation Results and Application in Large Scale Distribution Systems

7.4.1 Accuracy analysis

Monte Carlo simulations were employed to represent the distribution system behaviour,
and the associated measurement set, by including random noise in a load flow scenario considered
as reference case. This simulation evaluates the proposed MASE performance by random
sampling a noise characteristic for each measurement and associated electrical quantity, in a
total number of Monte Carlo trials (100 repetitions). The noise samples are generated for each
measurement, individually, according to the respective measurement standard deviation, as
described by the following equation (Castillo et al., 2011):

zi = zre f
i +ui(|zre f

i |pri)/3 (7.35)

where, zi is the value of measurement i with a random noise and is used as input on the state
estimator, zre f

i is the respective value of the electrical quantity obtained in the reference scenario,
that is, the load flow calculation, pri is the measurement precision according to its precision class
(assumed as 2% for active and reactive power flow or injection measurements from SCADA
systems, 5% for smart meters, 1% for voltage magnitude measurements of the SCADA systems,
and 30% for pseudo measurements obtained from typical load curves), and ui is a random
variable with standard Gaussian distribution. With the emulated measurements and the respective
solution from the reference load flow, the proposed MASE performance is evaluated through the
Mean Absolute Error (MAE) index:

MAE =
1

ntrials

ntrials

∑
K=1

∣∣∣x̂K− xre f
∣∣∣ , (7.36)

where x̂ is the estimated state in each repetition K of the Monte Carlo simulation, xre f is the
reference state value, and ntrials is the number of trials during the simulation (ntrials = 100).

The simulation results were obtained using a C/C++ implementation on UNIX platform
in a microcomputer with a Core i7-9750H 2.60 GHz and 8 GB RAM. Besides, to evaluate
the isolated effect of the multiarea decomposition, the measurements are assumed in a single
snapshot, as a single measurement vector, such as in the case of the hybrid state estimation, that
is, neglecting different sampling rates among different sensors.

The simulations were carried out with the IEEE US Low Voltage System (IEEE342)
test system. It consists of a low voltage urban network with high reliability composed by spot
loads in 408 V and a meshed low voltage network in 208 V, with grounded Wye connection.
Eight primary feeders in 13.2 kV comprise the medium voltage system in Delta connection.
Finally the 230/13.2 kV substation with two delta connected transformers and a small portion of
the sub-transmission are represented. It consists of a highly complex network, where increased
reliability is accomplished by a meshed low voltage network, also requiring a deeper resolution
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for the entire network model. The network model and reference load flow scenario are available
in (IEEE, 2018).
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Figure 42 – Decomposition of the high voltage substation and medium voltage feeders in the
IEEE US Low Voltage test feeder (IEEE, 2018).

The following metering system was considered during the simulations: high voltage
substation and sub-transmission lines with active and reactive power flows and voltage magnitude
measurements in all terminals from the SCADA system; primary network with active and reactive
power flow and voltage magnitude measurement only at the feeder’s bay, from the SCADA
system; low voltage networks with active and reactive power injection and voltage magnitude
obtained from smart meters. The full network also presents several virtual measurements repre-
senting nodes without loads, that is, nodes with zero active and reactive power injections, with a
very low standard deviation (assumed as 1.0 E-7). Table 10 presents the amount of measurements
considered in each part of the distribution system, where each metering device provides the
respective electrical quantities in each phase (phase ABC).

Regarding the area decomposition, a level-based approach was devised in this simulation.
This way the 230/13.2 kV substation and sub-transmission lines correspond to a particular
area; each medium voltage feeder correspond to a separate area, with eight total areas for the
primary network in 13.2 kV; and each spot load in the 408 V low voltage networks correspond
to an individual area, and the meshed 208 V low voltage network is divided in four areas. The
boundaries of the different areas are defined by the power transformers in the network, with a
total of 21 areas. Figures 42 and 43 present an illustration of the area decomposition in each part
of the distribution system.
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Figure 43 – Decomposition of the low voltage circuits in the IEEE US Low Voltage test feeder
(IEEE, 2018).

Table 10 – Metering system location and Total amount per location in the distribution system
(Each presenting the respective three-phase information)

Sources of
Information Three-Phase Electrical Quantities Substation Primary

Network
Low Voltage

Network

SCADA
Active and Reactive Power Flow 14 8 -
Active and Reactive Power Injections 1 0 -
Voltage Magnitudes 5 8 -

Virtual
Measurements

Active and Reactive Power Injection
(Zero Injection) 6 131 68

Smart Meters
Active and Reactive Power Injection
and Voltage Magnitude - - 104

To demonstrate the solution of the multiarea state estimation problem with the proposed
hierarchical approach, Figure 44 presents the estimation error for all state variables of the network
(voltage magnitude and phase angle) compared to the estimated results from the centralized
approach. The figure shows the results in all three phases for all nodes of the system. During the
simulations each local estimation stage converged in 4 iterations. Regarding the coordination
step, a total of 4 executions were needed to converge, that is, without a sensible change in the
state variables for more executions of the top-down coordination. The centralized approach
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converged also in 4 iterations, but with an increased computational burden. Figure 45 presents
the coordination step convergence in this scenario, where after 5 iterations the method stops to
update the boundary state variables. Figure 46 presents the computational time of the proposed
MASE compared with the centralized approach, considering multiple threads (parallel tasks for
the local estimation). Even with a single thread, the MASE presents computational gain, since it
is less burdensome to deal with smaller networks on the local estimation procedure. However
there is plateau of computational gain, which shows further coding optimizations may improve
the performance, such as improving memory locality and optimizing communication bandwidth
usage.

Figure 44 – Estimation performance for the state variables (voltage magnitude and phase an-
gles) of the IEEE US low voltage system, with the centralized and the multiarea
approaches.

Figure 45 – Convergence of the coordination step, the outer loop of the hierarchical MASE.

Regarding accuracy of the estimation process, the hierarchical approach carries an
additional bias, reducing its accuracy, due to the fact it does not use all the informations at once,
as presented in Table 11. This bias consists of a trade-off between accuracy and computational
performance to achieve scalability, and must be taken into account depending on the requirements
for each final application.

The estimation error was also evaluated for the loads at the secondary low voltage
networks (active and reactive power injections) and for the active and reactive power flows at the
MV/LV transformers (13.2/0.48 and 13.2/0.208 kV). To clarify the impact on estimated electrical
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Figure 46 – Comparison of the total computational time of the DSSE methods, with different
amount of threads.

Table 11 – Comparison of the estimation error in the presence of pseudo measurements and with
smart meters in the proposed MASE.

Estimated Electrical
Quantity

With pseudo measurements With Smart Meters

Substation
Primary
Network

Low Voltage
Network Substation

Primary
Network

Low Voltage
Network

Voltage Magnitude (p.u) 0,000939 0,000779 0,002069 0,000938 0,000779 0,000796
Voltage Phase-Angle (degrees) 0,01085 0,024339 0,18017 0,01085 0,024339 0,026962
Active Power Loads (%) 23,637 1,3106
Reactive Power Loads (%) 22,843 1,3066
Active power flow
in transformers (%) 8,547 0,49068

Reactive power flow
in transformers (%) 9,8906 0,62925

Figure 47 – Estimation performance for the power injections (active and reactive loads) of the
IEEE US low voltage system, with the centralized and the multiarea approaches.

quantities on the network, Figure 47 presents the estimation error, mean absolute percentage
error, for the loads in all phases and nodes of the system. Figure 48 presents the estimation error,
mean absolute percentage error, for the MV/LV transformers power flows.

Both centralized and MASE approach presented similar accuracy for the load estimation,
around 1.5 % of accuracy, a consonant improvement on the initial assumed precision for the
smart meters (5 %). A similar result is also observed for the power transformers, but in this
case with an increase on their relative precision of power flow estimation when compared to
the accuracy of the loads. This fact is essentially related to the fact that the uncertainty of many
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Figure 48 – Estimation performance for the active and reactive power flow at the MV/LV trans-
formers of the IEEE US low voltage system, with the centralized and the multiarea
approaches.

loads is redundantly considered all together for the calculation of the power flows on the MV/LV
transformers of the meshed network. For the case of spot loads, such accuracy increase is not that
expressive, since only the uncertainty of a single load monitored by the respective smart meter
provides the information regarding the transformers loading. This is an advantage of properly
representing each individual load instead of directly aggregating them as loads in the primary
feeders, which may not consider such effect properly depending on the aggregation strategy.

It is noteworthy that the smart meters were allocated only at the consumer units (loads)
and that the MV/LV transformers are not monitored by any sensors. Besides, different indicators
regarding the operational condition of the network, such as power losses, voltage unbalance,
voltage drop, equipment loading, among others, were also estimated with similar precision.

7.4.2 Application in Large Scale Medium Voltage System

To evaluate scalability with practically sized distribution networks, the proposed MASE
was applied in a real distribution system of a Brazilian utility. The pilot region comprise an
extension of 33 cities under the responsibility of a single central operator. The region comprises
almost 1 million inhabitants and an area of more than 12 thousand km2 in the south of Brazil.
The distribution system comprises 48 substations, with 35 primary feeders in 34.5 kV and 241
primary feeders in 13.8 kV, illustrated in Figure 49. The size of the region was chosen to capture
the spatial location of both types of feeders, since the majority of the 34.5 kV spread across
different cities in long urban and rural networks. All feeders are represented according to their
unbalanced and asymmetrical characteristics, and Table 12 presents a summary of the main
characteristics to illustrate the composition of asymmetric connections in the primary feeders.

Regarding the measurement set available, the system is majorly monitored by pseudo
measurements obtained from typical load profiles and load aggregation procedures (Massignan
et al., 2018). The SCADA system comprises measurements at the primary substations, presenting
voltage magnitude and active and reactive power at each feeder bay. The utility also has some
special consumers telemetered, large consumers connected directly to the primary network,
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Figure 49 – Extended Large Scale Distribution Network in Brazil. The distribution networks
comprise 35 feeders in 34.5 kV (orange) and 241 feeders in 13.8 kV (gray), into 48
substations (green).

Table 12 – Length and asymmetry on medium voltage distribution feeders

Voltage Level Phase A Phase B Phase C Phases AB Phases BC Phase CA Phases ABC

13.8 kV
Total
length (km) 0.40 0.12 - 41.62 2,260.83 86.40 6,740.35

Percentage 0.004% 0.001% 0.000% 0.456% 24.763% 0.946% 73.829%

34.5 kV
Total
length (km) 314.82 513.64 440.66 - 0.48 5.85 871.37

Percentage 14.664% 23.926% 20.526% 0.000% 0.022% 0.272% 40.589%

Table 13 – Measurement set quantitative characteristics per phase and type.

Measurement Set Phase A Phase B Phase C

Virtual
Active and Reactive
Power Injections 220,633 222,060 222,103

Pseudo
Active and Reactive
Power Injections 24,656 23,229 23,186

SCADA
Active and Reactive
Power Flows 276 276 276

Voltage Magnitude 276 276 276

along with current magnitude measurements spread across the feeders (at voltage regulators and
automatic reclosers), but were not considered in this simulation. Table 13 presents quantitative
details of the information and metering system (measured data, pseudo measurements and
virtual measurements). The mean level of redundancy considered in the test is 1.05, a very low
redundancy as typically encountered in distribution systems. The main purpose is to evaluate the
scalability of the proposed approach and implementations made.
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The decomposition of this system was performed in a feeder and substation basis, in
the sense that each feeder is a local area, and also each substation is an upstream area. Figure
50 presents the histogram of number of variables per each local area, with the whole system
presenting a total of 245,565 nodes, that together sum more than 1 million state variables
(1,174,134). The largest feeder presents 4,500 nodes (approximately 27,252 state variables), and
the system presents a mean number of 700 nodes per feeder. This test intends to explore details
regarding computational scalability, as presented in the sequence.

Figure 50 – Histogram of number of state variables per each local area. The 276 primary feeders
present more than 1 million state variables for the system as a whole.

Initially, Figure 51 presents convergence rate of the local estimations, showing a boxplot
of the reduction on the state variable changes in all 276 feeders per iteration. It illustrates a
quadratic characteristic of convergence was obtained. This, however, was only possible due to the
orthogonal formulation and the sparsity treatment employed. To illustrate the importance of the
sparsity treatment and the associated numerical stability from the orthogonal formulation, Figure
52 illustrates the reduction of nonzero elements in the linear system of the local estimation, in
equation (7.22), due to sparse ordering, and the largest singular value as a metric of numerical
conditioning. The reduction on nonzero elements, from almost 25% to less than 5% in all feeders,
increases computational performance, since less operations are performed to solve the estimation
problem, and also increases numerical stability, since it reduces fill-ins during the factorization
process.

Another important aspect for real time applications at DSOs is the processing time and
memory allocation features for the estimation. Figure 53 presents the individual computational
time and memory allocation for each local estimation performed. As it can be seen, less than
2 seconds are required to perform local estimation, and the majority falls below 400ms, in
accordance to the real-time requirements of energy management systems. It is noteworthy that
there is space for enhancements, such employing optimized general purpose routines, object-
oriented programming and benchmark libraries. Regarding memory allocation, each local area
present a relative small, which tends to grow linearly, with a total requirement of almost 950 MB.
This, characteristic is a positive consequence of employing sparse linear algebra routines, along
with reduced data structures to model the network, and can be further optimized with better
software engineering practices.
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Figure 51 – Boxplot of iterations per each local estimation among the 276 feeders.

Figure 52 – Sparsity index (percentage of nonzero elements) with the AMD ordering technique,
and the associated largest singular value as a metric of numerical conditioning.

Finally, the effects of parallel computing using a shared memory paradigm with OpenMP
was evaluated by increasing the number of parallel threads created (as a reference the i7-
9750H processor presents 6 physical processor, with hyper-threading enabled, with a total of 12
concurrent threads). Figure 54 presents the total computational time of the MASE procedure
employing a different number of threads. For comparison purposes, a Backward/Forward Sweep
method, with similar implementation of routines and data structures, solves a load flow problem
in this large-scale network in about 3 seconds (while maintaining less than 20 ms per feeder).
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Figure 53 – Individual local area processing time and memory allocation requirements for each
of the 276 feeders.

Figure 54 – Total computational time of the proposed MASE using different amount of parallel
threads.

Regarding other implementations in the literature, the work in (Zhou et al., 2020b)
presents computational time from 50 to 160 seconds in a single feeder with 4,500 nodes,
decomposed in 4 areas, aiming at one iteration per second. Another work in (Pau et al., 2019)
provides computational time for a 3,500 nodes system, decomposed in 166 areas, in less than
10ms for WLS approaches, less than 1ms for backward/forward sweep methods, and less than
300ms for a WLAV method, while a centralized WLS converges in 13 seconds. Such comparisons
must be taken cautiously, since several implementation issues and characteristics affect the
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performance, and coding optimization have a significant impact. However, they illustrate an
important assessment to be made for any practical application, to deal with very large scale
networks in less than 1 second is a desirable performance characteristic for novel real time
applications. It also enable using the models and implementations for different applications that
may require sampling different operational conditions of the networks, such as optimization and
voltage control.

In a comparison to the Bayesian Information Fusion, presented previously, the Multiarea
Bayesian DSSE employs the prior distributions for supporting spatial decomposition of the
networks. This enables complementing observability, while exchanging boundary information
with a central processor in a Coordination step. Despite the measured values were mixed into
a single measurement set, similar to conventional state estimators, the prior knowledge could
in fact accommodate sources information gathered in different instants, in a spatio-temporal
manner. In essence, the extrapolation of employing simultaneously both concepts, can increase
accuracy, perhaps even reducing the estimation bias below numerical tolerance, but unfortunately
was not explored so far. This shows once again the strength and versatility of the Bayesian
framework presented throughout this Thesis. It supports further research towards an architecture
to orchestrate different features of the Bayesian framework, which is definitely an exciting
direction to be pursued, and will be discussed in the final Chapter 8.

7.5 Concluding Remarks

This chapter conceived a hierarchical methodology for real time monitoring for distri-
bution systems based on a multiarea state estimation concepts. The proposed MASE intends
to ensure deployment on large scale distribution networks, maintaining numerical and com-
putational performance. A decomposition of the distribution network according to different
levels enable estimation from high-voltage substations, medium voltage primary feeders and the
low voltage secondary circuits. A local estimation stage based on an efficient and numerically
robust orthogonal method deals with inner ill-conditioning of the local areas and ensure high
computational performance. A coordination step then updates boundary state variables among
different areas.

The proposed approach presented similar accuracy than centralized approaches, with
a slight bias on the estimation of state variables, but still presenting accurate estimations for
meaningful electrical quantities of the distribution networks, such as loads and power flows.
Conversely, a significant increase on computational performance is obtained by the decomposi-
tion strategy and also with a sensible reduction on data volume and memory requirements. This
implies on faster implementations and also more flexibility on hardware requirements on distri-
bution operation centers. Besides it also opens the possibility to employ edge computing within
decentralized monitoring architectures, specially in the context of local microgrid controllers
associated with local energy markets, an interesting future work direction.
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It is noteworthy that the proposed MASE can be deployed into large scale distribution
networks with high operational complexity, dealing with three-phase, unbalanced, in the presence
of meshed networks. The methodology also considers different types of components and connec-
tions, as well as different precision levels of measurements, from SCADA, pseudo measurements
and smart meters without simplifications in the nonlinear measurement model.

Future works may seek for improvements on building the prior knowledge, with the goal
of reducing the optimality gap with enhanced prior knowledge. Another important direction
is towards further increments on computational performance exploiting advanced computing
architectures, such as cluster deployment with non-uniform memory access paradigm and also
by leveraging data parallelism in graphical processing units. Besides, also regarding scalabil-
ity, different approaches for estimation can be harmonically orchestrated within the proposed
Bayesian formulation, what increase the possibility of employing diverse algorithms specialized
in different parts of the system.
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8 CONCLUSIONS AND FINAL CONSIDERATIONS

The digitalization of power grids is enabling a smooth transition towards decarbonized
and flexible energy systems, ensuring higher penetration of renewable energy, creating new local
energy markets and increasing safety and reliability in power system operation. An associated
high level of automation ensures such digitalization by incorporating new data sources across
the whole power grid, from the bulk transmission system to the deepest levels of distribution
networks and the end-consumers. Nonetheless, the data by itself provides only a marginal
observation of the power system condition. In this sense, state estimation emerges as a bridge
between data and physics-based models, processing such information and detailed network
models that capture the electric power system essence, while reducing the pervasive effects of
noise.

This Thesis presents new perspectives to support power system state estimation, es-
pecially for distribution systems. The main goal is addressing a diverse set of problems from
classical state estimation formulation, without relying on approximations for the measurement
model or linearisation on power flow equation, while enhancing a probabilistic interpretation for
the state variables. Three main challenges tackled in this work were:

• Enhancing the probabilistic characterization of the state estimation problem;

• Including temporal aspects in the estimations, such as stochastic behavior of the state, and
differences in measurements sampling and updating rates;

• Dealing with scalability of state estimation algorithms for three-phase, unbalanced and
large networks.

A Bayesian Inference perspective provides the main theoretical background that guided
the developments and novel conceptualization proposed in the Thesis. It is a further step into un-
derstanding the often neglected, or misplaced, assumptions that underlay typical state estimation
formulations. For example, the assumption of improper constant priors on the majority of static
state estimators over reinforces the likelihood function and induces probabilities for unrealistic
state values.

In essence, extending the interpretation of the state variables as random variables, inside
the inference problem, enables introducing additional information to support the estimation
process. This issue is often tackled under Kalman Filters but without an explicit formal gener-
alization on the estimation formulation and only perceiving sequential instants. In this sense,
this Thesis opens a fraction of such horizon under full probabilistic conceptualization of the
state estimation problem. The main conclusion is that distribution system state estimation can
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benefit from extensions towards including prior knowledge about the network in the formulation,
both from computational performance as for accuracy under adverse scenarios. It is essential
since such systems tend to present poor quality and low amount of information to aid real-time
monitoring applications, increasing importance under smart grid scenarios.

Such fundamental departure for the state induces more generalist probabilistic charac-
teristics, with non-Gaussian models, to capture such stochastic behavior of the power systems,
namely in this Thesis state evolution, and also from the measurement noise. Kernel density
estimation principles generalize the probabilistic models. Such extension, however, does not hold
the Maximum Likelihood principle as the best estimator, as demonstrated. In this sense, Infor-
mation Theory accommodates such a generalization in an adequate manner with a Maximum
Correntropy principle.

Besides, a first-order state-space model was introduced to include prior characterization
of state variables, based on the Kalman Filter approach, a first step into introducing temporal
and probabilistic relations. The extension for non-Gaussian models then yields a Maximum
Correntropy based Extended Kalman Filter, that was evaluated to treat SCADA and PMU
measurements. The primary benefit of such formulation is the asymptotic response of the filter,
increasing accuracy over time, a feature neglected in traditional static estimation. This, however,
comes with the drawback of degrading the performance in the presence of system transitions and
bad data (anomalies in the system and measurement set).

A numerically stable kernel annealing strategy suppresses such pervasive effects, main-
taining the accuracy of the filter. By enlarging the kernel bandwidth of suspect samples instead of
the current practice of reducing it towards zero, results in the same indifference of such samples
while maintaining numerical stability of the estimation process. In a probabilistic sense, such an
annealing strategy means a smoother empirical distribution function without many spikes.

Regarding the specific objective of distribution networks, this Thesis deals with the
high-fidelity representation of distribution systems, employing a formulation for the three-phase
unbalanced models based on general two-port admittance matrices. Such contribution may
seem marginal, but it is an important achievement for software development since it is a well-
known complexity to properly represent equipment diversity, different connections, and phase
asymmetry. It dismisses often assumed simplifications, such as neglecting some components
(such as transformers and voltage regulator) or, in worst cases, representing distribution networks
only with a positive sequence circuit (balanced and transposed).

In this sense, the diversity of information on distribution systems is also addressed. An
exploration of the measurement vector shows that information sampled in different instants is
essentially mixed, representing an additional systematic error in the estimation. In this sense,
a Bayesian information fusion approach tackles such diversity, in a computationally efficient
manner. By employing a concept of sampling layers, different sources of information typically
available at distribution systems (pseudo measurements, smart meters, SCADA and PMUs) are
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processed separately, while transversal relations are captured with a prior distribution.

Dealing separately with each sampling layer improves accuracy compared with a hybrid
estimation that mixes all information at once. Besides, by employing a fusion model, only
temporal relations across different layers are captured, instead of sequential ones as in the
Kalman Filter, without deprecating accuracy under system transitions. By creating an initial
and observable layer based on pseudo-measurement, the subsequent layers can deal with a
reduced number of real-time measurements, increasing performance. The method’s performance
is further boosted with a sparse orthogonal formulation, that enables dealing with three-phase
unbalanced networks and fast measurement processing (such as those from PMUs), keeping
real-time requirements in practically sized networks.

Finally, scalability issues were addressed throughout the Thesis, and more specifically
with a novel Multiarea State Estimation procedure for large scale distribution networks. A
hierarchical architecture was employed with parallel computing techniques to achieve higher
performance and reach real time processing requirements. The Thesis also brings Bayesian
Inference concepts to support the proposed method, by decomposing the power grids into areas
that may not be observable. Observability is then supported by including prior information, an
exciting feature to model primary feeders. Such priors are updated along with the coordination
procedure, which ensures accuracy. The results illustrate a compromise solution to achieve
increased performance, a trade-off of accuracy compared to centralized approaches, that enables
convergence in huge systems.

A crucial feature of implementation and scalability, also explored throughout the Thesis,
is applying orthogonal methods to distribution system state estimation. Such linear algebra
technique is imperative to enable convergence, enhances numerical stability and increases
computational performance. It is highly recommended that any practical implementation of
distribution system state estimation begins with such numerical methods. Otherwise, poor
convergence characteristics are likely, or even simplifications are required (both in component
representation or model approximations). Other complementary features that go along the
orthogonal formulation are sparsity treatments and ordering techniques to improve computational
performance (both in processing time and memory requirements) and reduce the number of
fill-ins (increasing even further numerical stability).

Regarding future works, the power system state estimation problem is an exciting topic
since it has been increasingly revisited in the context of data-driven learning for power systems.
The several peculiarities of the particular application result in dealing with high-dimensional
learning, and that requires support from expert knowledge about the system. The long-term
perspective is to reach a fully autonomous power grid, with closed-loop large-scale estimators
associated with grid controllers, a clear research gap still open to be explored. In this sense, a
closer conceptual perspective between modern signal processing theory and data analytics can
aid future enhancements. Besides, the integration with technological advances must support this
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endeavour, especially with increased automation in power grids, such as advanced metering
infrastructure, PMUs and fast power electronics-based control.

In this context, two main research directions are devised from this Thesis, that can
accommodate crucial advances for power system state estimation: Bayesian Statistical Learning
and Advanced Applications in Energy Management Systems.

8.1 Bayesian Statistical Learning

The first set of future works follows the probabilistic interpretation of State Estima-
tion. New paradigms and theoretical perspectives may emerge from Statistical Learning and
Probabilistic Signal Processing. The probabilistic interpretation can be embedded as new prior
and hyper-priors model, bringing additional expert knowledge directly in the state estimation
formulations, while maintaining a solid and formal theoretical consistency. In this sense, a few
possibilities are enumerated as possible continuations of this Thesis:

• Exploring Variational Bayesian inference to increase stochastic generalization of the
process and measurement noise. This framework opens new formulations through the
kullback-leibler divergence, where best probabilistic approximations for the models are
searched instead of maximizing likelihood or similarity. In this sense, variational inference
can be explored under two different concepts departing from this Thesis: first along numeri-
cal optimization methods in order to tune kernel bandwidth in Correntropy state estimation;
and second providing a new state estimation formulation based on the evidence lower
bound and parametric approximations for the measurement noise and prior distribution
characteristics.

• Incrementing the probabilistic models with hyper priors for different parameters and com-
plementary layers of information. Different priors may be assigned under an hierarchical
framework to capture additional parametric uncertainty. For instance, employing priors for
the measurement covariance, assumed as known in conventional state estimation, yield-
ing new methods for detecting bad data and miss-calibration of measurements. Another
exciting direction is incorporating additional variables to capture causal relations, for
instance, stochastic load models, weather conditions, social behavioural, urban sensors
among others. Such integration with exogenous variables can be performed in two ways,
that is, supporting the state estimation procedure with additional information, or using
real-time state characterization for different probabilistic analysis, like forecasting or
inferring features of the power grid.

• Associating pattern recognition techniques to the state estimation problem, in order to
automatically identify behaviour of the power grid. This type of evaluation is specially
interesting in the context of dynamic state estimation, that tracks fundamental changes
on the system along time. It could be achieved by extending the proposed state evolution
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concept with high-dimensional clusterization algorithms. For instance, such type of pattern
recognition technique may track topology changes according to observations, and employ
structural learning, based on Bayesian Information Criterion, to evaluate the most probable
topology.

• Employing data stream techniques to detect Markovian jumps and concept drifts on power
system time series acquired in real time (either from SCADA or PMUs). For instance, the
state space formulations may be complemented with a Dirichlet process in the Bayesian
sense that keeps track of state transitions. Another direction is towards tuning anomaly
detection and automatic adaptation algorithms, such as the ones based on innovation
analysis, by upsampling the posteriors through Markov Chain methods.

• Finally, the statistical learning perspectives, along with recent advances on artificial
intelligence, present the exciting opportunity to layer the power systems physics-based
models over data-driven techniques. This enables extracting the most of both paradigms, the
specificity and high dimension categorization of physics-based models, and the adaptability
and robustness of data-driven techniques. Such perspective increases the goal from only
estimating the state but also to recognizing the behaviour of the power grid, and besides
may increment interpretability of machine learning models.

8.2 Advanced Applications in Energy Management Systems

The volume of data is flooding not only in operation centres, but also substations and
new low voltage local controllers and aggregators. The technical and engineering challenges
to deal with such data are immense and complex. Novel and exciting possibilities emerge
in this context, such as the integration of multiple data sources, fast processing solutions,
extracting complementary knowledge about the system, widening application spectrum and fully
completing energy management solutions, from data to decision making. In this sense, we devise
a few interesting applications that are quite reachable in future research efforts that follow the
developed solution in this Thesis:

• Exploration of new numerical methods to increase even further computational efficiency.
In this sense, different non-linear programming algorithms may be employed, such as the
Lagrangian methods to accommodate constraints, new formulations based on the class
of interior point methods, and with different sparse factorization techniques and repre-
sentations. Besides, an interesting challenge is extending and tuning the state estimation
algorithms for GPU computing, leveraging data parallelism paradigms and enabling faster
integration with machine learning algorithms in real time as well.

• Extending the application of three-phase state estimation models for transmission systems,
with the intent of increasing model resolution advanced applications. The higher degree of
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model resolution may improve fault location algorithms under slight unbalanced conditions.
Besides the increased number of PMUs on such networks also enables moving towards
dynamic state estimation, which already extends detailed generator models but may also
benefit from detailed three-phase phasor measurements, thus requiring three-phase models.

• Enabling autonomous power grid operation, supported by closed-loop architectures based
on state estimation and state feedback control. In this sense, model predictive control
presents itself as an interesting formulation that bridges uncertainty and input control
variables in a straightforward extension of traditional state estimation formulations. The
motivation is the growing interest on microgrids, that emerge the possibility of advanced
control architectures on distribution networks to increase the accommodation of renewable
energy, storage, electric vehicles and demand response. Besides it can also help reducing
the cognitive burden of operators at control centres, aiding partial operator-in-the-loop
decision making.

• Exploiting the probabilistic characterization of the state for forecasting and real time risk
analysis of power systems. The probabilistic background of Bayesian Inference, along with
information fusion concepts, may provide a framework to introduce additional information,
such as weather and social features, while supporting different applications that deal
with uncertainty and risk assessment. In this sense, new awareness indexes considering
uncertainty may be created for predictive stability assessment, maximum power transfer,
and resilience evaluation of the network.

• Finally, integrating the state estimation algorithms with international standards and au-
tomation protocols provides interesting engineering problems. For instance, automation
and modelling standards such as IEC Common Information Model, IEC 61850, IEC 62056,
IEEE C37.11 and DNP 3.0 are a few examples. This may apparently resemble only a
technical problem, however this practical scenario may inspire and induce scientific chal-
lenges and novel analytics, fully conceptualizing cyber-physical architectures for power
grid assessment. Regarding IEC 61850, the availability of sampled values technology and
GOOSE messages, if supported by fast processing techniques, can increase response time
of dynamic state estimators. Besides, advanced database pipeline and computing archi-
tectures may also be addressed in such perspective, such as cloud computing, blockchain
applications and further exploring parallel multiprocessor algorithms.
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APPENDIX A – POWER SYSTEM STATE ESTIMATION THEORETICAL
BACKGROUND

Introduction

This Appendix presents the theoretical background for the power system state estimation,
presenting the main formulation of the Weighted Least Squares state estimator, observability and
bad data processing. The main concepts of multiarea state estimation for deployment in large scale
networks are also presented. Followed by state-space formulations for dynamic state estimations
that enlarge the conceptual framework of the estimation process by representing temporal
relations among the state variables. Finally, it also presents the main algorithms developed for
distribution system state estimation are provided as a reference and also to demonstrate the
fundamental aspects of practical implementation. The objective is to provide the main concepts
ant theoretical aspects of modern power system state estimation, both general formulations as
well as specialized in three-phase unbalanced distribution systems.

Static State Estimation and the Maximum Likelihood Perspective

The context of real time monitoring is related to most of the operation and automation
processes of power systems. The goal is to obtain a proper evaluation of power quality, network
reliability, risk assessment, and a more efficient use of the components of the electrical networks.
Thereby, to improve energy management capabilities, operators rely on the accuracy of network
modelling to assess system features. Network operators must be able to evaluate the condition of
the grid taking into account the simultaneous interaction among multiple components and the
data gathered from measurement devices (Hansen; Debs, 1995; Abur; Gómez-Expósito, 2004;
Thomas, 2015; Zhao et al., 2020).

The state estimation problem emerges from this scenario to capture the relations among
measured electrical quantities and the network state. It is traditionally formulated as static
analysis, that is, intending to obtain steady state features of the network. It has a strong relation
with power flow analysis. Although both problems frequently share similar network models they
have some conceptual differences. The main one regards the input data. In state estimation the
steady state is evaluated from measured values, assumed with some degree of uncertainty, and
able to deal with redundancy. Whereas in power flow analysis, a specified loading/generation
condition is evaluated, without any redundancy.

Regarding the available information for real time of power systems, it can be divided
according to the respective sources of data as:

• Real Time Measurements: measured values from the remote Terminal Units (RTUs) and
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Intelligent Electronic Devices (IEDs) from the SCADA systems (also called conventional
measurements), typically composed by active and reactive power flow measurements,
active and reactive power injections, voltage magnitude measurements and current magni-
tude measurements, and also measured synchronized phasors from Phasor Measurement
Units (PMUs), composed by voltage magnitude and voltage phase angles, and current
magnitudes and current phase angles;

• Pseudo Measurements: information obtaines from a previous (or a priori) knowledge
about the electrical network, that represent unmonitored electrical quantities in order to
obtain Observability of the electrical network, that is, provide enough information to
enable the mathematical solution of the state estimation problem. It generally is based on
forecasting methods to accommodate momentarily loss of instrumentation devices, or in
typical characterization about loads and generation. Usually in distribution systems consists
of the majority of information available, representing active and reactive power injections
on distribution transformers, obtained from typical load curves, consumer stratification
and weather information. In comparison with the real time measurements, the pseudo
measurements present lower precision, carrying large uncertainty for the state estimation
process in distribution systems;

• Virtual Measurements: correspond to known electrical quantities of the network, mainly
representing passive nodes with zero injection, that is without generation or loads, or
internal nodes of equipments. The information defined as virtual measurements are for-
mally considered as known and correct, even tough there is not an associated physical
measurement. This way they are typically treated as highly accurate measurements, with
low variance, or as equality constraints in the state estimation problem;

• Logical Measurements: measurements and information of discrete values that influence
the electrical network model, such as statuses of switching devices and circuit breakers,
taps of voltage regulators, status of automatic capacitor banks, and discrete variables of
controllers, that can be telemetered, or also sometimes rely on updates of database in the
operation centre;

• Network Data: information regarding the structural and physical nature of the electrical
networks, composed by parameters and models for each component, and the full topology
of the network with all components.

Within this perspective, the traditional state estimation problem for a power system
with m measurements, and n state variables is formulated according to the following non-linear
measurement model (Monticelli, 1999; Abur; Gómez-Expósito, 2004; Zhao et al., 2019):

z = h(x)+ ε (A.1)
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where, z is the measurement vector (m x 1) composed by the measured values; x is the state vector
(n x 1) typically composed by the complex nodal voltage; h(x) is the set of non-linear equations
(m x 1) that relates the measurement vector with the state variables; and ε is the measurement
error vector (m x 1) often assumed as independent with Gaussian distribution of zero mean and
known covariance matrix R (m x m).

Due to the statistical nature of the measurement model, associated with the error vector
modelled as a random variable, the following equation provides the joint probability function of
the above measurement model:

f (ε|x) = f (ε1|x, ...,εm|x) =
m

∏
i=1

f (εi|x) =
m

∏
i=1

1√
2πσ2

i
e
− (zi−hi(x))

2

2σ2
i (A.2)

where σi is the i-th measurement standard deviation, related to the precision class of the metering
and instrumentation devices, that also compose the diagonal elements of the covariance matrix
R.

The log-likelihood of the joint probability provides the conventional approach to obtain
the state vector x, as the maximum likelihood estimation between the measurement model h(x)

and measured values z:

logL(x) = log f (ε|x) =−
m

∑
i=1

log
√

2πσ
2
i −

1
2

m

∑
i=1

(zi−hi(x))2

σ2
i

(A.3)

The maximum likelihood can then be obtained by the following unconstrained opti-
mization problem, known as Weighted Least Squares (WLS). The R−1 matrix is also known as
weighting matrix of the state estimation problem, since it reflect the weights for the measurement
residuals in the WLS criterion.

minJ(x) =
1
2

m

∑
i=1

(zi−hi(x))2

σ2
i

=
1
2
[z−h(x)]′.R−1.[z−h(x)] (A.4)

The gradient vector of the above minimization problem is given by:

∇J(x) =−H(x)′.R−1.[z−h(x)] (A.5)

where H(x) is the Jacobian matrix of the non-linear measurement model h(x).

And the Hessian matrix of the problem is given by:

∇
2J(x) = H(x)′.R−1.H(x)−

m

∑
i=1

(zi−hi(x))
σ2

i
.
∂ 2hi(x)

∂x2 (A.6)

An important complementary aspect about the measurement model is the concept of
Observability. A system is said to be observable if the quantity. location and type of measurements
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can provide the solution of the above minimization problem. One way to represent such concept
is the algebraic interpretation as used in (London Jr et al., 2009), where a system with nstate
variables is said algebraically observable if the Jacobian matrix H(x) has full rank:

rank(H(x)) = n (A.7)

If the optimization problem can be solved without convergence issues, the system is said
to be numerically observable. There is a third observability concept based on graph theory and
network topology, associated to a spanning tree related to the metering system and power system
topology (Fantin, 2016).

The conventional solution for the state estimation problem, that is, obtaining the optimal
value of the state vector x, is based on the linearisation of the model h(x), given by equation
(A.4) e employing the iterative Gauss-Newton method (Abur; Gómez-Expósito, 2004). The
linearisation of h(x) is obtained through the first-order terms of the Taylor expansion in the
vicinity of an operating point xk. This way, equation (A.4) is rewritten as:

minJ(x) =
1
2
[z− (h(xk)+H(xk).∆x)]′.R−1.[z− (h(xk)+H(xk).∆x)] (A.8)

where ∆x = (xk+1− xk) is the state vector update to be used in the next iteration of the method
k+1.

The optimal value of x is obtained by the solution of the minimization problem in (A.8)
through the first-order optimality condition:

H(xk)′.R−1.H(xk).∆x = H(xk)′.R−1.[z− (h(xk)] (A.9)

where G(x) = H(xk)′.R−1.H(xk) is known as the Gain matrix of the state estimator. The solution
of the above linear syste is usually obtained by direct methods for linear system, such as the
factorization methods (LU and QR). The second-order optimality condition in this case is given
by:

H(xk)′.R−1.H(xk)> 0 (A.10)

If the system is algebraically observable, then H(x) is full rank, as previously mentioned.
Besides, following the covariance matrix definition ensures that R and R−1 are positive definite.
Thereby, a solution of (A.9) satisfies the second-order optimality condition.

The method is iterative in the sense that equation (A.9) is calculated sequentially upon
convergence. Convergence is obtained whenever the values of values of x in two successive
iterations presents a difference below a numerical tolerance pre-specified tol:

∥∆x∥∞ ≤ tol (A.11)
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The presented mathematical formulation for the state estimation problem for power
systems consists of the general version as an unconstrained optimization problem defined by A.4.
It is noteworthy there are different propositions to the above problem, by including constraints
to the problem or also interchanging the objective function. Typically, equality constraints are
incorporated to treat virtual measurements, that often represent nodes without any injection,
that is, passive nodes without loads or generation. Regarding different objective functions,
they are often associated with robust estimation methodologies with the goal of reducing the
effects of possible gross errors in the estimation (also referred as bad data or outliers) (Abur;
Gómez-Expósito, 2004).

Observability Analysis

A power system is said to be observable if, with a given measurement set, it is possible
to obtain all of its state variables. This concept is related to the existence of a solution to the
equation (A.4). Through the years some methods to evaluate the observability were developed
(London Jr; Alberto; Bretas, 2007; Bretas, 1996; Wu; Monticelli, 1985). Formally, the work
in (Krumpholz; Clements; Davis, 1980) presents defines the observability concept under three
perspectives:

• Topological Observability: "A power system is said to be observable with respect to the
given measurements if there exist an observable spanning tree associated to the metering
system and power system network"

• Algebraic Observability: “A power system is defined algebraically observable with respect
to the given measurements if the Jacobian Matrix (H(x)) has rank equal the number of
state variables."

• Numerical Observability: “A power system is said numerically observable if the measure-
ment model can be iterativelly solved for a state estimate from flat start"

The topological analysis is based on the characterization of the metering systems accord-
ing the graph theory. By the definition, this analysis consists of searching for a spanning-tree,
through the associated graph with the metering system Gm and the power network connectivity.
A spanning tree consists of a sub-graph of Gm that is a a tree, a undirected connected graph
without cycles (Krumpholz; Clements; Davis, 1980; Costa; Lourenco; Clements, 2002). The
analysis seeks different combinations of spanning trees, depending on the type and location of
measurements, that connects all nodes of the graph associated to the network topology, with at
least one different measurement associated to each branch of the spanning tree.

The algebraic observability analysis evaluates the rank of the Jacobian matrix H(x) of
the measurement model. By definition, if the system is observable then the Jacobian matrix is full
rank, rank equals the number of state variables n, as describe in (A.12). The notion of rank of a
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matrix is related to the concept of linear dependency among its column-vectors (or row-vectors)
(Golub; Van Loan, 2012). Different methods exploit such dependencies to seek for redundancy
and observability features of the power system, such as the work in (London Jr; Alberto; Bretas,
2007) that exploit factorization paths of the Jacobian matrix to evaluate observability qualitative
aspects.

rank(H(x)) = n (A.12)

Some authors include the algebraic analysis as a particular case of numerical observ-
ability analysis (Abur; Gómez-Expósito, 2004). In this sense, it requires also complementary
concepts regarding convergence of the non-linear optimization algorithms and numerical stabil-
ity. Regarding the conventional Gauss-Newthon method, widely employed in the literature, the
following Theorem attests its convergence:

Theorem (demonstration in (Nocedal; Wright, 2006)): Supposing the residual function
(z−h(x)) is Lipschitz continuous and differentiable in a region of the domain where the objective
function is limited N := {x|J(x) ≤ J(x0)}, and that the Jacobian H(x) satisfies the full rank
condition in N . Then if the iterations xk are generated by the Gauss-Netwon method with
step-length satisfying th e Wolfe condition, yields:

lim
k→∞

HT (xk)(z−h(xk) = 0.

The Wolfe conditions, are decreasing conditions that ensure sufficient decrease (Armijo
condition) and a curvature condition in each iteration (Nocedal; Wright, 2006):

J(xk +α
k
∆x)≤ J(xk)+ c1α

∇J(xk +α
k
∆x)T

∆x≥ c2∇J(xk)∆x, (A.13)

where, c1 and c2 are constants with 0 < c1 < c2 < 1. They ensure a step length in each iteration
towards the minimum that is not too small, with slow convergence, and not too large, that may
cause divergence. Typically, are guaranteed by inexact line search methods for choosing the
step-length, for instance based on backtracking algorithms (Nocedal; Wright, 2006).

Besides the convergence characteristic from the above theorem, another important aspect
is numerical stability, specially in the solution of the linear systems associated to the Normal
equations in (A.9), during each iteration of the state estimator. This concept of numerical
stability is related to the possibility of performing different computations, without losing solution
accuracy, while considering the limitations imposed by floating-point arithmetic in modern
computer architectures. Briefly, it is strongly related to the concept of numerical conditioning,
and the condition number of the Normal equations.
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Bad Data Processing

One of the most essential features of state estimation is the possibility to detect and
identify bad data (or gross errors), besides filtering white noise from the measurement process
(Monticelli, 1999; Abur; Gómez-Expósito, 2004). These errors originate from bad calibration
of the measurement equipment, current transformer saturation, communication errors and even
cyber attacks. The effects of bad data in the estimation process can be very severe, reducing
accuracy and even compromising functionalities that rely on the real-time state of the network.

In order to suppress such effects, the WLS estimator is associated with techniques for
bad data processing (detection and identification), many of them based on the analysis of the
residuals of the WLS estimator. Among them, the Largest Normalized Residual Test (LNRT)
and the b-hat Test are the most popular (Monticelli; Garcia, 1983; Abur; Gómez-Expósito,
2004). They are based on the following claim typically made regarding bad data processing
(Abur; Gómez-Expósito, 2004): when there is a single Gross Error (GE), the largest normalized
residual (absolute value) corresponds to the bad measurement, provided that it is not critical
and its removal does not create any critical measurement among the remaining ones. However,
such claim is not suitable for practical applications in real-life state estimators (Zhao; Mili,
2018b; Massignan et al., 2020), since it is based on the hypothesis that only one measurement is
contaminated with GE and the remaining measurements are exact (free of both white noise and
GEs).

Such limitation of the WLS associated with the LRNT, motivated research on robust state
estimators. These estimators do not rely on the WLS criterion and are based on different statistics
to perform the estimation. Among them, the most prominent, and with extended research on the
topic, are the Weighted Least Absolute Value (WLAV) in (Celik; Abur, 1992), the Least Median
Squared (LMS) in (Mili; Phaniraj; Rousseeuw, 1991), and the Schweppe-Hubber Generalized M-
Estimator (SHGM) in (Mili et al., 1996). In another perspective, a broader notion of the inherent
error probability function presents promising features towards bad data processing, assuming
Gaussian mixtures and the SHGM estimator as in (Zhao; Mili, 2018a), or with Information
Theory concepts and a kernel density estimator in (Miranda; Santos; Pereira, 2009).

The bad data or gross errors (or outliers) processing step is performed after the estimated
state x̂ is obtained. It is necessary to calculate the normalised residue and, for that, the residue’s
covariance matrix Ω is used as follows:

Ω =W−1−H(x̂)(H(x̂)TWH(x̂))−1H(x̂)T (A.14)

With the diagonal elements of the matrix Ω, three different indexes are calculated to
guide the bad data detection and identification. First, the normalised residue is calculated for
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each measurement:

rN
i =
|zi−hi(x̂)|√

Ωii
. (A.15)

With the normalised residue, it’s possible to calculate the index of the b-hat method,
following:

b̂i =
σii√
Ωii

rN
i , (A.16)

where σii is the standard deviation of the i− th measurement, obtained from the diagonal of the
matrix W .

The maximum normalized residue test enables the detection and identification of a
measurement with GE and the identification of critical measurements, that is, if the removal of
said measurement renders the system not observable. The b-hat test enables the correction of a
measurement affected by gross errors.

Multiarea State Estimation

Following the presentation of the formulation of state estimation in power systems,
this section presents the main concepts related to Multiarea State Estimation (MASE). The
Multiarea State Estimator corresponds to the efficient application of state estimation procedures
in large scale power systems, seeking computational performance gains (processing time, memory
allocation, processing capacity), by exploring the fact that measurements are obtained from a wide
area spread across the electrical network (Gómez-Exposito et al., 2011b). The basic approach
of such estimation process consists of the separation of the power systems into sub-areas, in
which a local state estimation is formulated for the internal nodes of such sub-areas and with a
special treatment for frontier regions (boundaries of each area). Different architectures of MASE
perform the state estimation process separately for each area, and the results refine the estimation
of the frontier nodes. This section presents the nomenclature, definitions, classifications and
characteristics proposed for MASE (Gómez-Exposito et al., 2011b). Such concepts are important
to any practical implementation that aim in large scale applications.

Initially, given a power system by A connected sub-areas, that is, a power system that
if was treated as a centralized approach it would have a single area A = 1. Let us denote as Sk

the set of nodes that belong to the k-th area and S the set of nodes of the whole power system.
Initially, is possible to define:

S =
A⋃

k=1

Sk (A.17)

According to the level of overlapping among areas, the MASE can be classified as the
following, illustrated in Fig. 55:
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1. MASE without overlapping areas: different areas does nor present any nodes or branches
in common;

2. MASE with overlapping nodes: adjacent areas share a common node in a single level of
interconnection (only the nodes at the boundaries);

3. MASE with extended overlapping nodes: adjacent areas share more than one common nodes
in a multiple levels of interconnection (more nodes besides the ones at the boundaries);

Figure 55 – Different types of overlapping zones among different areas in MASE.

Thus, depending on the level of overlapping the state variables vector in each area may
be composed by:

• xik: state variables associated to the internal nodes of each area k;

• xbk: state variables associated to the boundary nodes of each area k;

• xnk: state variables associated to the internal nodes of adjacent areas to the area k (areas
with extended overlapping zones).

Besides, the measurement vector can be devised for each area as:

• zik: internal measurements, that relates internal state variables xik and boundary state
variables xbk;

• zbk: boundary measurements, that relates boundary state variables xbk, as well as the state
variables of extended overlapping zones xnk;
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The measurement model for the centralized state estimation in (A.1), can be rewritten
for each area k separately according to the equations below, decomposing internal measurements
and boundary measurements (Korres, 2011):

zik = hik(xik)+ εik k = 1, ....,A

zbk = hbk(xbk,xnk)+ εbk k = 1, ....,A
(A.18)

From a numerical optimization perspective, the MASE can be seen as a particular
application of decomposition techniques (Gonzalez et al., 2015; Korres, 2011; Conejo et al.,
2006). With the above measurement model, the state estimation problem can be formulated to
minimize the WLS criterion, as previously described. Thereby, the MASE can be formulated
as the following constrained optimization problem for the above measurement model (Korres,
2011):

min J(x) =
1
2

r′b.R
−1
b .rb +

1
2

A

∑
k=1

r′ik.R
−1
ik .rik

s.a. rb− zb +hb(x) = 0

(A.19)

where the subscript b represents the boundary measurements for all sub-areas of the electrical
network with the respective weighting matrix Wb (the inverse of the boundary measurement error
covariance matrix Wb = R−1

b ), rik = zik−hik(xik) is the internal measurements residual for each
are area k and respective weighting matrix R−1

i . Although it has been presented as a constrained
problem, it can also be written as an unconstrained problem.

The multiarea state estimation problem consists of separating the above objective function
into two parts: one related to the internal measurements (the local estimation process); and the
second related to boundary measurements (the coordination process). Different methods have
been proposed to solve the MASE problem, as presented in (Gómez-Exposito et al., 2011b).
They mostly rely on the traditional state estimation WLS criterion both at the local as well as the
coordination level. Some approaches apply heuristics to simplify the optimality conditions of the
problem. Also, there are methods based on equality constraints among adjacent areas that are
solved by variations of the Lagrangean method and other non-linear programming framework
(Conejo et al., 2006).

Regarding the developed architectures, an important characteristic is the possibility to
interchange information among different areas during the MASE process. As a consequence, the
architectures are mostly related to the computer architecture implemented. They can be separated
in two main categories (Gómez-Exposito et al., 2011b):

• MASE with Hierarchical Architectures: a local estimation process is performed in each
area independently, followed by a centralized coordination process that synchronizes and
coordinates different local estimations;
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• MASE with Distributed Architectures: in this case there is not a centralized coordination,
and the local process are performed considering an exchange of information in neigh-
bour areas. The coordination among areas is usually performed by substituting boundary
state variables with the latest estimated values, thus a relaxed version of the centralized
estimation problem.

Regarding the coordination among local estimation, the Hierarchical MASE can be
divided into (Gómez-Exposito et al., 2011b):

• Coordination at the state estimation level: local estimators provide the final converged
solution from their respective areas to the central coordination. Whenever only on coordi-
nation exchange process is performed, this methodology provide sub-optimal estimates.
However, this approach requires less adaptations to already available state estimators;

• Coordination at the iteration level: local estimators provide information for the central-
ized coordination step at each iteration of the local convergence process. The estimations
are coordinated at each iteration, enabling faster convergence to the optimal solution of
the state estimator. This approach requires adaptations at the core algorithms of traditional
state estimators and demands faster communication among local estimators and the central
coordinator;

• Hybrid coordination: consists of balanced option among the two previous processes,
where at some amount of iterations the local estimations are provided for the central
coordinator.

Another important aspect in any MASE is the synchronization among measurements and
the processes, specially for distributed architectures. Measurement synchronization is important
since the updating rate of the SCADA systems may present a large range, and, at some cases, even
fail to communicate. This problem can be counter by accepting some level of sub-optimality or by
improving the communication and redundancy of the SCADA system. Besides, the incorporation
of synchronized phasor measurements requires special treatment across the different areas
during the estimation process (Gómez-Exposito et al., 2011b). Regarding the estimation process
synchronization, it comprises the updating rate and availability of information among adjacent
area, or among areas and the central coordinator. In general, the central or the decentralized
processes use the latest available information from adjacent areas or assume some standby time
to receive missing informations.

Dynamic State Estimation

This section introduces the concept of a state space model for power system state
estimation. It carries a fundamental difference from the static perspective that can be widened by
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the Bayesian Inference perspective and foundations, the main theoretical background this work
explores.

Since its conception in the early 1970s, power system state estimation has been focused
on processing the steady-state condition of the transmissions systems, under a static analysis
framework (Monticelli, 1999; Abur; Gómez-Expósito, 2004). With the penetration of renewable
energy and new control equipment, the static perspective does not provide the modern energy
management systems’ requirements. It became imperative to capture system’s dynamics for
advanced automated applications, in such a manner to provide fast control actions, increase the
reliability of the system, counter cyber-attacks and optimize resources across the power grid
(Zhao et al., 2019; Zhao et al., 2020).

As far as this thesis explores, dynamic state estimation in electric power systems means
estimating the network states, voltages magnitude and phases, for an interconnected power
system, considering the time relation between states. There are many dynamic state estimation
formulations, the Kalman Filter formulation being one of them (Kalman, 1960). In dynamic state
estimation, due to the time relations between the states, beyond the measurement gross error, the
occurrence of another anomaly may occur, such as in case of sudden large load change, yielding
a larger process error (Zhao et al., 2019).

In the effort of surpassing many of the practical and theoretical challenges, different
versions of the Kalman Filter were proposed, such as the Linear Kalman Filter (Sarri et al.,
2016), the Extended Kalman Filter (Fan; Wehbe, 2013), the Unscented Kalman Filter (Valverde;
Terzija, 2011), the Cubature Kalman Filter (Sharma; Srivastava; Chakrabarti, 2017) and the
Ensemble Kalman Filter (Zhou et al., 2015). Nonetheless, such approaches consider a single
stationary scenario or that known changes occurs on the system. It translates on the assumption
that the system’s transition matrix is always correct, what does not hold on a practical scenario.
Besides, some applications focus on generator and controller responses during transient events,
disregarding the bulk power system, dismissing its multivariate nature.

Within the power systems realm, dynamic state estimation has been conceptualized
under different perspectives, mainly related to the definition of state variables. The fundamental
difference comprises the inclusion, or not, of internal variables from generators and loads (also
referred as dynamic state variables), besides the complex nodal voltages of the power network
(also referred as algebraic state variables) (Zhao et al., 2019; Zhao et al., 2020). The first focus
on fast transient events that may cause instabilities, while the second on slower rates of change
that affect the loading condition of the power networks. Nonetheless, both represent a system
subject to a stochastic phenomenon and uncertainty. The difference lies on the time scale of
events and observed response of the system.

Without loss of generalization, the power system state estimation can be associated with
a first-order nonlinear state space model in each instant t, given by:
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xt = f (xt−1)+ωt−1 (A.20)

zt = h(xt)+ e

where, the first equation is known as process model, with f (xt−1) the state vector in a previous
instant (t− 1) and ωt−1 is the process noise, the second equation is the measurement model
presented in the previous section. The above model can also be extended to incorporate the oper-
ational constraints of the power system components, such as generation capability and physical
limitations of controllers. There is the possibility to increase the model order, incorporating
additional temporal delays, however this is not a common practice for power systems.

There are three main approaches to deal with the above state-space under perspective of
dynamic state estimation for power systems:

• Tracking State Estimation: this formulation assumes the previous instant as a good approx-
imation for the current estimation step, by a direct relation from all state variables from a
previous instant with the following;

• Forecasting-Aided State Estimation: this formulation introduces a forecasting stage to
capture the temporal relations that may arise from algebraic variables in a linear model,
employing linear regression and trend models to predict future state variables;

• Dynamic State Estimation: this formulation extends the state variables to accommodate
internal variables for generators and controllers, formulating a differential and algebraic
set of equations to model the system behaviour;

Tracking State Estimation

The tracking state estimation consists in the following discrete time-variant nonlinear
model:

xt = xt−1 +ωt−1 (A.21)

zt = h(xt)+ e

The estimated state is then obtained by a filtering process also based on the MLE principle.
The solution of the estimation problem, i.e., obtaining the state variables at the current instant t

(x̂t), has been treated in several ways, such as the ones based on Kalman Filter approaches (Sarri
et al., 2016; Coutto Filho; Souza, 2009) or with augmented WLS formulation such as (Simões
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Costa; Albuquerque; Bez, 2013; Zhao et al., 2016). In this case with the following optimization
problem:

min [zt−h(xt)]
T R−1[zt−h(xt)] +[xt−1− xt ]

T Q−1
t−1[xt−1− xt ] (A.22)

Regarding the Kalman Filter approach, it consists of a two-step recursive algorithm, with
the following formulation for the tracking state estimation model:

Prediction Step: The prior mean and covariance matrix are given by:

x̂ t|t−1 = x̂ t−1

Pt|t−1 = Pt−1 +Q (A.23)

Update Step: The Kalman Filter gain, the posterior state and posterior covariance are
then updated:

Kt = Pt|t−1HT(HPt|t−1HT +R
)−1

(A.24)

x̂t = x̂ t|t−1 +Kt
(
zt−Hx̂ t|t−1

)
Pt = (I−KtH)Pt|t−1(I−KtH)T +KtRKT

t (A.25)

where, H is the Jacobian matrix of the measurement model, Kt is the Kalman Filter Gain
matrix, I is the identity matrix and P is the calculated state covariance matrix, t is the current
time step, and t|t-1 stands for the conditional relation between two time-steps. The nonlinear
version of the above model corresponds to the WLS Extended Kalman Filter (EKF) that performs
linearization of the measurement equations, and the Iterated EKF (IEKF) that updates such
linearization iteratively, thus presenting more accurate results.

Forecasting Aided State Estimation

The concept of Forecasting-Aided State Estimation (FASE) is also based on a state
space model with the introduction of trends and a transition matrix to represent the relation
between two successive instants. The formulation consists of the measurement model (6.1) and a
forecasting model that relates the system’s state at different instants. In order to prevent semantic
confusion with the term dynamic state estimation (Rouhani; Abur, 2018), much common among
stability research, the authors in (Coutto Filho; Souza, 2009) indicate the FASE terminology as
more interesting for the state estimation area. In this sense, FASE is intended to describe "slow
time evolution of the static-state, observed from multiple scans of measurements" (??). The state
space model can be used with two different goals: to relate the current state to a previous one
by the forecasting model; or to predict the next state. The first approach can be written as the
following discrete time variant system:
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xt = Ft−1.xt−1 +gt−1 +ωt−1 (A.26)

zt = h(xt)+ e

where, Ft−1 is the state transition matrix; gt−1 represents a forecasting trend; ωt−1 is the forecast-
ing error assumed as white Gaussian noise with zero mean and covariance matrix Qt−1 (??); and
the second set of equations is the measurement model at the respective instant t, in this case the
nonlinear model. But if only PMUs are considered it is possible to use the linear measurement
model (C.3).

The solution of the above model is also accomplished by employing the Kalman Filter
approach, in a two-step algorithm similar to the previously presented, but in this case considering
also the state transition model. The tracking state estimation is actually a simplified version of
the forecasting aided state estimation model, assuming an identity matrix as the state transition
matrix and neglecting trends.

Different methods may be employed for estimating the transition matrix, such as the
exponential smoothing approach, using Holt’s method, or different regression models according
to learning algorithms as well. The method however is also highly affected by abrupt changes or
systemic transition that modify the stochastic behaviour of the system.

Dynamic State Estimation

This formulation entails a detailed internal variables of electrical machines and compo-
nents, that is, generator modelling along with their respective controllers, into the state estimation
formulation. Also the load dynamics may be incorporated in the model. Such variables are also
called dynamic state variables y. And also keep the algebraic state variables x of the electric
power network (the complex nodal voltages). Thus it consists of a set of Differential Algebraic
Equations, that describe the fast transients along with the interconnected power network in a
single estimation formulation:

ẏ = f (y,x)+ω (A.27)

z = h(y,x)+ e

The solution method in this case, is obtained through numerical integration methods such
as runge-Kutta methods and Euler Interpolation. Often the stochastic aspects of the algebraic
state variables (complex nodal voltages of the power network). The main motivation towards
this kind of formulation is encompassing measurements with fast sampling, such as the Phasor
Measurement Units and sampled values from the IEC 61850 protocol, and enabling advanced
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closed-loop autonomous control. More details about such type of formulation may be referred in
(Zhao et al., 2020).

Distribution System State Estimation

Despite an extensive application and research on transmission systems, up to these
moment the state estimators have not been widely deployed on distribution systems. In this
context it is noteworthy that the distribution networks present singular characteristics to be
considered into the estimation process. Therefore the state estimators consolidated in transmission
system cannot be directly applied to distribution systems. (Singh; Pal; Jabr, 2009; Baran, 2012;
Lefebvre; Prévost; Lenoir, 2014; Švenda; Strezoski; Kanjuh, 2017; Ahmad et al., 2018). In
order to deal with such challenges, specific approaches of state estimation were developed for
distribution systems, starting mainly in the beginning of the 1990s. As presented in the previous
sections, regarding distribution systems three main algorithms were developed to deal with the
particularities of such systems, the WLS estimator, the AMB estimator and the BC estimator.
The next section presents the algorithms of these three main approaches for distribution system
estimation, discussing their main theoretical concepts and particularities.

Another important aspect of distribution systems is the requirement of three-phase
mathematical representation of the electrical network and its components. That is, with a greater
level of details when compared to the transmission system, where the model is often represented
only by its positive sequence circuit. The major effort for a proper modelling in distribution
system state estimation is to capture the unbalanced and asymmetrical nature of such networks.
A three-phase representation of the network enables evaluating power quality issues, and also
performing inferences about the system condition in each phase and at different parts of the
power grid. This section will focus on the algorithms developed to solve the distribution system
state estimation problem, providing some guidance related to the three-phase aspect. Detailed
information about the three-phase unbalanced and asymmetrical models are presented in Chapter
4.

Weighted Least Squares Estimator

The application of the conventional approach of power system state estimation for DSs
is based directly on the theoretical formulation of the Weighted Least Squares (WLS) method
presented in the previous section, and was initially proposed for DSs in (Baran; Kelley, 1994;
Whei-Min Lin; Jen-Hao Teng, 1996). This approach uses the complex nodal voltages (in polar
coordinates) in all buses and phases of the system as state variables. Thus, for distribution
network with the number of phases n f ases and the number of buses nbarras, the state vector is
given by:
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x =
[
V p

φ
θ

p
φ

] p ∈ {1, ...,nbarras}
φ ∈

{
1, ...,n f ases

} (A.28)

where p denotes the bus from the electric network and V and θ are the voltage magnitude and
voltage phase angle at each phase φ . This way the amount of state variables depends on the
quantity of phases in each bus (single, two or three-phase, as an example).

Besides, one of the buses is taken as angular reference for the network. In general,
the voltage phase angles are assumed for each phase of the reference bus, for instance as a
three-phase abc balanced bus:

θa = 0o
θb =−120o

θc = 120o (A.29)

As presented in (Silva, 2018), the treatment of the angular reference is not a trivial
question for DS state estimation and highly impacts the estimator accuracy, once, in general, the
primary substation is taken as the reference bus thus affecting the entire estimated state variables
for the distribution feeders. A way to counter this problem, is in the presence of synchronized
phasor measurements, from PMUs, where there is not the necessity of assuming phase angle
values for the reference bus. Instead, the PMUs are able to provide a direct measurement of the
voltage phase angles and current phase angle of the electric network, thereby providing an angle
reference for the state variables (Fantin, 2016). When such measurements are not present, the
reference bus can be assumed as balanced, as previously described, a rough approximation in
practical situations, or a special treatment for the reference may be included, such as by including
short-circuit equivalents in the substation model as in (Silva, 2018).

Another important aspect in the WLS is the measurement model h(x), that is, the
mathematical model that relates the state variables with the measured electrical quantities across
the network. Thus we obtain the measurement vector model h(x) and the respective Jacobian
matrix H(x) according to the respective measurements, for instance ordered according equation
(A.30) for a typical set of measurements, composed by active and reactive power injections,
active and reactive power flows and voltage magnitudes.

h(x) =



Pps
φ
(x)

Qps
φ
(x)

Pp
φ
(x)

Qp
φ
(x)

V p
φ
(x)


H(x) =



∂Pps
φ
(x)

∂V k
φ

∂Pps
φ
(x)

∂θ k
φ

∂Qps
φ
(x)

∂V k
φ

∂Qps
φ
(x)

∂θ k
φ

∂Pp
φ
(x)

∂V k
φ

∂Pp
φ
(x)

∂θ k
φ

∂Qp
φ
(x)

∂V k
φ

∂Qp
φ
(x)

∂θ k
φ

∂V p
φ
(x)

∂V k
φ

0



k = 1, ...,nbarras

φ = 1, ...,n f ases
(A.30)
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where, Pps and Qps are the active and reactive power flow measurements in branch ps (between
nodes p and s), Pp and Qp are the active and reactive power injections measurements at node
p, V p are the voltage magnitude measurements at node p, and φ is the respective phase of
each measurement. For the WLS state estimator, the expressions that build the vector h(x) are
obtained from a non-linear measurement model that relates the complex nodal voltages with
measured active and reactive powers. This model can be obtained by the three-phase network
model that will be presented in Chapter 4, according to the components of the distribution
network. Besides, the Jacobian matrix elements correspond to the partial derivatives are also
obtained by the network model presented in Chapter 4.

Finally, the measurement error covariance matrix R, the inverse of the weighting matrix
R−1, is assumed as known and built according to the precision of each element of the measure-
ment vector. This way, the method presented in the previous section can be applied directly for
the solution of the state estimation problem. The algorithm 2 presents the main steps for the
WLS state estimator implementation.

Algorithm 2: WLS STATE ESTIMATOR

Input :Network parameters, network topology,x0, tol

Output :Estimated state vector x

1 Begin
2 k← 0 e xk← x0

3 Do
4 Build measurement model: h(xk) and H(xk)

5 Calculate Gain matrix: G(xk) = H(xk)′.R−1.H(xk)

6 Solve linear system: G(xk).∆x = H(xk)′.R−1.[z− (h(xk)]

7 Update state variables: xk+1 = xk +∆x

8 k = k +1

9 while ∥∆xk∥∞ ≤ tol;

10 end

Admittance Matrix Based Estimator

The effort for searching more computationally efficient algorithms, a new state estimator
was proposed in (Lu; Teng; Liu, 1995), seeking a mathematical formulation that accomplished
a constant Gain matrix throughout the iterative process. This approach proposes the complex
nodal voltages in all buses and phases of the network represented in rectangular coordinates as
state variables. This estimator is known as Admittance-Matrix Based (AMB) state estimator
(Almeida; Ochoa, 2017). Thus, the state vector is defined as follows:

x =
[
V real

p,φ V imag
p,φ

] p ∈ {1, ...,nbarras}
φ ∈

{
1, ...,n f ases

} (A.31)
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where p denotes the bus of the electric network and V real
p,φ and V imag

p,φ are the respective real and
imaginary parts of the voltage phasor in phase φ . Similar to the WLS state estimator, a special
treatment must be given to the reference bus in the AMB estimator.

To achieve a constant Gain matrix, besides using the voltage phasors in rectangular
coordinates as state variables, this estimator converts the active and reactive power measurements
(injections and power flows) into equivalent current measurements. It follows the idea that the
non-linear characteristic of the measurement model is due to the non-linear relations between
the complex powers and the voltage and current phasors. Thus, the active and reactive power
flows and injections are transformed in equivalent current measurements, separately into their
real and imaginary parts, using the voltage phasor calculated at each iteration, using:

İeq
ps,φ = Re{Ieq

ps,φ}+ j.Im{Ieq
ps,φ}=

(
Smed

ps,φ

V̇ k
p,φ

)∗
(A.32)

where, İeq
ps,φ is the equivalent current phasor at phase φ in the branch ps (between buses p and

s), composed by its real and imaginary parts, Smed
ps,φ is the measured complex power flow (active

power Pmed
ps,φ and reactive Qmed

ps,φ ) in phase φ in the branch ps, and V̇ k
p,φ is the calculated complex

nodal voltage at bus p in the latest iteration of the method(k).

By obtaining equivalent current measurements, the measurement vector is composed
only by complex currents in rectangular coordinates, that presents a linear relation with the
complex voltages also in rectangular coordinates. As an example of such relation, an active
and reactive power flow measurement in branch ps is transformed into equivalent measurement
according to A.32. The measurement model in this case can be written using the admittance
matrix of the branch ps as:

h(x) =

(
Re{Ieq

ps}
Im{Ieq

ps}

)
=

(
Gpp Gps −Bpp −Bps

Bpp Bps Gpp Gps

)
.


V real

p

V real
s

V imag
p

V imag
s

 (A.33)

where, Gpp, Gps, Bpp and Bps are the real and imaginary parts, respectively, of the admittance
matrix of the branch ps. A similar treatment is given to the active and reactive power injections.
Voltage magnitude measurements are also transformed in rectangular coordinates, as assumed
for the state variables in the AMB state estimator. To accomplish this, equation (A.34) is applied
for the voltage magnitude measurements.

h(x) =V eq
p,φ = Re{V eq

p,φ}+ j.Im{V eq
p,φ}=V med

p,φ .
V̇ k

p,φ

|V̇ k
p,φ |

(A.34)

where, V med
p,φ is the measured voltage magnitude at phase φ in bus p,and V̇ k

p,φ is the calculated
values for the complex nodal voltage in bus p at phase φ in the latest iteration of the method k. It
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is noteworthy that the voltage magnitude measurement are transformed in a pair of equivalent
measurements, one for the real part and another for the imaginary part (Almeida; Ochoa, 2017).

Using equation (A.35), it is possible to obtain the elements of the Jacobian matrix of the
AMB estimator, given by a linear relation. For voltage magnitude measurements the derivative
are unitary elements directly related to the state variables.

H(x) =


∂Re{Ieq

ps}
∂V real

p

∂Re{Ieq
ps}

∂V real
s

∂Re{Ieq
ps}

∂V imag
p

∂Re{Ieq
ps}

∂V imag
s

∂ Im{Ieq
ps}

∂V real
p

∂ Im{Ieq
ps}

∂V real
s

∂ Im{Ieq
ps}

∂V imag
p

∂ Im{Ieq
ps}

∂V imag
s

=

(
Gpp Gps −Bpp −Bps

Bpp Bps Gpp Gps

)

(A.35)

The elements of the Jacobian matrix in this case are obtained from the admittance
matrices of DS components, considering also the mutual coupling among different phases. Thus,
the following linear measurement model can be written for the AMB estimator:

z(x) = H.x+ ε (A.36)

where H is the linear model composed by the system conductance and susceptance matrices
that relates the equivalent current measurements with the state variables x (the complex nodal
voltages in rectangular coordinates). The measurement vector z in the above formulation is given
as a function of x, since they are transformed according to the calculated state variables values at
each iteration.

The measurement error covariance matrix R also needs to be calculated according to
the transformations made in the measurement model. It is obtained by the calculation of the
equivalent measurements variance using error propagation theory (Almeida; Ochoa, 2017). With
the equivalent measurements variances, the measurement error covariance matrix is updated
and also the weighting matrix of the AMB estimator. For equivalent current measurements,
and for equivalent voltage magnitude measurements, the equivalent variances are calculated by
equations (A.37) and (A.39), respectively, using pre-specified complex voltage values for bus p

and respective phases φ , denoted by ep + i. fp, from previous or historical estimations or from
power flow studies.

 σ2
Ireal
ps,φ

σ2
Ireal
ps,φ Iimag

ps,φ

σ2
Ireal
ps,φ Iimag

ps,φ
σ2

Iimag
ps,φ

=

c2.σ2
Pmed

ps,φ
+d2.σ2

Qmed
ps,φ

c.d.(σ2
Pmed

ps,φ
−σ2

Qmed
ps,φ

)

c.d.(σ2
Pmed

ps,φ
−σ2

Qmed
ps,φ

) d2.σ2
Pmed

ps,φ
+ c2.σ2

Qmed
ps,φ

 (A.37)

where, the diagonal elements are the equivalent current measurements variances and the off-
diagonal elements are the covariances due to the transformation, and σ2

Pmed
ps,φ

and σ2
Qmed

ps,φ
are the

original variances of the active and reactive power flow measurements, respectively. The values
of c and d are given by:
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c =
ep

e2
p + f 2

p
d =

fp

e2
p + f 2

p
(A.38)

σ
2
V eq

p,φ
=

 ep√
e2

p + f 2
p

.cos(θp)+
fp√

e2
p + f 2

p

.sin(θp)

 .σ2
V med

p,φ
(A.39)

where θp is the phase angle of ep + i. fp.

The resulting equivalent current measurements becomes correlated in the formulation
of the AMB estimator, and in some cases are neglected (Almeida; Ochoa, 2017). Besides, the
equivalent variances are a function of the state variables, and in this case the values are assumed
from past values since using the calculated values the Gain matrix would not be constant any
more. Such approximations directly affects the probabilistic formulation of the AMB state
estimator, and may hamper its consistency, as shown in (Almeida; Ochoa, 2017). This way,
although presenting good practical results, the approximations done in the measurement model
presents fundamental changes on the estimation problem, thus solving an relaxed version of the
original problem as pointed in (Feng; Yang; Peterson, 2012).

After obtaining the linear model for the AMB state estimator, the solution of state
estimation problem consists of the Gauss-Newton method for the above measurement model,
where the equivalent measurements are updated iteratively. The algorithm 3 presents the main
steps for the AMB estimator.

Algorithm 3: AMB STATE ESTIMATOR

Input :Network parameter, Network topology,x0, tol

Output :Estimated state vector x

1 Begin
2 k← 0 e xk← x0

3 Build measurement model: H e R−1

4 Calculate Gain matrix: G = H.R−1.H

5 Do
6 Caculate equivalent measurements: z(xk) and h(xk) = H.xk

7 Solve linear system: G.∆x = H ′.R−1.[z(xk)− (h(xk)]

8 Update state variables: xk+1 = xk +∆x

9 k = k +1

10 while ∥∆xk∥∞ ≤ tol;

11 end

Branch-Current Estimator

In another perspective towards improving computational efficiency, another estimator
was proposed for distribution networks in (Baran; Kelley, 1995), that results in a decoupled
estimator, and the uses concepts close to the backward/forward sweep power flow methods
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for radial networks. This approach uses the complex currents in each phase of the branches of
the electrical network as state variables in rectangular coordinates. This estimator is known as
Branch-Current (BC) state estimator. Thus, the state vector is defined as follows for a system
with total number of branches nramos:

x =
[
Vre f ,φ Ireal

ps,φ Iimag
ps,φ

] ps ∈ {1, ...,nramos}
φ ∈

{
1, ...,n f ases

} (A.40)

where ps denotes the branches of the electrical network (between nodes p and s), Ireal and
Iimag are the real and imaginary parts of the complex current phasor at phase φ of this branch,
and Vre f ,φ denotes the voltage magnitude of the reference bus. The inclusion of the voltage
magnitudes of the reference bus is necessary since are the only state variables that cannot be
formulated as a function of the branch currents in the network. It also needs to be estimated since
it affects the state of the entire distribution network (Pau; Pegoraro; Sulis, 2013). Also, similar
to the previous estimator, a special treatment for the reference bus voltage phase angles is also
required.

The measurement model is composed by equivalent current measurements, according to
each type of measurement and relating them with the branch currents as state variables. That
is, active and reactive power flows and injections measurements and voltage magnitudes are
transformed in equivalent current measurements (Baran, 2012; Pau; Pegoraro; Sulis, 2013)
similarly to the AMB estimator using (A.32). In case of the BC estimator, since the branch
currents are used as state variables, these new equivalent measurements present a direct relation
with the state variables, as shown in equation (A.41).

h(x) =

(
Re{Ieq

ps,φ}
Im{Ieq

ps,φ}

)
=

(
Ireal
ps,φ

Iimag
ps,φ

)
(A.41)

In this estimator, the Jacobian matrix H of the equivalent measurement model equa-
tion (A.41) presents unitary elements for the equivalent current measurements, improving the
numerical conditioning of the state estimation problem (Baran, 2012).

H(x) =


∂Re{Ieq

ps,φ}
∂ Ireal

ps,φ

∂Re{Ieq
ps,φ}

∂ Iimag
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∂ Im{Ieq
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∂ Ireal
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∂ Im{Ieq
ps,φ}

∂ Iimag
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∂ Im{Ieq
ps,φ}

∂Vre f ,φ

=

(
1 0 0
0 1 0

)
(A.42)

Among the advantages of this approach of branch currents as state variables, the state
estimation process can be decoupled among phases. In both AMB estimator and WLS estimator,
the Jacobian matrix was obtained through based on the elements of the admittance matrices of
the network components, including their mutual coupling, and whose diversity of parameters
may aggravate ill conditioning in such estimators.
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Regarding voltage magnitude measurements, an special treatment must be applied.
In the case of the BC estimator, since the branch currents are used as state variables, the
voltage magnitude model may be obtained by a method called "Path Matrix" (Baran; Jung;
McDermott, 2009; Teng, 2002). This matrix includes the impedances from the network path
beginning at the reference bus until the bus that presents a voltage magnitude measurement. An
equation is obtained through these impedances that relates the voltage drops across the path, and
consequently the branch currents.

|Vp|= |V̇re f − ∑
ps∈Λp

Zps.İps| (A.43)

V real
p =V real

re f − ∑
ps∈Λp

Rps.Ireal
ps −Xps.Iimag

ps

V imag
p =V imag

re f − ∑
ps∈Λp

Xps.Ireal
ps +Rps.Iimag

ps

(A.44)

where V̇re f is the complex nodal voltage of the reference bus, usually the primary substation
node, Zps = Rps + j.Xps is the impedance matrix of the branch ps, Λp is the set of branches that
belong to the path between the reference bus and the bus p where the measurement is located.
The incorporation of voltage magnitude measurements turn the method coupled by phases, since
it now represents the mutual coupling of the branch impedances (Baran; Jung; McDermott,
2009). To maintain a decoupled algorithm, the work in (Teng, 2002) proposes to neglect such
mutual coupling for the distribution system branches, that usually is small, and thus keeping the
BC estimator decoupled by phases. Besides, the voltage magnitude is a non-linear model that
requires updates on the Jacobian matrix and the Gain matrix of the estimator.

Working with equation (A.43) it is possible to obtain the following expression for the
voltage magnitude measurements (Pau; Pegoraro; Sulis, 2013):

h(x) = |Vp|= |V̇re f |.cos(δ k−1
Vp

)− ∑
ps∈Λp

(Rps.Ireal
ps −Xps.Iimag

ps ).cos(δ k−1
Vp

)

− ∑
ps∈Λp

(Xps.Ireal
ps −Rps.Iimag

ps ).sin(δ k−1
Vp

)
(A.45)

where, δ
k−1
Vp

is the voltage phase angle at bus p calculated in the previous iteration k−1. With
this, the partial derivatives that build the Jacobian matrix for the voltage magnitude measurements
can also be obtained.

H(x) =
(

∂ |Vp|
∂ Ireal

ps

∂ |Vp|
∂ Iimag
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∂ |Vp|
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)
) (
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)
)

(A.46)
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This way, the following non-linear measurement model can be written for the BC
estimator:

z(V̇ ) = h(x)+ ε (A.47)

where V̇ denotes the complex nodal voltages in all buses of the electric network. It is noteworthy
that the above model is non-linear due to voltage magnitude measurements across the feeders,
but the equivalent current magnitude measurements are still linear and represent a direct relation
with the state variables in the BC estimator. To update the complex voltages in all buses of
the network, a forward sweep is employed. Basically it consists of a topological sweep on the
network beginning at the reference bus towards the last buses of the feeder. The sweep updates
the complex nodal voltages of the next buses in the sequence according to the impedances and
admittances of the network, and the estimated branch currents. Besides, the transformations in the
measurements to obtain the equivalent current measurements also carries the need of updating the
measurement error covariance matrix. These covariance transformations are performed similarly
as previously presented for the AMB estimator.

Finally, the BC estimator also uses a Gauss-Newton method to obtain the state variables
according to the measurement model (A.36), thus obtaining the branch currents in all the
components of the distribution network. The algorithm 4 presents the main steps for the BC
estimator.

Algorithm 4: BC STATE ESTIMATOR

Input :Network parameters, Network topology,x0, tol
Output :Estimated state vector x

1 Begin
2 k← 0 e xk← x0

3 Build measurement model: H e R−1

4 Do
5 Calculate equivalent measurements: z(V̇ k) e h(xk)

6 Update Gain matrix: G = H.R−1.H
7 Solve the linear system: G.∆x = H ′.R−1.[z(V̇ k)− (h(xk)]

8 Update state variables: xk+1 = xk +∆x
9 Obtain the complex voltages: V̇ k through a Forward Sweep

10 k = k+1
11 while ∥∆xk∥∞ ≤ tol;
12 end

Orthogonal WLS Estimator

In another perspective towards improving computational efficiency, an orthogonal version
of the WLS estimator is proposed in this work to deal with highly ill-conditioned distribution
systems. The proposed approach uses the complex nodal voltages (in polar coordinates) in all
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buses and phases of the system as state variables. Thus, for distribution network with the number
of phases n f ases and the number of buses nbarras, the state vector is given by:

x =
[
V p

φ
θ

p
φ

] p ∈ {1, ...,nbarras}
φ ∈

{
1, ...,n f ases

} (A.48)

where p denotes the bus from the electric network and V and θ are the voltage magnitude and
voltage phase angle at each phase φ . This way the amount of state variables depends on the
quantity of phases in each bus (single, two or three-phase, as an example).

Besides, one of the buses is taken as angular reference for the network. In general,
the voltage phase angles are assumed for each phase of the reference bus, for instance as a
three-phase abc balanced bus:

θa = 0o
θb =−120o

θc = 120o (A.49)

As shown in the last section, the traditional WLS fomulation for DS state estimation
is prone to result in a ill-conditioned system because said method requires the solution of the
normal equation in which the factorization of the Gain matrix is necessary. In order to counter
the associated ill-conditioning of DSSE using the traditional WLS, a new strategy is proposed
in this paper based on the application of an orthogonal method for solving the state estimation
problem. Using the QR factorization as follows:

W 1/2H(xk) = QT R (A.50)

It is possible to rewrite the normal equations as:

[RT QQT R]△xk = RT QW 1/2[z−h(xk)] (A.51)

Since QQT = I, where I is the identity matrix, we obtain:

[RT R]△xk = RT QW 1/2[z−h(xk)] (A.52)

Multiplying both sides by (RT )−1:

R△xk = QW 1/2[z−h(xk)] (A.53)

From (A.53), it is possible to obtain the vector△xk using backwards substitution since
R was obtained via QR factorization and it is, therefore, upper triangular. The resulting system is
better conditioned in terms of numerical robustness than that obtained with the normal equation.
The algorithm of the orthogonal method for state estimations is given below:
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Algorithm 5: ORTHOGONAL WLS STATE ESTIMATOR

Input :Network parameters, network topology,x0, tol

Output :Estimated state vector x

1 Begin
2 k← 0 e xk← x0

3 Do
4 Build measurement model: h(xk) and H(xk)

5 Perform the Orthogonal Factorization: QR =W 1/2.H(xk)

6 Solve the triangular linear system: R∆x = Q.W 1/2.[z− (h(xk)]

7 Update state variables: xk+1 = xk +∆x

8 k = k +1

9 while ∥∆xk∥∞ ≤ tol;

10 end

Despite the formulation of the WLS Estimator using orthogonal factorization is widely
explored for transmission systems, both from research as well as industrial implementations
(Pires; Costa; Mili, 1999; Simões Costa; Albuquerque; Bez, 2013), as far as the author knows
this is the first work that employ such technique for distribution systems. This is treated in this
thesis as a secondary contribution, but a very important one to deal with practical aspects of
distribution systems. More details about the implementation of this algorithm, using sparsity
treatments and with numerical stability analysis are provided in the Appendix B. Also, more
details of this will be also addressed in details in the next section to support the applications of
Bayesian Inference, as part of the primary contribution of this thesis.
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APPENDIX B – SPARSE AND NUMERICALLY STABLE STATE ESTIMATION
BASED ON ORTOGONAL METHODS

The content of this appendix have been published on the following Journal:

• G.M. Hebling, J.A.D. Massignan, J.B.A. London Junior, M.H.M Camillo ," Sparse and
numerically stable implementation of a distribution system state estimation based on
Multifrontal QR factorization". Electric Power Systems Research, v. 189, p. 106734, 2020.

Distribution System State Estimation

Despite the consolidated position of the Weighted Least Squares (WLS) state estimator
for transmission systems, specialized algorithms have been developed to perform Distribution
System State Estimation (DSSE). In the following sections we present the classic WLS formula-
tion as well as its problems when applied to distribution systems as well as alternative solutions
found in the literature.

The distribution system state estimation is based on the nonlinear model of measurements
(Abur; Gómez-Expósito, 2004; Monticelli, 1999):

z = h(x)+ e, (B.1)

where z is the measurement vector (mx1), x is the state variables vector (nx1), h(.) is the nonlinear
state estimation function (mx1) that relates the measurements to the states variables, and e is
the vector of measurement errors (mx1) usually considered as independent random Gaussian
variables with zero mean and diagonal covariance matrix Rz (Rz = diag {σ2

z1,σ
2
z2, ...,σ

2
zm}, where

σzi is the standard deviation of measurement zi).

Through the classical Weighted Least-Squares (WLS) estimator, the state estimate vector
x̂ is obtained by minimizing the index J(x) given by:

J(x) = [z−h(x)]TW [z−h(x)], (B.2)

where W = R−1
z .

The minimum value for J(x) is obtained when its derivative, ∂J(x)
∂x = 0, is equal to zero

which can be written as:

HT (x̂)W [z−h(x̂)] = 0 (B.3)

The matrix H(x̂) is known as the Jacobian matrix and it is the matrix of first derivatives of h(x)

evaluated at the x = x̂ point. Given the nonlinear nature of the index J(x), an iterative algorithm
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is used to obtain a solution to a linear equation, which calculates a correction,△xk, to the state
vector where k is the iteration index. The linear approximation at the point xk is:

h(xk+1)≈ h(xk)+H(xk)△xk (B.4)

Rewriting (B.1) considering the linear approximations presented beforehand we obtain:

z = h(xk)+H(xk)△xk + e (B.5)

Which is equivalent to:

△z(xk) = z−h(xk) = H(xk)△xk + e (B.6)

From the linear approximations, it is possible to write a new objective function J(△x):

J(△x) = [△z(xk)−H(xk)△xk]TW [△z(xk)−H(xk)△xk] (B.7)

The minimum of J(△x) is obtained when:

∂J(△x)
∂x

= H(xk)TW [△z(xk)−H(xk)△xk] = 0 (B.8)

The correction△xk is then given by the solution of:

△xk = [H(xk)TWH(xk)]−1H(xk)TW△z(xk) (B.9)

Equation (B.9) is known as the Normal Equation and to obtain its solution it is necessary
to invert or factorize H(xk)TWH(xk), which is called the Gain matrix G. Since it is compu-
tationally inefficient to invert the Gain matrix, factorization methods are used to obtain the
solution such as Gauss Elimination, Cholesky Factorization, LU Decomposition and others.
The numerical robustness of the solution of (B.9) depends not only on the chosen method for
factorization but also on the condition number of the Gain matrix (Ebrahimian; Baldick, 2001).

It is possible to show that the condition number of the Gain matrix K(G) (defined as the
ratio between the largest and smallest of its eigenvalues λ (G)) is close to the magnitude of the
square of the condition number of the weighted Jacobian matrix, as follows:

K(G) =
λmax(G)

λmin(G)
≈ [K(W

1
2 H)]2 (B.10)

DSs have a set of particularities that make the resulting system of the WLS even more
prone to ill-conditioning. These particularities are related to the topology of the network, the
number of buses and availability of measurements. A DS is usually radial, with single-phase as
well as two and three-phase unbalanced and short branches, containing different transformers
connections and has a large number of nodes. The number of virtual and pseudo measurements
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with different precision values from the real-time measurements also makes the weighting
process a source of ill-conditioning.

These aforementioned characteristics have prevented the use of the WLS state estimator
based on the Normal Equation method for DSSE (Lefebvre; Prévost; Lenoir, 2014), (Baran,
2012). Instead, some alternative formulations have been proposed in the literature such as the
Branch Current approach in (Baran; Kelley, 1994) and the Admittance-matrix approach in (Lu;
Teng; Liu, 1995). These alternative formulations are based on simplifications either in the state
variables or in the measurement set that may not be as accurate when applied in modern DSs.

The proposed Sparse and Numerically Stable Algorithm for DSSE

In order to counter the associated ill-conditioning of DSSE using the traditional WLS,
a new strategy is proposed in this paper based on the application of an orthogonal method for
solving the state estimation problem. Using the QR factorization as follows:

W 1/2H(xk) = QT R (B.11)

It is possible to rewrite the normal equation as:

[RT QQT R]△xk = RT QW 1/2[z−h(xk)] (B.12)

Since QQT = I, where I is the identity matrix, we obtain:

[RT R]△xk = RT QW 1/2[z−h(xk)] (B.13)

Multiplying both sides by (RT )−1:

R△xk = QW 1/2[z−h(xk)] (B.14)

From (B.14), it is possible to obtain the vector△xk using backwards substitution since R was
obtained via QR factorization and it is, therefore, upper triangular. The resulting system is
better conditioned in terms of numerical robustness than that obtained with the normal equation.
Consider the condition number of the upper triangular matrix R:

K(R) = ∥R∥∥R∥−1 (B.15)

K(R) = ∥[(QT )−1W 1/2H]∥∥[(QT )−1W 1/2H]−1∥ (B.16)

K(R) = ∥[(QT )−1W 1/2H]∥∥[(W 1/2H)−1QT ]∥ (B.17)

K(R)≈ ∥(QT )−1∥∥(W 1/2H)∥∥(W 1/2H)−1∥∥QT∥ (B.18)
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Since Q is orthogonal, the additional following properties are true: QT = Q−1 and ∥Q∥ =
∥(QT )−1∥= 1. Therefore we can approximate the condition number of R as:

K(R)≈ ∥(W 1/2H)∥∥(W 1/2H)−1∥= K(W 1/2H) (B.19)

Equation (B.19) shows that the resulting system, when applying the QR factorization to the
WLS formulation, has a condition number of the same order of magnitude as the Jacobian matrix
whereas the system obtained with the Normal Equation has a condition number approximately
the square of that of the Jacobian matrix. In addition to being a better conditioned system, when
using the QR factorization another benefit lies in the stability of the method when dealing with
floating point arithmetic.

In order to improve readability, we define the matrix A as:

A =W 1/2H (B.20)

The corresponding QR factorization satisfies:

Q̃R̃ = A+δA (B.21)

Where ∥δA∥
∥A∥ = O(εmachine). The forward step is stable (??) and proving the backwards stability

we obtain:

(A+△A)x̃ = b (B.22)

where ∥△A∥
∥A∥ = O(εmachine). The first step in the proof is to write A+△A as:

(Q̃+δQ)(R̃+δR)x̃ = b (B.23)

[Q̃R̃+ Q̃(δR)+ R̃(δQ)+(δQ)(δR)]x̃ = b (B.24)

Since Q̃R̃ = A+δA, and δA is small when compared to A, we can write:

∥R̃∥
∥A∥
≤ ∥Q̃∗∥∥A+δA∥

∥A∥
= O(1) (B.25)

Using equation (B.25) and adding the terms of equation (B.24) we can show that:

∥△A∥
∥A∥

≤ ∥δA∥
∥A∥

+
∥(δQ)R̃∥
∥A∥

+ (B.26)

+
∥(δR)Q̃∥
∥A∥

+
∥(δQ)(δR)∥
∥A∥

= O(εmachine)

One consequence of the backwards stability of the QR algorithm is that the obtained
solution x̃ follows:

∥x̃− x∥
∥x∥

= O(K(A)εmachine), (B.27)
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where K(A) is the condition number of the matrix A (??). Overall, the proposed algorithm that
uses the QR factorization of the matrix W 1/2H results in a smaller condition number than that
of the correspondent Gain matrix. This fact also has influence on the backwards stability of the
method because of equation (B.27). Therefore, the proposed algorithm in addition to being better
conditioned is also stable.

Bad Data Processing with Orthogonal Formulation for DSSE

One of the most essential features of state estimation is the possibility to detect and
identify bad data (or gross errors), besides filtering white noise from the measurement process.
The effects of bad data in the estimation process can be very severe, reducing accuracy and
even compromising functionalities that rely on the real-time state of the network. The bad data
processing step is performed after the estimated state x̂ is obtained. It is necessary to calculate
the normalised residue and, for that, the residue’s covariance matrix Ω is used as follows:

Ω =W−1−H(x̂)(H(x̂)TWH(x̂))−1H(x̂)T (B.28)

Using the orthogonal relation defined in (B.11), it is possible to rewrite the residue’s
covariance matrix as:

Ω =W−1−H(x̂)((RT Q)(QT R))−1H(x̂)T (B.29)

Since Q is an orthogonal matrix and using inverse matrices properties, it follows that:

Ω =W−1−H(x̂)(R−1)(RT )−1H(x̂)T (B.30)

With this formulation, the inverse of the Gain matrix does not need to be calculated and
the matrix Ω is obtained via a series of Forward and Backward substitutions. In order to increase
numerical stability, the proposed method in this work also avoids the multiplications by Jacobian
and its transpose. This is achieve by introducing an auxiliary matrix Y (mxn) so that:

RTY = HT (x̂) (B.31)

To increase computational efficiency, this work also exploits the fact that only the
diagonal elements are employed in the gross errors processing. Each diagonal element of Ω is
then obtained using Y and the following scalar product:

Ωii =W−1
ii −⟨Y

T
:i ,Y:i⟩=W−1

ii −∥Y:i∥2 (B.32)

With the diagonal elements of the matrix Ω, three different indexes are calculated to
guide the bad data detection and identification. First, the normalised residue is calculated for
each measurement:

rN
i =
|zi−hi(x̂)|√

Ωii
. (B.33)



200

With the normalised residue, it’s possible to calculate the index of the b-hat method,
following:

b̂i =
σii√
Ωii

rN
i , (B.34)

where σii is the standard deviation of the i− th measurement, obtained from the diagonal of the
matrix W .

The maximum normalized residue test enables the detection and identification of a
measurement with GE and the identification of critical measurements, that is, if the removal of
said measurement renders the system not observable. The b-hat test enables the correction of a
measurement affected by GE.

In order to complement the analysis of GEs, (Massignan; London Jr; Miranda, 2020)
proposes the usage of the Undetectability Index (UI) as a a third index, which was first proposed
in (Benedito et al., 2014). This index enables mapping measurements in terms of the difficulty
of detection of GEs and in this work it is also obtained using the previously shown orthogonal
method, following equation B.35. The matrix S is called Residue Sensitivity Matrix.

UIi =

√
1−ΩiiW√

ΩiiW
=

√
1−Sii√

Sii
(B.35)

Sparse QR Multifrontal Implementation

Householder Reflections (Householder, 1958) and Givens Rotations (Givens, 1958) are
the methods usually applied to obtain a QR factorization. In order to extract peak computational
performance when factorizing large sparse matrices other methods have been proposed such
as the Multifrontal QR (Davis, 2011b). Traditional orthogonal methods for QR factorization of
sparse matrices operate on one row or column at a time (George; Heath, 1980; GEORGE; LIU;
NG, 1988) and are not able to achieve said maximum performance because of irregular access of
memory. The Multifrontal QR performs on groups of rows and columns in a sequence of dense
matrices called frontal matrices that can be handled in parallel.

There are three phases in solving the resulting linear system in (B.14) when using a direct
method such as the Multifrontal QR. First, a fill-in reducing permutation is obtained using some
form of heuristics which will be discussed further in the next section. Then a symbolic analysis
is performed in order to obtain the non-zero pattern of the matrix by performing a symbolic
Cholesky factorization of AT A. Next, there are the numerical factorization phase and the proper
solving phase that uses backward substitution.

Figure 56 represents the underlying structure of the algorithm in which the matrix is
reordered. Its elimination tree is obtained via the symbolic factorization, and the supernodes are
found in order to form the dense frontal matrices that will be subject to the numerical factorization
using the Householder QR method , whereas other proposals use Givens Rotations to obtain
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a orthogonal factorization (Costa; Salgado; Haas, 2007). The figure presents the elimination
tree with supernodes as well as the corresponding R factor.This algorithm is available as an
open-source package named SuiteSparse.

Figure 56 – Matrix A, its QR factor R and the corresponding elimination tree. Source: (Davis,
2011b)

The Thesis opted to use a Multifrontal QR method based on block Houselholder reflec-
tions, due to its good performance under very large scale linear systems. Alternative options
exist, such as the Givens rotations, already successfully employed at transmission systems.

Efficient Ordering for Fill-In Reduction

A sparse matrix is a matrix with a high number of zero elements. In order to achieve
higher computational efficiency, only the non-zero elements can be stored and specialized
algorithms can be used to read and/or write data. Preserving the sparse characteristic is, therefore,
beneficial in terms of memory usage and computational effort specially in application where
real-time processing is expected, such as the State Estimator. The results in (Hebling et al., 2020)
show that expressive performance gains can be expected when using dedicated sparse storage
and algorithms.

Before the factorization step of the SE, an ordering step is performed so that the number
of non-zero elements created, so called fill-in, is reduced. The ordering problem is formulated
within an optimization framework in which the objective is to find a permutation matrix P so
that the number of non-zero elements in PAPT is minimized (Davis, 2011b; Amestoy; Davis;
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DUFF, 2004). This problem is NP-Complete as shown in (Yannakakis, 1981) and the solution
may be obtained by heuristics, as will be shown in a next section.

It is important to note, however, that in order to extract peak computational performance
specialized algorithms must be used in addition to sparsity preserving ordering. These algorithms
have the necessary sparse data structures and routines that take advantage of the high number of
zero elements in the matrices. In this work, an algorithm called Multifrontal QR, based on block
Householder reflections (Davis, 2011a), which is specialized in sparse matrices, is used in order
to obtain the previously shown QR factorization of the matrix W 1/2H.

Some of the heuristics used to obtain the permutation matrix P are based on the undirected
graph associated with the matrix being factorized since a factorization step is equivalent to a
node elimination. Fill-ins are, therefore, new edges created in this graph after an elimination.
This can be better visualized by figure 57 where, after node 2 is eliminated, three new edges, in
red, are created.

Figure 57 – Eliminating node 2 results in fill-in, shown in red.

One of these heuristics is called Approximate Minimum Degree. It chooses at each
elimination step, the node with the minimum degree, that is, the least amount of adjacent nodes
and builds the ordering matrix P. There can be ties and (Vempati; Slutsker; Tinney, 1991)
proposes different criteria to choose the next node. In figure 57, the eliminated node 2 has a
degree of three, if a node with a lower degree had been chosen, such as node 1, fewer elements
would be created.

Another method that operates on the associated graph of the matrix being factorized is
called Nested Dissection. This heuristic is based on the Divide and Conquer concept and, at each
successive iteration, it chooses a separator so that each path between the resulting sub-graphs
passes through this separator. After a sufficient number of iterations, any nodes that are not in a
separator, are chosen to be first in order. The nodes in the first separators are set as last in the
ordering.

The proposal in (Chan; George, 1980) features an implementation that aims to decrease
the diagonal band of the matrix operating in the associated graph. It chooses, at first, the node
with the minimum degree and orders the adjacent nodes’ degree in ascending order. This process
is repeated until there are no nodes left. (Liu; Sherman, 1976) noted that using the reverse
order obtained with this process produced less fill-in naming, therefore, the method as Reverse

Cuthill-Mckee - RCM.
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The strategies to reduce the number of fill-ins are usually related to the undirected
graph of the matrix being factorized because the factorization process is equivalent to a node
elimination in the graph. Fill-in means, therefore, new edges created in the graph after the
elimination process of a node and one strategy to reduce this number is to select nodes with the
minimum degree, that is, the number of connections to be eliminated. Note that this number is
updated after each elimination step because new edges are created. The resulting permutation
matrix is that which orders the matrix being factorized in the sequence that the minimum degree
nodes will be eliminated first.
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APPENDIX C – LINEAR BAYESIAN INFORMATION FUSION

In this Appendix, a Linear Bayesian Information Fusion method is devised in the context
of power system state estimation, to deal with with the diversity of measurements respecting
their different sampling and updating rates. Bayesian Inference concepts guide the integration
of such different measurements as detailed in the following. Initially, the proposition is devised
for integration of SCADA and PMU measurements in two separate estimators, according to
their sampling rates. In Chapter 6, the models are further detailed and generalized for multiple
measurement sets and non-linear estimation.

Regarding only SCADA and PMU measurements, the method consists in two stages, the
first to process SCADA measurements according to their updating rates (slower measurements),
and the second for the PMUs (faster measurements). The first stage of the proposed Bayesian
State Estimation treats the SCADA measurements by the conventional nonlinear measurement
model described in (3.5), triggered accordingly to SCADA updates. The solution of this first
SCADA stage consists of the traditional WLS state estimator presented in details in Appendix
A, yielding an initial SCADA estimated state x̂0 and its respective state covariance matrix Rx̂0 .
Figure 58 illustrates the probabilistic model within the two stages of the method. It also illustrates
the difference from the Kalman Filter.

The Kalman filter is the recursive version of the above state space model, where the last
posterior estimation updates the following prior belief (Barker; Brown; Martin, 1995) (x0 as the
prior for x1, x1 for x2, and so on). The intention for breaking this recursive chain is to obtain a
state estimator more sensitive to systems changes (non-stationary conditions). This difference
shows how the Bayesian framework encompasses a probabilistic theory able to produce different
state estimation strategies.

The second stage consists of employing the probabilistic model described above, which
is inspired in the first-order state-space but breaking the recursive chain, in a stage composed
only by PMUs as measured information. For metering systems containing only PMUs, using
rectangular coordinates for the phasor measurements and state variables, the state estimation
model (3.5) becomes linear (C.1).

z = Hx+ ePMU (C.1)

where H is a (mPMU x n) matrix that relates the mPMU PMU measurements with the state
variables; ePMU is the (mPMU x 1) noise vector also assumed as independent normally distributed
random variables, with zero mean and known covariance matrix RPMU .

By assuming the state follows a quasi-stationary process and that the last performed
estimation provides the previous state information, we can write (C.2) and (C.3) for the PMUs



206

(a) Bayesian Information Fusion probabilistic model

(b) First-order state-space model for the Kalman Filter

Figure 58 – Probabilistic model of the proposed Bayesian Information Fusion in the context of
power system state estimation. The first figure (a), the first stage is the static state
estimation using SCADA measurements. The second stage consists in updating the
state using the PMU observations, as they become available, by the posterior distri-
bution obtained by Bayesian Inference principles. The second figure (b) illustrates
the Kalman Filter perspective, as a recursive version of the proposed information
fusion model.

as:

x = x̂SCADA +ω (C.2)

zPMU = Hx+ ePMU (C.3)

where, H is a (mPMU x n) matrix that relates the mPMU PMU measurements with the state
variables; ePMU is the (mPMU x 1) noise vector also assumed as independent normally distributed
random variables, with zero mean and known covariance matrix RPMU . These assumptions are
relatively fair since state estimation is a steady state analysis and the aim of this study is to
treat sampling rates of PMUs, much faster than SCADA measurements. Also by assuming the
previously estimated state gives the forecasting uncertainty, the covariance of the forecasting
error can be written as QSCADA = Rx̂SCADA = (HSCADA(x̂SCADA)

T RSCADAHSCADA(x̂SCADA))
−1 (the

inverse of the SCADA gain matrix). It is noteworthy that to fully integrate the prior knowledge
from a previous estimator, the state variables and state covariance matrix must also be transformed
(or calculated) in rectangular coordinates, in this case to keep a linear model for the PMUs.

By using the probabilistic model in (C.2), xt is modelled as a random variable, since it is
associated with the previous state by a forecasting model with random error. Therefore, we can
directly apply the concepts used in Bayesian Inference, where the estimation problem treats both
measurements and states as random variables (Sivia; Skilling, 2006). Using the Bayes’ Theorem,
the posterior probability function for the state variables.
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The estimation problem is then solved using the posterior probability distribution rather
than only the measurement model. By assuming a Gaussian prior to the state, as assumed for the
forecasting error, we can obtain the posterior probability:

Prior : x∼N (x̂SCADA,QSCADA) (C.4)

Likelihood : zPMU | x∼N (Hx,RPMU) (C.5)

Posterior : (C.6)

x | zPMU ∼N ((HT R−1
PMU H +Q−1

SCADA)
−1(HT R−1

PMU zt+

Q−1
SCADAFx̂SCADA),(HT R−1

PMU H +Q−1
SCADA)

−1)

The proposed Bayesian Information Fusion consists of setting the prior distribution
as the estimation provided by the SCADA measurements, and keep it fixed while new PMU
samples arrive. That is, both x̂SCADA and Rx̂SCADA fixed as the initially obtained by the SCADA
measurements (with the state variables in rectangular coordinates).

In the case of a conjugate multivariate Gaussian prior model, the MAP estimate is the
expected value of the posterior multivariate normal distribution shown in (C.6). Therefore,
solving the following linear system results on the estimated state:

(HT R−1
PMU H +Q−1

SCADA)x̂ = (HT R−1
PMU zPMU +Q−1

SCADAx̂SCADA) (C.7)

Demonstration in the Linear Case

By using the prior distribution (C.4) given by the state space model, and the likelihood
(C.5) by the PMU linear measurement model, we can directly apply Bayes Theorem, which
yields:

fX |Z(x|zPMU) ∝ exp(−1
2
(zPMU −Hx)′R−1

PMU(zPMU −Hx))

exp(−1
2
(x− x̂SCADA)

′Q−1
SCADA(x− x̂SCADA))

(C.8)

Expanding the exponent:

zT
PMU R−1

PMU zPMU + xT HT R−1
PMU Hx− xT HT R−1

PMU zPMU − zT
PMU R−1

PMU Hx

+xT Q−1
SCADAx+ x̂T

SCADAQ−1
SCADAx̂SCADA− x̂T

SCADAQ−1
SCADAx− xT Q−1

SCADAx̂SCADA
(C.9)

In order to find the posterior probability distribution, we can search for its kernel to
simplify the calculations. Thus we can neglect the constant values of the above equation, yielding:

xT (HT R−1
PMU H +Q−1

SCADA

)
x− xT (HT R−1

PMU zPMU +Q−1
SCADAx̂SCADA

)
−
(
zT

PMU R−1
PMU H + x̂T

SCADAQ−1
SCADA

)
x

(C.10)
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The kernel of a Multivariate Normal distribution with expected value a and covariance
matrix B has the following exponent structure:

(x−a)T B(x−a) = xT Bx− xT Ba−aT Bx−aT Ba (C.11)

Comparing (C.10) and (C.11) the expected value and covariance matrix of the posterior
distribution kernel are given as:

B≡
(
HT R−1

PMU H +Q−1
SCADA

)
(C.12)

Ba≡
(
HT R−1

PMU zPMU +Q−1
SCADAx̂SCADA

)
(C.13)

a≡
(
HT R−1

PMU H +Q−1
SCADA

)−1 (
HT R−1

PMU zPMU +Q−1
SCADAx̂SCADA

)
(C.14)

A first remark regards to the observability of the MAP estimation procedure. Note that
the matrix of this linear system is a positive definite and full rank matrix since the previous
observable SCADA stage Gain matrix provides Q−1

SCADA. Therefore, the unique requirement for
the method to provide an estimation is a SCADA observable system. Also a full covariance matrix
is employed instead of diagonal, such as in the case of Thikonov regression. The correlation
among the state variables arises from the electrical connections of the network, and the SCADA
observable metering system captures them, embedded on the gain matrix (equal the inverse of
the state covariance matrix). Once the SCADA metering system is observable, the gain matrix
of the SCADA stage maps all the state correlations. By updating the posterior distribution with
the few PMUs observations and the prior distribution from the SCADA, the MAP stage in (C.7)
automatically updates all the variables.

A second important remark is the validity of the Gaussian assumption for the prior
distribution. Indeed such assumption is an approximation of the true underlying state probability
distribution function. Another practical goal is to maintain computational tractability, since the
context of state estimation is a real-time tool, what makes impractical to employ nonparametric
sampling methods with currently available computational methods. Such computational en-
hancements are a very exciting technological research direction, especially exploiting graphical
processing units and novel numerical methods.

The above derivations was performed for linear measurement model, where the Conjugate-
Prior yields a Gaussian posterior distribution. It is noteworthy that in case of nonlinear the
posterior will not be Gaussian, and it may not possible to be obtained analytically. However,
in the power system state estimation problem, only the MAP estimate is enough to evaluate
system condition in real-time, which can be obtained without the requirement of computing the
full posterior conditional, and employing nonlinear unconstrained optimization methods. The
solution of the nonlinear version is presented in details in Chapter 6, under a concept of sampling
layers to accommodate multiple types of sensors according to their sampling characteristics, that
is, more types of sensors rather than only SCADA and PMUs.
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Didatic Example

To validate the proposed Bayesian Information Fusion method, we performed simulations
with the small distribution system IEEE 4 nodes test feeder using Monte Carlo simulation. A
load flow calculation was used to create the reference values for the state variables (xl f ) and
measurements (zl f ). The Monte Carlo simulation consists in including random noise in the
reference load flow values to obtain the measured values used to perform state estimation (??).
The i-th measurement value was calculated by adding a random noise with Normal distribution
ui N (0,σi) in the corresponding i-th measurement reference value, according to (C.15).

zi = zl f
i +ui (C.15)

The noise standard deviation σi was obtained using different precision levels for each
measurement according to (C.16) (Singh; Pal; Jabr, 2009):

σi =

∣∣∣zl f
i

∣∣∣ pri

3
(C.16)

where, pri is the precision of the i-th meter (in this study, was assumed 2% for active and reactive
power measurements from SCADA, 1% for voltage magnitude from SCADA, and 0.1% for
voltage and current phasors measurements from PMUs).

This equation is also used to create the measurement covariance matrix used in the
estimation process (R matrix for SCADA measurements and RPMU for PMUs). However, in this
case using the measured values instead of the measurement reference values obtained in the load
flow calculation.

To simulate different sampling rates, a first sample from SCADA measurements was
considered in the state estimation process, followed by 60 samples from PMUs. Each sample
represents a different instant t and the respective measured values. For each instant, a load flow
calculation was performed and the measured values are obtained according to the previously ex-
plained procedure. Thus, we obtained a sequence of quasi-stationary conditions being monitored
by measurements with random noise in our simulations. When using such simulation strategy,
based on load flow calculation, the system’s dynamics is neglected, such as oscillations during
transitory events (Zhao et al., 2016).

To evaluate the accuracy of the estimated state variables, we used the Mean Absolute
Error (MAE) value:

MAEt =
1

ntrials

ntrials

∑
1

∣∣∣x̂t− xl f
t

∣∣∣ , (C.17)

where x̂t is the estimated state, xl f
t is the reference state value in t, and ntrials is the number of

trials during the simulation.
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Performance with SCADA and PMU Observable Metering Systems and Fixed
Loading Condition

The first test was performed using SCADA and PMU observable metering systems when
the hypothesis of stationary condition is respected. Fig. 59 illustrates the IEEE 4 nodes feeder
with the observable SCADA and PMU metering systems. The unbalanced load scenario with
the Gr. Wye- Gr. Wye transformer is used in our simulation. The load, originally in node 4, was
distributed among nodes 2, 3 and 4 to further represent the PMU non-observable scenario.

Figure 59 – IEEE 4 node test feeder used to evaluate the proposed Bayesian inference method
for including PMUs in DS state estimation.

The simulations were performed with fixed nominal loading to represent a stationary
condition and to demonstrate the effect of the PMU Posterior stage. Two different instants are
considered: an initial instant with the acquisition of SCADA measurements; and a second instant
with the arrival of a PMU sample. The simulations were executed with 300 repetitions, resulting
in a calculation of MAE with ntrials = 300.

To illustrate the effect of the MAP estimation, Fig. 60 presents the error histogram for
this simulation. As it can be seen, besides the reduction on the MAE indicator, a smaller error
Variance is also obtained after the execution of MAP basing on the PMU sample. This because
the higher precision assumed for such measurements are naturally considered in the proposed
approach through the PMU measurements covariance matrix.

Figure 60 – Histogram of state estimation error among all state variables for the SCADA Prior
and PMU Posterior.
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Performance with SCADA and PMU Observable Metering Systems and Load
Variation

A second test was performed with the inclusion of a 5% of load variation around the
nominal loading. The IEEE 4 nodes feeder with the observable SCADA and PMU observable
metering systems in Fig. 59 is used again. In this simulation, we considered all the 60 PMU
samples. Despite the load variation, this situation is still considered as stationary since the
load variation is within a 5% of its nominal value, keeping a constant mean value and variance
along the time interval of the PMU samples. This scenario intends to show a more realistic load
condition, since there are no guarantees that the loads will keep a fixed value while the PMU
samples are arriving.

The proposed Bayesian Information Fusion was then compared with a hybrid static
state estimator, which simultaneously processes both SCADA and PMU measurements in a
single stage according to the nonlinear measurement model, and with a Kalman Filter tracking
state estimator that uses recursively the estimated posterior to update the prior belief. Figure 61
presents the comparison using the MAE performance metric in both the fixed loading and the
5% of load variation scenarios.

Figure 61 – Performance of state estiamtors in terms of the Mean Absolute Error in p.u. for each
time sample (MAEt) in the stationary scenarios.

The hybrid approach presented the worst precision, since it assumes both SCADA and
PMUs samples represent the same instant. The KF approach presented a very good estimation for
the fixed load scenario, but lost its accuracy for the load variation scenario. This result is expected
since KF has good smoothing properties, and the fixed load value is the smoothest scenario
possible. But when load variation was included this premise became false. Furthermore, the
proposed Bayesian Information Fusion presented a similar precision in both scenarios, showing
good results in both cases. This is related to the fact that the prior distribution only gives an
initial estimate of the state vector and its covariance. Whenever a new PMU sample is gathered,
the MAP estimation uses only the values of that sample to update the state vector.
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Performance with SCADA observable and PMU Non-Observable Metering Systems
and Non-Stationary Condition

In this third test, the observable SCADA metering system illustrated in Fig. 59 was
considered. However, in terms of PMU metering system, only the PMU installed at the secondary
winding of the transformer was considered (node 3). Therefore, the system is still SCADA
observable, but no longer PMU observable, i.e., if only PMUs were considered it would not be
possible to perform state estimation for the whole network. In this test, a large load variation at
node 4 (60% increase), only in phase A, was included in the simulation from t = 15 to t = 20, in
order to simulate a non-stationary event. In the other instants, the loads were kept within their
nominal unbalanced loading with a 5% of variation. For instance, that large load variation could
occur when a large load is connected, or due to intermittent distributed generation in the DS.

Fig. 62 presents the MAE performance index in such scenario. Both Hybrid and KF
approaches had their performance significantly deteriorated during the load temporary event.
While the proposed approach had a much smaller influence in its estimation accuracy. To illustrate
the state estimation results, Fig. 63 presents the final estimate obtained by each tested DSSE for
the voltage magnitude at node 4, phase A, in one of the Monte Carlo trials and the reference
value.

Figure 62 – Performance of state estimators in terms of the Mean Absolute Error in p.u. for each
time sample (MAEt) in the non-stationary scenario.

Figure 63 – Voltage magnitude at node 4 phase A in p.u. at one of the Monte Carlo trials.

The proposed approach obtained relatively good estimation even in this PMU non-
observable scenario under a non-stationary condition, i.e. when the hypothesis that the previous
state is a good approximation to current state is false. Fig. 64 shows a boxplot of the estimation
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error in this simulation test obtained with the proposed Bayesian Information Fusion. The largest
estimation error kept on node 4, where the event occurred. And the nodes that kept their loads
near their initial nominal values did not present a significant change in estimation accuracy.

Figure 64 – State estimation error of the Bayesian Information Fusion state estimator (x̂t− xl f
t )

in p.u. for all time samples and all Monte Carlo repetitions according to each node.

This test was also used to show the credibility interval concept of the proposed Bayesian
Information Fusion with PMUs. Fig. 65 shows the credibility intervals acquired with the prior
and posterior distribution obtained by the proposed Bayesian DSSE for the real part of the
complex voltage at node 4 (state variable x10) at all samples.

Figure 65 – Credibility intervals with SCADA prior and PMU posterior during an event occur-
rence, for state variable x10.

Fig. 66 illustrates the concept of credibility interval in terms of estimated prior and poste-
rior distributions for the state variable x10. The prior distribution, and the posterior distribution at
t = 14 (before the load event) and at t = 15 (after the load event) demonstrate the change in the
state variable that occurred. While the DS is operating in a stationary condition, all the estimated
state values with the PMUs fell inside the prior credibility interval, as it can be seen in the
posterior distribution for t = 14. When the estimated value obtained in the MAP stage, at t = 15,
fell outside the prior credibility interval, the previous state is not a good approximation to current
state. That is, the system is no longer near the same state when the SCADA measurements were
acquired. Since the event was detected with the prior distribution credibility interval, the test
indicated a large event occurred.

The following chapter will present the detailed three-phase distribution systems models
employed in this Thesis to accurately represent the unbalanced and asymmetrical nature of
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Figure 66 – SCADA prior distribution and PMUs posterior distributions, for state variable x10 at
t = 14 and t = 15.

distribution systems. Chapter 6 presents the proposed Bayesian Information Fusion method to
deal with different time scales of the diverse sources of information in distribution systems, such
as load pseudo measurements, smart meters, SCADA and PMUs. Also, Chapter 7 a multiarea
state estimation based on bayesian spatial fusion concepts is also presented to deal with the
scalability of distribution networks along to demonstrate important computational requirements.
Finally, Chapter 5 non-Gaussian characteristics for measurement noise and prior distributions
under Information Theory concepts, a smoothed Bayesian MAP procedure.
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APPENDIX D – MODELS OF THE PHYSICAL COMPONENTS OF A
DISTRIBUTION SYSTEM

There is a variety of different components installed across the distribution systems, with
different purposes, characteristics, connections, functionalities, and flexibility. Despite their
intrinsic differences according to the type of component, fundamentally they can be individually
described by their effects on the electrical quantities of the power system. This Appendix presents
the main components and the respective characteristics that represent their operation inside the
distribution networks. The model parameters are described and discussed, and the respective
associated two-port model is derived.

Distribution Circuits

The distribution circuits represent the majority of the distribution networks, mainly com-
posed of electric cables installed as overhead or underground circuits. The respective component
model is obtained by electrical equations that capture the electromagnetic field relations for
each phase and among different phases within the circuits. In general, they comprise a series
impedance, to accommodate thermal losses and the effect of the magnetic fields surrounding
the conductors, and a shunt admittance, to represent the potential electrical field between the
conductors and the ground (Kersting, 2001; Sallam; Malik, 2018; Kagan, 2008; Kersting, 2008).
Figure 67 illustrates a typical three-wire cable circuit geometric disposition for an overhead
medium voltage distribution circuit. The respective electrical model and parameters are also
presented. Such an electrical circuit comprises the two-port mathematical model and associated
parameters.

(a) (b) (CC)

Conductor

Insulator

Node #k

(a)

(b)

(c)

Node #m

(a)

(b)

(c)

Figure 67 – Example of distribution circuit with an overhead configuration for a three-phase
medium voltage circuit and its respective electrical model.

The series impedance (z) comprise a resistance (r) and inductive reactance (x), from the
circuit inductance (l) and system frequency ( f ), for each phase of the circuit. Also, the model
comprises mutual coupling among different phases. The series parameter may be expressed by
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the general form described in (D.1) for the self impedance of each phase i, and in (D.2) for the
mutual impedance among different phases i and j.

zii = rii + j2π f lii = rii + jxii (D.1)

zi j = ri j + j2π f li j = ri j + jxi j (D.2)

The series self resistance rii reflects the thermal losses in the circuit according to the
current flowing through the cable and the Joule effect. The resistance of the cable is related to the
type of material, cross-section of the cable, and the length of the circuit. Typically, manufacturers
provide cable resistance values for direct current condition. For alternating current, the existence
of a varying magnetic field inside the conductor results in a non-uniform distribution of current
inside the cross-section of the cable, thickening the current density near the surface of the cables,
known as skin effect (Kagan, 2008). The effect of the magnetic field of adjacent conductors, for
instance, different phases near the conductor, also increases such effect, known as proximity effect.
In practice, both effects increase the effective resistance of the cable and can be compensated by
correction factors when calculating the cable resistance. Another important factor is temperature,
which tends to increase the electrical resistivity of the materials, also compensated by a thermal
coefficient related to the type of material.

Besides the series resistance, the series inductance comprises the magnetic field effects
that arise inside and outside the conductors. It is a consequence of the current flowing in
the conductors and among different phases, resulting in a self lii and a mutual li j inductance,
respectively. Such magnetic fields are a direct result of the alternated electric current flowing
through the conductors of the distribution circuits, derived from Faraday’s law of electromagnetic

induction. Besides the magnetic permeability physical constants, the geometric disposition of the
cables is essential to the proper calculation of the distribution circuit inductance and magnetic
coupling among phases (Kersting, 2001). The inner disposition of the cables comprises the first
part of the inductance calculation. It encompasses the total magnetic flux inside each conductor
of each phase. The geometric mean radius of the conductors is employed to calculate the self
inductance parameters. The second part consists of the total magnetic flux outward the conductor
among different conductors. This second part of the inductance calculation involves all different
phases and neutral conductors in the vicinity of the distribution circuit, yielding the mutual
inductance parameters. Typically, the inner geometric radius of the conductors is provided by
manufacturers, and the distance among different conductors depends on the geometric disposition
of the cables in the structures of the poles and cross arms, as illustrated in Figure 67, with the
respective distances among the phase conductors (dab, dbc and dca).

The effect of the return path of the current through the ground resistance can also be
taken into account by performing a correction in the impedance values, known as Carson’s

equations (Kersting, 2001; Kagan, 2008; Carson, 1926). The Carson method consists basically
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of reflecting the conductors in the soil and considering a uniform ground resistance and infinite
extension. The method comprises introducing correction factors for the self and mutual series
impedance to take into account the effect of grounding resistance. Indeed the mutual resistance
ri j term in (D.2) appears after this correction is performed. For practical purposes, a simplified
version known as Modified Carson equations is typically used, by considering few terms for the
correction factors.

The model may also comprise of a shunt admittance (yshunt) from the circuit shunt
capacitance (c) and system frequency ( f ), for each phase of the circuit. Such shunt parameter
may be expressed by the general form described in (D.3) for the self admittance of each phase i

and in (D.4) for the mutual admittance among different phases i and j. This shunt admittance
captures the electric field among the conductors and the soil, also resulting in a self cii and a
mutual ci j capacitance. The electric field arises from the charged conductors and can be derived
from Coulomb’s law using the reflected image of the geometric disposition of the cables in
the soil (Kersting, 2001). Besides the electric permittivity physical constants, the geometric
disposition of the cables is essential to the proper calculation of the distribution circuit capacitance
among phases. The calculation comprises the electric potentials difference among conductors,
from which a capacitance matrix can be derived, as the inverse of the potential coefficient
matrix. A shunt conductance may also be employed, for instance, to capture ionizing effects
of the conductors due to the Corona effect or to insulator leakage, but is generally neglected in
distribution systems (and in transmission systems), since are very small (Kersting, 2001; Glover;
Sarma; Overbye, 2012).

yii
shunt = j2π f cii = jbii (D.3)

yi j
shunt = j2π f ci j = jbi j (D.4)

In the case of underground cables, the same Carson method can be applied to model
the series and shunt parameters, according to the geometric disposition of the cables and
manufacturer parameters. There are, however, some additional considerations to be taken into
account regarding different underground configurations and cables with concentric neutral
conductors or with tape-shielded conductors. In this case, each phase will present a particular
neutral conductor and associated variables and parameters for each phase. This will increase
the dimension of the model to capture each neutral conductor for each cable of each phase,
yielding in a (6x6) impedance matrix with 3 dimensions for the phase conductors and the other
3 dimensions for each neutral conductor, all with its respective coupling terms.

Once distribution circuits consist of single, two, or three-phase untransposed lines, the
Carson method provide an accurate model to represent them in any steady state analysis for
distribution systems. There are some cases where sequence components (positive, negative,
and zero sequence impedances and admittances) are employed to model three-phase circuits.
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Figure 68 – Example of distribution circuit with an underground cable configuration, with con-
centric or with tape-shielded neutral, for a single-phase medium voltage circuit and
its respective electrical model.

Such an approach, however, is only accurate for dealing with transposed circuits, where the
mutual coupling terms of the model are equal (off-diagonal elements of the impedance and
admittance matrices). It is not the case of distribution systems, where the majority of circuits are
untransposed and asymmetrical, the main reason for using phase domain rather than symmetrical
components in distribution systems analysis (Kersting, 2001). Details of the calculation of the
resistance, inductance, and capacitance parameters for a distribution circuit, through Carson’s
method, can be found in (Kersting, 2001).

Finally, with the above parameters, it is possible to build the respective two-port ad-
mittance model described previously by the following equations. Single-phase or two-phase
circuits are also represented by such model, by only considering the elements of the respectively
connected phases in the two-port model.

Ykk = Ymm = Z−1
serie +Yshunt

Ykm = Ymk =−Z−1
serie

(D.5)

where, Zserie is the primitive series impedance matrix of the circuit composed by the self zii and
mutual zi j series impedances, and Yshunt is the shunt admittance matrix of the circuit composed by
the self yii

shunt and mutual zi j
shunt shunt admittances. As an example, for a three-wire distribution

circuit, those matrices would be:

Zserie =

raa + jxaa rab + jxab rac + jxac

rab + jxab rbb + jxbb rbc + jxbc

rac + jxac rbc + jxbc rcc + jxcc

 (D.6)

Yshunt =

 jbaa jbab jbac

jbab jbbb jbbc

jbac jbbc jbcc

 (D.7)

The model can also be extended to represent the neutral conductors if available, which is
the case of four-wire distribution circuits or underground cables with concentric neutral (Jesus;
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Antunes, 2018; Kersting, 2008). In this case, an additional dimension is incorporated in the model
to capture neutral conductor condition, and the associated neutral-ground voltages and neutral
conductor current are considered in the two-port model as well, by the following matrices:

Zserie =


raa + jxaa rab + jxab rac + jxac ran + jxan

rab + jxab rbb + jxbb rbc + jxbc rbn + jxbn

rac + jxac rbc + jxbc rcc + jxcc rcn + jxcn

ran + jxan rbn + jxbn rcn + jxcn rnn + jxnn

 (D.8)

Yshunt =


jbaa jbab jbac jban

jbab jbbb jbbc jbbn

jbac jbbc jbcc jbcn

jban jbbn jbcn jbnn

 (D.9)

Finally, a common practice for distribution circuits is to simplify the model by discarding
the dimensions and variables associated with the neutral conductors through a technique known as
Kron reduction (Kersting, 2001; Kron, 1951). The Kron reduction is based on the assumption of
multi-grounded systems as if each node of the distribution circuit has the neutral terminals solidly
grounded. Consequently, the neutral-to-ground voltage equals zero in all nodes of the distribution
circuit, which enables discarding the associated variables and reducing the dimensionality of the
distribution circuit only to the phase conductors. The Kron reduction technique then consists
of a matrix elimination process applied to the series impedance and shunt admittance matrices
obtained by the Carson method, which is described in (D.10) for the series impedance as an
example.

Zabc = Zi j−Zin(Znn)−1Z jn (D.10)

where the elements of the equation are the sub-matrices of the original full series impedance
matrix: Zi j is associated with all the phases conductors i and j; Zin and Z jn are associated with
coupling elements between i and j phases and n neutral conductors; and, Znn is associated with
the n neutral conductors. With this reduction, the final matrix Zabc has the same size of phase
conductors, for instance, a (3x3) for three-phase abc circuits.

Power Transformers

Power transformers are equipment responsible for connecting different voltage levels of
the distribution network, for instance, high voltage with medium voltage and medium voltage
with low voltage circuits. They are mainly inductive elements constructed with magnetic coils in
two separate windings, the primary side and the secondary side. Figure 69 illustrates the most
common three-phase transformer connections, with Delta, Wye, and Grounded-Wye connections.
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The transformers may also be represented by equation 4.1, in which the sub-matrices Ykk,
Ykm, Ymk and Ymm assume distinct values according to the connection of the three-phase trans-
former. The most common connections are presented in Table 14 for the step-down transformers,
in case of a step-up transformer, columns regarding the mutual admittance have to be swapped
(Chen et al., 1991; Peng Xiao; Yu; Wei Yan, 2006). Also, the sub-matrices YI , YII and YIII in
Table 14 are given as follows, in which yt is the per unit transformer admittance (Arrillaga;
Harker, 1978).

Wye / Wye

(A)

(C)

(B)

(N)

(a)

(c)

(b)

(n)

Delta / Delta

(A)

(C)

(B)

(a)

(c)

(b)

Delta / Wye

(a)

(c)

(b)

(n)

Wye / Delta

(A)

(C)

(B)

(N)

(A)

(C)

(B)

(a)

(c)

(b)

Figure 69 – Three-phase transformer connections of the primary and secondary windings. The
Wye connection may present a solidly grounded connection (Wye-Grounded). De-
tailed grounding models may incorporate a reactor as well.

YI =

yt 0 0
0 yt 0
0 0 yt

 ; YII =
1
3

2yt −yt −yt

−yt 2yt −yt

−yt −yt 2yt

 ; (D.11)

YIII =
1√
3

−yt yt 0
0 −yt yt

yt 0 −yt


In case the transformer has an off-nominal tap, namely α for the primary and β for the

secondary tap ratio, the self- and mutual-admittance matrices have the following adjustment
(Arrillaga; Harker, 1978):

• divide the primary self-admittance matrix by α2;

• divide the secondary self-admittance matrix by β 2;

• divide the mutual-admittance matrices by αβ .

Furthermore, all of the above models comprise three-wire or solidly grounded connec-
tions. In case of open grounded or in order to represent grounding systems, the above models can
be extended for incorporating neutral-to-earth voltages as complementary state variables, or to
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Table 14 – Sub-matrices for step down three-phase transformers according to its most common
primary and secondary connections. Source: (Arrillaga; Harker, 1978)

Winding Connection Admittance sub-matrices
Primary Secondary Ykk Ymm Ykm Ymk

Yn Yn α2.YI β 2.YI −α.β .YI −α.β .YI
Yn Y α2.YII β 2.YII −α.β .YII −α.β .YII
Yn D α2.YI β 2.YII α.β .YIII α.β .Y t

III
Y Yn α2.YII β 2.YII −α.β .YII −α.β .YII
Y Y α2.YII β 2.YII −α.β .YII −α.β .YII
Y D α2.YII β 2.YII α.β .YIII α.β .Y t

III
D Yn α2.YII β 2.YI α.β .YIII α.β .Y t

III
D Y α2.YII β 2.YII α.β .Y t

III α.β .YIII
D D α2.YII β 2.YII −α.β .YII −α.β .YII

complement the representation of solidly grounded connections where the sum of phase-voltages
equals to zero. Similar to the four-wire distribution circuits, another variable is included in the
two-port model that represents the effect of transformer grounding.

Besides those three-phase typical connections, there are also the Open-Wye and Open-
Delta connections that may be employed in distribution systems. In this case, the two-port model
must be adequate to represent the specific connections of each transformer, that is the proper input
voltages and currents according to connected phases of the transformer, as presented by (Chen;
Chang, 1992). Equation (D.12) presents the two-port model for an Open-Delta/Open-Delta
(OD/OD) transformer, and equation (D.13), for an Open-Wye/Open-Delta (OY/OD) transformer.

Ykk =
yt

α2 .

 1 −1 0
−1 2 −1
0 −1 1

 Ykm = Ymk =
yt

αβ
.

 1 −1 0
−1 2 −1
0 −1 1

 (D.12)

Ymm =
yt

β 2 .

 1 −1 0
−1 2 −1
0 −1 1



Ykk =
yt

α2 .

(
1 0
0 1

)
Ykm = Y t

mk =
yt

αβ
.

(
− 1√

3
1√
3

0

0 − 1√
3

1√
3

)
(D.13)

Ymm =
yt

β 2 .


1
3 −1

3 0
−1

3
2
3 −1

3

0 −1
3

1
3


Another possibility, typically encountered for single-phase transformers, is the one

with a center-tapped secondary winding. Such type of connection is common for distribution
transformer in the United States, interfacing medium and low voltage networks. The center-tap
is typically grounded, which enables phase to neutral and phase to phase voltage to be obtained
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Open-Delta /  Open-Delta Open-Wye / Open-Delta Single Phase with Center-
Tapped Secondary
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Figure 70 – Three-phase transformer open connections and single-phase with center-tapped
secondary connection.

for the loads. The winding individual impedance values may be difficult to find in practice, and
often empirical equations provide individual parameters for each winding and also their coupling
(Kersting, 2001; Kersting, 2009). With such parameters, the transformer can be described by the
following two-port admittance matrices:

Ykk =
yAN

α2 Ykm = Y t
mk =

1
αβ

.
(
−yAa −yAb

)
(D.14)

Ymm =
1

β 2 .

(
yan −yab

−yab ybn

)

where yAN denotes the self admittance of the primary winding, and yAa and yAb the
coupling admittance between the primary winding and each half of the secondary winding, yan

and ybn the self admittance of the two half’s of the secondary winding, and yab their mutual
coupling admittance.

Besides the above connections, there are also the three-winding three-phase transformers,
typically encountered at large distribution substations with two possibilities of the medium
voltage supply. Another important application of this transformer is interfacing power electronic
converters that may benefit from the phase displacement between the secondary and tertiary
windings, with grounded-wye and delta connections, respectively. Three individual three-phase
transformers represent the three-winding transformer according to the windings connections and
manufacturer impedance data from the different terminals: from primary to secondary; from
primary to tertiary; and from tertiary to secondary. Typically the secondary presents a Wye
connection and the tertiary a Delta connection.

Finally, some analysis may even consider core losses and magnetizing reactances (Chen
et al., 1991; Chen; Chang, 1992). These parameters were omitted in the above models but can be
incorporated as shunt elements. A shunt resistance for the core loss and a shunt inductance for the
magnetizing reactance, both represented at the primary terminal of the transformers. Typically
such models may be necessary for assessing transient responses, evaluating harmonic content, or
even for detailed losses calculation on distribution networks. Finally, Box 2 presents an example
of a small distribution feeder to illustrate the distribution circuit and power transformer models.
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Voltage Regulators

Voltage regulators are a special kind of transformer that controls the voltage at specific
nodes of the network by increasing or decreasing the number of coils from a transformer,
changing the transformation relation according to discrete tap switching operations. They perform
an essential control task to keep voltage levels within operational limits. Typically they are built
as a particular type of auto-transformers with tap switching mechanism, capable of switching
tap positions while energized through on-load tap changers (OLTC). Constructively, the tap
switching can be performed on the primary or in the secondary side of the voltage regulator,
referred to as "Type A" and "Type B" voltage regulators (Kersting, 2001). The range for possible
coil position, i.e. the taps of the voltage regulator, may vary for each manufacturer and regulator
type. In distribution systems, it is often employed 16 taps that correspond to an increase/decrease
of 10 % of the voltage on the secondary side (16 taps to increase, 16 taps to decrease, and a
nominal position). Figure 71 illustrates in a single-phase schematic the main components of the
voltage regulator and the associated instrumentation and control equipment.

Voltage
Regulator
Controller

Tap
commuter Current

transformer

Potential
transformer

Voltage
Lower

Voltage
Rise Distribution Circuit

Load
Center

Primary Side
of the Voltage

Regulator

Secondary Side
of the Voltage

Regulator

Preventive
Autotransformer

Voltage drop to be
compensated

Figure 71 – Single-phase schematic of a "Type A" voltage regulator, its main components, and
voltage control strategy illustration.

Regarding the voltage regulator mathematical model, a similar approach to the power
transformer is employed to represent different connections of voltage regulators. The most
common one is the three-phase Wye-grounded connection, but the open Delta connections are
also encountered. In practice, due to constructive characteristics, their resistance and reactance
are very small and are often represented as ideal transformers in the network model, neglecting
its series impedance. Care must be taken in this approach, since it may severely aggravate
numerical ill-conditioning (Cheng; Shirmohammadi, 1995). In this sense, the voltage regulator
model may be associated with adjacent components to counter such effect, or by employing
more stable numerical methods when performing analysis with voltage regulators. Alike the
power transformer, the type of connection (Wye-Grounded, Wye, Delta, Open-Wye, Open-Delta,
or Single Phase) will define the two-port model according to equations the admittance sub-
matrices in (D.11). The difference relies on the off-nominal tap parameters that now comprise an
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individual transformer relation for each phase i, denoted as α i. Besides, typically only one side
will present off-nominal tap relations. As an example, the Wye-Grounded voltage regulator, with
tap switching represented on the secondary, two-port model is presented below in (D.15).

(
Ykk Ykm

Ymk Ymm

)
=



yt 0 0
0 yt 0
0 0 yt


−

1
αa yt 0 0
0 − 1

αb yt 0
0 0 − 1

αc yt


−

1
αa yt 0 0
0 − 1

αb yt 0
0 0 − 1

αc yt




1
αa2 yt 0 0

0 1
αb2 yt 0

0 0 1
αc2 yt




(D.15)

where, αa, αb and αc are the off-nominal voltage regulator transformation relation
according to the the tap position for the respective phase a, b and c.

Although an important detail for steady state analysis of distribution networks, in the
context of distribution system state estimation, the tap values are typically assumed as monitored
parameters, without the need of incorporating detailed controller models. Such an assumption
is not always valid, and besides, the response time of such controllers may be faster than
updates on the measurement set. It motivates some approaches to incorporate the tap positions as
complementary variables to be estimated as in (Nanchian; Majumdar; Pal, 2017a; Massignan;
Pereira; London, 2017).

Loads

In steady state analysis, loads of the system are often considered independent of the
voltage frequency, leading to a representation with a constant load. However, in distribution
system analysis, it may be required a more accurate representation of the loads, which leads to
distinct models treating the load as voltage-dependent. One of the most traditional approaches is
the exponential model (Kundur, 1994; Milanovic et al., 2013):

Pi
k = Pinom

k ·V̄ i
k

a

Qi
k = Qinom

k ·V̄ i
k

b (D.16)

In which the superscripts i denote the phase, the subscript k is the node, nom denotes
the nominal load (in the beginning of the iterative process), and V̄ i

k corresponds to the relation
between the updated voltage and its nominal value (V̄k =Vk/V nom

k ). The exponents a and b are
used to represent a constant power, constant current, or constant impedance load characteristics,
assuming the values of 0, 1 and 2, respectively, for each one of those. However, for composite
loads these values usually range from 0.5 to 0.8 for a, and from 1.5 to 6 for b (Kundur, 1994).

Another model is the polynomial one, which is also known as the ZIP model (Kundur,
1994; Milanovic et al., 2013):
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Pi
k = Pi−nom

k ·
(

p1V̄ i
k

2
+ p2V̄ i

k + p3

)
Qi

k = Qi−nom
k ·

(
q1V̄ i

k
2
+q2V̄ i

k +q3

) (D.17)

This model is composed of three distinct parts, its constant impedance (Z), constant
current (I), and constant power (P) portion (hence known as ZIP). Each one is multiplied by a
coefficient that defines the proportion of each component in the load (p1 to p3 for the active load,
and q1 to q3 for the reactive load). For example, a constant power load would have p3 = q3 = 1
while the others are set to zero. Any composite load may be represented as long as the sum of
the distinct coefficients of the active or reactive load equals one (Kundur, 1994).

While the previous models efficiently represent most wye connected loads, delta con-
nected loads need a few adjustments. Since most three-phase power system analyses are con-
ducted using phase power and voltage, the consumed power of the delta connected load needs to
be converted to its phase equivalent. To do so, it is assumed that the complex power and voltage
of the delta-connected load are given by:

Ṡab
k = Pab

k + jQab
k ; Ṡbc

k = Pbc
k + jQbc

k ; Ṡca
k = Pca

k + jQca
k (D.18)

V̇ ab
k =V ab

k ∠θ
ab
k ; V̇ bc

k =V bc
k ∠θ

bc
k ; V̇ ca

k =V ca
k ∠θ

ca
k (D.19)

Therefore, the delta active and reactive power may be obtained using equations D.16 or
D.17 according to the load model. After that, the line currents in the load are obtained with:

İab
k =

(
Ṡab

k /V̇ ab
k

)∗ ; İbc
k =

(
Ṡbc

k /V̇ bc
k

)∗ ; İca
k =

(
Ṡca

k /V̇ ca
k

)∗ (D.20)

Furthermore, the wye equivalent complex phase load at bus k is obtained by:

Ṡa
k =

(
İab
k − İca

k

)∗ V̇ a
k

Ṡb
k =

(
İbc
k − İab

k

)∗ V̇ b
k

Ṡc
k =

(
İca
k − İbc

k

)∗ V̇ c
k

(D.21)

Consequently, the active and reactive powers (Pi
k and Qi

k) of the wye equivalent specified
complex phase load is obtained with the real and imaginary parts of the wye equivalent phase
load, respectively. This same set of equations may also be applied to bi-phase loads.

The loads in distribution systems can also be associated with sensors, typically called
smart meters, under an AMI concept (Huang; Lu; Lo, 2015). If the load values are effectively
measured, they can be included in the state estimation measurement model, with some practical
considerations that will be dealt with in future chapters. If such loads are not measured, as in
the case of most of distribution systems, typically the load model comprises the use of typical
load profiles (Jardini et al., 2000; Primadianto; Lu, 2017). Such load profiles are adopted as
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an approximate estimate of the load values and are based mainly on consumer stratification
and electricity monthly energy consumption. Although such profiles provide only a rough
approximation of the real load values, in the absence of smart meters they are the only source of
information regarding the load values for the steady state analysis. In the state estimation topic,
such a technique is named as load pseudo measurement modelling.

Each consumer unit is associated with a typical load profile based on the consumer
classification (e.g. residential, commercial or industrial), the monthly energy consumption in
kWh, the number of phases of the consumer, and a respective typical load profile (Ghosh;
Lubkeman; Jones, 1997; Jardini et al., 2000; Massignan et al., 2015). The load profiles are
associated with the consumer’s stratification and consist of daily curves with each point being
associated with a normalized mean active load value and the respective standard deviation
throughout the instants of a day and can be given for every 10 minutes up to each hour or more,
often separated between a day of the week or weekends. The energy consumption is measured
each month for billing purposes, or may be used previous day smart meter information, and is
the typical choice as the scale factor for the typical load profile. With such information, each
phase of the consumer can be associated with an active load curve with equation (D.22). The
reactive power can be estimated using typical power factors or similar information, if available.

pi
c(t) =

kWhi
c

∆tk
pω(t),c ∈ ω (D.22)

where, pi
c(t) is the active load for each consumer c in the i-th phase at each instant t, kWhi

c

and ∆tk the respective energy consumption and measured time interval to be used as scaling
factor, and pω(t) is the typical normalized load profile for the respective classification ω of the
consumer unit among all possible classifications Ω (e.g. residential, commercial or industrial).

Typically, such pseudo measurements provide information for achieving observability
at the medium voltage primary feeders, that is, they provide enough information to reach
the minimum in order to perform the state estimation process in the primary feeder, in a
complementary manner. Although they are associated with the consumer units at low voltage
secondary systems, they are often represented in the primary feeders, for medium voltage
system analysis. This way, the loads within a secondary low voltage system are aggregated at
the respective power transformer that supplies energy from the primary feeder. The pseudo-
measurement load consists of the expected value for the active load in each transformer k that
connects the primary feeder to the secondary circuits (E[Pi

k(t)]), and the respective variance
(Var[Pi

k(t)]), obtained by the aggregation process (Jardini et al., 2000; Massignan et al., 2015). It
can be calculated as follow in equation (D.23) and (D.24).

E[Pi
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]
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c

∆tc

E[pω(t)] (D.23)



227

Figure 72 – Example of typical load curves and stratification of consumers to characterize
distribution system loads.
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kWhi
c

∆tc


2

Var[pω(t)] (D.24)

where, Sk is the set of consumer units c connected to the secondary circuits of transformer k,
in each i-th phase. The expected value and variance, E[pω(t)] and Var[pω(t)], for each class of
consumers are obtained by the typical load profiles associated with the respective class. Figure
72 illustrates the idea of typical load profiles and how they represent the normalized mean value
of different consumers pertaining to the same class. The pseudo measurement model tries to
capture this typical behavior of the load over a day. By performing the load aggregation, multiple
consumers have their loads aggregated at the transformer that feeds their respective secondary
circuits. The probabilistic interpretation associated with the typical load profiles can also provide
additional information for more detailed methods (Ghosh; Lubkeman; Jones, 1997; Singh et al.,
2011; Massignan et al., 2018).

The pseudo measurements are indeed approximations for the load values, based on the
typical behavior of a class of consumers, and thus carry more uncertainty to steady state analysis.
Thereby, the accuracy of the state estimation process is largely affected (Muscas et al., 2014).
Nonetheless, in the absence of information from real time measurements, such typical profiles
have been used in practice along with another step of refinement. Among the different approaches
proposed in the literature for pseudo measurement modelling, the most common are based on:
neural networks (Manitsas et al., 2012); associating probabilistic models based on Gaussian-
mixtures (Singh et al., 2011); refined in real-time with load flow calculation (Massignan et al.,
2018); using lookup tables and rescaling factors (Ghosh; Lubkeman; Jones, 1997); or also be
included in special estimation formulations (Džafić et al., 2013). These approaches are very
important for any practical and realistic distribution system state estimation implementation,
since it can increase the quality of the pseudo measurements. Despite the current evolution
towards the installation of smart meters, this kind of methodology still is very appealing, to
compensate for the possible loss of communication or even to reduce traffic in the communication
networks.
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Shunt Capacitors and Reactors

Shunt capacitors are a type of equipment that offers reactive support for the grid, improv-
ing voltage quality aspects. They are in essence a shunt capacitive susceptance directly connected
to the nodes of a distribution system. They can be installed as a fixed capacitor or as a variable
capacitor bank, which consists of a group of capacitors and a local controller able to modify the
total capacitance of the group by turning on or off some capacitors depending on the control
strategy (Cheng; Shirmohammadi, 1995; Kersting, 2001). Since the shunt capacitors are directly
connected to the nodes, their two-port model can be written as a single port:

İk = YkkV̇k (D.25)

Which is, basically, the same equations that described the power flow, but, in this case,
neglecting the terms of the second terminal of the model, denoted by the subscript m. The
admittance matrix depends upon the type of connection of the shunt capacitor, which may be
a Wye, a Wye-Grounded, a Delta, or a single phase connection. For three-phase modeling, the
structure of the admittance matrix will be given by equation (D.26), similar to the different
transformer connections, but now considering the capacitor susceptance bsh

c , and considering the
matrix YI for Wye-Grounded connection, YII for Wye connection and YII for Delta connection,
respectively. For single-phase capacitors, they are modeled directly on the respectively connected
phase.

YI = jbsh
c

1 0 0
0 1 0
0 0 1

 ; YII = j bsh
c
3

 2 −1 −1
−1 2 −1
−1 −1 2

 ;YIII = j bsh
c√
3

−1 1 0
0 −1 1
1 0 −1

 (D.26)

The capacitor’s susceptance bsh
c is obtained from the nominal parameters, following:

bsh
c =

MVArnom

V 2
nom

(D.27)

where MVArnom is the nominal reactive power of the capacitor in MVAr, and Vnom is the capacitor
nominal voltage in kV.

Another type of shunt equipment are reactors and grounding resistances, often used
in grounding systems of distribution networks. The same idea as the above is employed for
such elements to obtain detailed grounding representations; however, in this case, it expresses a
relation between the voltage and current phasor of the neutral-to-ground variables:

İn
k = Y nn

k V̇ n
k (D.28)

where the superscript n denotes the neutral-to-ground variables and parameters at node k. In
the case of a shunt reactor, the parameter Y nn

k is equal to 1/ jXgrounding, and 1/Rgrounding for
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resistance, which are the nominal parameters of the grounding reactor. Finally, Box 3 presents an
example of a medium size radial distribution feeder to illustrate the shunt capacitors and voltage
regulators models.
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