• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.18.2021.tde-27052022-100628
Documento
Autor
Nome completo
Lucas Barbosa Marcos
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2021
Orientador
Banca examinadora
Terra, Marco Henrique (Presidente)
Pereira, Guilherme Augusto Silva
Raffo, Guilherme Vianna
Silva, Maíra Martins da
Wolf, Denis Fernando
Título em inglês
State estimation and autonomous control of heavy-duty vehicles: a Markovian approach
Palavras-chave em inglês
Autonomous vehicles
Control
Filtering
Markov processes
Road vehicles
Resumo em inglês
The past few years have seen a massive improvement in self-driving vehicle technology. However, many challenges remain ahead. For example, the autonomous control of heavyduty vehicles is still an issue because it demands robustness enough to endure huge payload variations. Also, there are still challenges concerning state estimation. For instance, take driveshaft torsion: even though it is a fundamental variable in vehicle dynamics, it is difficult to be measured or estimated due to the need for high precision encoders or because of integration estimation errors. Furthermore, gear shifting in the driveline affects state estimation and autonomous control, as it abruptly changes powertrain dynamics. Another issue is the influence of the road slope, which disturbs the system, and may or may not be measured. This thesis proposes robust discrete-time Markov jump linear system techniques for estimating driveshaft torsion and achieving autonomous driveline control. The filtering techniques are applied in two situations: with available road slope information and with unknown road slope. The algorithms are tested for a truck bodywork. Experiments show that the estimation delivers online results as accurate as offline estimation methods, especially when the road slope is known. The proposed filter is capable of estimating the torsion even in scenarios of high plant uncertainty, where an LMI-based filter only finds a highly oscillatory solution. Also, the proposed recursive controller outperforms its LMI-based counterpart in terms of tracking error and can complete the test track in scenarios where the nominal LMI-based version cannot.
Título em português
Estimativa de estado e controle autônomo de veículos de carga: uma abordagem Markoviana
Palavras-chave em português
Controle
Filtragem
Processos de Markov
Veículos autônomos
Veículos rodoviários
Resumo em português
Nos últimos anos, houve uma melhoria significativa na tecnologia de veículos autônomos. No entanto, muitos desafios permanecem pela frente. Por exemplo, o controle autônomo de veículos pesados ainda é um problema, porque exige robustez suficiente para suportar enormes variações da carga transportada. Além disso, ainda existem desafios quanto à estimativa de estado. Por exemplo, quanto à torção nos semieixos: mesmo sendo uma variável fundamental na dinâmica do veículo, é difícil de ser medida ou estimada devido à necessidade de encoders de alta precisão ou devido a erros em estimativas por integração. Além disso, a mudança de marchas do veículo afeta a estimativa de estado e o controle autônomo, uma vez que altera de forma abrupta a dinâmica da cadeia cinemática. Outra questão é a influência do declive da estrada, que perturba o sistema, e pode ou não ser medido. Esta tese propõe técnicas robustas de sistemas lineares discretos sujeitos a saltos Markovianos para estimar a torção nos semieixos e obter o controle longitudinal autônomo do veículo por meio de sua cadeia cinemática. As técnicas serão aplicadas em duas situações: com informações disponíveis sobre a inclinação da estrada e com a inclinação da pista desconhecida. Os algoritmos são testados em um caminhão sem caçamba. Os experimentos mostram que o estimador fornece resultados online tão precisos quanto os métodos de estimativa off-line, especialmente quando o declive da estrada é conhecido. O filtro proposto consegue estimar a torção mesmo em cenários de alta incerteza da planta, em que um filtro baseado em LMI só encontra uma solução altamente oscilatória. Além disso, o controlador recursivo proposto supera seu análogo baseado em LMI em termos de erro de rastreamento, e é capaz de completar a volta de testes em cenários nos quais a versão nominal baseada em LMI é incapaz.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2022-05-27
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.