• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.18.2013.tde-26082013-133045
Documento
Autor
Nome completo
João Paulo Cerri
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2013
Orientador
Banca examinadora
Terra, Marco Henrique (Presidente)
Costa, Eduardo Fontoura
Ishihara, João Yoshiyuki
Trofino Neto, Alexandre
Val, João Bosco Ribeiro do
Título em português
Controle e filtragem para sistemas lineares discretos incertos sujeitos a saltos Markovianos
Palavras-chave em português
Cadeia de Markov
Controle
Equação de Riccati
Filtragem
Função penalidade
Mínimos quadrados
Robustez
Sistemas lineares
Resumo em português
Esta tese de doutorado aborda os projetos robustos de controle e estimativa de estados para Sistemas Lineares sujeitos a Saltos Markovianos (SLSM) de tempo discreto sob a influência de incertezas paramétricas. Esses projetos são desenvolvidos por meio de extensões dos critérios quadráticos clássicos para SLSM nominais. Os critérios de custo quadrático para os SLSM incertos são formulados na forma de problemas de otimização min-max que permitem encontrar a melhor solução para o pior caso de incerteza (máxima influência de incerteza). Os projetos robustos correspondem às soluções ótimas obtidas por meio da combinação dos métodos de funções penalidade e mínimos quadrados regularizados robustos. Duas situações são investigadas: regular e estimar os estados quando os modos de operações são observados; e estimar os estados sob a hipótese de desconhecimento da cadeia de Markov. Estruturalmente, o regulador e as estimativas de estados assemelham-se às respectivas versões nominais. A recursividade é estabelecida em termos de equações de Riccati sem a necessidade de ajuste de parâmetros auxiliares e dependente apenas das matrizes de parâmetros e ponderações conhecidas.
Título em inglês
Control and filtering for uncertain discrete-time Markovian jump linear systems
Palavras-chave em inglês
Control
Filtering
Least squares
Linear system
Markov chain
Penalty function
Riccati equation
Robustness
Resumo em inglês
This thesis deals with recursive robust designs of control and state estimates for discretetime Markovian Jump Linear Systems (MJLS) subject to parametric uncertainties. The designs are developed considering extensions of the standard quadratic cost criteria for MJLS without uncertainties. The quadratic cost criteria for uncertain MJLS are formulated in the form of min-max optimization problems to get the best solution for the worst uncertainty case. The optimal robust schemes correspond to the optimal solution obtained by the combination of penalty function and robust regularized least-squares methods. Two cases are investigated: to control and estimate the states when the operation modes are observed; and, to estimate the states when the Markov chain is unobserved. The optimal robust LQR and Kalman-type state estimates resemble the respective nominal versions. The recursiveness is established by Riccati equations in terms of parameter and weighting matrices previously known and without extra offline computations.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Cerri.pdf (1.93 Mbytes)
Data de Publicação
2013-08-30
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.