• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.18.2013.tde-26082013-133045
Documento
Autor
Nombre completo
João Paulo Cerri
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2013
Director
Tribunal
Terra, Marco Henrique (Presidente)
Costa, Eduardo Fontoura
Ishihara, João Yoshiyuki
Trofino Neto, Alexandre
Val, João Bosco Ribeiro do
 
Título en portugués
Controle e filtragem para sistemas lineares discretos incertos sujeitos a saltos Markovianos
Palabras clave en portugués
Cadeia de Markov
Controle
Equação de Riccati
Filtragem
Função penalidade
Mínimos quadrados
Robustez
Sistemas lineares
Resumen en portugués
Esta tese de doutorado aborda os projetos robustos de controle e estimativa de estados para Sistemas Lineares sujeitos a Saltos Markovianos (SLSM) de tempo discreto sob a influência de incertezas paramétricas. Esses projetos são desenvolvidos por meio de extensões dos critérios quadráticos clássicos para SLSM nominais. Os critérios de custo quadrático para os SLSM incertos são formulados na forma de problemas de otimização min-max que permitem encontrar a melhor solução para o pior caso de incerteza (máxima influência de incerteza). Os projetos robustos correspondem às soluções ótimas obtidas por meio da combinação dos métodos de funções penalidade e mínimos quadrados regularizados robustos. Duas situações são investigadas: regular e estimar os estados quando os modos de operações são observados; e estimar os estados sob a hipótese de desconhecimento da cadeia de Markov. Estruturalmente, o regulador e as estimativas de estados assemelham-se às respectivas versões nominais. A recursividade é estabelecida em termos de equações de Riccati sem a necessidade de ajuste de parâmetros auxiliares e dependente apenas das matrizes de parâmetros e ponderações conhecidas.
 
Título en inglés
Control and filtering for uncertain discrete-time Markovian jump linear systems
Palabras clave en inglés
Control
Filtering
Least squares
Linear system
Markov chain
Penalty function
Riccati equation
Robustness
Resumen en inglés
This thesis deals with recursive robust designs of control and state estimates for discretetime Markovian Jump Linear Systems (MJLS) subject to parametric uncertainties. The designs are developed considering extensions of the standard quadratic cost criteria for MJLS without uncertainties. The quadratic cost criteria for uncertain MJLS are formulated in the form of min-max optimization problems to get the best solution for the worst uncertainty case. The optimal robust schemes correspond to the optimal solution obtained by the combination of penalty function and robust regularized least-squares methods. Two cases are investigated: to control and estimate the states when the operation modes are observed; and, to estimate the states when the Markov chain is unobserved. The optimal robust LQR and Kalman-type state estimates resemble the respective nominal versions. The recursiveness is established by Riccati equations in terms of parameter and weighting matrices previously known and without extra offline computations.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Cerri.pdf (1.93 Mbytes)
Fecha de Publicación
2013-08-30
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Tesis y Disertaciones de la USP.