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Resumo

OLIVEIRA JR., JORDÃO NATAL Avaliação Estatística de Interações Dinâmicas
Envolvendo Abelhas: Rastreamento Bayesiano e Informação Mútua. 2019. 71p. Dissertação de
Mestrado - , São Carlos, Brasil, 2019.

Rastrear objetos em vídeo é um método barato para obter informações sobre as partes de um sistema. No
entanto, quando há muitos objetos simultaneamente no rastreamento, alguns problemas podem ocorrer,
como sobreposição e troca de rótulos, comprometendo a eficiência geral. Recentemente, novas abordagens
para resolver estes problemas foram desenvolvidas, por exemplo, Redes Neurais Convulacionais, mas o
custo computacional ainda é muito alto. Neste trabalho foi desenvolvido um algoritmo de rastreamento
Bayesiano para monitorar objetos em quadros de vídeo. O algoritmo permite a avaliação da Função de
Distribuição de Probabilidade (PDF) dos objetos que estão sendo rastreados, combinando o rastreamento
com o KDE (Kernel Density Estimation). O algoritmo proposto foi avaliado através de simulação e
comparação com abordagens semelhantes, uma vez que as bases de dados convencionais (Princeton
Tracking Benchmark) não apresentam semelhança com o problema daquele abordado nesta dissertação. O
algoritmo é capaz de rastrear os objetos com grande precisão, sendo capaz de avaliar dinamicamente a
entropia e energia, usando coordenadas polares e assumindo uma distribuição de Mises para a previsão
de variação de ângulo e uma distribuição não informativa para a predição de raio. Em seguida, com as
informações obtidas a partir do algoritmo, foi feita a análise de resiliência abordando os efeitos de dois
agroquímicos nas abelhas: o inseticida imidaclopride e o fungicida cerconil. Informações adicionais sobre
como elas afetam as abelhas foram obtidas através de Informações Mútuas sobre doses letais, reforçando
os resultados anteriores.

Palavras-chave: Rastreamento de múltiplos alvos, inferência bayesiana, abelhas de abelhas, agroquímicos.





Abstract

OLIVEIRA JR., JORDÃO NATAL Statistical Evaluation of Dynamical Interaction Involving
Bees: Bayesian Tracking and Mutual Information. 2019. 71p. Dissertação de Mestrado - , São
Carlos, Brasil, 2019.

Tracking objects in video is a cheap method to obtain information about the parts of a system. However,
when there are many objects simultaneously in the tracking some problems can happen, such as overlapping
and swap of labels, compromising the overall efficiency. Recently new approaches for solving these problems
were developed e.g. Convolutional Neural Networks, but the computational cost is still very high. Here, a
Bayesian tracking algorithm to supervise objects on video frames is described. The algorithm allows the
evaluation of and Probability Distribution Function (PDF) of the objects being tracked by combining
the tracking with the Kernel Density Estimation (KDE). The proposed algorithm was evaluated through
simulation and comparison with similar approaches, since the conventional databases (as Princeton
Tracking Benchmark) lacks similarity with the problem of the one approached in this dissertation. The
algorithm is able to track the objects with great precision, thus being able to dynamically evaluate
the entropy and energy, by using polar coordinates and assuming a von Mises distribution for the
angle variation prediction and a non-informative distribution for the radius prediction. Then, with the
information obtained from the algorithm, a resilience analysis was made approaching the effects of two
agrochemicals in the honey bees: the insecticide imidacloprid and the fungicide cerconil. Additional
information about how they affect honey bees was obtained via Mutual Information on lethal doses,
reinforcing the previous results.

Keywords: Multi-target tracking, Bayesian inference, Bee swarm Honey bees, Agrochemicals.
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1 Introduction

Bees’ participate in nearly 75% of food cultivation through pollination and generate 26 to 65
billion dollars globally (AFFEK, 2018; ISAACS et al., 2017; POTTS et al., 2010; ALLEN-WARDELL
et al., 1998). However, their populations are in decline in many regions of the world (BECHER et al.,
2018; BRETTELL; MARTIN, 2017; CAMERON et al., 2011). The cause of this decline is still under
debate, but agrochemicals are pointed to as the most probable cause of this phenomenon (TOMé et al.,
2017; ALLEN-WARDELL et al., 1998). In larger doses, these substances cause death (TOMÉ et al., 2017).
On the other hand, when insects come into contact with some substances in lower doses, it influences
their behaviour, causing movement far beyond their original condition (THOMPSON, 2003). Animal
behaviour analysis uses different techniques to track them, including RF transmitters (MAINWARING
et al., 2002; SCHWARTZKOPF-GENSWEIN; HUISMA; MCALLISTER, 1999), GPS (BENNISON et
al., 2018; BROWNING et al., 2018), and video tracking (ROSSETTI et al., 2018; CHO et al., 2018; OH;
BARR; HURT, 2015; AGUIAR; MENDONÇA; GALHARDO, 2007).

Video tracking is a technique that is constantly under development because it is applied in a
wide range of fields (TEKALP, 2015). It is still the cheapest form of tracking (BAZHENOV; KORZUN,
2018), and with the increase in computational power, it has become possible to use more and more
sophisticated techniques in image processing (XUE; XU; FENG, 2018; HARE et al., 2016; HENRIQUES
et al., 2015). However, it has some drawbacks, such as the identification of several similar objects near
each other (PÉREZ-ESCUDERO et al., 2014) and background noise (TEKALP, 2015). These objects can
be automated using deep learning or neural networks (FORYS et al., 2018), but these approaches have
high computational system costs and contain many elements (ANIL et al., 2018; HU; SHEN; SUN, 2018).
The use of animal markings is still significant for distinguishing between objects to be tracked. Other
modern approaches to object tracking include hierarchical learned features for tracking (WANG et al.,
2015), machine learning (HONG et al., 2015) and cognitive vision (GULER et al., 2018), which all have
the same problem: the algorithm is limited to tracking only a few objects at the same time for accuracy.
The multi-tracking algorithm faces the challenge (MAGGIO; CAVALLARO, 2011) of not swapping the
labels when two objects (for example, animals being tracked) cross. These labels are associated with each
animal and must remain the same during video stream analysis.

In the context of an agent changing the operation of a system, as a hive, it is natural to evoke
the concept of resilience. It can be defined as the ability of a system to recover itself after an external
impact (HOLLING, 1973). However, it is also a quantitative measurement being used in engineering
for compute the vulnerability and recoverability of the affected system (DEHGHANIAN et al., 2019;
FOTOUHI; MORYADEE; MILLER-HOOKS, 2017; WANG et al., 2016; ARGHANDEH et al., 2016). As
a graphical analyses, it needs a physical dynamical quantity to be target of calculations.

The video stream is decomposed into frames in a time span, and these frames are processed to
detect the mark colour of each animal. A simple algorithm is used to decide whether or not these marks
indicate an animal. In each frame, all colour marks are assigned to a label. These labels are evaluated over
time to track all the animals. During this analysis, many labels can become swapped because animals
cross each other’s pathways, or some of them stop moving (BERNARDIN; STIEFELHAGEN, 2008). Bee
movements are usually at a low angle; they keep going, closely following a straight line, and depending on
the animal, these variations may or may not be significant (CARTAR; REAL, 1997). Considering this
movement to be decomposed in polar coordinates (r, θ), each one can be modelled as a random variable
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and its update based on Bayes inference to discern the most probable trajectory. This type of learning
prevents the usual swap problem present in video tracking when objects cross their paths.

The proposed algorithm deals with the preceding limitations and provides the theoretical frame-
work to incorporate prior knowledge in this model to track several animals from video streams, modelling
their trajectories with a combination of Gaussian distribution for the radius and a von Mises (GATTO;
JAMMALAMADAKA, 2007) distribution for the angle. The proposed algorithm starts with uniform
non-informative prior distribution functions and the corrections are based on the fact that the bee
movement is smooth.

This method was accurate even when prior information was scarce (BOX; TIAO, 2011). The
inference is made dynamically, with the PDFs being updated every time; then, the Bayesian algorithm
learned the correct distribution for each animal independently. This method is done by associating a PDF
for each animal and inferring a distinct PDF for each one of them over the interactive updates. This way,
when their paths cross, the algorithm can recognise the correct trajectory of each individual using the
accumulated knowledge.

The trajectory validation was done using simulation to understand the general algorithm perfor-
mance, and the dataset to be analysed is from a bee nucleus. Conventional tracking databases, such as
the Princeton Tracking Benchmark1 or OTB2, do not provide similar data as the one approached in this
dissertation. Also, these results are compared with similar approaches in Ahmed et al. (AHMED et al.,
2018) and Bozek et al. (BOZEK et al., 2018).

Based on the trajectory of the marked bees, the overall nucleus is evaluated for sanity, considering
entropy (H) and kinetic energy (KE). The KE is estimated on the bee velocity, and H is based on the
PDF estimated via Kernel Density Estimation (KDE) on the evaluation of the Iterative Bayes algorithm.
A quantitative measurement of the impact of imidacloprid and cerconil are also calculated using resilience
tools, in function of the kinetic energy of contaminated bees compared with a control group. The spatial
distribution of the bees are obtained and discussed in therms of metabolic changes from the agrochemicals.

The mutual information between imidacloprid and cerconil was also theme of this dissertation,
and it was applied Copula Theory from statistics to obtain the joint distribution from the Cumulative
Distribution Functions. The material used for the tests were bees submitted to lethal doses of both
agrochemicals.

1.1 Objectives

The objectives of this work are the following:

• identify and track contaminated bees in each video of the supplied material;

• to obtain measurements of average kinetic energy for each contaminant, as well as for control,
in order to compare the curves and calculate the resilience that the honey bees develop in each
situation;

• evaluate the entropy of the contaminated bees, a second measurement of dynamical evolution under
the agrochemicals;

• model the spatial distribution of contaminated bees in order to identify possible states and monitor
possible changes metabolic effects caused by agrochemicals;

1http://tracking.cs.princeton.edu/eval.php
2http://cvlab.hanyang.ac.kr/tracker_benchmark/
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• from a different experiment, in which the bees were submitted to lethal doses of imidacloprid and
cerconil, evaluated the Mutual Information (MI) between the two agrochemicals.

1.2 Structure of the monograph

This text is divided into six chapters plus a list with bibliographical references. In addition to the
introduction, the chapters have the following contents: in Chapter 2 the motivation to work, as well as
the main techniques in statistics and signal processing already presented to address the subject.

In chapter 3 the mathematical tools used to solve the problem, ranging from the most basic
definitions in image processing, to an introduction to the statistical model to be developed. A discussion
of the filmed nuclei is also present, in order to elucidate some of the hypotheses admitted initially.

In chapter 4 the materials to be used are presented in detail, from the video that was processed
to the hardware used in the solution. In a second step, and presented the algorithms constructed to find
the desired measurements, such as trajectory, kinetic energy and position.

In chapter 5, the results of the processing described in the previous chapter are presented, always
followed by a discussion involving them. Finally, in chapter 6, there is a conclusion of the researches done
to obtain the Master’s degree is written, resuming all the results.
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2 Theory

In this section, the mathematical framework used in this work will be described. A few formulas
are introduced here to standardise the equation notation through the text. The pre-processing has the
objective of identifying the centroids of the bees, and then the Bayesian algorithm get this data and
process the labelling.

2.1 Economic importance of bees

The more than 20,000 specimens of existing bees are the main plant pollinators of economic
interest in the world; in some cases (1), are the only pollinators. All tables in this chapter were taken
from “Plants visited by bees and pollination” (ALMEIDA et al., 2003)

Table 1 – Increase in productivity in presence of bees.

Common name Scientific name Increase in productivity (%)
Pumpkin Corcubita maxima 76.9
Coffee Coffea arabica 36.9
Onion Allium cepa 89.3
Apple Puros malus (Wealthy) 75
Apple Corcubita maxima (Johnathan) 94.4
Peach Pirus persica 94
Orange Citus cenensis (Hamlin) 36.3
Orange Citus cenensis (Natal) 15.5

As it can be seen in Tables 1 to 3, bees are a fundamental part of the agriculture scheme of mass
production. In fact, some cultivation have a great dependence of bees to be perpetuated (Table 3).

Table 2 – Benefits of bees for some agricultural crops.

Plantation Increased productivity Other benefits

Bean 21 % (Free, 1996)
No increase (Moreti et al, 1994)

Increase of 18% in the protein
content (Moreti et al, 1994).

Sunflower 300% to 600%
(Schelotto & Pereyras, 1971)

Increase of 25% in the oil content (Schelotto
Pereyras, 1971).

Soy 60 to 230%
(Moreti et al, 1998)
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Table 3 – Distance traveled by each bee (second column), average velocity (third column) and standard
deviation of the velocities (fourth column)

Discontinue pollinators
Are benefited in
several degrees
by pollinators

Only produce with
pollinators intervention

Banana Coffee Fig
Sugar Cane Beans Wheatgrass

Leafy Vegetables Sunflower Passion Fruit
Manioc Orange Melon
Corn Soy Cucumber
Wheat Tomatoes Chayote

2.2 Statistical modelling importance

Similar problems involving tracking of individual objects, such as bees or people, were approached
using primarily neural networks and deterministic reasoning (see (BOZEK et al., 2018) and (AHMED et
al., 2018)). However, a more coherent approach necessarily has to include statistical aspects of uncertainties
in the system. As said by Pear (PEARL; MACKENZIE, 2018): “In recent years, the most remarkable
progress in AI has taken place in an area called deep learning, which uses methods like convolutional neural
networks. These networks do not follow the rules of probability; they do not deal with uncertainty in a
rigorous and transparent way. Still less do they incorporate any explicit representation of the environment
in which they operate. Instead, the architecture of the network is left free to evolve on its own. When
finished training a new network, the programmer has no idea what computations it is performing or why
do they work. If the network fails, the programmer has no idea how to fix it.”

A statistical model is, therefore, a mathematical model which compress uncertainties and function
that describes the expected value of a given parameter. It has been proven useful in all situation in which
one cannot give the exact measurement of variable.

2.3 Entropy and complexity as dynamical measurement

Entropy is a measure largely used in science and engineering (COVER; THOMAS, 2012) and can
be defined as the amount of information needed to fully describe a system. Having been first introduced
in thermodynamics by Clausius (GREVEN; KELLER; WARNECKE, 2014) and improved by Boltzmann
and Gibbs still in nineteenth century (WEHRL, 1978). The concept was generalised by Shannon in the
twentieth century (SHANNON, 1948). Today, its applications can be found in biology (BROOKS; WILEY;
BROOKS, 1988; MARTINO; MARTINO, 2018; CARO; VALENTINE; WAND, 2018), cosmology, in which
it is the center of one of the biggest open problems of science (MALDACENA, 2018; XIAO et al., 2018;
BOUSSO, 2018), economics (BOSSOMAIER et al., 2018; GU; XIONG; LI, 2015), engineering (ZEESHAN
et al., 2017; ROSTAGHI; AZAMI, 2016; HE et al., 2016) and even linguistics (DEGAETANO-ORTLIEB;
TEICH, 2017; REYNAR; RATNAPARKHI, 1997; CAMPBELL, 1982).

With such a wide range of applications, it raises the natural question: what is the difference, if
any, among the “entropies” used in each field? It can be observed in several papers a misunderstanding of
the meaning of entropy when applied to different areas other than physics and information theory (TAME,
2019; ADAMI, 2016; KOVALEV, 2016; HAYFLICK, 2007; MOROWITZ, 1986). However, sometimes
even in these areas the concept is misused (MARTYUSHEV, 2013; HENDERSON, 2003) and university
students have many misconceptions about the theme (SOZBILIR, 2003).
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There have been attempts to conciliate the entropy of thermodynamics with that of information
theory. The most common approach is defining entropy as “disorder” (WRIGHT, 1970; SCHRODINGER,
1968), something that is introduced as soon as the high school for thermodynamics. However, if it has, at
first, a didactic appeal, it is not a good analogy since “order” is a subjective human concept and “disorder”
is not the measurement that can be obtained always with entropy (SOUBANE et al., 2018).

Since the concept of entropy is key in this dissertation, more information about it can be found
in the Appendix.

2.4 Image pre-processing

An introduction to the essentials of image processing, used in this dissertation, is presented.

2.4.1 Fundamentals

A digital image is defined mathematically as a matrix m x n, where a colour code associates
each position of the matrix with a different colour. Thus, a binary image consists of only two states,
corresponding to a matrix in which the inputs are 0 and 1, respectively “black” and “white”. Greyscale
images correspond to 8-bit entries, again 0 totally black and 255 all white, with all integers between 0 and
255 corresponding to different levels of grey. Color images correspond to matrices whose entries have 24
bits, 8 bits for each colour matrix, red, green or blue, resulting in the RGB code. In this case, the primary
colours are mixed until the desired colour simulation of a real colour is reached, with 2553 = 16581375 of
different shades (Fig. 1).

Figure 1 – Same image displayed in three different modes: RGB (24 bits), grey levels (8 bits) and binary
(1 bits). The greyscale image is converted to binary using a threshold corresponding to the
interval [0, 255], whereby matrix values below the threshold become valued 0 and values above
the threshold become valued 1

(a) RGB Image. (b) Greyscale. (c) Binary image.

It is possible to define the intensity function f(i, j) as the function f(i, j) that associates each
position (i, j) of the matrix corresponding to the pixel of the image with an integer. It is called, therefore,
the intensity function, the function

f(i, j) =


[0, 1] if the image is binary

[0, 255] if the image is 8 bits (grey levels)

[0, 255]3 if the image is 24-bit (RGB)

(2.1)

One way of identifying objects in an image is to separate them from the background if they
have different colours. Once the image is processed as an array, it can be traversed and the pixels can be
identified with the colours of interest, separated from the background using a loop, and converted the
RGB matrix into a binary array in which pixels are worth 1 if they match a pixel of the object. This is
done by identifying distinct objects by connectivity criteria between pixels: when a pixel with the desired
colour is found, it is checked if any of the adjacent pixels have the same colour; while there are pixels that
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meet this requirement, it is said to be the same object (figure 2). Once the whole object is obtained, the
center of mass of the object is calculated (equation 2.3), a reference measure of the spatial location.

Figure 2 – Connectivity between pixels (grey pixels relative to the center black pixel): 8-connected (left)
and 4-connected (right) regions. Given any pixel of an object, all of the 8-connected region are
considered to belong to the same object in this work.

The center of mass of an object in an image is defined as the ratio between the corresponding
moments for the axes x e and. The general expression for the moment of order p+ q is:

Mpq =
∑
x

∑
y

xpyqf(x, y) (2.2)

and the coordinates of the center of mass are defined as

(xc, yc) =
(
M10

M00
,
M01

M00

)
(2.3)

Figure 3 – Example of identification of objects by connectivity between pixels: in this case, the criterion
of 4-connected regions is used (neighbours diagonal pixels are not considered part of the same
object). If the criterion were 8-connected regions, all pixels 1 would be considered part of the
same object.

2.4.2 Application in the material

Fig. 4 (a) illustrates the objects identification and Fig. 4 (b) shows a region of interest (ROI) for a
frame where there are white and yellow marked objects with the background (the experimental apparatus
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is from a hive). Each pixel is separated based on its RGB value; if its value is in the colour range desired
for the tracking, then it is turned white; otherwise this pixel is turned to black. The result from this image
processing is shown in Fig. 4 (b). With the objects defined, their positions can be evaluated calculating
its center of mass.

After the identification, the processed frames were traversed from top to bottom and from left to
right, and each object of the swarm is labelled in order of occurrence. Since they are constantly moving,
their identification (or labels) change on each frame. If in the first frame, an element is labelled as A, in
the next frame, due to their movement, it can be labelled as B. The tracked objects labels are swapped,
and this must be corrected to obtain their trajectory. The label that appears first must be conserved until
the end of the video stream.

However, even limiting the radius of displacement of the objects, there can be more than one
possible position in the next instant due to near bees. Bayesian inference was used to solve this issue: with
a prior information about the path travelled by the individuals, the next correct point of the trajectory
can be calculated to maximise the likelihood of the prior information, giving a posterior estimation for
the variable (MARITZ; LWIN, 2018).

Figure 4 – Example of the image processing algorithm for the experimental case of the bees. (a) An original
frame from the hive (zoomed). (b) The result of the processing. White regions correspond to
yellow marked bees. (a) Original image. (b) Result of the image processing.
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2.5 Labelling Process, Bayesian inference and Maximum a Posterior (MAP)

The movement of the objects to be tracked on each frame was realised in polar coordinates with
radius (r), and angle (θ); both were assumed to be random variables. For the correct labelling of each
object movement, it was used Bayesian inference to indicate the most probable displacement of marked
bees on each frame. This method uses Bayes’ theorem, Eq. 2.4, to update the probability of a hypothesis
as more information becomes available. Bayesian updating is important in the dynamic analysis of a time
series (HAMILTON, 1994).

P (A|B) = P (B|A)P (A)
P (B) (2.4)

Here, P (A) and P (B) are the probabilities of observing the events A and B independently; P (A|B) is the
probability of the event A, given that B happened.

In many applications, the event B is fixed, and it represents the impact on our belief in the
occurrence of events A. In this case, the denominator P (B), is fixed; what we want to vary is A. Bayes’
theorem then shows that the posterior probabilities are proportional to the numerator: P (A | B) ∝ P (B |
A) · P (A). Also, the Bayes’ Theorem is valid to Probability Distribution Function (PDF) (BOX; TIAO,
2011) and is stated as follows: let f(x|α) be the PDF of a random variable X (here, r or θ) with parameter
α and samples x. Let π(α) be the prior PDF for α. Then, the posterior distribution for α given X, π(α),
is defined as (BOX; TIAO, 2011):

π(α|x) = f(x|α)π(α)∫
f(x|α)π(α)dx

(2.5)

The estimation of the parameter α (that is not observed) can be done via the Maximum a
Posterior (MAP) method. Given the observed values of X that generates a PDF f(x|α), the MAP is the
maximum value of the posterior function:

α̂MAP(x) = arg max
θ

π(α|x) (2.6)

and π(α|x) is calculated using Eq. 2.5.

There were used polar coordinates to modelling the movement of the particles. For the swept
angle θ, the natural choice as prior was the von Mises distribution (RISKEN, 1996), since it is the circular
analogue of the normal distribution. It is defined as follows:

f(x|µ, κ) = eκcos(x−µ)

2πI0(κ) (2.7)

where I0(x) = 1
π

∫ π
0 ecos(xcos(θ))dθ is the modified Bessel function of order 0. In Eq. 2.7, µ is the mean of

the distribution and κ defines the curve’s format (Fig. 5).

For the radius, a uniform non-informative prior was chose. The algorithm has its maximum
efficiency when r ∼ lim

n→0
U(0, n)1. In each iteration, a new vector vi = (ri cos θ, ri sin θi) will be generated

(and the null vector is possible) so that the j-th particle, after all iterations, have a trajectory given by
∞⋃
i=1

vi

1Of course the discrete calculations performed in real world problems with image inputs are limited by frame-rate, or
absence of necessity of such many iterations to realistically modelling a system.
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Figure 5 – Comparison of the von Mises PDF for µ = 0 and different values of κ. (a) If the angle variation
is smooth, a good prior for the variable is κ = 4. The Bayesian algorithm will constantly
update the PDF, and at the end of the process, it should give rise to the best von Mises that
estimates the angular behaviour for each object being tracked. (b) Polar distribution of the
probability for each value of κ.
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2.6 Dynamical evaluation

The Shannon entropy is used in this study to evaluate the randomness of the tracked object, and
thus infer about the movement of them in space. The Shannon’s entropy (SHANNON, 1948) H of an
event X, with discrete PDF is given by:

H(X) = −
∑
x∈X

p(x) log2 p(x) (2.8)

the unit of H is bits. One classical interpretation of its meaning is: the entropy of an event with n distinct
outcomes (given by the variable X = (x1, . . . , xn)) measures how much information is needed to describe
the entire space state. In practice, it means that the higher the entropy, less predictable is the event, and
events that are certain have zero entropy. The equivalent expression to continuous distributions is given
by the differential entropy:

h(f) = −
∫
x∈X

f(x) log2 f(x)dx (2.9)

This measurement is a generalisation of the Shannon entropy, and since the PDF can be greater
than 1, even though negative entropy is difficult to attribute physical meaning. Computational computations
of continuous distributions of probability inevitably go through quantization processes. Let the continuous
random variable X, with distribution f(x). Because, by constructing the ordered body of real numbers
(LAM, 1983), P (X = x) = 0 for all x, the probability of continuous events can only be evaluated in a
given interval. Therefore, any interval would need infinite bits to be fully described. However, by dividing
bins (ASH, 1990) of size ∆, there exists a xi within each interval (bin) such that by the Mean Value
Theorem for integrals (GOLDFELD; HOFFSTEIN, 1985), one can write

f(xi)∆ =
∫ (i+1)∆

i∆
f(x)dx (2.10)

Now taking the random variable X∆ = xi if i∆ ≤ X ≤ (i+ 1)∆,

pi =
∫ (i+1)∆

i∆
f(x)dx = f(xi)∆ (2.11)

Therefore the entropy of the quantized variable is

H(X∆) = − lim
N→∞

N∑
i=−N

pi log pi (2.12)

= − lim
N→∞

N∑
i=−N

f(xi)∆ log(f(xi)∆) (2.13)

= − lim
N→∞

N∑
i=−N

∆f(xi) log f(xi)− lim
N→∞

N∑
i=−N

f(xi)∆ log ∆ (2.14)

= − lim
N→∞

N∑
i=−N

∆f(xi) log f(xi)− log ∆ (2.15)
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Theorem: If the density f(x) of the random variable X is Riemman integrable2, then

H(X∆) + log ∆→ h(f) (2.16)

This solves the asymptotic case. A more practical formulation for estimate the entropy of a
continuous random variable is the Jaynes correction (JAYNES, 1963; JAYNES, 1968) based on the limiting
density of discrete points (LDDP). Let m(x) be the invariant measurement; then

lim
N→∞

1
N

(#C[a, b]) =
∫ b

a

m(x) dx (2.17)

in which #C[a, b] denotes the cardinality of C, or the number of discrete elements in the set ranging from
a to b. By Jaynes definition,

H(X) = −
∫
p(x) log p(x)

m(x)dx (2.18)

In the case that m(x) is constant in some size range r, where p(x) is essentially zero outside this
range, then the discrete point boundary density is closely related to the differential entropy h(f), and the
Shannon entropy can be approximated as

H(X) ≈ log(N)− log(r) + h(f) (2.19)

Since usually N � r, the Jaynes correction tries to ensure that the entropy is always positive,
surpassing the difficulties of defining the meaning of the generalisation of discrete entropy in the negative
cases.

The entropy of a system can provide insights into the nature of the evaluated variables since it can
be interpreted as a measurement of randomness of the variable (SHANNON, 1948). In the case of motion
analysis, greater entropy indicates that path travelled by the object is less predictable. A discussion of
the degrees of freedom in biological systems can be found in Popovic et al. (POPOVIC, 2017). A similar
calculation of entropy given the energy of a system can be found in Meirovitch et al. (MEIROVITCH,
2007); however, the scale used there is molecular, and here, the level is macroscopic.

The KE is a measure of how much tracked objects are moving, and it is given by the formula
KE = mv2/2. Therefore, KE is proportional to the velocity squared. Lower energy indicates lower entropy,
since the movement become less random and can have important insights in different real systems, as
the bees in the application. A lower KE indicates that a bee spends more time not moving, and shows,
together with entropy, abnormal behaviour of the insect (BLACQUIERE et al., 2012; MULLIN et al.,
2010).

2.7 Kernel Density Estimation (KDE)

This mathematical method was used to generate the continuous PDF of the empirical distributions
for the angles and radius travelled by each bee, allowing for the entropy calculation. The KDE is a non-

2In fact, modern approaches of differential entropy usually requires the function to be integrable in the sense of Lebesgue,
since it can deal with an infinite amount of discontinuities (BARTLE; BARTLE, 1995).
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parametric algorithm to find a continuous better estimate of PDF from discretely observed data. As can
be found in Terrell et al. (TERRELL; SCOTT, 1992), the estimated PDF is given by

f̂(y) = 1
nhd

n∑
i=1

K

(
xi − y
h

)
(2.20)

In equation 2.20, y is the variable of the domain, xi are the observed data, K is an interpolation
function generally chosen as a Gaussian. K : Rd → R is a function centred in 0 that integrates to 1,
and h is a smoothing parameter that would usually tend to 0 as the sample size n tends to infinite.
Several algorithms are implemented to increase the performance of the KDE (CACOULLOS, 1966;
PARZEN, 1962; ROSENBLATT, 1956). The one that will be used here is described by Loftsgaarden et al.
(LOFTSGAARDEN; QUESENBERRY et al., 1965) is based in the k-nearest neighbours algorithm. It
consists in, for any point of a set, its class will be assigned comparing the classes of its k nearest points.
In a ball centred at x, the ratio of observations is k/n, and the KDE is given by:

f̂(y) = k

nVdhk(y)d (2.21)

In equation 2.21, hk(yd) is the Euclidean distance between y and the k-th nearest neighbour,
and Vd is the volume of the unit sphere centered in the origin of the Rd space. If K is an uniform density
on the unit d-sphere Sd; then

f̂(y) = k

nhk(y)d
n∑
i=1

K

(
xi − y
hk(y)

)
(2.22)

The objective of the KDE algorithm in this dissertation is to obtain a continuous PDF for the
moving objects, since it is know that their movement is continuous, but the discretisation makes the
calculations return discrete histograms.

Figure 6 – Parameters used in the resilience analysis of a system (from (DESSAVRE; RAMIREZ-
MARQUEZ; BARKER, 2016)). The reliability is the area bellow the curve in which the
system is operating in its normal condition; the vulnerability is the area of the interval between
the interference of an external factor and the stabilization in the lower level; the recoverability
is the area bellow the curve in which the system goes from the lower level state and recover
itself to an upper state, that can be the initial state or not.
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2.8 Resilience of a system

Resilience is a concept present in several areas of knowledge (THORÉN; OLSSON, 2018). In this
text, however, its definition will be the same as in physical systems (ALEXANDER, 2013): resilience
is the ability of a system to recover itself after an external perturbation and adapt after the recovery,
which can be total or partial. This approach is being used to model the vulnerability of power systems
under extreme climate conditions (WANG et al., 2016; PANTELI; MANCARELLA, 2015; OUYANG;
DUENAS-OSORIO, 2014).

Fig. 6 represents the stages of a system under resilience analyses: a physical quantity (φ(t)) is
stable in the original state S0, until an external event ej changes the operation of the system. The quantity
being measured drops its value until a new state Sd, and the area under the curve between these two
instants is called “vulnerability”. The system stabilizes in φ(td) and, after some time, tries to recover itself
to the initial state, stopping its value in φ(tf ), that can be bellow, the same or above the initial state,
and, for this reason, the area under the curve between the instants td and tf is called “recoverability”.

2.9 Mutual information

Mutual information I(X;Y ) between the random discrete variables X and Y is a measure of
information theory (SHANNON, 1948) for the distance, in the sense of Kullback-Leibler (KULLBACK;
LEIBLER, 1951) of the joint distribution p(x, y) and the product p(x)p(y), and can be defined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)
p(x)p(y) (2.23)

Mutual information quantifies the amount of information in the sense of Shannon entropy (in bits)
obtained about one random variable through observing the other random variable. Here, it will be used to
calculate how a mixture of agrochemicals affects honey bees in comparison with individual applications.
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3 Materials and Methods

3.1 Exposure to sub-lethal doses

Bees of up to one day of life of the A. mellifera species were captured in four colonies already
established in the experimental apiary of the Federal University of Viçosa (UFV, Viçosa, MG, Brazil) to
perform the bio-assays. The pronotum of each bee was stained with ink so that it was possible to identify
the treated individuals, and for each treatment a colour was defined. The bees were kept under controlled
conditions, similar to those found in the colony (34± 2, 70± 10% relative humidity); packed in transparent
plastic bottles (non-toxic polypropylene) of 500 mL with perforations in the lid; fed with distilled water
and sucrose solution (50% v / v) and kept in the dark until the experiments were carried out.

Four replicates were performed per treatment, with each replicate corresponding to one colony.
The bees were fasted for one hour prior to submission to treatments equivalent to CL 30 of each product
(imidacloprid and cerconil). The fasting period before exposure to pesticides was necessary to standardize
diet consumption by the bees tested. In addition, a control group was fed only with distilled water and
sucrose solution (50% v / v), being available for five hours under controlled conditions (34± 2, 70± 10%
RH). After this period, a total of 200 bees tagged and exposed to each treatment were reintroduced
into colonies established in observation nuclei. Each nucleus received only bees from a single treatment.
The two selected pesticides are products widely used in commercial crops in Brazil: the neonicotinoid
insecticide imidacloprid [Evidence R© 700 WG, 700 g active ingredient (a.i.) / L, water-dispersible granules;
Bayer CropScience Ltda, São Paulo, SP, Brazil] and the fungicide cerconil [Cerconil WP R©, 700 g i.a./Kg,
wettable powder (WP); Iharabras S.A. Chemical Industries, Sorocaba, SP, Brazil]. The treatments were
corresponding concentrations of imidacloprid 8.96 · 10−4 g ai / mL and for cerconil 4.35 · 10−4 g ai / mL,
which is equivalent to 30 each compound LC established in studies by tome2017agrochemical.

Four colonies were established in observation nuclei, consisting of a wooden frame (52.5 x 43.5 x
5.5 cm) with two glasses on both sides and two frames (a frame of honey and a frame of creation ). The
observation cores were placed inside a protected shed and connected to the outside through tunnels of
transparent acrylics. Filming was performed in three stages between May and June 2017. The treatments
were alternated so that each colony received different treatments (imidacloprid, cerconil and control) at
different periods, totaling four replicates for each treatment. After the reintroduction of the bees, treated
and control, in the colonies established in the observation nuclei, 10 minutes were filmed on both sides of
the nuclei simultaneously, during the first five days and one to the tenth day.

3.2 Exposure to lethal doses

The assays being described here are the same described in (TOMÉ et al., 2017). Twenty bees
of 4 different nucleus were feed, separately and mixed, with different doses of the pesticides “diluted
in honey-based syrup solution (50%, v/v) and offered to bees in 2 mL Eppendorf tubes inserted into
low-density plastic containers (250 mL). Each plastic container was used as an experimental unit containing
20 forager bees fed on 1 mL of pesticide-contaminated honey solution” (TOMÉ et al., 2017). As it was
discovered, the mixture of two agrochemicals multiply their lethally in roughly 1000 times. The mutual
information was applied to measure how much information (in the Shannon sense) is shared between
the two agrochemicals. To obtain the mutual information by Eq. 8, it is necessary to first estimate the
joint probability. With the data from tome2017agrochemical, it is possible to generate the Cumulative
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Figure 7 – Example of experimental apparatus (nucleus) used to record the bees behaviour. This image
shows imidacloprid exposed bees. Similar set up was used for cerconil exposed bees.

Distribution Functions (CDF), i.e. the rate of dead individuals by each agrochemical, in function of their
concentration. With the CDF F (x), it is possible to generate the Probability Density Function (PDF)
f(x), using Eq. 3.1.

f(x) = dF (x)
dx

(3.1)

The marginal PDFs (p(x) for imidacloprid and p(y) for cerconil, for example) are therefore easy
to find. The joint distribution p(x, y) is harder, since there are correlations between the random variables
X and Y that requires a mapping to generate their intersection. Copula Theory was used to surpass this
difficulty.

Copulas are joint distribution of random variables U = U1, ..., Un, such as (U1, ..., Un) ∼ U(0, 1)
(DANAHER; SMITH, 2011). The joint cumulative density and the copula function are related by Sklar’s
Theorem (LO, 2018) in Eq. 3.2

p(x, y)
p(x)p(y) = c(P (x), P (y)) (3.2)

in which c is the PDF of the copula:

c(u1, u2) = ∂2

∂u1∂u2
C(u1, u2) (3.3)

Using 100,000 points in the interval [0, 0.07] makes the approximation of the partial derivative
for the discrete function C very precise. The copulas were used, therefore, to obtain the joint distribution
function for the mixture of agrochemicals, and then, calculate their mutual information. Since the later
calculation needs the joint distribution, this task would be impossible without the application of the
Copula Theory.
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3.3 Synthetic video simulation

Since the conventional databases could not provide material for quality test of the algorithm, it
was tested in a simulation of a particle swarm. A sequence of frames with several dimensions with 200, 300
and 600 randomly distributed circular objects moving through the area, during 500 seconds was generated
using openCV. The PDFs of the angle swept by the objects was defined as a von Mises, with µ = 0 and
κ = 4. The radius of movement was given by a non-informative Uniform distribution (r ∼ U(0, 10)). For
each configuration, number of objects/background area, the simulation was executed a thousand times.
Then, the radius was changed to verify how it affects the quality of the tracking, and identify the problems
involved.

The simulation behaves exactly like the marked bees of the previous section: there were chosen n
objects to take place in a set of frames of same dimensions of a Full HD video, i.e., 1080 pixels in the
vertical direction, and 1920 in the horizontal direction, since the objective is to apply the method for real
life videos of particle swarms.

3.4 Bayesian inference and dynamical evaluation

With the position of the bees stored, the next step is to trace their correct trajectory. Here we
are faced with two problems: choosing the right place and the overlapping issue. The latter is caused by
the fact that some bees are overlapped by its partners and therefore are not visible for some time. To
surpass this hindrance, it is assumed that the bee does not move while overlapped by others, maintaining
their positions. This was empirically confirmed via visual inspection.

Figure 8 – Fluxogram of the algorithm: the data consists of videos, that are divided in frames and
processed, obtain the centroids in each second. The variable correct_path is initialized with
the size of the number of elements in the first frame. The frames are traversed adding new
elements and using Bayes Theorem to correct the path of the bees. With the positions, the
KDE algorithm is executed and allows to estimate the entropy, while the trajectories allows
for the estimation of the KE.

It was adopted that the right next position of the bee’s trajectory tends to be smooth. It
corresponds to a prior for the angle between two consecutive points is small or close to zero. The PDF for
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the angle is assumed to be a von Mises with µ = 0 and κ = 4 (Fig. 2.7). The inference is calculated for
each bee in each frame as follows: it is evaluated the angle variation between the possible future positions
of the bee and the current one. Then, the next position is chosen to be the one to maximise the value of
f(x|µ, κ). The mean µ is updated as the weighted average between the current mean and the angular
variation are discovered, and κ is modelled as π(κ) ∝ U(0, 20). Then, Eq. 2.7 is applied to the prior to
generate the posterior for κ. The inference process delimits an area around the bee being tracked at
each moment, with radius d equals to the maximum radius in the prior for the radius. Then, it chooses,
between the bees inside the radius in the next frame, the one which returns the Maximum Posterior for
the von Mises of the angle.

At the end of the process, it is generated a von Mises PDF for the angular displacement for
every bee, as well as a distribution for the radius. Then, the KDE algorithm takes the empirical data of
the angular displacement and the translational displacement, using the corrected path of each bee, and
generates a continuous PDF for them. Finally, the MAP is calculated, with the prior assumed to be the
von Mises of the last session for the angle.

In the process of returning the PDF for angle and radius, it also becomes possible to calculate
the entropy of the movement of the contaminated bees in different days. Since the expected action of the
agrochemicals is to change the metabolism of the insects (BLACQUIERE et al., 2012; MULLIN et al.,
2010), this entropy should decrease with time1. The entire methodology is illustrated in the Fig. 9

1The entropy being estimated here is not the thermodynamical entropy, which should increase for the contaminated bees,
because they are dying and tending to balance with the environment (EVANS, 1963). The entropy measured in molecular
scale certainly would grow (SCHNEIDER; KAY, 1994).
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4 Results

4.1 Sub-lethal doses

4.1.1 Spatial distribution

The distribution of bees in the nucleus over time was obtained by simple quantification of the
number of centroids in each region.

Figure 9 – Regions of the nucleus, as indicated by the specialists of the UFV. The upper and yellow
regions are called honey frames, and the bottom and grey regions are called reproduction
frames.

As expected, there is a natural tendency for the contaminated bees to rapidly spread out from
the center to the boards, since they are “ageing” faster (day 1 for control is missing).
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4.1.2 Synthetic video simulation

The efficiency of the Bayesian algorithm was measured in the simulation. With r ∼ U(0, 50), the
results were fast, but hit rate was low, as can be seen in Table 7. This choice for the radius was taking
in account a division of 1 frame per second. However, video tracking is made by equipment capable of
filming with at least 30 frames per second, and, increasing the number of frames should increase the hit
rate of the algorithm, as well as the execution time.

Figure 11 – A frame from the video simulation. The objects generated are points with radius of 5 pixels
and with colours white and yellow, and they move randomly in the background.

Figure 12 – Efficiency of the algorithm, for a simulation with 200 objects, in function of the maximum
radius of the prior.
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Table 6 – Efficiency of the geometric algorithm in the simulation. The problems which appear in a real
nucleus (overlapping and rotation) are also treated here.

Objects simulated Trajectory hit rate (%) Min/Max (%)
100 96.2 (92.3/100)
150 88.7 (82.0/93.1)
200 66.7 (48.6/86.9)

Table 4 – Efficiency of the Bayesian algorithm in the simulation, for r ∼ U(0, 50) and dimensions
1080x1920.

Objects simulated Trajectory hit rate (%) Execution time (s)
200 26.1 13.7
300 19.9 15.4
600 12.4 48.2

The main reason for the difference of times is that, as can be seen in Eq.2.5, an integral needs to
be calculated each iteration, for each bee. Changing the radius increases the number of iterations (Fig. 9)

Table 5 – Efficiency of the Bayesian algorithm in the simulation, for r ∼ U(0, 10) and dimensions
1080x1920.

Objects simulated Trajectory hit rate (%) Execution time (s)
200 99.8 50.0
300 99.8 76.7
600 97.6 288.1

4.1.3 Comparison with the unsupervised geometric algorithm

The same simulation was used as input to an geometric algorithm, similar to the one described
by Ahmed et al (AHMED et al., 2018): the possible bees in the frame n+ 1 connect to the correspondent
one in the frame n if they are inside a circumference with fixed radius (here, 30 pixels) and their segment
forms the smallest angle from the ones inside the circumference. The main difference of the test is that
the objects are assumed to be the same size, and the estimation of Eq. 4 in Ahmed et al. is not used.

The reason for the inferior hit rate in this geometric approach is the fact that the algorithm does
not learn from the upcoming data, and the model is nearly static, keeping its prior assumptions from the
beginning to end.

4.1.4 Dynamical measurements

The KDE calculation using the scipy library has a parameter bw, that, when not assigned (assumed
infinity) returns a smooth approximation of the PDF. When the bw is decreased, the estimate is smoother,
but, if the value is too small, it overfits the histogram. The smooth solutions have the inconvenience
of having a negative residual part, even when the histogram doesn’t have one (Fig. 13). To solve this
problem, the negative part in Fig. 13 was manually transported to the positive side, taking the image of
the negative x-axis and concatenating with the positive values.
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Figure 13 – Example of the KDE algorithm taking a histogram and converting it in PDFs. The parameter
bw regulates the fitting of the resulting curve. With small values, the smoothness increases,
but for very small bw, overfitting can happen. (a) KDE for bw not asserted (None) and
bw = 0.1. (b) KDE for bw = 0.01
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Figure 14 – Average entropy for the contaminated bees. With less KE, the movement becomes more
predictable, as expected. Since the entropy is a logarithmic function, the reduction of 6 bits in
the first day to 1 bit in the last day means a reduction of 32 times in the degrees of freedom
of the system.

Figure 15 – Average KE for the populations. The energy in the control group is approximately constant
until day 5, when it experiments a increase until day 10. The contaminated bees presents a
fast decline in their KE (more intense with imidacloprid) related to the mortality. An attempt
to recover can be observed from day 2 to day 4, without success.

With the trajectories obtained from the Bayesian algorithm, the KE was calculated using the
average velocity, and then directly applying the formula for the KE. As expected, the energy drops
from the first to the last day. However, there is an “attempt” of recovering in the second and third day.
Fig. 15 exhibits the average value of KE for each day, after an interpolation to smooth the curves. The
resilience analysis of these curves will be discussed in the next section. It is noticeable that the KE for the
non-contaminated bees increase in the last days; this can be explained looking at Fig 10 and Fig. 16: most
of the bees are alive and now occupy a wider area, having more possibility of locomotion, thus increasing
its average KE.
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With the PDFs of each bee, it becomes possible to evaluate the average entropy for the marked
bees in each day. The Bayesian algorithm is robust enough to calculate the number of live bees each day.
The dead bees are naturally ejected from the colony by other bees. Since the nucleus has an opening to
the exterior environment, the number of bees can vary, but with a general downward trend (Fig. 16),
which can be better explained as mortality by the agrochemical.

The entropy was calculated using the algebraic formulation of the PDF obtained via KDE for each
bee. For every bee, the PDF was inserted in Eq. 2.9 and its entropy was evaluated. The average value, as
expected, dropped from the first to the last day, corroborating the hypothesis that the movement becomes
more predictable, with less KE (Fig. 15 and Fig. 14). Analogously with the concept of temperature, one
can imagine the bees as molecules, and with less KE, their movement becomes more predictable. In
absolute zero (total death), the movement is entirely predictable (the bees stay at the same position), and
the entropy is zero.

Figure 16 – Dynamical results of the contaminated bees over time: average number of contaminated bees
for each day in the nucleus. The trend is downwards, but on some days, there can be an
increase of the total number, because the bees are free to go out of the hives.

4.1.5 Resilience measurements

With the curves of the KE obtained from the Bayesian algorithm (Fig. 15), the same reasoning
present in Fig. 6 is applied to measure how the agrochemicals affects the nucleus.

Table 7 – Vulnerability of the contaminated bees. Since the physical quantity being analysed is the KE,
and the vulnerability is the area under the curve (Fig. 15), it has units of µJ · day/bee, and
measures the total loss of KE during the period of the 10 days.

Agrochemical Vulnerability (µJ · day/bee)
Imidacloprid 2.52
Cerconil 0.74
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4.2 Lethal doses

The CDF of the lethal experiments are exhibited in Fig. 17. Since the mixture is exponentially
more lethal than the isolated substances, the CDF for this case is almost a step function, and reaches
100% of dead bees a thousand times faster.

Figure 17 – Cumulative Distribution Function measuring the average percentile of the 20 bees in each of
the assays. The mixture has a much faster slew rate, and it is therefore much more powerful.

The correlations in the information theoretical content of the PDFs of imidacloprid and cerconil
are greater for the CDF in the concentrations nearly the minimum and the maximum (Fig. 18), since
their behaviour is similar in both cases.

Table 8 – Measures of entropy: the joint distribution was calculated via Sklar’s Theorem as in Eq. 3.2,
and the mutual information is defined only for it. The entropy of the two isolated agrochemicals
was calculated with the logarithmic interpolation.

Agrochemical Entropy of PDF (bits) Mutual Information (bits)
Imidacloprid 1.0009 ———
Cerconil 0.9633 ———
Mixture ——— 0.2326
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Figure 18 – Copula between the CDFs of the two agrochemicals. Both have roughly the same lethality in
in the low and high concentrations, therefore, their correlation is maximum at theses regions
of the copula.
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5 Discussion and conclusion

Based on the simulations, the Bayesian tracking algorithm reached great precision when the
radius was maximum at 10 (Tab. 5), but did not perform well when it was maximum at 50 (Tab. 7). Since
the radius is larger in the second case, there is a good probability that the label swap happens in the
first iterations, before the algorithm has learned the correct PDF for the individuals. These swaps are
less frequently with smaller radius, making the precision increase; however, there is an integral being
calculated for each iteration as in Eq. 2.5, and the execution time also increase.

Is it possible, therefore, to achieve a trajectory hit-rate of above 99%, dividing the maximum
radius by two and sacrificing the execution time. As it is common a frame-rate of 30 or 60 Hz, the radius
can be divided even more, resulting in increasing precision (and time). When the swap problem happens,
the code had learned the PDF of the objects movement and did not mistake their trajectories. One of the
performance evaluations of the algorithm is the correct recognition of the 200 bees on the first day in the
nuclei (Fig. 16 (above)). This number is much higher than the standard biology EthosVision can track
(NOLDUS; SPINK; TEGELENBOSCH, 2001), and many other tracking algorithms (PARKER et al.,
2015; HONG et al., 2015), keeping the accuracy above 99% for the stipulated radius.

The code runs in about 90 minutes for a 12 minutes bee-video in the hardware used. Previous
approaches tracked the objects using only geometric rules just like Ahmed et al. (AHMED et al., 2018)
and ran in about 15 minutes for the same 12 minutes video. The disadvantage of the former method was
the inability of learning: it always had the same assumptions for choosing the best next position for every
bee. As can be seen in Table 3 of Ahmed et al., the hit rate of their code is approximately the same as
ours if the radius is taken as some value between 20 and 30 pixels. The algorithm in this work has its
efficiency adjustable at the cost of more processing and time.

The Bayesian algorithm, on the other hand, detects all the variations in the distribution. This
characteristic makes the code usable for any application in which the objective is to track objects of
distinct colours of the background, for example, drone swarms, or satellite monitoring of moving objects.
The tracking allowed the estimation of the KE, and the Bayesian Theorem enabled the KDE to calculate
the entropy. The complexity of the algorithm described here is smaller than the one described in Wang et
al (WANG et al., 2015), since it does not have a deep learning aspect, and the learning is totally Bayesian.
Also, the overlap problem is treated with Bayes’ Theorem, assuming the object is in rest state during the
overlap. Future work can include a better treatment for this issue.

The algorithms were all written in open source software. The openCV library for Python contains
several tools for image processing, and the scipy library for scientific computation saved time once it has
the complex KDE algorithms already implemented.

The estimation of entropy using Bayesian Inference is not found in the literature, and can be an
important measurement for dynamical evolving systems monitored via video, as traffic, radio-frequency
tracking or GPS. The association between Bayes’ Theorem and Information Theory can broader, and
this algorithm only needs slight modifications to embody them. One possible change can be done as in
Zhou et al. (ZHOU; LI; HE, 2014) and associate Game Theory to better discriminate objects. Further
developments in our algorithm can mix the high quality of background treatment in Ning et al. (NING
et al., 2012) and the unmarked tracking of Bozek et al. (BOZEK et al., 2018) to achieve roughly the
same performance in much noisier videos. Even though the Bozek algorithm is very precise, it has the
disadvantages of needing a low noise image, and, since the identification is made by a convolutional neural
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network (a black-box model) it cannot extract dynamical features of the system.

The practical results obtained here shows that despite cerconil being sold as a fungicide, it does
affect the metabolism of bees; in fact, its mortality rate is arguable greater than that of imidacloprid
(Fig. 16 (a)), which is notable, since theoretically, it only affects fungi (while imidacloprid is sold as an
insecticide). And even if the mortality is not 100%, the effects in the KE and entropy are noticeable and
change the dynamics of the hives, as seen in Fig. 16 (b) and Fig. 14. The effects of cerconil in bees were
previously analysed in Tome et al. (TOMÉ et al., 2017) and the results here corroborate the results. The
KE is also affected by the cerconil. This result is in accord with a previous work that measured the fitness
of honey bees (BLACQUIERE et al., 2012; MULLIN et al., 2010). However, the impact in the dynamics
of the hives is more noticeable for the imidacloprid contamination (as expected by its nature), as can be
seen in Fig. 14

The entropy evaluation shows that even the remaining bees had their behaviour changed: the
movement became more predictable, and it is not due to the presence of dead bees in the nucleus since
the other bees remove them. Its state space exponentially decreased (PINCUS, 1991) and is pointing
towards death, since zero entropy would indicate that all the contaminated bees have died (BROOKS et
al., 1989; ZADEH, 1968).

The mutual information calculated between the imidacloprid and cerconil (Table 8) reveals that
the two agrochemicals shares about 21% of the physical information concerning the mortality rate, which
is significantly higher than expected from a fungicide and a insecticide. This result corroborates even more
the hypothesis of cerconil being lethal to honey bees.

The Bayesian tracking algorithm was effective and made possible the estimations of dynamical
quantities. This method has two main advantages over classical inference: it can translate previous
knowledge about the system into mathematical equations and it can learn patterns once more data is
inserted. These properties allowed for the code to correct possible errors during the processing, and also
predict paths and distributions in other cases of segmentation by colour, making it flexible.
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A Algorithms

A.1 Conversion of the videos in sequence of frames

import cv2
import os
import time

start_time = time . time ( )
v = [ 1 , 2 , 3 , 4 , 5 , 1 0 ]
f o r i i n v :

f o l d e r = ’ f o l d e r ’
os . mkdir ( f o l d e r )

vidcap = cv2 . VideoCapture ( ’ f o l d e r / dia ’+ s t r ( i ) )

count = 0
w h i l e True :

vidcap . s e t ( cv2 .CAP_PROP_POS_MSEC, ( count ∗1000))
s u c c e s s , image = vidcap . read ( )

i f not s u c c e s s :
break

cv2 . imwrite ( os . path . j o i n ( f o l d e r , " frame { : d } . jpg " . format ( count ) ) , image ) #s a l v a o frame no formato j p e g
x = " frame { : d } . jpg " . format ( count )
count += 1

end_time = time . time ( )
e l a p s e d = end_time−start_time
p r i n t ( e l a p s e d )
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A.2 Convert RGB frames to binary frames
import cv2
import numpy as np
from glob import glob
import time

s t a r t = time . time ( )
# c o n s t r u c t the argument p a r s e and p a r s e the arguments

v = [ 1 ]

f o r i i n v :
img_mask = ’ folder_mask ’
img_names = glob ( img_mask )

boundar ies = [
# ( [ 4 0 , 40 , 1 0 0 ] , [ 8 0 , 80 , 2 0 0 ] )

#([120 , 180 , 1 8 0 ] , [ 1 8 0 , 255 , 2 5 5 ] )
( [ 0 , 0 , 1 5 0 ] , [ 1 0 0 , 100 , 2 5 5 ] )

]
# load the image
count = 0
i f i == 1 0 :

count = 18

w h i l e count<l e n ( img_names ) :
fn = ’ f o l d e r / frame ’+ s t r ( count )+ ’ . jpg ’
im_gray = cv2 . imread ( fn , 0 )
t h r e s h = 240
im_bw = cv2 . t h r e s h o l d ( im_gray , thresh , 255 , cv2 .THRESH_BINARY) [ 1 ]
cv2 . imwrite ( ’ / home/ l p s /Downloads/bw_image . png ’ , im_bw)
f o r ( lower , upper ) i n boundar i es :

lower = np . array ( lower , dtype = " u i n t 8 " )
upper = np . array ( upper , dtype = " u i n t 8 " )
mask = cv2 . inRange ( image , lower , upper )
output = cv2 . bitwise_and ( image , image , mask = mask )
cv2 . imwrite ( ’ f o l d e r /frames_bw/ frame ’+ s t r ( count )+ ’ . png ’ , output )
s a i d a = cv2 . imread ( ’ f o l d e r / frame ’+ s t r ( count )+ ’ . png ’ , 0 )
cv2 . imwrite ( ’ f o l d e r /bw/ frame ’+ s t r ( count )+ ’ . png ’ , s a i d a )

count += 1

end = time . time ( )

e l a p s e d = end − s t a r t
p r i n t ( e l a p s e d )
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A.3 Extract the centroids
import cv2
from glob import glob
import math
from skimage import measure
import numpy as np
import time

s t a r t = time . time ( )

p i = 3.141592654

d e f d i s t ( pt1 , pt2 ) :
d i s t = math . s q r t ( ( pt1 [0] − pt2 [ 0 ] ) ∗ ( pt1 [0] − pt2 [ 0 ] ) + ( pt1 [1] − pt2 [ 1 ] ) ∗ ( pt1 [1] − pt2 [ 1 ] ) )
r e t u r n d i s t

r a s t r e i o = [ ]
d i r e c a o = [ ]
frame = [ ]
t r a j = [ ]

i = 0

maximo = 0
r a i o = 30
count = 0
img_mask = ’/ home/ l p s /Downloads/ bees / branco / dia 4/bw manha / ∗ . jpg ’
img_names = glob ( img_mask )

w h i l e ( i<l e n ( img_names ) ) :
frame . append ( [ ] )
i += 1

w h i l e count<l e n ( img_names ) :
fn = ’ f o l d e r /bw’+ s t r ( count )+ ’ . jpg ’
img = cv2 . imread ( fn , 0)
ret , bw = cv2 . t h r e s h o l d ( img , 2 1 0 , 2 5 5 , cv2 .THRESH_BINARY)
bw [ : , 1 4 0 0 : 1 9 2 0 ] = 0
bw [ 0 : 4 0 0 , : ] = 0
bw [ : , 0 : 3 0 0 ] = 0
bw [ 8 0 0 : 1 0 8 0 , : ] = 0

l a b e l s = measure . l a b e l (bw)

p r o p e r t i e s = measure . r e g i o n p r o p s ( l a b e l s )
x = [ prop . area f o r prop i n p r o p e r t i e s ]
y = [ prop . c e n t r o i d f o r prop i n p r o p e r t i e s ]

o b j e t o s = [ ]
c e n t r o i d e s = [ ]

f o r i i n range ( 0 , l e n ( x ) −1):
i f x [ i ]>=5 and x [ i ] <50:

o b j e t o s . append ( x [ i ] )
c e n t r o i d e s . append ( y [ i ] )

frame . append ( c e n t r o i d e s )
count += 1

j = 0
w h i l e j < l e n ( img_names ) :

x = s t r ( j )
with open ( ’ f o l d e r / frames / frame ’+x + ’. txt ’ , ’w’ ) as fp0 :

fp0 . w r i t e ( ’ \ n ’ . j o i n ( ’% s %s ’ % x f o r x i n frame [ j ] ) )
j += 1

end = time . time ( )

e l a p s e d = end − s t a r t
p r i n t ( e l a p s e d )
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A.4 Tracking with the Bayesian algorithm

import numpy as np
#import cv2
import math
import time

s t a r t =time . time ( )

import os

nframes = next ( os . walk ( ’ f o l d e r / d ia n/ f i l e _ t a r d e ’ ) ) [ 2 ]
nframes = l e n ( nframes )
t r a j = [ ]
p o s i c a o = [ ]
f o r i i n range ( nframes ) :

t r a j . append ( [ ] )
p o s i c a o . append ( [ ] )

i = 0
f o r i i n range ( nframes −1):

ind = s t r ( i )
with open ( ’ f o l d e r / frame ’+ ind + ’. txt ’ , " r " ) as i n f i l e :

f o r l i n e i n i n f i l e :
l i n e = l i n e . s p l i t ( )
t r a j [ i ] . append ( ( f l o a t ( l i n e [ 0 ] ) , f l o a t ( l i n e [ 1 ] ) ) )

#imp
rd = 50

p i = 3.141592654

d e f d i s t ( coord1 , coord2 ) :
r e t u r n math . s q r t ( ( coord1 [0] − coord2 [ 0 ] ) ∗ ∗ 2 + ( coord1 [1] − coord2 [ 1 ] ) ∗ ∗ 2 )

d e f angulo ( a n t e r i o r , atual , proximo ) :
i f a n t e r i o r == a t u a l or a n t e r i o r == proximo or a t u a l == proximo :

r e t u r n 0
e l s e :

a n t e r i o r = np . array ( a n t e r i o r )
a t u a l = np . array ( a t u a l )
proximo = np . array ( proximo )
l 1 = np . l i n a l g . norm ( a n t e r i o r −a t u a l )
l 2 = np . l i n a l g . norm ( a n t e r i o r −proximo )
l 3 = np . l i n a l g . norm ( proximo−a t u a l )
i f abs (−( l 2 ∗∗2− l 1 ∗∗2− l 3 ∗∗2)/(2∗ l 1 ∗ l 3 )) >1:

r e t u r n p i /2
e l i f proximo [ 1 ] < a n t e r i o r [ 1 ] :

r e t u r n −(pi−math . acos (−( l 2 ∗∗2− l 1 ∗∗2− l 3 ∗∗2)/(2∗ l 1 ∗ l 3 ) ) )
e l s e :

r e t u r n ( pi−math . acos (−( l 2 ∗∗2− l 1 ∗∗2− l 3 ∗∗2)/(2∗ l 1 ∗ l 3 ) ) )

#
d e f m o d i f i e d _ b e s s e l ( k , alpha ) :

t h e t a = np . l i n s p a c e ( 0 , pi , 1 0 0 0 )
i f alpha == 0 :

i n t e g r a n t e = [ math . exp ( k∗math . cos ( i ) ) f o r i i n t h e t a ]
r e t u r n (1/ p i )∗ np . t r a p z ( i n t e g r a n t e , theta , dx = ( t h e t a [1] − t h e t a [ 0 ] ) )

e l s e :
t = np . l i n s p a c e ( 0 , 1 0 0 , 1 0 0 0 0 0 0 )
i n t e g r a n t e 1 = [ ( 1 / p i )∗ math . exp ( k∗math . cos ( i ) ) ∗ math . cos ( alpha ∗ i ) f o r i i n t h e t a ]
i n t e g r a n t e 2 = [ ( 1 / p i )∗ math . s i n ( alpha ∗ p i )∗ math . exp(−k∗math . cosh ( i ) − alpha ∗ i ) f o r i i n t ]
r e t u r n np . t r a p z ( i n t e g r a n t e 1 , theta , dx = t h e t a [1] − t h e t a [ 0 ] ) + np . t r a p z ( i n t e g r a n t e 2 , t , dx = t [1] − t [ 0 ] )

d e f vonMises (mu, k ) :
x = np . l i n s p a c e (−pi , pi , 1 0 0 0 )
r e t u r n [ ( 1 / ( 2 ∗ p i ∗ m o d i f i e d _ b e s s e l ( k , 0 ) ) ) ∗ ( math . exp ( k∗math . cos ( i−mu) ) ) f o r i i n x ]

d e f vonMises_y (mu, k , x ) :
r e t u r n (1/(2∗ p i ∗ m o d i f i e d _ b e s s e l ( k , 0 ) ) ) ∗ ( math . exp ( k∗math . cos ( x−mu) ) )

d e f normal (mu, sigma ) :
x = np . l i n s p a c e (−pi , pi , 1 0 0 0 )
r e t u r n [ ( 1 / ( sigma ∗math . s q r t (2∗ p i ) ) ) ∗ math . exp (( −( i−mu) ∗ ∗ 2 )/ (2 ∗ sigma ∗∗2)) f o r i i n x ]

d e f uniform ( a , b ) :
u = b−a
x = np . l i n s p a c e ( 0 , u , 1 0 0 0 )
r e t u r n [ 1 / u f o r i i n x ]
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d e f p o s t e r i o r ( f , p r i o r ) :
x = np . l i n s p a c e (−pi , pi , 1 0 0 0 )
prod = [ ]
f o r i i n range ( 1 0 0 0 ) :

prod . append ( f [ i ] ∗ p r i o r [ i ] )
p o s t e r i o r = prod /np . t r a p z ( prod , x , dx = ( x [1] − x [ 0 ] ) )
r e t u r n p o s t e r i o r

correct_path = [ ]
c o r r e c t _ f d p = [ ]
c o r r e c t _ a n g l e = [ ]

f o r i i n range ( l e n ( t r a j [ 0 ] ) ) :
correct_path . append ( [ ] )
c o r r e c t _ f d p . append ( [ ] )
c o r r e c t _ a n g l e . append ( [ ] )

j = 0
w h i l e j < l e n ( t r a j [ 0 ] ) :

c o r r e c t _ f d p [ j ] . append ( ( 0 , 4 ) )
correct_path [ j ] . append ( t r a j [ 0 ] [ j ] )
c o r r e c t _ a n g l e [ j ] . append ( 0 )
j += 1

o n l y f i l e s = nframes
r a d i u s = 10
fdp = vonMises ( 0 , 4 )
ang = 0
p r i o r = uniform(−pi , p i )
f o r i i n range ( 1 , o n l y f i l e s ) :

f o r j i n range ( l e n ( correct_path ) ) :
add = True
i f i==1 or correct_path [ j ] [ − 1 ] == correct_path [ j ] [ − 2 ] or d i s t ( correct_path [ j ] [ − 1 ] , correct_path [ j ] [ − 2 ] ) < r a d i u s :

p o s s i b l e = [ ]
f o r k i n range ( l e n ( t r a j [ i ] ) ) :

i f d i s t ( t r a j [ i ] [ k ] , correct_path [ j ] [ − 1 ] ) < r a d i u s :
p o s s i b l e . append ( ( t r a j [ i ] [ k ] , k ) )

i f l e n ( p o s s i b l e ) != 0 :
correct_path [ j ] . append ( correct_path [ j ] [ − 1 ] )
min_dist = 1000
f o r tam i n range ( l e n ( p o s s i b l e ) ) :

space = d i s t ( correct_path [ j ] [ − 1 ] , p o s s i b l e [ tam ] [ 0 ] )
i f space < min_dist :

min_dist = space
correct_path [ j ] [ − 1 ] = p o s s i b l e [ tam ] [ 0 ]
index = p o s s i b l e [ tam ] [ 1 ]

d e l t r a j [ i ] [ index ]
c o r r e c t _ f d p [ j ] . append ( c o r r e c t _ f d p [ j ] [ − 1 ] )
c o r r e c t _ a n g l e [ j ] . append ( 0 )

e l s e :
correct_path [ j ] . append ( correct_path [ j ] [ − 1 ] )
c o r r e c t _ a n g l e [ j ] . append ( 0 )

e l s e :
p o s s i b l e = [ ]
mu = c o r r e c t _ f d p [ j ] [ − 1 ] [ 0 ]
kappa = c o r r e c t _ f d p [ j ] [ − 1 ] [ 1 ]
c o r r e c t _ a n g l e [ j ] . append ( [ ] )
f o r k i n range ( l e n ( t r a j [ i ] ) ) :

i f d i s t ( t r a j [ i ] [ k ] , correct_path [ j ] [ − 1 ] ) < r a d i u s :
p o s s i b l e . append ( ( t r a j [ i ] [ k ] , k ) ) #caso 1 : t r s pontos d i s t i n t o s c o n s e c u t i v o s

i f l e n ( p o s s i b l e ) != 0 and add :
a t u a l = correct_path [ j ] [ − 1 ]
a n t e r i o r = correct_path [ j ] [ − 2 ]
mle = 0
f o r tam i n range ( l e n ( p o s s i b l e ) ) :

a n g l e = angulo ( a n t e r i o r , atual , p o s s i b l e [ tam ] [ 0 ] )
y = vonMises_y (mu, kappa , a n g l e )
i f y > mle :

mle = y
c o r r e c t _ a n g l e [ j ] [ − 1 ] = a n g l e
index = p o s s i b l e [ tam ] [ 1 ]

correct_path [ j ] . append ( p o s s i b l e [ tam ] [ 0 ] )
mu = np . mean ( c o r r e c t _ a n g l e [ j ] )
kappa = c o r r e c t _ f d p [ j ] [ − 1 ] [ 1 ]
f = vonMises (mu, kappa )
kappa =max( p o s t e r i o r ( f , p r i o r ) )
c o r r e c t _ f d p [ j ] . append ( (mu, kappa ) )
d e l t r a j [ i ] [ index ]
index = None
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e l i f l e n ( p o s s i b l e ) == 0 and add :
pos = correct_path [ j ] [ − 1 ]
correct_path [ j ] . append ( pos )
c o r r e c t _ a n g l e [ j ] [ − 1 ] = 0 i f l e n ( t r a j [ i ] ) != 0 : #caso 3 : novos pontos foram encontrados

s i z e _ l i s t = l e n ( correct_path )
s i z e = s i z e _ l i s t
f o r count i n range ( l e n ( t r a j [ i ] ) ) :

correct_path . append ( [ ] )
c o r r e c t _ a n g l e . append ( [ ] )
c o r r e c t _ f d p . append ( [ ] )

f o r l i n range ( l e n ( t r a j [ i ] ) ) :
f o r count i n range ( i +1):

correct_path [ s i z e ] . append ( t r a j [ i ] [ l ] )
c o r r e c t _ a n g l e [ s i z e ] . append ( 0 )
c o r r e c t _ f d p [ s i z e ] . append ( ( 0 , 4 ) )

s i z e += 1

j = 0
w h i l e j < l e n ( correct_path ) :

x = s t r ( j )
with open ( ’ f o l d e r / t r a j e t o r i a s /’+x + ’. txt ’ , ’w’ ) as fp0 :

fp0 . w r i t e ( ’ \ n ’ . j o i n ( ’% s %s ’ % x f o r x i n correct_path [ j ] ) )
j += 1

end = time . time ( )
p r i n t ( end−s t a r t )
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A.5 Simulation

import numpy as np
import random
import math
import time

s t a r t =time . time ( )
x = [ ]
y = [ ]
rd = 5
nframes = 500
bees = 200
image=np . z e r o s ( ( 1 9 2 0 , 1 0 8 0 , 3 ) , np . u i n t 8 )
xcoord = np . z e r o s ( ( bees , nframes ) )
ycoord = np . z e r o s ( ( bees , nframes ) )

f o r i i n range ( bees ) :
x = random . r a n d i n t ( 0 , 1 9 2 0 )
y = random . r a n d i n t ( 0 , 1 0 8 0 )
xcoord [ i ] [ 0 ] = x
ycoord [ i ] [ 0 ] = y

p i = 3.141592654
d e f new_point ( x0 , y0 , r ,m) :

x = x0+r ∗math . s q r t (1/(1+m∗∗2))
y = y0+m∗ r ∗math . s q r t (1/(1+m∗∗2))
r e t u r n ( x , y )

f o r i i n range ( bees ) :
f o r j i n range ( 1 , nframes ) :

x0 = xcoord [ i ] [ j −1]
y0 = ycoord [ i ] [ j −1]
r = random . r a n d i n t (−rd , rd )
mu = 6
kappa = 8
m = np . random . normal (mu, kappa )
xcoord [ i ] [ j ] = new_point ( x0 , y0 , r ,m) [ 0 ]
ycoord [ i ] [ j ] = new_point ( x0 , y0 , r ,m) [ 1 ]

d e f d i s t ( coord1 , coord2 ) :
r e t u r n math . s q r t ( ( coord1 [0] − coord2 [ 0 ] ) ∗ ∗ 2 + ( coord1 [1] − coord2 [ 1 ] ) ∗ ∗ 2 )

d e f angulo ( a n t e r i o r , atual , proximo ) :
i f a n t e r i o r == a t u a l or a n t e r i o r == proximo or a t u a l == proximo :

r e t u r n 0
e l s e :

a n t e r i o r = np . array ( a n t e r i o r )
a t u a l = np . array ( a t u a l )
proximo = np . array ( proximo )
l 1 = np . l i n a l g . norm ( a n t e r i o r −a t u a l )
l 2 = np . l i n a l g . norm ( a n t e r i o r −proximo )
l 3 = np . l i n a l g . norm ( proximo−a t u a l )
i f abs (−( l 2 ∗∗2− l 1 ∗∗2− l 3 ∗∗2)/(2∗ l 1 ∗ l 3 )) >1:

r e t u r n p i /2
e l i f proximo [ 1 ] < a n t e r i o r [ 1 ] :

r e t u r n −(pi−math . acos (−( l 2 ∗∗2− l 1 ∗∗2− l 3 ∗∗2)/(2∗ l 1 ∗ l 3 ) ) )
e l s e :

r e t u r n ( pi−math . acos (−( l 2 ∗∗2− l 1 ∗∗2− l 3 ∗∗2)/(2∗ l 1 ∗ l 3 ) ) )

d e f m o d i f i e d _ b e s s e l ( k , alpha ) :
t h e t a = np . l i n s p a c e ( 0 , pi , 1 0 0 0 )
i f alpha == 0 :

i n t e g r a n t e = [ math . exp ( k∗math . cos ( i ) ) f o r i i n t h e t a ]
r e t u r n (1/ p i )∗ np . t r a p z ( i n t e g r a n t e , theta , dx = ( t h e t a [1] − t h e t a [ 0 ] ) )

e l s e :
t = np . l i n s p a c e ( 0 , 1 0 0 , 1 0 0 0 0 0 0 )
i n t e g r a n t e 1 = [ ( 1 / p i )∗ math . exp ( k∗math . cos ( i ) ) ∗ math . cos ( alpha ∗ i ) f o r i i n t h e t a ]
i n t e g r a n t e 2 = [ ( 1 / p i )∗ math . s i n ( alpha ∗ p i )∗ math . exp(−k∗math . cosh ( i ) − alpha ∗ i ) f o r i i n t ]
r e t u r n np . t r a p z ( i n t e g r a n t e 1 , theta , dx = t h e t a [1] − t h e t a [ 0 ] ) + np . t r a p z ( i n t e g r a n t e 2 , t , dx = t [1] − t [ 0 ] )
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d e f vonMises (mu, k ) :
x = np . l i n s p a c e (−pi , pi , 1 0 0 0 )
r e t u r n [ ( 1 / ( 2 ∗ p i ∗ m o d i f i e d _ b e s s e l ( k , 0 ) ) ) ∗ ( math . exp ( k∗math . cos ( i−mu) ) ) f o r i i n x ]

d e f vonMises_y (mu, k , x ) :
r e t u r n (1/(2∗ p i ∗ m o d i f i e d _ b e s s e l ( k , 0 ) ) ) ∗ ( math . exp ( k∗math . cos ( x−mu) ) )

d e f normal (mu, sigma ) :
x = np . l i n s p a c e (−pi , pi , 1 0 0 0 )
r e t u r n [ ( 1 / ( sigma ∗math . s q r t (2∗ p i ) ) ) ∗ math . exp (( −( i−mu) ∗ ∗ 2 )/ (2 ∗ sigma ∗∗2)) f o r i i n x ]

d e f uniform ( a , b ) :
u = b−a
x = np . l i n s p a c e ( 0 , u , 1 0 0 0 )
r e t u r n [ 1 / u f o r i i n x ]

d e f p o s t e r i o r ( f , p r i o r ) :
x = np . l i n s p a c e (−pi , pi , 1 0 0 0 )
prod = [ ]
f o r i i n range ( 1 0 0 0 ) :

prod . append ( f [ i ] ∗ p r i o r [ i ] )
p o s t e r i o r = prod /np . t r a p z ( prod , x , dx = ( x [1] − x [ 0 ] ) )
r e t u r n p o s t e r i o r

t r a j = [ ]
f o r i i n range ( nframes ) :

t r a j . append ( [ ] )

f o r j i n range ( xcoord . shape [ 1 ] ) :
f o r i i n range ( xcoord . shape [ 0 ] ) :

t r a j [ j ] . append ( ( xcoord [ i ] [ j ] , ycoord [ i ] [ j ] ) )

correct_path = [ ]
c o r r e c t _ f d p = [ ]
c o r r e c t _ a n g l e = [ ]

f o r i i n range ( l e n ( t r a j [ 0 ] ) ) :
correct_path . append ( [ ] )
c o r r e c t _ f d p . append ( [ ] )
c o r r e c t _ a n g l e . append ( [ ] )

j = 0
w h i l e j < l e n ( t r a j [ 0 ] ) :

c o r r e c t _ f d p [ j ] . append ( ( 0 , 4 ) )
correct_path [ j ] . append ( t r a j [ 0 ] [ j ] )
c o r r e c t _ a n g l e [ j ] . append ( 0 )
j += 1

o n l y f i l e s = nframes
r a d i u s = 10
fdp = vonMises ( 0 , 4 )
ang = 0
p r i o r = uniform(−pi , p i )
f o r i i n range ( 1 , o n l y f i l e s ) :

f o r j i n range ( l e n ( correct_path ) ) :
add = True
i f i==1 or correct_path [ j ] [ − 1 ] == correct_path [ j ] [ − 2 ] or d i s t ( correct_path [ j ] [ − 1 ] , correct_path [ j ] [ − 2 ] ) < r a d i u s :

p o s s i b l e = [ ]
f o r k i n range ( l e n ( t r a j [ i ] ) ) :

i f d i s t ( t r a j [ i ] [ k ] , correct_path [ j ] [ − 1 ] ) < r a d i u s :
p o s s i b l e . append ( ( t r a j [ i ] [ k ] , k ) )

i f l e n ( p o s s i b l e ) != 0 :
correct_path [ j ] . append ( correct_path [ j ] [ − 1 ] )
min_dist = 1000
f o r tam i n range ( l e n ( p o s s i b l e ) ) :

space = d i s t ( correct_path [ j ] [ − 1 ] , p o s s i b l e [ tam ] [ 0 ] )
i f space < min_dist :

min_dist = space
correct_path [ j ] [ − 1 ] = p o s s i b l e [ tam ] [ 0 ]
index = p o s s i b l e [ tam ] [ 1 ]

d e l t r a j [ i ] [ index ]
c o r r e c t _ f d p [ j ] . append ( c o r r e c t _ f d p [ j ] [ − 1 ] )
c o r r e c t _ a n g l e [ j ] . append ( 0 )

e l s e :
correct_path [ j ] . append ( correct_path [ j ] [ − 1 ] )
c o r r e c t _ a n g l e [ j ] . append ( 0 )

e l s e :
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p o s s i b l e = [ ]
mu = c o r r e c t _ f d p [ j ] [ − 1 ] [ 0 ]
kappa = c o r r e c t _ f d p [ j ] [ − 1 ] [ 1 ]
c o r r e c t _ a n g l e [ j ] . append ( [ ] )
f o r k i n range ( l e n ( t r a j [ i ] ) ) :

i f d i s t ( t r a j [ i ] [ k ] , correct_path [ j ] [ − 1 ] ) < r a d i u s :
p o s s i b l e . append ( ( t r a j [ i ] [ k ] , k ) )

i f l e n ( p o s s i b l e ) != 0 and add :
a t u a l = correct_path [ j ] [ − 1 ]
a n t e r i o r = correct_path [ j ] [ − 2 ]
mle = 0
f o r tam i n range ( l e n ( p o s s i b l e ) ) :

a n g l e = angulo ( a n t e r i o r , atual , p o s s i b l e [ tam ] [ 0 ] )
y = vonMises_y (mu, kappa , a n g l e )
i f y > mle :

mle = y
c o r r e c t _ a n g l e [ j ] [ − 1 ] = a n g l e
index = p o s s i b l e [ tam ] [ 1 ]

correct_path [ j ] . append ( p o s s i b l e [ tam ] [ 0 ] )
mu = np . mean ( c o r r e c t _ a n g l e [ j ] )
kappa = c o r r e c t _ f d p [ j ] [ − 1 ] [ 1 ]
f = vonMises (mu, kappa )
kappa =max( p o s t e r i o r ( f , p r i o r ) )
c o r r e c t _ f d p [ j ] . append ( (mu, kappa ) )
d e l t r a j [ i ] [ index ]
index = None

e l i f l e n ( p o s s i b l e ) == 0 and add :
pos = correct_path [ j ] [ − 1 ]
correct_path [ j ] . append ( pos )
c o r r e c t _ a n g l e [ j ] [ − 1 ] = 0

i f l e n ( t r a j [ i ] ) != 0 :
s i z e _ l i s t = l e n ( correct_path )
s i z e = s i z e _ l i s t
f o r count i n range ( l e n ( t r a j [ i ] ) ) :

correct_path . append ( [ ] )
c o r r e c t _ a n g l e . append ( [ ] )
c o r r e c t _ f d p . append ( [ ] )

f o r l i n range ( l e n ( t r a j [ i ] ) ) :
f o r count i n range ( i +1):

correct_path [ s i z e ] . append ( t r a j [ i ] [ l ] )
c o r r e c t _ a n g l e [ s i z e ] . append ( 0 )
c o r r e c t _ f d p [ s i z e ] . append ( ( 0 , 4 ) )

s i z e += 1

l = bees
a = [ ]
b = [ ]
f o r i i n range ( l ) :

a = a + correct_path [ i ]

f o r i i n range ( l ) :
f o r j i n range ( 5 0 0 ) :

b . append ( ( xcoord [ i , j ] , ycoord [ i , j ] ) )

from d i f f l i b import SequenceMatcher
p r i n t ( SequenceMatcher ( None , a , b ) . r a t i o ( ) )

end = time . time ( )
p r i n t ( end−s t a r t )
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A.6 Maximum a Posteriori

import numpy as np
import math
import os
from m a t p l o t l i b import pyplot as p l t
import s c i p y . s t a t s
import warnings
import time
warnings . f i l t e r w a r n i n g s ( ’ ign ore ’ )

s t a r t = time . time ( )

p i = 3.141592654
d e f new_point ( x0 , y0 , r ,m) :

x = x0+r ∗math . s q r t (1/(1+m∗∗2))
y = y0+m∗ r ∗math . s q r t (1/(1+m∗∗2))
r e t u r n ( x , y )

d e f d i s t ( coord1 , coord2 ) :
r e t u r n math . s q r t ( ( coord1 [0] − coord2 [ 0 ] ) ∗ ∗ 2 + ( coord1 [1] − coord2 [ 1 ] ) ∗ ∗ 2 )

d e f angulo ( a n t e r i o r , atual , proximo ) :
i f a n t e r i o r == a t u a l or a n t e r i o r == proximo or a t u a l == proximo :

r e t u r n 0
e l s e :

a n t e r i o r = np . array ( a n t e r i o r )
a t u a l = np . array ( a t u a l )
proximo = np . array ( proximo )
l 1 = np . l i n a l g . norm ( a n t e r i o r −a t u a l )
l 2 = np . l i n a l g . norm ( a n t e r i o r −proximo )
l 3 = np . l i n a l g . norm ( proximo−a t u a l )
i f abs (−( l 2 ∗∗2− l 1 ∗∗2− l 3 ∗∗2)/(2∗ l 1 ∗ l 3 )) >1:

r e t u r n p i /2
e l i f proximo [ 1 ] < a n t e r i o r [ 1 ] :

r e t u r n −(pi−math . acos (−( l 2 ∗∗2− l 1 ∗∗2− l 3 ∗∗2)/(2∗ l 1 ∗ l 3 ) ) )
e l s e :

r e t u r n ( pi−math . acos (−( l 2 ∗∗2− l 1 ∗∗2− l 3 ∗∗2)/(2∗ l 1 ∗ l 3 ) ) )

t r a j = [ ]
t r a j e x p = [ ]
pdf = [ ]

frame = next ( os . walk ( ’ / home/ l p s /Downloads/ bees / branco / di a 2/ t r a j e t o r i a s ’ ) ) [ 2 ]
o n l y f i l e s = next ( os . walk ( ’ / home/ l p s /Downloads/ bayes iano / pdf ’ ) ) [ 2 ]
tam = l e n ( o n l y f i l e s )
f o r i i n range ( l e n ( o n l y f i l e s ) ) :

t r a j . append ( [ ] )
# pdf . append ( [ ] )

f o r i i n range ( l e n ( frame ) ) :
t r a j [ i ] = np . genfromtxt ( r ’ / home/ l p s /Downloads/ bayes iano / path / abelha ’+ s t r ( i )+ ’ . txt ’ , d e l i m i t e r =’ ’ )

# pdf [ i ] = np . genfromtxt ( r ’ / home/ l p s /Downloads/ bayes iano / pdf / pdf ’+ s t r ( i )+ ’ . txt ’ , d e l i m i t e r =’ ’ )

g = [ ]
f o r i i n range ( l e n ( pdf ) ) :

g . append ( pdf [ i ] [ − 1 ] )

ang = [ ]
space = [ ]
fdp_ang = [ ]
fdp_space = [ ]
kde1= [ ]
kde2 = [ ]

tam = 0
w h i l e tam < l e n ( t r a j ) :

ang . append ( [ ] )
space . append ( [ ] )
fdp_ang . append ( [ ] )
fdp_space . append ( [ ] )
kde1 . append ( [ ] )
kde2 . append ( [ ] )
tam += 1
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f o r k i n range ( l e n ( t r a j ) ) :
f o r i i n range ( 2 , l e n ( t r a j [ k ] ) ) :

a n t e r i o r = t r a j [ k ] [ i − 2 ] [ 0 ] , t r a j [ k ] [ i − 2 ] [ 1 ]
a t u a l = t r a j [ k ] [ i − 1 ] [ 0 ] , t r a j [ k ] [ i − 1 ] [ 1 ]
proximo = t r a j [ k ] [ i ] [ 0 ] , t r a j [ k ] [ i ] [ 1 ]
ang [ k ] . append ( angulo ( a n t e r i o r , atual , proximo ) )
space [ k ] . append ( d i s t ( atual , proximo ) )

f o r i i n range ( l e n ( t r a j ) ) :
data1 = np . a s a r r a y ( ang [ 0 ] )
data2 = np . a s a r r a y ( space [ 0 ] )
bw_values = [ None , 0 . 1 , 0 . 0 1 ]
kde1 [ i ] = [ s c i p y . s t a t s . gaussian_kde ( data1 , bw_method=bw) f o r bw i n bw_values ]
kde2 [ i ] = [ s c i p y . s t a t s . gaussian_kde ( data2 , bw_method=bw) f o r bw i n bw_values ]

t_range = np . l i n s p a c e (−pi , pi , 1 0 0 0 )
s_range = np . l i n s p a c e ( 0 , 5 0 , 1 0 0 0 )

f o r i i n range ( l e n ( t r a j ) ) :
fdp_ang [ i ] = kde1 [ i ] [ − 1 ] ( t_range )
fdp_space [ i ] = kde2 [ i ] [ − 1 ] ( s_range )

theta_hat = [ ( ( max( fdp_ang [ i ] ) ∗ 1 0 0 / ( 2 ∗ p i ))%10)/10 f o r i i n range ( l e n ( fdp_ang ) ) ]

Sang = 0
Sspace = 0
dtheta = np . l i n s p a c e (−pi , pi , 1 0 0 0 )
d e l x = np . l i n s p a c e ( 0 , 5 0 , 1 0 0 0 )
f o r i i n range ( l e n ( fdp_ang ) ) :

i n t e g r a n t e = [ fdp_ang [ i ] [ j ] f o r j i n range ( l e n ( fdp_ang [ i ] ) ) ]
r e a l = [ ]
f o r k i n range ( l e n ( i n t e g r a n t e ) ) :

i f i n t e g r a n t e [ k ] > 0 . 0 0 1 :
r e a l . append ( i n t e g r a n t e [ k ] )

i n t e g r a n t e = [ r e a l [ l ] ∗ math . l o g ( r e a l [ l ] ) f o r l i n range ( l e n ( r e a l ) ) ]
f o r k i n range ( l e n ( r e a l ) , 1 0 0 0 ) :

i n t e g r a n t e . append ( 0 )
Sang = Sang + np . t r a p z ( i n t e g r a n t e , dtheta , dx = dtheta [1] − dtheta [ 0 ] )

f o r i i n range ( 1 , l e n ( fdp_space ) ) :
i n t e g r a n t e = [ fdp_space [ i ] [ j ] f o r j i n range ( l e n ( fdp_space [ i ] ) ) ]
r e a l = [ ]
f o r k i n range ( l e n ( i n t e g r a n t e ) ) :

i f i n t e g r a n t e [ k ] > 0 . 0 0 1 :
r e a l . append ( i n t e g r a n t e [ k ] )

i n t e g r a n t e = [ r e a l [ l ] ∗ math . l o g ( r e a l [ l ] ) f o r l i n range ( l e n ( r e a l ) ) ]
f o r k i n range ( l e n ( r e a l ) , 1 0 0 0 ) :

i n t e g r a n t e . append ( 0 )
Sspace = Sspace + np . t r a p z ( i n t e g r a n t e , delx , dx = d e l x [1] − d e l x [ 0 ] )

S = (−Sang − Sspace ) / ( l e n ( fdp_space )∗ math . l o g ( 2 ) )
p r i n t ( ’ Entropy per bee ( b i t s ) : ’+ s t r ( S ) )
p r i n t ( ’ \ n ’ )
end = time . time ( )
p r i n t ( ’ Execution time ( s ) : ’+ s t r ( end−s t a r t ) )
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B Relationship between the different types of entropy

B.1 Deriving Boltzmann’s and Gibbs entropy

Lets take the system for the ideal gas and divide it in two parts. It is know that S = S1 + S2 and
W = W1W2. Therefore, the deduction is as follows:

S(W1) + S(W2) = S(W1W2) (B.1)

Deriving both sides with respect to W1 and keeping W2 constant results in

S′(W1) = W2S
′(W1W2) (B.2)

Deriving now in W2 keeping W1 constant, applying the chain rule:

0 = S′(W1W2) +W1W2S
′′(W1W2) (B.3)

0 = S′(W ) +WS′′(W ) (B.4)

Replacing S′(W ) = f(W ):

f(W ) +W
df(W )
dW

= 0 (B.5)

f(W )dW +Wdf(W ) = 0 (B.6)

(fW )′ = 0 (B.7)

Integrating both sides, returns

fW = k (B.8)

which is the same as

W
dS

dW
= k (B.9)

∫
dS = k

∫
dW

W
(B.10)

S = k logW + c (B.11)
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But it is known that a crystal at 0 K has 0 entropy, and only one microstate. Replacing this fact
in the equation B.11:

0 = k log 1 + c (B.12)

from which we conclude that c = 0 and S = k logW is the entropy of an ideal gas, where k is the
Boltzmann constant. Gibbs jaynes1965gibbs extended the concept of Boltzmann entropy to the cases in
which the microstates are not equally likely:

S = −k
∑
i

pi log pi (B.13)

where pi is the probability of the i-nth microstate (if the W microstates are equally likely, then
pi=(1,2,3,...,n) = 1/W and Eq. B.13 is the same as the Boltzmann entropy).

B.1.1 Information theoretic proof that Gibbs entropy is the same as Clausius

With the development of information theory in the twentieth century and the concept of maximum
entropy for statistical mechanics which states by the second law of thermodynamics that a system in
thermodynamic equilibrium has reached its maximum entropy (and therefore, it is in the macrostate that
has the most microstates, corresponding to gas velocities), it is possible to show that Shannon entropy is
the same as Clausius entropy as well.

Using Eq. B.13, and the unitarity principle,
∑
i pi = 1, in which i is the i-nth state, we can write

the average energy of a system is

E =
∑
i

piEi = U (B.14)

Applying Lagrange multipliers, we have

L =− k
∑
i

pi log pi + λ1

(∑
i

pi − 1
)

+ λ2

(∑
i

piEi − U

) (B.15)

Differentiating and equaling zero

−k log pi − k + λ1 + λ2Ei = 0 (B.16)

Isolating pi

pi = exp
(
−k + λ1 + λ2E2

k

)
(B.17)

Using the canonical partition function Z, defined as

Z =
∑
i

exp
(
λ2

k
Ei

)
(B.18)



B.1. Deriving Boltzmann’s and Gibbs entropy 65

The partition function combines state functions, such as temperature and energy for the mi-
crostates, and has a central role in statistical mechanics. Differentiating logZ with respect to λ2 returns

∂ logZ
∂λ2

= E

k
(B.19)

Using unitarity again, Eq.B.17 can be written as

exp
(
−k + λ1

k

)
Z = 1 (B.20)

Therefore,

log
(

1
Z

)
+ 1 = λ1

k
(B.21)

Rewriting Eq. B.13 in terms of Z, results in

S = −k
∑
i

pi

(
λ2

k
E2 − logZ

)
(B.22)

Using B.19 in B.22, give us

S = −λ2
∑
i

piEi + k logZ
∑
i

pi

= −λ2U + k logZ
(B.23)

Using the definition of thermodynamics temperature

1
T

= ∂S

∂U
(B.24)

Since ∂S
∂U = −λ2, Eq. B.13 can be written as

S = U

T
+ k logZ (B.25)

Now, lets change the energy of the system by δQ. Every microstate will increase is energy by qi.
Calculating the change in the entropy results in

dS = δU

T
+ kδ logZ (B.26)

Calculating the second term

δ logZ = d logZ
dZ

δZ = δZ

Z
(B.27)

Noticing that Z =
∑
i exp(−Ei/kT ), the new partition function can be written as

Z =
∑
i

exp
(
−Ei + qi

kT

)
(B.28)
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Applying Taylor expansion to e−qi/kt, since qi is infinitesimal, the partition function is

Z =
∑
i

exp
(
Ei
kT

)(
1− qi

kT

)
= Z0 + δZ (B.29)

Therefore, the variation of the partition function is given by

δZ = − 1
kT

∑
i

qi exp
(
− Ei
kT

)
(B.30)

Using the first law of thermodynamics, the change in U can be expressed as

δU =
∑
i

δEipi +
∑
i

qipi = δQ+ δW (B.31)

Calculating δ logZ, replacing B.30 in B.27:

δ logZ = − 1
kT

∑
piqi (B.32)

This value is exactly δW/kT . Replacing this relation in Eq. B.26, we get

dS = δQ

T
(B.33)

which is the Clausius first definition of entropy.
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