• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.18.2018.tde-22032021-144058
Document
Auteur
Nom complet
Kenny Anderson Queiroz Caldas
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2018
Directeur
Jury
Grassi Junior, Valdir (Président)
Raffo, Guilherme Vianna
Siqueira, Adriano Almeida Gonçalves
Titre en anglais
Model predictive eco-driving control of autonomous vehicle
Mots-clés en anglais
Autonomous vehicle
Ecological driving
Fuel economy
Predictive control
Resumé en anglais
The purpose of this masters thesis is the implementation of a model-based predictive controller for eco-driving in autonomous ground vehicles. Eco-driving consists of a group of strategies adopted by a driver aiming to reduce fuel consumption and improvement of safety and comfort levels during a trip. Through the use of digital maps and a GPS module, the predictive controller can calculate a sequence of control input to smooth the vehicle's acceleration and braking along the route in critical parts, such as uphills, downhills and curves, following the speed limits of each road. This is accomplished by predictions based on the mathematical model of the vehicle and estimation of gasoline expenditure. The chosen optimizer algorithm is called C/GMRES, where its main advantage from the traditional methods is that the solution of the optimal problem does not required iterative searches, which greatly reduces the computational burden, allowing a real time implementation. The proposed control strategy was implemented in two routes, in a city and highway scenarios, in a simulated environment. The obtained results were considered satisfactory and showed the predictive controller potential to deal with the fuel consumption problem in autonomous vehicles.
Titre en portugais
Controle preditivo baseado em modelo de veículo autônomo para direção ecológica
Mots-clés en portugais
Controle preditivo
Direção ecológica
Economia de combustível
Veiculo autônomo
Resumé en portugais
A proposta desta dissertação de mestrado é a implementação de um controlador preditivo baseado em modelo para direção ecológica em veículos autônomos terrestres. Direção ecológia consiste em um conjunto de estratégias que um motorista pode adotar visando a redução do consumo de combustível e melhora dos níveis de segurança e conforto durante uma viagem. Através da utilização de mapas digitais e de um módulo de GPS, o controlador preditivo pode calcular uma sequência de entradas de controle visando suavizar a aceleração e frenagem do veículo ao longo do percurso em trechos críticos como ladeiras, declives e em curvas, respeitando o limite de velocidade de cada estrada. Isto é realizado por meio de predições baseadas no modelo matemático do veículo e da estimação do gasto de gasolina. O algoritmo de otimização utilizado é chamado de C/GMRES, onde a sua principal vantagem em relação aos métodos tradicionais consiste na solução do problema de otimização não necessitar de buscas iterativas, o que reduz consideravelmente o custo computacional de processamento, permitindo a sua implementação em tempo real. A estratégia de controle proposta foi implementada em dois percursos, em trecho urbano e rodoviário, em um ambiente simulado no MATLAB. Os resultados obtidos foram considerados satisfatórios e demonstraram o potencial que o controlador preditivo possui para o problema da redução do consumo de combustível em veículos autônomos.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-03-22
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.