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“It always seems impossible until it’s done.”
(Nelson Mandela)

“Remember that all models are wrong;
the practical question is

how wrong they have to be to not be useful.”
(George Box)





ABSTRACT

SANTOS, T. M. O.. Evolving Discrete Dynamic Bayesian Networks: An Approach For
Dealing With Time Series. 102 p. Ph.D. Thesis – São Carlos School of Engineering, University
of São Paulo, São Carlos, 2023.

Knowledge discovery in time series datasets is a subject of great interest and importance in
academics and industry. For such purpose, a set of theories and computational tools have been
proposed and used to extract useful information from time series to assist in decision-making in
different areas. Among the possibilities, Bayesian network is a probabilistic graphical model
representing a set of random variables and their conditional statistical dependencies via a directed
acyclic graph (DAG). This doctoral research proposes a methodology for dealing with time series
based on evolving discrete Dynamic Bayesian Networks (EDBN) by an analytical threshold
for selecting directed edges by the occurrence frequency as new datasets are collected. In this
proposal, as new datasets are collected, the algorithm learns the structure of a DBN by using a
score metric and the hill-climbing method and then uses the analytical threshold for selecting
the directed edges between the nodes by the occurrence frequency. The developed method
smoothly converges to a robust model and constantly adapts to the arrival of new data, obtaining
more reliable network models. The discrete model is chosen to be a non-parametric approach
that can be adequate for different data behaviour without manual modifications, i.e., totally
data-driven. The proposal was evaluated by dealing with real datasets of time series in data
imputation and CO2 emissions forecasting during energy generation, which are two contexts
that have received a lot of attention from researchers in recent years. Evaluating the results
against widely used imputation methods, the proposed approach proved capable of handling
data imputation in time series datasets for missing completely at random and for missing not at
random. In the context of CO2 emissions forecasting in multi-source power generation systems,
real datasets of Belgium, Germany, Portugal, and Spain were used. The proposed approach
showed to be capable of dealing with CO2 emissions forecasting in the systems evaluated in this
study. Comparing the results against a traditional DBN that not evolve the structure over time,
the proposal developed was superior highlighting a contribution of performance improvement.
The proposed method was also better when compared to other traditional methods. Moreover,
the model also is computationally efficient, making the proposal a good option for embedding
such an approach for dealing with time series in online applications.

Keywords: Time Series. Evolving Dynamic Bayesian Network. Learning of Robust Structures.
Missing Data. CO2 Emissions Forecasting..





RESUMO

SANTOS, T. M. O.. Evolução De Redes Bayesianas Dinâmicas Discretas: Uma Abordagem
Para Lidar Com Séries Temporais. 102 p. Tese de Doutorado – Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2023.

A descoberta de conhecimento em conjuntos de dados de séries temporais é um assunto de
grande interesse e importância tanto na academia quanto na indústria. Para tal, um conjunto
de teorias e ferramentas computacionais foram propostas e utilizadas para extrair informações
úteis de séries temporais para auxiliar na tomada de decisões em diferentes áreas. Dentre as
possibilidades, a rede bayesiana é um modelo gráfico probabilístico que representa um conjunto
de variáveis aleatórias e suas dependências estatísticas condicionais por meio de um grafo
acíclico direcionado (DAG). Nesta pesquisa de doutorado, propõe-se uma metodologia para lidar
com séries temporais baseada na evolução de Redes Bayesianas Dinâmicas (EDBN) discretas
por um limiar analítico para selecionar arestas direcionadas pela frequência de ocorrência à
medida que novos conjuntos de dados são coletados. Assim, nesta proposta, à medida que novos
conjuntos de dados são coletados, o algoritmo aprende a estrutura de um DBN usando uma
métrica de pontuação e o método hill-climbing e então usa o limite analítico para selecionar
as arestas direcionadas entre os nós pela frequência de ocorrência. O método desenvolvido
converge suavemente para um modelo robusto e se adapta constantemente à chegada de novos
dados, obtendo modelos de rede mais confiáveis. Escolhe-se o modelo discreto por ser uma
abordagem não paramétrica que pode ser adequada para diferentes comportamentos de dados sem
modificações manuais, ou seja, totalmente orientado a dados. Avaliou-se essa proposta lidando
com conjuntos de dados reais de séries temporais em imputação de dados e previsão de emissões
de CO2 durante a geração de energia, que são dois contextos que receberam muita atenção de
pesquisadores nos últimos anos. Avaliando os resultados em relação aos métodos de imputação
amplamente utilizados, a abordagem proposta provou ser capaz de lidar com a imputação de
dados em conjuntos de dados de séries temporais para faltas completamente aleatórias e para
faltas não aleatórias. No contexto da previsão de emissões de CO2 em sistemas de geração de
energia de várias fontes, foi utilizado conjuntos de dados reais da Bélgica, Alemanha, Portugal
e Espanha. A abordagem proposta mostrou-se capaz de lidar com a previsão de emissões de
CO2 nos sistemas avaliados neste estudo. Comparando os resultados com um DBN tradicional
que não evolui a estrutura ao longo do tempo, a proposta desenvolvida foi superior destacando
uma contribuição de melhoria de desempenho. O método proposto também foi melhor quando
comparado a outros métodos tradicionais. Além disso, o modelo também é computacionalmente
eficiente, tornando a proposta desenvolvida uma boa opção para incorporar tal abordagem para
lidar com séries temporais em aplicações online.

Palavras-chave: Series Temporais. Rede Bayesiana Dinâmica Evolutiva. Aprendizado de



Estruturas Robustas. Dados Faltantes. Previsão de Emissões de CO2..
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CHAPTER

1
INTRODUCTION

Nowadays, humanity lives in the information era, surrounded by connected devices that
generate large volumes of data daily (MOHAN; CHAUDHURY; LALL, 2022; WANG; GAO;
CHEN, 2018). These ordered sets of measurements over time are called time series (LUBBA et

al., 2019). With this massive amount of data availability and given that discovering knowledge
from data is always a subject of great interest and importance both in academic and indus-
try (ZHONG; ZHANG; ZHANG, 2022; CAO et al., 2022; SIDDIQA et al., 2016), a set of
theories and computational tools have been proposed and used to extract useful information from
time series to assist in decision making in different areas (DOMINGUEZ et al., 2023). Searching
on the Scopus database for documents that have the terms "knowledge", "from" and "data" in the
title, abstract, or keywords, the result returned 391849 papers published between 2015 and 2023
in different subject areas. The search was carried out on January 28, 2023. Figure 1 illustrates
the results.

As shown in Figure 2, Knowledge Discovery in Databases (KDD) involves seven steps:
problem formulation, data selection, data preprocessing, data transformation, data mining, evalu-
ation, and interpretation of the results (SINGH; SINGH; PANT, 2022; FAYYAD; PIATETSKY-
SHAPIRO; SMYTH, 1996). During problem formulation, the goals of the analysis are defined.
Data selection is responsible for identifying and collecting relevant data from different sources.
The next step is preprocessing, which involves cleaning, transforming, and integrating the data
to ensure that it is in a suitable format for analysis. The transformed data is then passed to the
data mining step, where various statistical and machine learning algorithms are used to identify
patterns, relationships, anomalies, and trends (SHU; YE, 2022). Finally, the results obtained
from the data mining process are evaluated and interpreted to generate insights (SANTRA et al.,
2022).

Among the algorithms used during data mining, the most common are algorithms of
clustering (OYEWOLE; THOPIL, 2022), regression (FILZMOSER; NORDHAUSEN, 2021),
association rule learning (LI; SHEU, 2022), artificial neural network (ANN) (OLABI et al.,
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Figure 1 – Results of the search performed on Scopus. 67.1% of the manuscripts are "Articles", 20.8% are "Confer-
ence Papers", 7.7% are "Review" and 2.5% are "Book Chapter". Subfigure (a) illustrates the number of
documents per year and (b) represents the proportion of documents by subject area.

2023; DONG; WANG; ABBAS, 2021), decision tree (ISMAEIL; KHOLEIF; ABDEL-FATTAH,
2022; RAJINI; JABBAR, 2021), support vector machine (SVM) (AHMADI; KHASHEI, 2021),
k-nearest neighbors (k-NN) (REN; TANG; ZHANG, 2021), probabilistic models (SANTOS;
Nunes da Silva; BESSANI, 2022), and combinations of two or more techniques. Clustering
algorithms are used to group similar data points to discover natural grouping in data automatically.
Regression is used to model the relationship between a dependent variable and independent
variables, forming a mathematical model. Association rule learning is used to find the relations
or associations among the dataset’s variables under analysis. Neural networks and deep learning
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Figure 2 – Steps to Knowledge Discovery in Databases.

are models inspired by the structure and function of the human brain where neurons transmit
information in the form of numerical values. Decision tree and its variations as random forest
and XgBoost work forming tree structure like flowchart where each internal node denotes a
test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal
node) holds a class label. SVM works by finding the hyperplane that maximally separates the
different classes in the input data, or that best fits the regression function. K-NN generally
calculates the Euclidean distance or Manhattan distance between the new instance and each
training instance and then finds the k closest data points to make a prediction. Probabilistic
models make inferences following the rules of probability.

During predictive analytic tasks (GUL; BANO; SHAH, 2021), exists several methods
that provide a good fit and performance in different applications (CROONENBROECK; STADT-
MANN, 2019). Among the options, Bayesian Network is one of the most effective models
in artificial intelligence and has been successfully applied in different subject areas such as
engineering (PANG; YU; SONG, 2021), computer science (SEMWAYO; AJOODHA, 2021),
medicine (CHEN et al., 2022a), environmental science (THIEMER; SCHNEIDER; DEMARS,
2021), biological systems (KUCHLING et al., 2020), and neuroscience (ZHOU et al., 2022).

A Bayesian network (BN) is a probabilistic graphical model representing a set of
random variables and their conditional statistical dependencies via a directed acyclic graph
(DAG) (NEAPOLITAN, 2004). The graph nodes represent the random variables, and the edges
between the nodes represent the conditional dependencies between the variables (NEAPOLI-
TAN, 2004). BN expresses quantitative relationships among the variables (CAMPOS, 2006) and
supports the inference of the state of certain variables given the value of others following the
rules of probability and dealing with uncertainty rigorously and transparently way (SANTOS;
Nunes da Silva; BESSANI, 2022; BESSANI et al., 2020). For dealing with time series, the
Dynamic Bayesian Network (DBN), which is an extension of BN that relates variables to each
other over adjacent time steps (SANTOS et al., 2021; HOURBRACQ et al., 2018), is more
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appropriate and can be used for non-stationary processes (MENG et al., 2019; HOFFMAN et al.,
2012).

Between DBN approaches, exists continuous models (JACKSON-BLAKE et al., 2022)
and discrete models (CHEN et al., 2022b). The discrete model is non-parametric and can be
adequate for different data behaviour without manual modifications (BESSANI et al., 2020). The
continuous model uses probability density functions (PDFs) to model the relationships between
variables, i.e., assumes a particular distribution to the variables under analysis (BASSAMZADEH;
GHANEM, 2017; GEIGER; HECKERMAN, 1994). On the other hand, it is necessary realising
data quantisation to use the discrete model for dealing with time series (SANTOS; Nunes da
Silva; BESSANI, 2022). This step of data preprocessing is fundamental to making the use
computationally feasible and also is a key point to achieving promising results (SANTOS
et al., 2021). In (BASSAMZADEH; GHANEM, 2017) the use of discrete and continuous
approaches for dealing with time series indicated equivalent results. Despite the importance of
data quantisation during the use of the discrete model, 50% of studies that uses the discrete
model did not discuss the quantisation method (AGUILERA et al., 2011) and, even being
subjective, the manual choice of the number of bins is the most common method used for data
quantisation(BESSANI et al., 2020; AGUILERA et al., 2011).

Regarding the use of discrete Bayesian Networks in the big data era with many variables
and large datasets, some resources have been proposed in recent years. One of the main limitations
is that the number of candidate networks (DAGs) increases super-exponentially with the number
of nodes (GROSS et al., 2019; ROBINSON, 1977), and finding an optimal directed topology is
an NP-hard problem (SCUTARI; NAGARAJAN, 2013). To overcome this drawback, several
researches (BEHJATI; BEIGY, 2020; ZHANG et al., 2020; SCANAGATTA; SALMERóN;
STELLA, 2019; SCANAGATTA et al., 2018; MADSEN et al., 2017; LIU et al., 2017) have
been proposed sub-optimal strategies for dealing with the NP-hard problem of the structural
learning. Moreover, other works proposed clustering of variables to perform the learning of
smaller groups of variables, finding Bayesian Sub-networks (BSN) (SAJID; KHAN; VEITCH,
2020; CASTILLO et al., 2016). Another point of attention is concerning the size of conditional
probabilities tables increase in function of the number of states of the variables and also in
with the number of variables under analysis (SANTOS; Nunes da Silva; BESSANI, 2022). The
number of states can be limited using a correct method of data quantisation (SANTOS et al.,
2021) and a joint probability distribution could be factorised as a result of several conditional
distributions over a set of random variables (FRIEDMAN; GEIGER; GOLDSZMIDT, 1997).
Several works have used this property to extract the Markov blanket of the network to select the
smallest subset of the Bayesian network that imports in the inference of the target node (HUA et

al., 2020; LIU et al., 2020).

Although the evolution to overcome the limitations of the BN approach is evident, there
is still room for improvement. First, traditional predictive methods are designed for a database
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which means they assume all data is available at any time (WANG; GAO; CHEN, 2018). However,
stream-based methods for dealing with a time series of real processes are needed which is more
difficult. Moreover, the distribution of data can change over time, i.e., the effect of concept drift
which the statistical properties of the modelled phenomena change over time in unexpected
ways (Iglesias Vázquez et al., 2023). A model learned from historical data may not fit the new
coming data well. This means that is necessary to develop a method to constantly adapt to the
arrival of new data (WANG; GAO; CHEN, 2018). In Wang et al. (2017), the authors proposed an
online reliability prediction via Motifs-based Dynamic Bayesian Networks for Service-Oriented
Systems using an offline stage to learn the structure of the model. Although the high prediction
accuracy, the authors pointed out that the development of a method to evolve the model as new
data is coming is important in future research.

In this sense, Wang, Gao e Chen (2018) proposed a predictive complex event processing
method based on evolving Bayesian networks. The method is based on the BN model which
uses a Gaussian mixture model (continuous model) and an expectation-maximization (EM)
algorithm for approximate inference. The authors propose an incremental calculation method for
the scoring metric, comparing the edge changes when learning and updating the BN structure.
However, there is no criterion for assessing whether edge changes with the new data entry
should be incorporated into the model. This makes the model sensitive to data disturbances,
and, consequently, any abnormal behaviour of the system affects the entire network structure.
Moreover, the authors highlight that the performance of the BN structure evolving method still
needs to be improved. Future research needs to try to use some heuristic methods in the search
algorithm and also consider using parallel computing to improve performance.

In Meng et al. (2019), the authors proposed a non-stationary Dynamic Bayesian Network
in which the conditional dependence structure of the underlying data-generation process is
permitted to change over time from a data stream. This work first learns the initial DBN structure
using local search and global optimisation algorithms and then updates the transition edges by
continuously searching the structure space with one edge change for each step. The Bayesian-
Dirichlet equivalent (BDe) metric is extended for efficient calculation and local searching sub-
tasks are executed in parallel from historical local optimised structures. The authors concluded
that despite usually can find a stationary stage at the beginning of real processes, this assumption
is still a limitation given that the process can change over time. A method that can change the
entire structure and not just the dynamic connections is more adequate. Moreover, as in Wang,
Gao e Chen (2018), there is no criterion for assessing whether edge changes with the new data
entry should be incorporated into the model.

To go a step further, it is essential to have a methodology for dealing with time series
based on Evolving discrete Dynamic Bayesian Networks (EDBN) by an analytical threshold
for selecting directed edges by the occurrence frequency as data arrives. Gross et al. (2019)
proposed an analytical threshold madding an analogy with the one-dimensional random-walk
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for analytically deducing an appropriate decision threshold to such occurrence frequency as
the criteria for accepting a dominant directed edge between two nodes. The authors used
this threshold for structural learning of BNs using sub-optimal strategies to generate multiple
approximate structures (using dataset bootstrap replicas) and then reduce the ensemble to a
representative structure. In the proposal presented in this thesis, as data is arriving, the algorithm
learns the structure of a DBN by using a score metric and the hill-climbing method and then uses
the analytical threshold for selecting the directed edges between the nodes by the occurrence
frequency. The developed method smoothly converges to a robust model and constantly adapts to
the arrival of new data, obtaining more reliable network models. The discrete model is chosen to
be a non-parametric approach that can be adequate for different data behaviour without manual
modifications, i.e., using the discrete model there is no imposing any particular distribution to
the data and the approach is totally data-driven.

The proposed approach was applied for dealing with time series in two contexts that have
received a lot of attention from researchers in recent years: data imputation and CO2 emissions
forecasting during energy generation, which are introduced in Sections 1.1 and 1.2 respectively.

1.1 DATA IMPUTATION

As aforementioned, nowadays in the Big Data Era data are rapidly and continuously
generated forming large datasets from many heterogeneous sources (MOHAN; CHAUDHURY;
LALL, 2022) and it is processed to identify trends that can be used to support planning and
decision-making processes (DOMINGUEZ et al., 2023). However, it is quite common for these
datasets to have a considerable amount of missing data from many different reasons (SANTOS;
Nunes da Silva; BESSANI, 2022; RASHID; GUPTA, 2020; KHAN; HOQUE, 2020), e.g.,
power source failures (ALEXOPOULOS; KALALAS; KORRES, 2020), environmental fac-
tors (JEONG; PARK; KO, 2021), missing evidence in scientific experiments (SULLIVAN et al.,
2017), transmission network failure (ALEXOPOULOS; KALALAS; KORRES, 2020), human
error (AGHAKHANI; ALHAJJ; CHANG, 2014), sensors failures (AGBO et al., 2022), among
others. Missing data (MD) is reported in the literature as a common problem (SULLIVAN et al.,
2017) where its missing rate is not regular (SANTOS; Nunes da Silva; BESSANI, 2022) and can
vary in the range 10–40% (CUI et al., 2020). MD prejudice the process of data analysis (GUO;
WAN; YE, 2019), causing inaccurate results (SUSANTI; AZIZAH, 2017) and can result in
biased and inefficient inferences (MA; CHEN, 2018). The treatment of MD is considered a vital
pre-processing step and had been proposed several ways to deal with it (ALABADLA et al.,
2022).

Deletion methods, which include listwise deletion (WANG; ARONOW, 2023) and
pairwise deletion (GORETZKO, 2022), are typical approaches to handling missing values.
Listwise deletes all cases containing missing values while pairwise deletion excludes missing
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data on the variables related to some operation. Despite being simple and widely used (YANG et

al., 2021; TASHKANDI; WIESE; WIESE, 2018), these conventional approaches may result in a
loss of useful information on the partially observed attributes of discarded samples (CHEN et al.,
2018). Consequently, estimated sample distribution may be distorted, causing bias, especially
with small sample sizes (GUO; WAN; YE, 2019). On the other hand, imputation methods assign
possible values to the missing ones by using the available information from the remaining
data (RASHID; GUPTA, 2020). These methods return a complete dataset to reduce the bias
caused by missing values in data (LAN et al., 2020).

Among the most popular in literature, methods used for data imputation include tech-
niques like interpolation (SAEIPOURDIZAJ; SARBAKHSH; GHOLAMPOUR, 2021), re-
gression (HERNáNDEZ-HERRERA; NAVARRO; MORIñA, 2022), likelihood (SHIN; LONG;
DAVISON, 2022), singular value decomposition (HUSSON et al., 2019), K-nearest neigh-
bor (MURTI et al., 2019) and each one of them has it won drawback. Although using the neural
network family approach (VIEIRA et al., 2020; HUYGHUES-BEAUFOND et al., 2020; ASADI;
REGAN, 2020) are widely used, it does not follow the rules of probability, and they do not
deal with uncertainty rigorously and transparently way (PEARL; MACKENZIE, 2018). If these
models behaviour well, it may be enough but if doesn’t it becomes hard to intervene to track and
fix erroneous behaviours. There also is the need for generalist models (portable, for instance, to
time series domains) instead of methodologies for a specific application (BASHIR; WEI, 2018).

A powerful way of evaluating imputation methods is to artificially remove values in
datasets and compare imputed ones with the original values (AMIRI; JENSEN, 2016). Rubin
(1976) formalised three possible mechanisms of missingness: Missing completely at random
(MCAR) is when the probability of a missing value is independent of both observed and
missing values, i.e., completely random. Missing at random (MAR), the pattern of missingness
is predictable from other observed variables, i.e., the probability that a value will be missing
is a function of the observed values. Missing not at random (MNAR) is when the pattern of
missingness is not random or predictable from other observed variables. The probability that
an entry will be missing depends on both observed and missing values, e.g., variables that are
missing systematically.

In this context, the proposed approach was applied to dealing with data imputation. Using
MCAR and MNAR mechanisms, the proposal was evaluated by performing experiments using
different datasets at increasing missing rates (10%–40%). A simulated dataset from Lorenz
equations and a real dataset from ENTSO-E1 were used. Results evidence that the approach is
suitable for dealing with missing data. The final DBN structure G* converges to similar results
even increasing the missing rates, evidencing that the methodology for structural learning is
robust. Moreover, the observed errors using the proposed method are less than other traditional
approaches used for comparison.

1 https://www.entsoe.eu/
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1.2 CO2 EMISSIONS FORECASTING

Global warming and climate change are one of the main discussions around the world-
wide community to propose alternatives that make sustainable development possible (QADER
et al., 2022). Regarding the consequences of global warming, the world faces extreme climate
events such as heating up of the atmospheric temperature, glacier melting, tsunamis, and rising
sea levels, highlighting the necessity to make efforts to mitigate environmental pollution (JENA;
MANAGI; MAJHI, 2021). Among the set of greenhouse gases (GHG) that are contributors
factors to global warming, carbon dioxide (CO2) emission is the major contributor (SANTOS et

al., 2021; HUANG; LI, 2015) and has increased by 47% over the past 170 years due to human
activities (QADER et al., 2022; NASA, 2020).

Among human activities, economic development increases industrialisation and urbani-
sation which causes excessive consumption of natural resources and also increases the energy
demand (JAHANGER; USMAN; AHMAD, 2021; INTISAR et al., 2020). Almost 40% of the
global CO2 emissions come from using fossil fuels to generate electricity (QADER et al., 2022).
In Europe, the energy sector is responsible for roughly 66.67% of all GHG emissions (SAN-
TOS et al., 2021; FIORINI; AIELLO, 2019) and other economies like China, USA, and India
also presented higher CO2 emissions coming from the energy sector (BOKDE; TRANBERG;
ANDRESEN, 2021). In Latin America, buildings are responsible for 22% of the total energy
demand, and the forecasts indicate that energy demand will increase by at least 80% in 2040 due
to the expansion of the middle class (PANAIT et al., 2022). These facts highlight an enormous
potential of actuation in the energy sector to achieve the goal of reducing greenhouse gases
significantly.

During energy generation, the total of CO2 emitted varies as a function of the sources
used to generate it (FIORINI; AIELLO, 2019). In other words, each source has its CO2-equivalent
intensity factor associated with one kWh of energy produced. One possibility to reduce the CO2

emissions without affecting the energy demand-supply, is the use of alternative green energy
sources such as solar and wind combined with other traditional sources that do not have the
intermittent nature of renewable energy (HU; LI; SUN, 2021; ZHANG et al., 2015). In this
context, efficient rescheduling of energy generation integrating renewable energy sources can
reduce up to 40% emissions (FIORINI; AIELLO, 2018).

Recent efforts have been made to forecast the environmental impact during energy
generation to manage the production coming from heterogeneous supplies to regulate and reduce
pollutant emissions (HU; LI; SUN, 2021; QADER et al., 2022; JENA; MANAGI; MAJHI, 2021;
SANTOS et al., 2021). With an accurate prediction of carbon dioxide emissions in multi-source
systems, it is possible to act in architecture design, capacity planning, and energy management
strategies to achieve the goals regarding the management and reduction of carbon emissions (HU;
LI; SUN, 2021; LIU et al., 2018).
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For such a purpose, Qader et al. (2022) applied multiple methods such as neural network
time series nonlinear auto-regressive, Gaussian Process Regression, and Holt’s methods for
forecasting CO2 emission of Bahrain, concluding that the neural network time series nonlinear
auto-regressive model has performed better. Bokde, Tranberg e Andresen (2021) used decompo-
sition approaches to short-term CO2 emissions forecasting and its impact on electricity market
scheduling of five European countries. In Bouziane e Khadir (2020), the authors proposed a
combination of artificial neural networks (ANN) model with an agent-based architecture to
forecast the hourly gas consumption and electrical production and then calculate the equivalent
amount of emitted CO2 for both energy sources. Xu, Liu e Wu (2021) proposed the use of
non-equigap grey model with conformable fractional accumulation to investigate the relationship
between energy consumption and carbon dioxide emissions. Using consumption as input and
carbon dioxide emissions as output, CO2 emissions of 53 countries and regions in North America,
South America, Europe, the Commonwealth of Independent States, the Middle East, Africa, and
Asia Pacific are predicted.

A comparative analysis to forecast CO2 emissions was presented in Faruque et al.

(2022). The investigation examined the relationships between CO2 emissions, electrical energy
consumption, and gross domestic product (GDP) in Bangladesh from 1972 to 2019. Long
short-term memory (LSTM) neural networks, Convolution neural networks (CNN), CNN-Long
short-term memory networks (CNN-LSTM), and ANN with more than one layer (Deep Neural
Networks DNN) were used. The authors highlighted that the number of neuron layers in all
deep learning models affects predicting accuracy and all hyper-parameters are manually adjusted
through trial and error. The best performance comes from the use of the DNN technique. Emami
Javanmard e Ghaderi (2022) applied machine learning algorithms and optimisation models to
forecast CO2 emissions with energy market data from Iran. Among the nine machine learning
algorithms used, results indicate that auto-regressive-based model algorithms are better than
other algorithms, followed by ANN. The worst forecast accuracy is related to LSTM and Support
Vector Regression (SVR).

Despite the relevant achievements presented in the studies aforementioned, it is inter-
esting to investigate new approaches in search of performance improvements. In this sense, the
methodology proposed in this thesis was applied to make CO2 emissions forecast in multi-source
power generation systems. The capability of the proposed method was investigated using real
datasets of multi-source power generation systems of four countries: Belgium, Germany, Spain,
and, Portugal. Comparing the results against a traditional DBN that not evolves the structure over
time, the proposed EDBN was superior highlighting a contribution of performance improvement.
The proposed method was better when compared against ANN and XgBoost, with the difference
in performance statistically significant. Moreover, the model also is computationally efficient
with forecasting run-time in order of seconds.
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1.3 OBJECTIVES
In summary, the main contributions of this thesis are as follows:

∙ Proposal of an Evolving discrete Dynamic Bayesian Network (EDBN) by an analytical
threshold for selecting directed edges by the occurrence frequency as data arrives. The
proposal of EDBN is to deal with time series data.

∙ Improvement of the robustness of structural learning. Even receiving incomplete data,
the proposed approach smoothly converges and adapts the structure as data is arriving
to get more reliable network models.

∙ The proposed methodology uses the discrete approach to have a non-parametric model.
For dealing with the high complexity of structure learning and parameters learning, a
method to select the bin size of a time histogram to perform data quantisation was used.
This is a key point not well discussed in the literature.

∙ In the context of missing data, the proposed method was evaluated using different
mechanisms of missingness (missing completely at random and missing not at random),
using different datasets (real and simulated), and using different missing rates (10%,
20%, 30% and 40%).

∙ For dealing with CO2 emissions forecasting, the performance was investigated using
real datasets of multi-source power generation systems of Belgium, Germany, Spain,
and, Portugal.

∙ The performance of the proposed method was compared with the performance of a set
of widely used methods.

1.3.1 ORGANISATION

The thesis is organised as follows. Chapter 2 summarises the fundamental theoretical
concepts. Chapter 3 describes the Evolving discrete Dynamic Bayesian Networks (EDBN)
proposal for dealing with time series. This chapter splits into two parts: Section 3.1 describes
data imputation in time series dataset and Section 3.2 is about CO2 emissions forecasting in
multi-source power generation systems. Chapter 4 presents the results and discussions. Chapter 5
explains the conclusions and suggested future works. Chapter 6 depicts the dissemination
activities developed during the PhD program.



37

CHAPTER

2
THEORETICAL BACKGROUND

In this chapter, the fundamental concepts of the present PhD thesis are presented. The
objective is to provide the needed knowledge to understand the proposal presented in this
investigation. Fundamental aspects of time series that are important for this research are presented.
Afterwards, the needed knowledge to understand the DBN model is posed more formally. Also,
essential concepts about key points such as data quantisation, frequency-based structural learning,
mutual information, and dynamic CO2-equivalent intensity factor are presented.

2.1 TIME SERIES

A time series is a collection of data points that are ordered and recorded over time. In
a time series, each data point represents a specific time period, such as a second, minute, hour,
day, week, or month. Time series analysis involves analysing and modelling these data points to
identify patterns, trends, and relationships between variables. This can be used to forecast future
values and make informed decisions based on past data (LUBBA et al., 2019).

Generally, a time series can be decomposed into three main components: trend, season-
ality, and random fluctuations or noise. The trend represents the long-term behaviour of the
time series and illustrates whether the values are increasing or decreasing over time. Seasonality
represents the recurring patterns in data that are related to specific time periods, such as the
increase in the sale of medicine for respiratory diseases every winter. Random fluctuations
represent unpredictable and irregular variations in the data that cannot be explained by the trend
or seasonality (SHUMWAY; STOFFER, 2000). Figure 3 illustrates an original time series about
air passengers per month over the years and the respective decomposition in trend, seasonal, and
noise. The dataset used is publicly available on kaggle.

https://www.kaggle.com/datasets/rakannimer/air-passengers
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Figure 3 – Time series concepts. a) original time series about air passengers per month over the years and the
decomposition of the original time series in b) trend, c) seasonality, and d) random fluctuations.

Regarding the time series decomposition, an additive model suggests that the components
are added together as follows:

y(t) = Level +Trend +Seasonal +Noise, (2.1)
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where the level is the average value in the series and an additive model is linear where changes
over time are consistently made by the same amount.

A multiplicative model suggests that the components are multiplied together as follows:

y(t) = Level *Trend *Seasonal *Noise, (2.2)

where a multiplicative model is nonlinear, such as quadratic or exponential. Changes increase or
decrease over time.

Another important characterisation is regarding the time series stationarity. A stationary
time series is one whose statistical properties, such as mean, and variance remain constant over
time. A non-stationary time series, on the other hand, has statistical properties that change over
time. Stationary time series are easier to analyse and model because their behaviour is predictable
and consistent. In contrast, non-stationary time series can be more challenging to work with
because their properties change over time, making it harder to identify underlying patterns and
trends (NASON, 2006). The time series illustrated in Figure 3 is an example of a non-stationary
time series.

2.2 BAYES’ THEOREM

The Bayesian approach consists of a statistical inference in which Bayes theorem is
used to update the probability for an event as more evidence or information becomes available.
Formally, a random variable vi is defined by the mutually exclusive events A1, A2, . . . , Ac com-
posing the sample space Ω, i.e,

⋃c
j=1 A j = Ω and Ai ∩A j = /0 for i ̸= j. Therefore, P

(⋃c
j=1 A j

)
= ∑

c
j=1 P(A j) = 1. According to Bayes’ theorem, for any event o such that P(o) ̸= 0 and P(Ai)

̸= 0 for all i,

P(Ai|o) =
P(o|Ai)P(Ai)

∑
c
j=1 P

(
o|A j

)
P
(
A j
) , (2.3)

for all i ranging from 1 to c (PUGA; KRZYWINSKI; ALTMAN, 2015). In other terms, before
any information about event o, P(Ai) is the prior probability assumed for Ai. The probability of
Ai is updated from the occurrence of the event o, i.e., P(Ai|o) is the probability of Ai conditioned
of the occurrence of the event o. This updated probability is known as conditional probability or
posterior probability.

When more variables are present, it is impractical to compute the conditional proba-
bilities using a direct application of Bayes’ theorem (NEAPOLITAN, 2004). An algorithm to
compute the conditional probabilities values considering that all variables may be related requires
exponential space. Is necessary to find features that are connected via a direct influence to do
probabilistic inference using conditional probabilities. Bayesian networks (BN) were developed
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to mitigate these difficulties. Before introducing them in Section 2.4, the Markov condition will
be discussed in Section 2.3.

2.3 MARKOV CONDITION

First, some important graph theory is presented. A directed graph is a pair (V , E), where
V is a finite, non-empty set whose elements are called nodes or vertices. E is a set of ordered
pairs of distinct elements of V and each of them is called an edge. If there is an edge between
two nodes, they are called adjacent. Supposing that (v1, v2) ∈ E, then there is an edge from
v1 to v2, v1 is called a parent of v2, and v2 is called a descendent of v1. Given a set of nodes
{v1,v2, . . . ,vn}, where n ≥ 2, such (vi−1, vi) ∈ E for 2 ≤ i ≤ n. The set of edges connecting
the nodes is called a path from v1 to vn. A directed graph G is called a directed acyclic graph

(DAG) if it contains no directed cycles. Given a DAG G = (V , E) with nodes v1 and v2 in V , v2

is called an ancestor of v1 if there is a path for v2 to v1. If there is not a path for v2 to v1, v1 is
non-descendent. Now it is possible to show the following definition and theorems about Markov
condition (NEAPOLITAN, 2004):

Definition 1. Given a joint probability distribution Θ of the random variables in some set V

and a DAG G = (V ,E), (G,Θ) satisfies the Markov condition if, for each variable vi ∈ V , vi is
conditionally independent of the set of all its non-descendants given the set of all its parents.
This definition can be stated as

IΘ({vi},NDi|pai), (2.4)

where pai is the set of parents of the node vi and NDi is the set of non-descendants.

Theorem 2.3.1. If (G, Θ) satisfies the Markov condition, then Θ is equal to the product of its
conditional distributions of all nodes given values of their parents, whenever these conditional
distributions exist.

Theorem 2.3.2. Let a DAG G in which each node is a random variable, and let a discrete
conditional probability distribution of each node given values of its parents in G be specified.
Then the product of these conditional distributions yields a joint probability distribution Θ of the
variables, and (G, Θ) satisfies the Markov condition.

2.4 DYNAMIC BAYESIAN NETWORK

A Bayesian Network (BN) is a probabilistic graphical model (BESSANI et al., 2020)
composed of a qualitative (structure) and a quantitative part (parameters) (GROSS et al.,
2019). Given a set of n random variables V = {v1,v2, . . . ,vn} under analysis, the structure
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is a DAG G and represents the conditional dependencies among the variables of V . Consid-
ering the edges of G, the quantitative part is the set of conditional probability distributions
Θ = {θ1,θ2, . . . ,θn} (NEAPOLITAN, 2004). The pair B = (G,Θ) is a BN and according to the
Markov condition, each vertex vi ∈ V is conditionally independent of all its non-descendants
given all its parents in G. As a consequence, the state of a variable vi can be computed by a
conditional probability θi = P(vi|pai), where pai are the parents of vi in the structure G. Using
this, the joint probability distribution (JPD) encoded by B can be computed directly from the
chain rule as (NEAPOLITAN, 2004)

P(v1,v2, . . . ,vn) =
n

∏
i=1

P(vi|pai). (2.5)

Figure 4 illustrates the structure and the conditional probability tables of a Bayesian
Network with five variables. The example is publicly available on the website and illustrates a
doctor who wants to predict whether or not a patient will have a heart attack based on information
collected like the patient’s cholesterol, whether or not they smoke, their blood pressure, and
whether or not they exercise.

Figure 4 – Bayesian network of a hypothetical case about heart attack inference using information about patients.

Dynamic Bayesian network (DBN) is a BN with an additional ability to relate variables
to each other over adjacent time steps (SANTOS et al., 2021). Given a set of n random variables,
a DBN of kth-order estimates the probability distribution using the information of the k previous
time window (τ − k + 1 : τ) to estimate the observations of the variables in the next time
slice (τ + 1) (SANTOS et al., 2021). This ability to find and represent temporal connections
improves the performance in applications of multivariate time series in stationary and non-
stationary cases (MENG et al., 2019). It is particularly well suited to represent a Markov process

https://www.nbertagnolli.com/jekyll/update/2016/05/23/Bayes_Nets.html
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as (HEIJDEN; VELIKOVA; LUCAS, 2014)

v1
i → v2

i → ··· → vτ−1
i → vτ

i → . . . , (2.6)

where vτ
i represents a random variable vi at a particular time slice τ .

Normally is considered that only a limited time window influences the current state of
the process, as opposed to the complete history, which simplifies model learning (HEIJDEN;
VELIKOVA; LUCAS, 2014) and reduces the computational complexity (WANG et al., 2017).
This assumption results in a 2-slice temporal Bayesian network (2-DBN), a DBN that satisfies
the Markov property of order 1. In a 2-DBN, the future states are conditionally dependent just
on the observations of the actual time slice, i.e, P(V τ+1|V τ)≡ P(V t:t+∆p|V 1:t) where ∆>0 is the
time window size or how far into the future want to predict in forecasting tasks.

Given a set V 1:T of random variables for each of τ = 1, . . . ,T time windows, it can be
modelled as a 2-DBN with a Markov process of the form

P(V 1, . . . ,V T ) = P(V 1)
T

∏
τ=2

P(V τ |V τ−1). (2.7)

This property is formally denoted by V τ−2⊥⊥V τ |V τ−1. A 2-DBN can be defined by
a pair of BNs

(
µ1,µ∞

)
. µ1 represents the joint distribution of the variables in slice 1, V 1 =(

v1
1, . . . ,v

1
n
)

(DONAT et al., 2010). This distribution admits the following factorisation:

P
(
V 1)= P

(
v1

1, · · · ,v1
n
)
=

n

∏
d=1

P
(
v1

d|pa1
d
)

(2.8)

where pad,1 are the parents of the d-th variable in slice 1.

BN µ∞ represents the transition model. The distribution of V τ given V τ−1 is

P
(
V τ |V τ−1)= ∏

n
d=1 P

(
vτ

d|paτ−1
d

)
= P

(
vτ

1, . . . ,v
τ
n|vτ−1

1 , . . . ,vτ−1
n
)
, (2.9)

where paτ−1
d are the parents of vτ

d .

Figure 5 shows a 2-DBN with four discrete random variables v1, v2, v3, and v4.

Data-driven structural learning usually can be score-based, constraint-based, and hy-
brid (SCUTARI, 2016a). Score-based uses heuristics to search in the space of DAGs for structures
and then use some score metrics to evaluate the structure (SCUTARI, 2018). Constraint-based
uses independence tests to evaluate and select edges to form G and hybrid methods combine
the other two approaches (BESSANI et al., 2020). Using a score-based approach, structural
learning can be posed as an optimisation problem: given a dataset D with n random variables
{v1,v2,. . . ,vn}, the scoring metric can be maximised by finding a pair B = (G,Θ) (GROSS et al.,
2019).
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Figure 5 – Structure of a 2-slice Dynamic Bayesian Network of four discrete variables v1, v2, v3, and v4. The
variable vτ−1

1 is the parent of vτ
1. vτ

2 has two parents vτ−1
3 and vτ

1, vτ
3 has two parents vτ

1 and vτ
2, and vτ

4 has
two parents vτ−1

4 and vτ
3.

Due to the property of decomposability of the score functions, the learning algorithms
that search in the DAG space with local-search-based methods can be more efficient (CAMPOS,
2006). The local-search-based algorithm traverses the search space by moving between adjacent
networks. At each step, neighbour DAGs are visited by adding, deleting, or reversing an arc, and
the algorithm advances to the one that provides the highest improvement to the scoring function.
The algorithm stops when no neighbour yields improvement to the scoring function, i.e. when
finding a local maximum.

For searching on the space of DAGs, the Hill Climbing (HC) algorithm can be used. The
study in Scutari e Nagarajan (2013) empirically verified the convergence of the combination of
the HC algorithm and BDeu metric, resulting in satisfactory networks. The score estimated using
the Bayesian-Dirichlet (BD) family of scores (HECKERMAN; GEIGER; CHICKERING, 2013)
can be posed as:

BD(G,D) =
n

∏
i=1

qi

∏
j=1

Γ(αi j)

Γ(αi j +Ni j)

ri

∏
l=1

Γ(αi jl +Ni jl)

Γ(αi jl)
, (2.10)

where n is the number of nodes (for a 2-DBN is double the number of random variables), ri is
the number of states of the node i (variable vi) and qi is the number of states of the parents of
the node i. Γ(·) is the Gamma function, Ni jl is the number of times vi took the value l given the
parent configuration j, Ni j = ∑

ri
l=1 Ni jl and αi j = ∑

ri
l=1 αi jl .

Different choices for αi jl produce different priors and the corresponding scores in the
BD family of scores (SCUTARI, 2018). For αi jl = 1 results in the K2 score from (COOPER;
HERSKOVITS, 1991). For αi jl = 0.5 is the BD score with Jeffrey’s prior (SUZUKI, 2017). Other
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choices for αi jl results in other metrics as BD sparse (BDs) (SCUTARI, 2016b) and locally
averaged BD score (BDla) (CANO et al., 2013). The most common choice in the BD family is
the Bayesian Dirichlet equivalence with a uniform prior metric (BDeu) from (HECKERMAN;
GEIGER; CHICKERING, 2013). BDeu has αi jl = α

riqi
and has αi = α for all vi.

In Bessani et al. (2020) the authors used tabu search with Akaike Information Criteria
(AIC) and achieved good predictive performance. AIC can be used in Bayesian network learning
to select the optimal network structure from a set of candidate structures. AIC is calculated
for each candidate structure, and the structure with the highest score value is selected as the
best fit for the data. This approach balances the goodness of fit with the complexity of the
model (KOLLER; FRIEDMAN; BACH, 2009). AIC score function can be posed as:

AIC(G,D) =
n

∑
i=1

qi

∑
j=1

ri

∑
l=1

Ni jllog
(

Ni jl

Ni j

)
−

n

∑
i=1

(ri −1)qi, (2.11)

where n is the number of nodes (for a 2-DBN is double the number of random variables), ri is
the number of states of the node i (variable vi) and qi is the number of states of the parents of
the node i. Ni jl is the number of times vi took the value l given the parent configuration j, and
Ni j = ∑

ri
l=1 Ni jl .

After learning the DAG G, it is necessary to learn the parameters of the DBN, i.e.,
learn the quantitative part (Θ). The quantitative part depends on the edges in G and also on
the dataset D being modelled (SANTOS; Nunes da Silva; BESSANI, 2022). For the discrete
model, the quantitative part is formed by conditional probability tables (CPTs), where each
one describes the probabilities of each state of a variable given the relations of the structure
G (NEAPOLITAN, 2004). This learning stage can be performed by maximum likelihood or also
a Bayesian estimation (BESSANI et al., 2020; KOLLER; FRIEDMAN; BACH, 2009).

With a complete DBN, it is possible to perform Bayesian inference using maximum a
posteriori estimation (MAP) (NEAPOLITAN, 2004).

2.5 DATA QUANTISATION

The approach described in this paper is based on the discrete Dynamic Bayesian Network
model. The number of states influences the computational demand during parameter learning in
a discrete model. Moreover, as highlighted in the previous section on equations (2.10) and (2.11)
of the BDeu score function and AIC respectively, the number of states affects the computational
demand during structural learning.

Regarding the CPT (parameters of the model), given a variable vi ∈ V with ri being the
number of states, and qi is the number of possible instantiations to the parents of vi, i.e, the
product of the number of states of each parent of vi, the total number of probabilities of vi is
(ri−1)qi. For example, consider a DBN with a node A that has two parent nodes B and C, and A,



2.5. DATA QUANTISATION 45

B, and C can take on two values (0 or 1). In this case, the CPT for node A will have (2−1)*2*2
= 4 entries. Each row of the CPT will represent the probability of node A taking on a specific
value given the corresponding combination of values for B and C. If A, B, and C can take on
three values (0, 1, or 2), the CPT for node A will have (3− 1) * 3 * 3 = 18 entries. Therefore,
the number total of free parameters of a BN with n vertices can be computed by (ROBINSON,
1977):

|Θ|=
n

∑
i=1

(ri −1)qi. (2.12)

When time series variables form the dataset under analysis, the data must be quantised
to limit the number of states and make using a DBN computationally feasible (SANTOS et

al., 2021). Data quantisation is a process in which continuous or numerical data is transformed
into discrete or categorical data by grouping values into pre-defined intervals or categories.
The resulting discrete data can be easier to analyse and work with, as it reduces the number of
states that needs to be processed. In data quantisation, the range of values is divided into a set
of intervals or bins, and each value is assigned to the interval that it falls into (OPPENHEIM;
SCHAFER; BUCK, 1999).

In this sense, an important step is to determine the optimal quantisation level taking
into account that this process can result in a loss of significant information (SANTOS et al.,
2021; ROPERO; RENOOIJ; GAAG, 2018). For an optimal quantisation of each variable, a good
option is the method for selecting the bin size of a time histogram proposed by (SHIMAZAKI;
SHINOMOTO, 2007). This method selects the bin size from the spike counts statistics alone so
that the resulting bar or line graph time histogram best represents the signal. The following steps
describe the process for data quantisation:

1. Define the min number of bins (Nmin) and the max number of bins (Nmax) to be tested;

2. For N ranging from Nmin to Nmax:

a) Divide the observations of period T of a variable into N bins of width ∆;

b) Count the number of spikes hi from all n sequences that enter the ith bin;

c) Calculate the mean (h) and variance (var) of the number of events hi;

d) Compute the cost function: Cn(∆) =
2h−var
(n∆)2 ;

3. Noptimum and ∆optimum is when N minimises Cn(∆);

4. divide the observations of the period T into Noptimum bins of width ∆optimum. At this point,
all observations were compressed in Noptimum bins.

Figure 6 shows in a diagram the steps for data quantisation.
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Figure 6 – Data pre-processing: optimal bin size selection and conversion (quantisation) of data.

2.6 AN ANALYTICAL THRESHOLD FOR EVOLVING
DYNAMIC BAYESIAN NETWORKS

As illustrated in Section 2.4, using the score function option, structural learning can be
posed as an optimisation problem. Incomplete or noisy data can provide a partially spurious
structure (GROSS et al., 2019; SCUTARI; NAGARAJAN, 2013). Moreover, a method to evolve
the entire model as new data is coming in can smoothly converge into a robust model, and
properly fit the new coming data to improve the performance (SANTOS et al., 2021; MENG
et al., 2019). In this sense, the proposed methodology is an approach based on the averaging
strategy with an analytical threshold to select the edges by the occurrence frequency as new
datasets arrive.

In the context of bootstrap resampling instead of new datasets arriving, this type of model
learning technique selecting the edges by the occurrence frequency was investigated in Gross
et al. (2019), Scutari e Nagarajan (2013), Friedman, Goldszmidt e Wyner (2013). To select a
coherent threshold value, Gross et al. (2019) made a deduction using an analogy with an adapted
one-dimensional random-walk and evaluated this threshold via data perturbation by dataset
bootstrap replicas using Matthews Correlation Coefficient (MCC) as the performance metric.
The authors presented the following closed-form expression:

fth =
1
3
+

√
2
R
, (2.13)

where R is the number of bootstrap resamplings.
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Considering scenarios of evolving the model as new data is arriving, the method presented
in this thesis proposed an adaptation regarding the threshold proposed by Gross et al. (2019). The
adaptation is necessary because, without modifications, fth is close to one at the beginning of
the process and then can reject all edges principally in the presence of data problems as missing
values. The closed-form expression with the modification is:

fth =

0.6, if W < 28
1
3 +
√

2
W , otherwise

, (2.14)

where W is the total of datasets collected along each day w = 1, . . . , W.

In the context formulated in this investigation, as the days go by and new datasets are
used, the threshold fth automatically is adjusted. The goal of a method of evolving while new
datasets become available in a process is to get a robust model. For this purpose, the proposal
applies the following steps to select the edges as new data arrives:

For w = 1, . . . , W days:

1. Get the dataset collected on day w;

2. Organise the dataset Dw formed by the collected data;

3. Learn the structure Gw = (V,Ew) from Dw using an algorithm that searches in the DAG
space with local-search combined with score metric;

4. If the objective is to forecast information about a specific variable (target variable), get the
Makov Blanket of the target variable, i.e., Gw in this step reduces to a subset that contains
just the useful information.

5. Estimate the probability that each connection vi - v j is present in true network G* = (V,E*)

as

ēi j = ē ji =
1

W

W

∑
w=1

(ew
i j + ew

ji), (2.15)

where i, j ∈ {1, . . . ,n}, ew
i j and ek

ji ∈ Ew and the superscript w is just an index and does not
mean a potentiation.

6. Update the threshold fth.

7. The link vi - v j exists (is true) if ē ji overcomes the threshold fth.

8. For every link judged as significant (ē ji > fth), choose as the edge orientation the direction
with higher frequency observed along the W learned structures:

e*i j =

0 and e*ji = 1, if ( fei j < fe ji)

1 and e*ji = 0, otherwise
, (2.16)
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where i, j ∈ {1, ...,n}, fei j =
1

W ∑
W
w=1 ew

i j and fe ji =
1

W ∑
W
w=1 ew

ji.

Despite the possibility of cycles in G* reducing due to the cutoff frequency, it theoretically
does not ensure the absolute absence of one or more cycles. To deal with cycles, the proposal
checks the presence of cycles in G* and tries to eliminate them by reversing a single edge. If
reversing a single edge does not eliminate the cycles, the approach reverses two edges and in the
last case reverses one edge and eliminates one edge.

2.7 INFORMATION THEORY CONCEPTS: MUTUAL
INFORMATION

Entropy is a concept used in various fields, including physics, information theory, thermo-
dynamics, and mathematics. In Natal et al. (2021), the authors presented a historical background
on the evolution of the term “entropy”, and provides mathematical evidence and logical argu-
ments regarding its interconnection in various scientific areas.

In Shannon (1948), the concept of information theory with the concept of entropy was
presented. Entropy is a measure of the average amount of information required to represent or
transmit a message from a given set of possible messages. It quantifies the uncertainty associated
with a random variable or a probability distribution. The higher the entropy, the more uncertain
or unpredictable the information is. Considering a discrete random variable v with probability
distribution p(x) and n states, the average information content about v is given by the Shannon
entropy:

H(v) =−
n

∑
i=1

pi(x) log pi(x). (2.17)

Based on the information theory, the concept of Mutual Information arises as a measure
of mutual dependency between variables (MAKRIDAKIS; HYNDMAN; PETROPOULOS,
2020) and can be applied for non-linear relationships (COVER; THOMAS, 2006). MI provides
a measure of the amount of information discovered about a random variable through knowledge
of other variables (COVER; THOMAS, 2006). Given two random variables v1 and v2, the MI
specifies how much uncertainty about v1 is reduced by knowing v2, and vice versa.

During applications to forecasting, the future states are predicted based on information
from the past. Due to this, MI has been applied in different situations (SANTOS et al., 2021; HO
et al., 2021; BESSANI et al., 2020; SIDDESHAPPA; GOPALAKRISHNA; KADAVIGERE,
2020; HO et al., 2019) to investigate the information between the original time series and its
lagged version. With the use of MI, it is possible to perform feature selection, select how many
lagged variables should be selected as a new feature (BESSANI et al., 2020), and select a
reasonable forecast horizon (∆p) given the available information (SANTOS et al., 2021). Feature
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selection is essential for the use of the discrete DBN due to the fact that during structural learning
the search space expands super-exponential as the number of nodes increases (GROSS et al.,
2019).

The Mutual Information between two random variables v1 and v2 is defined in (COVER;
THOMAS, 2006) as

MI (v1;v2) = ∑
x∈ℜ

∑
y∈ℜ

p(x,y) log
p(x,y)

p(x) p(y)
(2.18)

where p(x,y) is the joint probability mass function of v1 and v2, p(x) is the marginal probability
mass function of v1 and p(y) is the marginal probability mass function of v2. The higher the
MI (MI) value, more information can be obtained about v1 from v2, i.e, the uncertainty of v1

reduces (COVER; THOMAS, 2006). To scale the measure between 0 (no mutual information) and
1 ( perfect correlation), the MI can be normalised by minimal entropy min[H(xit), H(xit−k)] (YIN
et al., 2015), resulting in the Normalised Mutual Information (NMI).

2.8 CO2 EMISSIONS IN MULTI-SOURCE POWER GEN-
ERATION SYSTEMS

Due to the efforts to track and reduce GHG emissions, the emissions resulting from using
a particular energy source need to be quantified in the function of the total kWh produced. This
section explains the concept of dynamic CO2-equivalent intensity factor and how it can be used
to compute the emissions in a multi-source power generation system.

Given the amount of energy generated per type of source, it is possible to quantify the
total emissions using the emission factors of each source (FIORINI; AIELLO, 2018). These
factors express the dynamic CO2-equivalent intensity factor associated with one kWh of energy
produced. In Fiorini e Aiello (2018), Kono, Ostermeyer e Wallbaum (2017), Weisser (2007),
several emission factors for different sources are given. Table 1 shows the emissions factors used
in this study.

Table 1 – Emission factors for different sources expressed in gCO2eq/kWh. Emission factors of sources with "*" are
calculated as the mean of all other factors (of the same class - renewable or not) expressed in this Table.

Biomass Solar PV Wind onshore Wind offshore
71 43 8 9

Geothermal Pumped-Storage Run-of-the-river Reservoir
45 34 4 9

Nuclear Lignite Coal Coal-derived gas
11 820 800 800

Gas Oil Waste Other renewable* 33
400 520 690 Other* 376
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Using the factors expressed in Table 1, the joint dynamic CO2 emissions intensity of a
multi-source power generation system can be calculated as (2.19)

EFJt = ∑
s

ENt,s.EFs, (2.19)

where ENt,s is the energy produced by source s in time t, and EFs is the emission factor of source
s.
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CHAPTER

3
MATERIALS AND METHODS

This chapter demonstrates how the concepts presented in the previous chapter can be
applied to use the evolving discrete dynamic Bayesian network to deal with time series. Firstly
the proposed approach was evaluated during data imputation, and afterwards, performing CO2

emissions forecasting in multi-source power generation systems. The chapter has been organised
into two parts: Section 3.1 describes how the study of data imputation was conducted. Section 3.2
describes how the investigation of CO2 emissions forecasting in multi-source power generation
systems was conducted. Both describe the datasets, how the concepts were applied, and what
metrics were used to measure the performance.

3.1 DATA IMPUTATION IN TIME SERIES DATASET

3.1.1 SIMULATED DATASET - LORENZ EQUATIONS

In 1963, Edward Lorenz used finite systems of deterministic ordinary differential equa-
tions to model forced dissipative hydrodynamic systems (LORENZ, 1963). The model is nonlin-
ear, non-periodic, and three-dimensional. For specific parameter values and initial conditions, this
model has chaotic solutions. Due to the characteristics of the non-linear Lorenz three-variable
model system and the advantages of computational simplicity, it has been used to evaluate the
performance of different methods of modelling (HUANG et al., 2021) and data imputation in
time series (SANTOS; Nunes da Silva; BESSANI, 2022; XIAO; CHAOQIN; LI, 2017; XIAO;
XING; SONG, 2016). It was used in this thesis as a synthetic dataset to infer missing data in
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time series. Lorenz’s equations can be posed as:



dx(t)
dt

=−σx(t)+σy(t),

dy(t)
dt

=−x(t)z(t)+ ry(t)− y(t),

dz(t)
dt

= x(t)y(t)−bz(t),

(3.1)

where σ , r, b = (10, 28, 8/3), x0 = 1, y0 = 2 and z0 = 3. Under these conditions, the system is in a
chaotic state. To get the numerical solution for x(t), y(t), and z(t), the fourth order Runge-Kutta
method (EVANS, 1991) was used.

For the simulation using Lorenz equations, 300,000 points of x(t), y(t), and z(t) with an
integration interval of 0.001 were generated. To simulate the behaviour of a real process, where
a certain number of observations are generated per day, it was organised these 300,000 points in
150 intervals of 2,000 observations.

3.1.2 ENTSO-E DATASET

The ENTSO-E (European Network of Transmission System Operators for Electricity)
is a platform publicly available via Web APIs and it provides data from 36 European coun-
tries (ENTSO-E, 2023). It provides 38 types of documents relative to national power systems,
including total system load, actual generation, and energy prices. In the present work, the sys-
tem’s total load and the actual generation of Germany with records from January 1, 2016, to
December 31, 2020 was collected. The data is sampled every 15 minutes.

The dataset contains variables like date, hour, total generation, consumption, and temporal
data from 20 sources, totalling 24 variables. Despite all sources being already implemented,
some are rarely used. Due to this, a criterion to select variables to evaluate the methodology
was adopted. The selected variables were total generation, consumption, hour, and all sources
that represent an average generation upper than 5% of the average consumption. This selection
resulted in eleven variables: hour, total generation, consumption, emissions, Biomass, Lignite,
Nuclear, Hard Coal, Solar, Wind OffShore, and Wind OnShore.

As stated early, the electric power generation system in Germany is composed of different
sources. Evaluating the performance in this dataset is interesting because there are different
levels of difficulty to capture the time series patterns and consequently handle missing values.
The time series related to renewable energy sources have intermittent nature and is a great and
concern challenge (AHMED; KHALID, 2019). The variability and limited predictability of
renewable resources (e.g wind and solar) introduce uncertainty and it is hard to predict on all
time scales, from seconds and minutes ahead (TAWN; BROWELL, 2022). On the other hand,
total generation, consumption, and other conventional energies present patterns well behaved.
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After collecting the data, a verification for days with missing data was performed. The
year 2016 has 113 days, 2017 has 7, 2018 has 11, 2019 has 3, and 2020 has 2 days with missing
data, a total of 136 days with missing values over 1827 days.

3.1.3 EXPERIMENTAL SETUP

The proposed use of EDBN model for data imputation is described in this section.

As stated earlier, the dataset generated using Lorenz equations represents a simulation
of a process with three chaotic variables and 150 intervals of complete data. The ENTSO-E
dataset is a real dataset formed by eleven selected variables, with 1691 days of full data and 136
days with missing values. With these datasets, two distinct scenarios to evaluate the performance
using Lorenz dataset and two scenarios using the ENTSO-E dataset are proposed.

Removing values of complete datasets and comparing the inferred values generated by
the method with the original ones is one of the most insightful ways of evaluating imputation
methods (BASHIR; WEI, 2018). For this purpose, all 150 intervals of the Lorenz simulated
dataset and all days with full data in 2019 and 2020 (726 days) for the ENTSO-E dataset were
used. With these datasets, a random selection of 40% of the total days (or total intervals) to insert
missing data was performed. For each dataset, 10%, 20%, 30%, and 40% missing rates were
used. Figure 7 illustrates the process of removing values of complete datasets to compare the
inferred values with the original ones.

Figure 7 – Removing values of complete datasets to compare the inferred values generated by the method with the
original ones. On the left of the figure, using the original dataset, datasets are generated with missing data
highlighted in orange. On the right of the figure, the values in blue are data imputed by the imputation
methods and will later be compared with the original values.

Another way of evaluating imputation methods consists of inferring real missing values
and evaluating by visual inspection the reconstruction of the dynamic of the signal. For this
purpose, the ENTSO-E dataset that already has missing values can be used.

Section 3.1.3.1 describes the scenarios inserting missing completely at random on the
Lorenz dataset and on the ENTSO-E dataset. Section 3.1.3.2 describes the scenario of inserting
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missing not at random on the Lorenz dataset. Finally, Section 3.1.3.3 presents the test inferring
all missing values already part of the ENTSO-E dataset.

3.1.3.1 INSERTING MCAR ON COMPLETE DATASETS

Missing values can occur in sequence, forming blocks of missing values, or they can
happen more spread. These random occurrences of missing values was tested by inserting missing
values using the Missing Completely at Random strategy (MCAR), i.e., a random subset of the
data (NANCY; KHANNA; ARPUTHARAJ, 2017). For this purpose, the indexes were randomly
chosen in each interval selected to receive missing values. Missing values were put in all of the
variables simultaneously, which is the worst case. With this type of evaluation, the following
scenarios were created:

∙ Original datasets: 150 complete intervals for Lorenz simulated dataset and 726 complete
days for ENTSO-E dataset;

∙ Datasets generated inserting missing values on the original datasets:

1. Missing rate of 10%: 40% of the total intervals (60 intervals for Lorenz dataset
and 290 days for ENTSO-E dataset) with 10% of the total observations with
missingness;

2. Missing rate of 20%: 40% of the total intervals (60 intervals for Lorenz dataset
and 290 days for ENTSO-E dataset) with 20% of the total observations with
missingness;

3. Missing rate of 30%: 40% of the total intervals (60 intervals for Lorenz dataset
and 290 days for ENTSO-E dataset) with 30% of the total observations with
missingness;

4. Missing rate of 40%: 40% of the total intervals (60 intervals for Lorenz dataset
and 290 days for ENTSO-E dataset) with 40% of the total observations with
missingness.

This test aims to infer the missing values that were entered in the datasets using the
MCAR mechanism and compare them with the original. In this sense, the performance of the
method can be evaluated for different missing rates of MCAR.

3.1.3.2 INSERTING MNAR ON COMPLETE DATASETS

Another type of mechanism of missingness is the missing not at random (MNAR).
MNAR is when the missing values occur in a systematic way, i.e., more frequently or totally
occurring in specific conditions. Examples of MNAR in real situations: missing information
in health surveys associated with gender (missing information systematically associated with
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masculine or feminine gender), systems failures associated with climatic conditions (missing
values systematically occurring in rainy or hotter days), and systems failures associated with
time (missing values systematically occurring during a.m or p.m).

Evaluating the performance in the MNAR condition is important because in real datasets
MNAR case is often. For this purpose, a scenario that missing values occur associated with time,
more specifically during the p.m (or in the second half) of the interval under analysis is proposed.
For this purpose, the index were randomly chosen of the post-meridiem period in each interval
selected to receive missing values. As in the MCAR scenario, missing values were put in all of
the variables simultaneously, which is the worst case. The following scenarios were created:

∙ Original dataset: 150 complete intervals for Lorenz simulated dataset;

∙ Datasets generated inserting missing values on the original datasets:

1. Missing rate of 10%: 40% of the total intervals (60 intervals of Lorenz dataset)
with 10% of the total observations with missingness concentrated during p.m (or
in the second half of the interval);

2. Missing rate of 20%: 40% of the total intervals (60 intervals of Lorenz dataset)
with 20% of the total observations with missingness concentrated during p.m (or
in the second half of the interval);

3. Missing rate of 30%: 40% of the total intervals (60 intervals of Lorenz dataset)
with 30% of the total observations with missingness concentrated during p.m (or
in the second half of the interval);

4. Missing rate of 40%: 40% of the total intervals (60 intervals for Lorenz dataset)
with 40% of the total observations with missingness concentrated during p.m (or
in the second half of the interval).

This test aims to infer the missing values that were entered in the dataset using the MNAR
mechanism and compare them with the original. In this sense, the performance of the method
can be evaluated for different missing rates of MNAR. This scenario proposed concentrates
all missing values just in the second half of the interval, i.e., missing values become more
concentrated and make data imputation more challenging.

3.1.3.3 INFER ALL MISSING VALUES ALREADY PART OF THE ENTSO-E DATASET

As previously described, the German electricity dataset from ENTSO-E has 1691 days
of full data and 136 days with missing values. The second test consists of data imputation in
all these days that already have missing values. After inferring all missing values, one day that
missing values were imputed is randomly chosen to illustrate the performance. As the dataset
already has missing values, i.e., no missing values were added as in the other tests, has no real
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values to compare. However, the results can be evaluated graphically by analysing the dynamics
of the data.

Figure 8 illustrates the steps to use the proposed methodology in all test scenarios
previously described or for use in other contexts. Initially, the entire dataset available is pre-
processed. Each variable of all datasets was quantised using the optimal bin size selection
approach described in Section 2.5 and prepared for use in the DBN approach. The min and the
max number of bins tested were 4 and 40 respectively.

Using sub-datasets Dk formed by information collected per day or per interval, the script
checks if missing values in Dk. If Dk is complete, using all observations in Dk the DBN structure
Gk is learned using Hill Climbing (HC) search and BDeu score function. During the process
of structural learning, tabu search was used to support the local search algorithm in continuous
exploration within a search space and avoid local optima. After getting Gk, the edge frequencies
and threshold fth are updated for selecting the edges (G*). Then Dk is stored. If exist missing
values in Dk, the process described above is performed using the available observations in Dk.
Using G* and the past one week of data (Dlw), the set of conditional probabilities distributions
(Θ) given G* and Dlw are learned. Using (G*, Θ) and the available information in Dk, the missing
values in Dk are imputed. After data imputation, Dk is stored. If a variable does not appear in the
structure G*, i.e., is independent, missing values are filled by copying the corresponding instants
from the previous window (like a persistence approach).

During structure learning, HC traverses the search space by moving between adjacent
networks. At each step, neighbouring DAGs are visited by reversing, adding, or deleting an
arc. The algorithm chooses the one that provides the greatest improvement of the BDeu scoring
function. The algorithm stops when no operation yields improvement to the scoring function, i.e.
when finding a local maximum value.

It becomes essential to mention that as time goes by, new data comes in and just the last
seven days are used to fit the model (in order to learn the CPDs). Moreover, if the historic data is
not available or if is a new process, the step of data pre-processing can be done directly on the
information collected per day or per interval.

3.1.4 PERFORMANCE EVALUATION

For the tests that missing values were inserted on complete datasets, the Normalised
Root Mean Square Error (NRMSE), Mean Absolute Error (MAE), and Median Absolute Error
(MedAE) were used to assess the performance of imputation. The NRMSE balances penalisation
of large imputation errors and imputation data variability, evaluating how well the model is
inferring the real mean. The MAE and MedAE provide a value on the same scale as the variables
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Figure 8 – Flowchart of the steps for dealing with data imputation in time series datasets using the Evolving
Dynamic Bayesian Networks by an analytical threshold.

under analysis, with MedAE being robust to outliers. These are computed as follows:

NRMSE =

√
1
N ∑

n
i=1 (yi − ŷi)

2

ymax − ymin
, (3.2)

MAE =
1
N

N

∑
i=1

| yi − ŷi |, (3.3)

MedAE = median(| y1 − ŷ1 |, . . . , | yn − ŷn |) , (3.4)

where N is the number of imputations performed, ŷi is the inferred value, yi is the real value,
ymin and ymax are the minimum and maximum values observed in the test set. Using minimum
and maximum for normalisation, it is possible to compare the performance between different
variables.

In addition to performance evaluation, the proposed EDBN was also compared with
other widely used methods: Mean imputation, K-nearest neighbor (KNN), Random Forest
(RF), Multiple Imputation by Chained Equations (MICE), Low-rank Autoregressive Tensor
Completion (LATC) (CHEN et al., 2021), and Low-Rank Tensor Completion with Truncation
Nuclear Norm minimisation (LRTC-TNN) (CHEN; YANG; SUN, 2020).
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KNN uses feature similarity to infer the missing values; RF operates by constructing
multiple decision trees; MICE is a method based on Fully Conditional Specification, where
each incomplete variable is imputed by a separate model; LATC is a method based on low-rank
matrix/tensor completion with the introduction of temporal variation as a new regularisation term
into the completion of a third-order; LRTC-TNN uses a low-rank tensor completion framework
with a novel truncated nuclear norm to introduce a universal parameter to control the degree of
truncation.

The methods Mean, KNN, RF, and MICE were also used in (ABIRI et al., 2019) for
comparison. LATC and LRTC-TNN were evaluated in (CHEN et al., 2021). These six methods
were used and evaluated in the same manner as the proposed EDBN model. The values filled in
by EDBN and the other methods go through a smoothing filter to mitigate possible outliers.

LRTC-TNN and LATC have parameters that impact the performance of the method.
Chen et al. (2021) developed a setting for imputation experiments to empirically evaluate the
performance during data estimation using different parameters values. In the same dataset,
the best combination of parameters can vary for different missing rates. Following the results
of (CHEN et al., 2021), the parametrs values used were c = 1

10 , θ = 5 and ρ = 1e−4, which is
an option that presented the best results for a few cases evaluated.

In order to properly compare the quality of the data imputation through EDBN with the
other methods, the observed NRMSE for the proposal and all competitors will be statistically
compared for the Lorenz equations and ENTSO-E dataset. For such purpose, ANOVA (Analysis
of Variance) is a statistical method used to analyse the differences between the means of three or
more groups. It allows researchers to determine whether the differences observed between the
groups are statistically significant (CHANDRAKANTHA, 2014).

In ANOVA, the total variability in the data is partitioned into two components: the
variability between groups and the variability within groups. The between-group variability
reflects the differences between the means of the groups being compared, while the within-group
variability reflects the variation within each group.

The ANOVA test produces an F statistic, which is calculated by dividing the between-
group variability by the within-group variability. If the F statistic is large enough to exceed
a critical value determined by the degrees of freedom and significance level chosen, then the
null hypothesis (that the means of the groups are equal) is rejected, indicating that there is a
statistically significant difference between at least two of the groups.

If the methods presented a statistically significant difference between the means, Tukey’s
post hoc test can be used to make pairwise comparisons between the means of each group to find
out exactly which groups are different from each other (SCHLATTMANN; DIRNAGL, 2010).
In an ANOVA study, Tukey’s post hoc test is performed after finding a significant difference in
the overall group means. The test compares all possible pairs of means and determines whether
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they are significantly different from each other, taking into account the overall variability in the
data.

Tukey’s post hoc test is considered one of the most powerful post hoc tests because it
controls the family-wise error rate, which is the probability of making a Type I error (rejecting a
true null hypothesis) in at least one of the pairwise comparisons.

3.2 CO2 EMISSIONS FORECASTING IN MULTI-SOURCE
POWER GENERATION SYSTEMS

3.2.1 MULTI-SOURCE POWER GENERATION SYSTEMS DATASET

In this investigation, were used the electricity grid data of Belgium, Germany, Spain,
and Portugal. All data is publicly available by the European Network of Transmission System
Operators for Electricity (ENTSO-E) transparency platform (ENTSO-E, 2023). ENTSO-E is a
central collection and publication of electricity generation, transportation, consumption data, and
information about energy prices of different European countries.

The requested data for each country comprises records from January 1, 2019, to Decem-
ber 31, 2021, with a one-hour sampling rate. The dataset contains temporal data from different
energy sources, consumption, hour, and date. Using the collected data and the concepts presented
in Section 2.8, the variable Emissions (Et,s) was added to the dataset.

Although the various available energy sources, some still have low generation capacity
and are rarely used. Moreover, the capacity of each source in each country is different, which
makes the energy generation mix of the countries different. As selection criteria all sources that
represent an average generation that is greater than 1% of the average total generation were
selected. In Figure 9, there are bar plots illustrating the generation mix of each country.

3.2.2 CO2 EMISSIONS FORECASTING TROUGH EVOLVING DY-
NAMIC BAYESIAN NETWORKS

This section describes the steps of the proposed method to perform CO2 emissions
forecast. As previously mentioned, the model utilised in this investigation is a discrete approach.
Due to this, in the first step, each variable of all datasets was quantised using the optimal bin
size selection approach described in Section 2.5. The min and the max number of bins tested
were 4 and 40 respectively. After data quantisation, NMI was used to select the forecast horizon
(∆p). Using ∆p, the stage of data pre-processing organize the dataset for the 2-DBN model. The
variables at this point are doubled: the variables of τ are the original time series delayed by ∆p

and the original information is stored as τ + 1. As structural learning of Bayesian Networks
(BNs) is an NP-hard problem (GROSS et al., 2019), to reduce the complexity the step of data
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Figure 9 – Generation mix of a) Belgium, b) Germany, c) Spain and d) Portugal.

pre-processing is finalised by performing NMI between the target variable (emissions) and the
other variables of the dataset to eliminate variables that are not relevant. All variables that the
NMI with the target variable is less than the median are considered irrelevant and discarded.

In the second stage (structural learning), a new sub-dataset Dw collected on the day w

already pre-processed is used to perform structural learning. For this purpose, the DBN structure
Gw is learned using the Hill Climbing (HC) algorithm combined with the AIC score to traverse
the search space visiting neighbour DAGs by deleting, adding, or reversing an arc, and the
algorithm advances to the one that provides the highest improvement to the AIC score. The
algorithm stops the search when no operation yields improvement to the score function. During
the process, tabu search was used to support the local search algorithm in continuous exploration
within a search space and avoid local optima. The structure learned is reduced to the Markov
Blanket of the target variable (emissions), the edges frequencies are updated and G* is obtained
by selecting the edges using the threshold fth. If the threshold rejects all edges, is adopted that G*

is formed by a single directed edge from the target variable to the target variable in the next time
slice (emissions (τ), emissions (τ +1)). It is important to highlight that the study in (BESSANI
et al., 2020) empirically verified the convergence of the combination of a local search algorithm
and AIC metric, resulting in satisfactory networks.

Stage 3 refers to parameter learning. Using G* and the last seven days of pre-processed
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and prepared data, the conditional probability table (Θ) is obtained. Θ describes the probabilities
for each state conditioned to its parents’ states.

The last step is responsible for the CO2 emissions forecasting. For this purpose, the
proposed approach uses (G*, Θ) and the last information as evidence to forecast the observation
∆p hours ahead using maximum a posteriori (MAP) estimation (SANTOS et al., 2021). Then,
the values predicted are transformed to continuous, go through a smoothing filter to mitigate
noisy values, and are stored. After obtaining knowledge about the real data of τ +1, they are
used to update the CPDs.

Fig. 10 shows a summary of the steps described above represented as a flowchart.
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Figure 10 – Flowchart for forecasting CO2 emissions using the EDBN proposed in this thesis. The process is
organised into 4 parts: data pre-processing, structural learning, parameter learning, and Bayesian
inference.

3.2.3 PERFORMANCE EVALUATION

The proposed method was evaluated by comparing the performance against widely used
methods of time-series forecasting. The competitor methods are ANN feedforward Multilayer
Perceptron (MLP), a fully connected class of feedforward artificial neural network (SANTOS
et al., 2021; REHMAN et al., 2021; PEDREGOSA et al., 2011); XGBoost (Extreme Gradient
Boosting), a decision tree-based machine learning algorithm that uses a Gradient boosting
structure (HAN; LIU; SHI, 2022; PEDREGOSA et al., 2011); traditional DBN with structure
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learned in one step (SANTOS et al., 2021). All these models used the same interval of data used
by the EDBN for training and fit the model.

For performance evaluation, metrics that have been used in other studies of time series
forecast (SANTOS et al., 2021; BESSANI et al., 2020; ALMALAQ; ZHANG, 2019) were used.
The metrics are Normalised Root Mean Squared Error (NRMSE), Mean Absolute Error (MAE),
and Median Absolute Error (MedAE). These are computed as described in Section 3.1.4.

After calculating the performance metrics for all methods in all scenarios, the one-way
ANOVA test is used to verify the null hypothesis that the methods have the same population
means (same performance) (LIU et al., 2015). If the methods presented a statistically significant
difference between the means, Tukey’s post hoc test can be used to make pairwise comparisons
between the means of each group to find out exactly which groups are different from each
other (SCHLATTMANN; DIRNAGL, 2010).

3.3 COMPUTATIONAL RESOURCES
For all implementations, a laptop computer with an Intel(R) core i5 8th Gen processor,

16 GB of RAM, and Linux Mint 20.1 Ulyssa operating system was used. The algorithms were
implemented in Python 3 language using the Jupyter Notebook interface.

Scientific computation packages such as Numpy (OLIPHANT, 2006), Scipy (JONES;
OLIPHANT; PETERSON, 2001), Matplotlib (HUNTER, 2007), Pandas (MCKINNEY, 2010)
and PGMPY (ANKAN, 2015) were utilised. Other methods of imputation used for com-
parison come from missingpy package (RAVEN, 2019) (KNN and RF) and impyute pack-
age (LAW; DOKKU, 2019) (MICE). The statistical analysis was performed using statsmodels
package (SEABOLD; PERKTOLD, 2010) and Scipy package.

Regarding the application of CO2 emissions forecasting, the datasets, all dependencies
of scientific packages used during the implementation and evaluation, and the scripts developed
are publicly available on GitHub to ensure full reproducibility.

https://github.com/TalyssonS/Evolving-DBN-/tree/dev
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CHAPTER

4
RESULTS AND DISCUSSION

This chapter presents the results of each experimental part with the corresponding
discussion in its own section. First, the results and their analysis related to the data imputation
application are presented. After that, the ones associated with time series forecasting are shown.

4.1 DATA IMPUTATION USING EVOLVING DYNAMIC
BAYESIAN NETWORKS

Before presenting the results, Figure 11 shows optimal bin size estimation for the
Consumption variable as an illustration of data quantisation. On the left of Figure 11, in the first
plot, there is the cost function for different numbers of bins. The second plot on the left is a
comparison of real values with quantised ones using the information collected over two days.
A small number of bins results in large-size bins (∆) and, consequently, the conversion of data
results in major errors that mischaracterise the signal (green line). On the other hand, using an
optimal number of bins for data pre-processing reduces the number of states without inserting
major errors (orange line). The original time series collected over two days have 192 observations
and 191 states (blue line). The quantised using optimal choice have the same 192 observations
and 26 states (orange line) and in green line is the signal pre-processed with the same 192
observations and 4 states. On the right of Figure 11, it can be seen histograms for different
numbers of bins. The first plot shows the histogram of the entire consumption observations using
4 bins, the second one is the optimum situation with 38 bins, and the last uses 150 bins. Using 38
bins and 150 bins the distribution keeps similar, highlighting that using 38 has a high reduction
of states without mischaracterisation of the signal.

Following the steps of the flowchart in Fig. 8, after data quantisation the datasets were
prepared according to the dynamic model. With the datasets already pre-processed, the proposed
method constantly adapts to the arrival of new datasets. The main reason for using an approach
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Figure 11 – Optimal bin size estimation for data quantisation of consumption variable. The first plot on the left
illustrates the cost function for different numbers of Bins. The second plot has a comparison between
original data and quantised data using optimal ∆ and large ∆. On the right, there is an illustration of the
distribution of the observations for different situations regarding the number and size of bins.

that allows the structure to evolve as new data arrives is to make structural learning robust against
missing and noisy data. With this capacity, can smoothly converge to a reliable structure to
perform data imputation. Figure 12 illustrates the final DAG G* obtained for Lorenz simulated
dataset with 10%, 20%, 30%, and 40% of missing completely at random. For 10%, 20%, and
30% of missingness, the networks obtained at the end of the experiment were the same. This
shows that the methodology for structural learning is robust and converges to the same result
even when the rate of missing data is 30%. However, for a missing rate of 40%, the learned
structure is significantly different. When compared with the other models, five edges are reversed
and one edge is absent. These differences change how the variables are related and consequently
can affect the performance during data imputation.

Regarding the performance during data imputation, Figure 13 illustrates the observed
errors for data imputation in the Lorenz dataset with MCAR using a box plot for each imputation
method. Missing values were estimated in 60 intervals (40% of the total intervals) for each
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Figure 12 – Final DBN structure G* after evolving along 150 intervals of Lorenz simulated dataset. Among the 150
intervals, 40% (or 60 intervals) have missing values: a) 10% of missingness, b) 20% of missingness, c)
30% of missingness, and d) 40% of missingness.

missing rate. The errors for the mean method resulted in the highest values, followed by the
KNN, RF, MICE, and LRTC-TNN. The proposed method resulted in the lowest errors for all
missing rates and LATC was the second best method, with a similar performance to the proposal
presented in this thesis.

An exciting aspect present in these data imputation error visualisation is that the error
dispersion increases for higher missing data rates. As missing values can occur in sequence,
forming blocks of missing values, or they can happen more spread, when the missingness in
the dataset is continuous (forming blocks of missing observations) is more difficult to handle
with data imputation. In this situation, the method needs to determine all points of the interval,
i.e., reconstruct the dynamic of the signal. In the case of missing values being more spread, the
dynamic of the signal is less affected and this fact makes data imputation less challenging. For
40% of missingness in a sequence way, the difficulty of filling in missing data approaches the
difficulty of completely predicting a time series. The median and interquartile range illustrated
on the box plot suggests that when the missingness is scattered in all the data, the methods can
present similar performance for missing rates between 10% and 40%.

It is worth mentioning that the errors presented in Figure 13 also include the errors caused



66 Chapter 4. Results and Discussion

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

3
2
1
0
1
2
3

Er
ro

r

EDBN

20
15
10

5
0
5

10
15
20

Er
ro

r

Mean

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Er
ro

r

KNN

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Er
ro

r

RF

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Er
ro

r

MICE

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Er
ro

r

LRTC-TNN

10 20 30 40
Missing rate (%)

5.0
2.5
0.0
2.5
5.0

Er
ro

r

LATC

Figure 13 – Boxplot of the observed errors during the imputation of missing values completely at random in
Lorenz dataset using the proposed EDBN, mean, KNN, Random Forest (RF), Multiple Imputation by
Chained Equations (MICE), Low-rank Autoregressive Tensor Completion (LATC), and Low-Rank
Tensor Completion with Truncation Nuclear Norm minimisation (LRTC-TNN).

by the quantisation process. An illustration of data imputation in one of the 60 intervals with 40%
of missing values performed by the seven methods is presented in Figure 14. The superiority of
EDBN depicted in Figure 13 is evidenced in Figure 14. The imputation using EDBN follows the
dynamics without big errors, and the other methods make an inferior prediction of the missing
values.

In Table 2, a summary of values observed for imputation performance metrics NRMSE,
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MAE, and MedAE has been presented for the EDBN, and the other six imputation methods used
for comparison purposes. The bold values indicate which methodology resulted in the lowest
average value. Analysing the NRMSE metric, the proposed EDBN performed similarly to the
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LATC method and both were the best for data imputation in time series generated by Lorenz
equations with MCAR. The MAE and MedAE metrics suggest that EDBN method is slightly
superior to the LATC. The estimation using Mean did result in all of the highest values observed
for the NRMSE, MAE and MedAE metrics. The LRTC-TNN method performs thirdly better,
followed by MICE, RF, and KNN.

Table 2 – Missing values imputation performance metric for the proposed EDBN and the other methods evaluated
using Lorenz dataset with MCAR. The values presented are the average ± standard deviation of NRMSE,
MAE and MedAE comparing inferred values with the original data.

Methods NRMSE
10% 20% 30% 40%

EDBN 0.148 ± 0.061 0.255 ± 0.095 0.387 ± 0.134 0.407 ± 0.176
Mean 1.448 ± 0.170 1.448 ± 0.154 1.459 ± 0.167 1.461 ± 0.173
KNN 0.240 ± 0.044 0.407 ± 0.077 0.578 ± 0.109 0.742 ± 0.132
RF 0.234 ± 0.044 0.396 ± 0.079 0.561 ± 0.111 0.719 ± 0.134

MICE 0.227 ± 0.046 0.386 ± 0.084 0.548 ± 0.117 0.701 ± 0.139
LRTC-TNN 0.215 ± 0.041 0.366 ± 0.068 0.522 ± 0.094 0.672 ± 0.113

LATC 0.151 ± 0.039 0.256 ± 0.069 0.366 ± 0.091 0.483 ± 0.115

Methods MAE
10% 20% 30% 40%

EDBN 0.572 ± 0.268 0.989 ± 0.468 1.538 ± 0.689 1.547 ± 0.831
Mean 6.649 ± 1.082 6.679 ± 0.994 6.747 ± 1.017 6.756 ± 1.042
KNN 1.063 ± 0.203 1.849 ± 0.331 2.651 ± 0.462 3.427 ± 0.583
RF 1.025 ± 0.216 1.778 ± 0.358 2.542 ± 0.504 3.280 ± 0.625

MICE 0.999 ± 0.231 1.746 ± 0.387 2.495 ± 0.551 3.210 ± 0.673
LRTC-TNN 0.927 ± 0.213 1.620 ± 0.330 2.344 ± 0.460 3.040 ± 0.571

LATC 0.647 ± 0.190 1.126 ± 0.333 1.636 ± 0.469 2.172 ± 0.609

Methods MedAE
10% 20% 30% 40%

EDBN 0.356 ± 0.192 0.595 ± 0.366 0.897 ± 0.658 0.968 ± 0.585
Mean 5.522 ± 1.480 5.530 ± 1.410 5.628 ± 1.391 5.644 ± 1.463
KNN 0.865 ± 0.209 1.588 ± 0.392 2.284 ± 0.540 3.027 ± 0.742
RF 0.821 ± 0.219 1.491 ± 0.415 2.137 ± 0.567 2.819 ± 0.769

MICE 0.797 ± 0.233 1.470 ± 0.453 2.114 ± 0.623 2.754 ± 0.829
LRTC-TNN 0.703 ± 0.227 1.299 ± 0.391 1.921 ± 0.549 2.533 ± 0.701

LATC 0.484 ± 0.156 0.875 ± 0.301 1.307 ± 0.432 1.735 ± 0.581

Table 2 shows that the EDBN method was superior to the others for handling MCAR
in time series generated using Lorenz equations. The proposed method generally has a smaller
imputation error than the other methods. In relation to the second-best method, for 10% of
missingness EDBN reduced the average NRMSE by 2.02%, the average MAE by 13.11%,
and the average MedAE by 35.95%. For the missing rate of 40%, EDBN reduced the average
NRMSE by 15.73%, the average MAE by 40.4%, and the average MedAE by 79.23%.

Using all NRMSE calculated in each interval that was performed data imputation on the
Lorenz dataset with all missing rates under missing completely at random, the one-way ANOVA
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test was carried out to verify the null hypothesis that the methods have the same performance.
After the verification of the null hypothesis, Tukey’s post hoc analysis was used to make pairwise
comparisons between the methods to estimate the difference in performance. Table 3 presents
the results of the comparison. The performance difference between the proposed EDBN against
Mean, KNN, RF, MICE, and LRTC-TNN are statistically significant and the EDBN was the
best method for dealing with missing completely at random on the Lorenz dataset. Regarding
the LATC, the post hoc comparison shows that the difference in performance is not statistically
significant, i.e., the proposed EDBN presented the same performance as LATC.

Table 3 – Multiple comparisons of means using Tukey HSD with alpha 0.05. The analysis investigates the difference
between the NRMSE presented for the methods during data imputation using the Lorenz dataset with
MCAR.

Method 1 Method 2 Mean Diff p-value adj Lower Diff Upper Diff
EDBN Mean 1.1550 0.001 1.1248 1.1852
EDBN KNN 0.1927 0.001 0.1625 0.2228
EDBN RF 0.1784 0.001 0.1483 0.2086
EDBN MICE 0.1668 0.001 0.1366 0.197
EDBN LRTC-TNN 0.1449 0.001 0.1148 0.1751
EDBN LATC 0.0153 0.7177 -0.0148 0.0455

Regarding the performance under the MNAR condition, Figure 15 illustrates the observed
errors for data imputation in the Lorenz dataset using a box plot for each imputation method. As
in the MCAR situation, missing values were estimated in 60 intervals (40% of the total intervals)
for each missing rate. Compared with the performance presented in the MCAR condition, all
methods performed worse. This downgrade of performance is expected because MNAR condition
is more challenging. The errors for the mean method resulted in the highest values, followed by
the KNN, RF, MICE, and LRTC-TNN. The proposed method resulted in the lowest errors for all
missing rates and LATC was the second-best method.

Due to the fact that the MNAR scenario is more difficult to deal, the error for 40% of
missingness is significantly higher than for 10%. This difference exists in the MCAR case, but
it is smoother. Table 4 has a summary of the values observed for the imputation performance
metrics NRMSE, MAE, and MedAE comparing the EDBN and the other six imputation methods
used for data imputation of missing not at random on the Lorenz dataset.

Analysing Table 4, it is possible to conclude that the EDBN method was superior to the
others for handling missing not at random in the Lorenz dataset. Comparing the performance
of the proposed method in the MNAR condition with the performance in the MCAR condition,
there is a significant error increase. For 40% of missingness, the error measured by all metrics is
more than two times greater for the MNAR case.

Using all NRMSE calculated in each interval that was performed data imputation on the
Lorenz dataset with all missing rates of MNAR, the one-way ANOVA test was carried out to
verify the null hypothesis that the methods have the same performance and Tukey’s post hoc test
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Figure 15 – Boxplot of the observed errors during the imputation of missing values not at random in Lorenz
dataset using the proposed EDBN, mean, KNN, Random Forest (RF), Multiple Imputation by Chained
Equations (MICE), Low-rank Autoregressive Tensor Completion (LATC), and Low-Rank Tensor
Completion with Truncation Nuclear Norm minimisation (LRTC-TNN).
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Table 4 – Missing values imputation performance metric for the proposed EDBN and the other methods evaluated
using Lorenz dataset with MNAR. The values presented are the average ± standard deviation of NRMSE,
MAE and MedAE comparing inferred values with the original data.

Methods NRMSE
10% 20% 30% 40%

EDBN 0.213 ± 0.132 0.413 ± 0.263 0.660 ± 0.394 0.971 ± 0.553
Mean 1.626 ± 0.311 1.630 ± 0.336 1.658 ± 0.361 1.678 ± 0.383
KNN 0.452 ± 0.121 0.811 ± 0.221 1.190 ± 0.329 1.575 ± 0.429
RF 0.441 ± 0.128 0.790 ± 0.231 1.165 ± 0.345 1.548 ± 0.447

MICE 0.431 ± 0.131 0.785 ± 0.242 1.166 ± 0.359 1.571 ± 0.472
LRTC-TNN 0.406 ± 0.101 0.729 ± 0.182 1.084 ± 0.270 1.445 ± 0.363

LATC 0.297 ± 0.092 0.599 ± 0.193 0.991 ± 0.306 1.491 ± 0.478

Methods MAE
10% 20% 30% 40%

EDBN 0.703 ± 0.397 1.352 ± 0.854 2.208 ± 1.381 3.352 ± 1.971
Mean 6.750 ± 1.501 6.741 ± 1.531 6.867 ± 1.514 6.943 ± 1.526
KNN 1.841 ± 0.452 3.373 ± 0.796 4.959 ± 1.194 6.578 ± 1.570
RF 1.778 ± 0.487 3.253 ± 0.862 4.810 ± 1.288 6.412 ± 1.695

MICE 1.751 ± 0.517 3.241 ± 0.936 4.832 ± 1.387 6.540 ± 1.860
LRTC-TNN 1.622 ± 0.447 2.989 ± 0.797 4.468 ± 1.146 5.970 ± 1.496

LATC 1.178 ± 0.381 2.433 ± 0.817 4.040 ± 1.312 6.118 ± 1.965

Methods MedAE
10% 20% 30% 40%

EDBN 0.425 ± 0.283 0.784 ± 0.635 1.305 ± 1.072 2.123 ± 1.652
Mean 5.651 ± 1.980 5.599 ± 2.036 5.738 ± 2.022 5.834 ± 2.047
KNN 1.570 ± 0.484 3.008 ± 0.896 4.477 ± 1.374 5.987 ± 1.834
RF 1.496 ± 0.514 2.854 ± 0.943 4.262 ± 1.459 5.722 ± 1.984

MICE 1.482 ± 0.550 2.869 ± 1.023 4.343 ± 1.571 5.884 ± 2.167
LRTC-TNN 1.306 ± 0.500 2.541 ± 0.948 3.840 ± 1.439 5.139 ± 1.859

LATC 0.940 ± 0.366 2.029 ± 0.815 3.390 ± 1.347 5.212 ± 2.050

was used to make pairwise comparisons between which method. Table 5 presents the results of
the comparison. For missing not at random on the Lorenz dataset, EDBN was the best method.
In this case, the performance differences between the proposed EDBN against each competitor
are all statistically significant.

Table 5 – Multiple comparisons of means using Tukey HSD with alpha 0.05. The analysis investigates the difference
between the NRMSE presented for the methods during data imputation using the Lorenz dataset with
MNAR.

Method 1 Method 2 Mean Diff p-value adj Lower Diff Upper Diff
EDBN Mean 1.0839 0.001 1.0046 1.1632
EDBN KNN 0.4432 0.001 0.3639 0.5224
EDBN RF 0.4215 0.001 0.3423 0.5008
EDBN MICE 0.4238 0.001 0.3445 0.5031
EDBN LRTC-TNN 0.3519 0.001 0.2726 0.4311
EDBN LATC 0.2807 0.001 0.2014 0.36
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Next, the results using ENTSO-E dataset will be presented. Regarding the final DAG
G*, the network obtained for 10%, 20%, and 30% of missingness are similar and for 40% the
learned structure is significantly different as observed using the Lorenz dataset.

In Figure 16, a box plot of the observed errors for data imputation in the ENTSO-E
dataset with MCAR using each imputation method is presented. Missing values were estimated
in 290 days (40% of the total days) for each missing rate. The errors for the Mean resulted in the
highest values. Can observe that the EDBN method resulted in the lowest absolute median errors.
MICE imputation has the second better performance, with similar results to EDBN. RF and
KNN complete the streak of best performances. Despite LATC and LRTC-TNN presenting good
results for the Lorenz dataset, both demonstrated poor results for the ENTSO-E dataset. This
pattern may have happened because in both methods the performance is affected by parameters
that are not automatically adjusted. In (CHEN et al., 2021), the authors tested different parameter
configurations and concluded that even in the same dataset the optimal parameters could differ
for different missing rates. So, it is a limitation of methods that can not be adequate for other
data behaviour without manual modification.
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Figure 16 – Boxplot of the observed errors during the imputation of missing values in ENTSO-E dataset using
the proposed EDBN, mean, KNN, Random Forest (RF), Multiple Imputation by Chained Equations
(MICE), Low-rank Autoregressive Tensor Completion (LATC), and Low-Rank Tensor Completion with
Truncation Nuclear Norm minimisation (LRTC-TNN).

Figure 16 highlights the superiority of EDBN and MICE when compared with the other
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methods. To investigate what is the best method, Table 6 has a summary of the values observed
for the imputation performance metrics NRMSE, MAE, and MedAE comparing the EDBN and
the other six imputation methods used for data imputation in the ENTSO-E dataset. The bold
values indicate which method resulted in the lowest average value. The EDBN presented the
smallest RMSE, MAE, and MedAE values for 10%, 20%, and 30%. MICE was the best for
40% of missingness for this dataset. The imputation using the Mean and LRTC-TNN did result
in all of the highest values observed for all metrics. In general, EDBN has better performance,
followed by MICE, RF, KNN, and LATC.

Table 6 – Missing values imputation performance metric for the proposed EDBN and the other methods evaluated
using ENTSO-E dataset with MCAR. The values presented are the average ± standard deviation of
NRMSE, MAE, and MedAE comparing inferred values with the original data.

Methods NRMSE
10% 20% 30% 40%

EDBN 2.96 ± 1.89 3.15 ± 1.86 3.57 ± 2.33 4.16 ± 2.61
Mean 43.31 ± 39.51 41.21 ± 37.23 40.71 ± 36.02 40.91 ± 36.33
KNN 6.54 ± 6.86 8.46 ± 9.35 10.45 ± 12.26 12.74 ± 14.76
RF 4.84 ± 4.16 6.00 ± 5.58 7.37 ± 7.58 9.10 ± 9.41

MICE 3.29 ± 2.10 3.40 ± 2.01 3.69 ± 2.41 4.06 ± 2.55
LRTC-TNN 28.86 ± 32.12 47.45 ± 48.29 67.19 ± 64.03 85.66 ± 80.56

LATC 8.38 ± 7.68 12.49 ± 11.33 17.77 ± 15.39 23.06 ± 19.77

Methods MAE
10% 20% 30% 40%

EDBN 197.08 ± 210.57 217.69 ± 224.52 236.60± 246.69 283.27 ± 286.60
Mean 3312.45 ± 3607.34 3297.33 ± 3523.68 3315.77± 3516.64 3345.50 ± 3538.59
KNN 405.14 ± 474.97 548.40 ± 659.15 686.47± 854.87 850.87 ± 1090.34
RF 312.30 ± 347.51 400.55 ± 458.58 492.89± 582.16 613.65 ± 753.13

MICE 218.98 ± 233.97 234.08 ± 241.42 252.71± 256.97 277.73 ± 280.98
LRTC-TNN 1698.20 ± 2523.41 3007.37 ± 4168.64 4444.75± 6034.10 5780.44 ± 7770.16

LATC 463.77 ± 555.76 742.29 ± 905.18 1128.49± 1415.92 1514.56 ± 1929.78

Methods MedAE
10% 20% 30% 40%

EDBN 157.84 ± 188.60 169.07 ± 197.07 185.57 ± 212.87 223.20 ± 244.63
Mean 3262.48 ± 3683.57 3226.32 ± 3572.81 3231.46 ± 3548.43 3265.45 ± 3561.05
KNN 354.13 ± 458.02 472.71 ± 617.33 604.80 ± 825.16 762.87 ± 1076.77
RF 265.96 ± 332.29 334.76 ± 420.24 416.99 ± 541.97 528.92 ± 717.65

MICE 177.60 ± 209.56 185.02 ± 211.91 197.47 ± 221.74 218.83 ± 239.84
LRTC-TNN 1631.57 ± 2498.99 2900.60 ± 4125.09 4282.61 ± 6002.10 5621.01 ± 7791.03

LATC 415.43 ± 536.43 682.33 ± 883.35 1064.09 ± 1413.41 1439.88 ± 1930.04

Analysing Table 6, it is possible to conclude that the EDBN method was superior to the
others for handling missing values in the ENTSO-E dataset for 10%, 20%, and 30% of missing
rates. MICE was superior for 40% of missingness. In relation to the MICE method, for 10% of
missingness EDBN reduced the average NRMSE, MAE, and MedAE by around 10%. For the
missing rate of 30%, EDBN reduced the average NRMSE, MAE, and MedAE by around 3%.
For 40% of missing values, EDBN increases the average NRMSE, MAE, and MedAE by around
2% when compared with MICE. In general, RF was the third better performance.
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Using all NRMSE calculated in each interval that was performed data imputation on
the Germany electricity dataset with all missing rates of MCAR, the one-way ANOVA test was
carried out to verify the null hypothesis that the methods have the same performance and Tukey’s
post hoc test was used to make pairwise comparisons between which method. Table 7 presents
the results of the comparison. There is no difference in performance between MICE and the
proposed EDBN. The other methods were lower, with a statistically significant difference in
performance.

Table 7 – Multiple comparisons of means using Tukey HSD with alpha 0.05. The test measures the difference
between the NRMSE presented for the methods during data imputation using the ENTSO-E dataset with
MCAR.

Method 1 Method 2 Mean Diff p-value adj Lower Diff Upper Diff
EDBN Mean 38.0865 0.001 36.9356 39.2374
EDBN KNN 6.1009 0.001 4.95 7.2518
EDBN RF 3.3805 0.001 2.2296 4.5314
EDBN MICE 0.1583 0.9 -0.9926 1.3092
EDBN LRTC-TNN 53.8378 0.001 52.6869 54.9888
EDBN LATC 11.9739 0.001 10.823 13.1248

In addition to performance analysis, it is important to compare the time that the methods
take to estimate the missing data. Figure 17 shows the average time for fitting and data imputation
in the 290 tests for each missing rate using the ENTSO-E dataset. The RF method takes
considerably more time than the other methods. While the other six methods take an average of
fewer than 20 seconds even for 40% of missing values, the RF takes about 500 seconds. EDBN
is the second most time-consuming, followed by LATC, MICE, LRTC-TNN, and KNN. The
fastest is the mean method. To learn the structure Gk, update the edges frequencies, and select
the edges using the analytical threshold, the proposed method spent around 30 minutes for the
ENTSO-E dataset (which has more variables than Lorenz simulated dataset).
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Figure 17 – Average time for fitting and data imputation in the 290 tests for each missing rate using ENTSO-E
dataset. The black line represents the time spent by the Mean method, green to KNN, red to RF, orange
to MICE, blue line to EDBN, the turquoise line to LRTC-TNN, and dark violet to LATC. The zoom-in
window highlights with more precision the time spent by LATC, LRTC-TNN, EDBN, MICE, KNN,
and Mean methods.

As previously described, the German electricity dataset from ENTSO-E has 1691 days
of full data and 136 days with missing values. The last test consists of data imputation in all
these days that already have missing values. After inferring all missing values, one day that
missing values were imputed is randomly chosen to illustrate the performance. The day drawn
was 29/02/2016 and this day has missing data simultaneously on emissions, solar generation,
and total generation. Figure 18 shows the results of imputation.



4.1. DATA IMPUTATION USING EVOLVING DYNAMIC BAYESIAN NETWORKS 77

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

360

380

400

420

440

Em
is

si
on

s 
(k

CO
2)

Missing values imputed
Original data

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

0

1000

2000

3000

4000

5000

6000

7000

Po
w

er
 (M

W
)

Missing values imputed
Original data

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

55000

60000

65000

70000

75000

Po
w

er
 (M

W
)

Missing values imputed
Original data

(c)

Figure 18 – Missing values imputed in a) emissions, b) solar generation and c) total generation. The black line
represents the original data and the red dashed line is the missing values imputed.
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Although there are no actual values to compare, by graphic inspection of Figure 18 one
can argue that the inferred values look coherent with the remainder of the observed values. The
dynamics of data do not change rapidly, and it is possible to observe that the inferred values
follow the dynamics without outliers.

4.2 CO2 EMISSIONS FORECASTING USING EVOLV-
ING DYNAMIC BAYESIAN NETWORKS

Following the steps of the flowchart in Fig. 10, first, the proposed approach performs
data quantisation of all variables using optimal bin size selection. With a small number of bins,
the data conversion results in the mischaracterization of the signal. Using a large number of bins,
the high number of states increases the computational demand of the DBN method. On the other
hand, using the optimal number of bins the number of states is reduced without inserting major
errors.

After data quantisation, Fig. 19 illustrated the NMI between all variables for different
lag values to select the forecast horizon. The first heatmap is using a delay of three hours and the
second frame for twelve hours. Note that for three hours the NMI is higher than for twelve hours.
For twelve hours of delay, even between variables and their lagged versions (main diagonal on the
heat map), the NMI is close to 0, i.e., the variables no longer share information. The third frame
shows the average NMI of the variables with their delayed versions for different delays. For
three hours the average NMI is 0.34 and decreases rapidly as the lag increase, highlighting the
difficulty of making long-term forecasts with the available information in the dataset. Important
to mention that the NMI increases in a periodic way for cycles of 24 lags and this pattern
was observed in other contexts of electric systems. (BESSANI et al., 2020; QIU et al., 2017;
KOPRINSKA; RANA; AGELIDIS, 2015; LAHOUAR; SLAMA, 2015).

From the results of Fig. 19, the forecast horizon and time window period of three hours
(∆p = 3) were chosen. Using ∆p = 3, the datasets were prepared according to the dynamic model.
The variables of τ + 1 are the original ones and the variables of τ are the variables of τ + 1
delayed by three hours. With the dataset prepared for the dynamic model, the process performs
NMI analysis in relation to emissions variable to eliminate irrelevant variables to the forecast.
All features with NMI less than the median were eliminated. Fig. 20 shows the results for each
country. Important to mention that the set of relevant features varies greatly from country to
country, reflecting the diversity of power generation profiles and the capability of the selection
proposal fully data-driven with no need for manual adjustments.

With the datasets already pre-processed, the proposed method constantly adapts to the
arrival of new datasets learning the partial structure of the DBN combining the AIC score metric
with the hill-climbing search method and, then selecting the directed edges by the occurrence
frequency using the analytical threshold. With G* fitted ever using the past week of data to
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Figure 19 – Normalised mutual information for the discrete dataset of Germany’s power generation system at
different lag values. First heatmap with a lag of three hours and the second with a delay of twelve hours.
At the bottom of the figure is the average NMI of the variables with their delayed versions for different
lags. In the heatmaps, darker colors represent more considerable NMI.

parameter learning and using the last observation available, the emissions forecast with a horizon
of three hours ahead was carried out. The competitor methods used the same data interval
and conditions as the proposed EDBN. The final DAG and the number of candidate edges that
appeared along the process are illustrated in Figure 21. Despite the final DAG containing just one
edge, the model of Belgium, Germany, Portugal and Spain presented 16, 25, 19 and 29 different
edges respectively along the process.

Fig. 22 presents an illustration of one day of forecast performed by them using dataset of
Germany. As the plots highlight, all methods were able to predict the behaviour without errors of
great magnitude, evidencing that the forecast horizon selected is adequate for the dataset used.
The proposed EDBN presented the best performance followed by the traditional DBN, XgBoost,
and ANN. The proposal showed better accuracy and forecast capability where forecast values
accompanied the real values from the beginning to the end with smaller error values.

The example illustrated in Fig. 22 represents one day of the process. The dataset of
each country comprises records from January 1, 2019 to December 31, 2021 with a one-hour
sampling rate. The forecast was carryout from January 8, 2019 to the end. In Table 8, a summary
of the values observed for the forecasting performance metrics NRMSE, MAE and MedAE
are presented for the EDBN and the other three methods used for comparison. The bold values



80 Chapter 4. Results and Discussion

Em
iss

io
n-

1
Fo

ss
il 

Ga
s

Fo
ss

il 
Ga

s-
1

Nu
cle

ar
Nu

cle
ar

-1
W

. O
ffs

ho
re

W
. O

ns
ho

re
Bi

om
as

s
W

. O
ns

ho
re

-1
Bi

om
as

s-
1

W
. O

ffs
ho

re
-1

Co
ns

um
pt

io
n

Ot
he

r
Co

ns
um

pt
io

n-
1

Ot
he

r-1
W

as
te

-1
W

as
te

So
la

r-1
So

la
r

Hy
dr

o 
P. 

S.
-1

Hy
dr

o 
P. 

S.

0.0

0.1

0.2

0.3

NM
I

Belgium

Em
iss

io
n-

1
Ha

rd
 c

oa
l

Ha
rd

 c
oa

l-1
Fo

ss
il 

Ga
s

Fo
ss

il 
Ga

s-
1

W
. O

ns
ho

re
W

. O
ns

ho
re

-1
Hy

dr
o 

R.
 P.

Bi
om

as
s

Hy
dr

o 
W

. R
.

Hy
dr

o 
R.

 P.
-1

Bi
om

as
s-

1
Hy

dr
o 

P. 
S.

So
la

r-1
So

la
r

Hy
dr

o 
W

. R
.-1

Co
ns

um
pt

io
n

Co
ns

um
pt

io
n-

1
Hy

dr
o 

P. 
S.

-1

0.0

0.1

0.2

0.3

NM
I

Portugal
Em

iss
io

n-
1

Lig
ni

te
Lig

ni
te

-1
Ha

rd
 c

oa
l

Ha
rd

 c
oa

l-1
W

. O
ns

ho
re

Fo
ss

il 
Ga

s
W

. O
ns

ho
re

-1
Fo

ss
il 

Ga
s-

1
Nu

cle
ar

Nu
cle

ar
-1

So
la

r
W

. O
ffs

ho
re

W
. O

ffs
ho

re
-1

So
la

r-1
Co

ns
um

pt
io

n
Bi

om
as

s
W

as
te

-1
W

as
te

Bi
om

as
s-

1
Hy

dr
o 

R.
 P.

-1
Hy

dr
o 

R.
 P.

Hy
dr

o 
P. 

S.
Hy

dr
o 

P. 
S.

-1
Co

ns
um

pt
io

n-
1

0.0

0.1

0.2

0.3

NM
I

Germany

Em
iss

io
n-

1
Fo

ss
il 

Ga
s

Fo
ss

il 
Ga

s-
1

Ha
rd

 c
oa

l
Ha

rd
 c

oa
l-1

W
. O

ns
ho

re
Hy

dr
o 

P. 
S.

W
. O

ns
ho

re
-1

Hy
dr

o 
P. 

S.
-1

Hy
dr

o 
R.

 P.
Hy

dr
o 

R.
 P.

-1
Bi

om
as

s
Nu

cle
ar

-1
Bi

om
as

s-
1

Nu
cle

ar
So

la
r

So
la

r-1
W

as
te

W
as

te
-1

Hy
dr

o 
W

. R
.-1

Co
ns

um
pt

io
n

Co
ns

um
pt

io
n-

1
Hy

dr
o 

W
. R

.0.0

0.1

0.2

0.3

0.4

NM
I

Spain

Figure 20 – Features selection using normalised mutual information in relation to emissions variable. For each
country, all variables with NMI bigger than the median were selected. The horizontal dashed line
represents the threshold of selection.

indicate which method resulted in the lowest average value. The proposed EDBN presented the
smallest NRMSE, MAE and MedAE for Germany and Spain. ANN was the best for Belgium
and Portugal. The forecasting using conventional DBN results in all of the highest values for
all metrics. In general, EDBN and ANN have better performance, followed by XgBoost which
presented a similar performance.

Analysing Table 8, the proposed EDBN was superior to the DBN for handling CO2

emissions forecasting in multi-source power generation systems of Belgium, Germany, Portugal
and Spain, i.e., a contribution of performance improvement in relation to dynamic Bayesian
networks approach. For the Belgium generation system, in relation to ANN, the EDBN increases
the average NRMSE, MAE, and MedAE at 1.60%, 3.40%, and 7.06% respectively. Regarding
Germany, EDBN reduces in relation to the second better (ANN) the average NRMSE, MAE and
MedAE at 6.89%, 6.55%, and 3.84% respectively. ANN was the best for Portugal, where EDBN
increases average NRMSE, MAE, and MedAE at 1.86%, 2.59%, and 3.83%. For the Spanish
system, it was the scenario with the greatest difference. EDBN was the best and XgBoost the
second better, with a reduction of the average NRMSE, MAE, and MedAE at 13.00%, 9.58%,
and 5.31%.

Using all NRMSE calculated in each day of CO2 emissions forecasting on Belgium,
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Figure 21 – Summary about the number of candidate edges along the process of CO2 emissions forecasting of each
country and final DAG for Belgium, Germany, Portugal and Spain.

Table 8 – Performance metrics calculated using the CO2 emissions forecasting for the interval from 8st January
2019 to 31st December 2021 in Belgium, Germany, Portugal and Spain. The values presented are the
average ± standard deviation.

Methods NRMSE
Belgium Germany Portugal Spain

EDBN 2.54 ± 0.72 3.92 ± 1.12 3.83 ± 1.40 2.41 ± 0.74
DBN 4.26 ± 2.64 4.94 ± 1.90 5.71 ± 3.65 3.26 ± 1.93
ANN 2.50 ± 0.63 4.21 ± 1.03 3.76 ± 1.15 2.80 ± 0.78

XgBoost 2.60 ± 0.65 4.43 ± 1.44 4.08 ± 1.44 2.77 ± 0.86

Methods MAE
Belgium Germany Portugal Spain

EDBN 14.28 ± 5.55 34.82 ± 12.95 30.90 ± 15.86 13.03 ± 5.48
DBN 25.92 ± 18.02 43.33 ± 19.30 46.92 ± 29.36 16.93 ± 10.24
ANN 13.81 ± 4.98 37.10 ± 13.40 30.12 ± 14.02 14.86 ± 5.46

XgBoost 14.28 ± 4.97 37.93 ± 14.03 31.83 ± 15.20 14.41 ± 5.45

Methods MedAE
Belgium Germany Portugal Spain

EDBN 12.44 ± 5.53 30.20 ± 13.34 26.82 ± 15.74 11.42 ± 5.45
DBN 25.10 ± 19.66 36.89 ± 18.93 43.82 ± 31.38 14.05 ± 9.10
ANN 11.62± 4.96 31.36 ± 13.55 25.83 ± 13.95 12.94 ± 5.62

XgBoost 12.01 ± 4.97 31.75 ± 14.60 26.53 ± 14.91 12.06 ± 5.21

Germany, Portugal, and Spain, the one-way ANOVA test was carried out to verify the null
hypothesis that the methods have the same performance and Tukey’s post hoc test was used
to make pairwise comparisons between which method. Table 9 presents the results of the
comparison. The performance difference between the methods is statistically significant and the
EDBN was the best method for the set of data used in this investigation. ANN presented the
second-best performance followed by XgBoost and DBN.

In addition to the performance analysis, the time that the methods take during emissions
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Figure 22 – Emissions forecasting for the proposed EDBN method and DBN, ANN, and XgBoost for one day. The
solid line represents real values and the dashed line with markers illustrates the forecasting.

forecasting was investigated. Table 10 presents a summary of the average time spent during
emissions forecast from January 8, 2019 to December 31, 2021 in all four countries. The
proposed EDBN and the other methods are computationally efficient and could be used in
online applications. All methods spend an average time in a matter of seconds, while data is
sampled only every hour. It is important to highlight that the time spent by the EDBN to learn the
parameters and make the prediction is smaller than by the DBN due to the fact that the selection
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Table 9 – Multiple comparisons of means using Tukey HSD with alpha 0.05. The test investigates if exists a
difference between the NRMSE presented for the methods during CO2 emissions forecasting.

Method 1 Method 2 Mean Diff p-value adj Lower Diff Upper Diff
EDBN DBN 1.3657 0.0 1.2674 1.4640
EDBN ANN 0.1442 0.001 0.0458 0.2425
EDBN XgBoost 0.2949 0.0 0.1965 0.3932
DBN ANN -1.2215 0.0 -1.3199 -1.1235
DBN XgBoost -1.0708 0.0 -1.1692 -0.9725
ANN XgBoost 0.1507 0.0005 0.0524 0.2491

of edges by frequency results in smaller structures.

Table 10 – Time spent during emissions forecasting considering Belgium, Germany, Portugal and Spain. The values
presented are the average ± standard deviation. The values are expressed in seconds.

Method Structure learning Parameter learning and forecasting
EDBN 1.59 ± 0.94 1.44 ± 0.33
DBN - 1.89 ± 0.63
ANN - 10.22 ± 6.92

XgBoost - 31.36 ± 26.67
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5
CONCLUSION

Nowadays, given the massive amount of data availability and the technological advance
that allows dealing with these large datasets, the discovery knowledge from data has been used
to extract useful information from time series to assist in decision-making in different areas.
Among the methods presented for dealing with time series, Bayesian Networks have been
successfully applied in different applications. Despite the improvements concerning the usability
of Bayesian networks in the last years, to go a step further this thesis presented an evolving
discrete Dynamic Bayesian Network (EDBN) by an analytical threshold for selecting directed
edges by the occurrence frequency as data is arriving. The proposed method is data-driven and
smoothly converges into a robust model that constantly adapts to the arrival of new data.

To evaluate the proposal, the first use case analyses the capability of dealing with data
imputation in time series datasets. Data imputation is considered a vital pre-processing step
due to missing values prejudice the process of data analysis causing inaccurate results. The
performance was evaluated using different mechanisms of missingness (missing completely at
random and missing not at random), using different datasets (real and simulated), and using
different missing rates (10%, 20%, 30%, and 40%).

As illustrated in the results, the proposed approach proved capable of handling data
imputation in time series datasets for different scenarios. The final DBN structure G* converges
to similar results even increasing the missing rates, evidencing that the methodology for structural
learning is robust. For the scenarios that consist in removing values in complete datasets and
comparing the inferred values generated by the method with the original ones, the observed
errors using the proposed method are less than other approaches used for comparison. Moreover,
the DBN model presents the lowest average values for all performance metrics (NRMSE, MAE,
and MedAE). For the last test consists of data imputation on all days that already have missing
values on the ENTSO-E dataset, by graphic inspection the inferred values look coherent with the
remainder of the observed values. It is possible to observe that the inferred values follow the
dynamics without outliers.
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The second use case analyses the capability of dealing with CO2 Emissions Forecasting
in Multi-Source Power Generation Systems. With an accurate prediction of carbon dioxide
emissions in multi-source systems, it is possible to act in architecture design, capacity planning,
and energy management strategies to achieve the goals regarding the management and reduction
of carbon emissions and consequently limit global warming and climate change. The performance
was evaluated using real datasets of multi-source power generation systems of Belgium, Germany,
Spain, and, Portugal.

The proposed approach was capable of dealing with CO2 emissions forecasting in
the systems evaluated in this study. Comparing the results against a traditional DBN that
not evolves the structure over time, the proposal was superior highlighting a contribution of
performance improvement. The proposed method was better when compared against ANN and
XgBoost, with the difference in performance statistically significant. Moreover, the model is
also computationally efficient, forecasting run-time in order of seconds. All these findings made
the proposed methodology a good option for embedding such an approach in CO2 emissions
forecasting fully data-drive and with real-time forecasting.

Future research includes the evaluation of the proposed EDBN in other contexts. In
forecasting problems, it is essential to see the performance in different aggregation levels, in
situations with many variables, for different forecast horizons, and to combine datasets of
different sources to enrich the investigation. Another point of future work is concerning the
selection of edges by occurrence frequency using a threshold. The system can change over time
and this change can take longer to impact the structure obtained by analysing the occurrence
frequency of edges. In other words, the system can change in a significant way and the selection
by the occurrence frequency will reject new edges because due the low occurrence frequency. The
question is how to maintain the robustness against data perturbation and at the same time make
it possible to adapt quickly to new changes in the process. The use of other algorithms during
structural learning can be a good option to improve the results and computational efficiency.
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6
DISSEMINATION ACTIVITIES

In this section, the results related to the doctoral research are presented. First, the ones
related to the presented Thesis, followed by the collaborations unrelated to this research aim.
Moreover, the collaboration as a reviewer is presented.

6.1 RELATED WITH DOCTORAL RESEARCH

∙ Journal

– Published: SANTOS, TALYSSON MANOEL DE OLIVEIRA; BESSANI,
MICHEL; NUNES DA SILVA, IVAN. Evolving Dynamic Bayesian Networks
for CO2 Emissions Forecasting in Multi-Source Power Generation Systems.
IEEE LATIN AMERICA TRANSACTIONS, v.21, p. 1022, 2023.

– Published: SANTOS, TALYSSON MANOEL DE OLIVEIRA; NUNES
DA SILVA, IVAN ; BESSANI, MICHEL. Evolving Dynamic Bayesian Net-
works by an Analytical Threshold for Dealing with Data Imputation in Time
Series Dataset. Big Data Research, v. 28, p. 100316, 2022.

– Published: BESSANI, MICHEL ; MASSIGNAN, JULIO A.D. ; SANTOS,
TALYSSON M.O. ; LONDON, JOÃO B.A. ; Maciel, Carlos D. . Multi-
ple households very short-term load forecasting using bayesian networks.
ELECTRIC POWER SYSTEMS RESEARCH, v. 189, p. 106733, 2020.

∙ International Conference

– Published: SANTOS, TALYSSON M. O.; JUNIOR, JORDAO N. O. ;
BESSANI, MICHEL ; Maciel, Carlos D. . CO Emissions Forecasting in
Multi-Source Power Generation Systems Using Dynamic Bayesian Network.
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In: 2021 IEEE International Systems Conference (SysCon), 2021, Vancouver.
2021 IEEE International Systems Conference (SysCon), 2021. p. 1.

6.2 COLLABORATIONS

∙ Chapter

– Published: SANTOS, TALYSSON M. O.; Tsukahara, Victor H. B. ; de
Oliveira, Jasiara C. ; Cota, Vinicius Rosa ; Maciel, Carlos D. . Graph Model
Evolution During Epileptic Seizures: Linear Model Approach. Communica-
tions in Computer and Information Science. 1ed.: Springer International
Publishing, 2019, v. , p. 157-170.

∙ Conference

– Published: S. S. FOGLIATTO, MATHEUS ; DESUÓ N., LUIZ ; R. M.
RIBEIRO, RAFAEL ; M. O. SANTOS, TALYSSON ; B. A. LONDON
JR., JOÃO ; BESSANI, MICHEL ; D. MACIEL, CARLOS . Time to Event
Analysis for Failure Causes in Electrical Power Distribution Systems. In:
Congresso Brasileiro de Automática 2020. Anais do Congresso Brasileiro
de Automática 2020.

– Published: NATAL, JORDÃO ; MANOEL DE OLIVEIRA SANTOS,
TALYSSON ; RODRIGUES MENDES RIBEIRO, RAFAEL ; ÁVILA, IVONETE
; MACIEL, CARLOS . Entropy: from thermodynamics to signal process-
ing. In: ANAIS DO 14o SIMPÓSIO BRASILEIRO DE AUTOMAçãO
INTELIGENTE, 2019, Ouro Preto. Anais do 14o Simpósio Brasileiro de
Automação Inteligente, 2019. v. 14.

– Published: RODRIGUES MENDES RIBEIRO, RAFAEL ; MANOEL DE
OLIVEIRA SANTOS, TALYSSON ; GROSS, TADEU ; NATAL, JORDÃO
; BATISTA TSUKAHARA, VICTOR HUGO ; MACIEL, CARLOS . AP-
PLYING PDC FOR THE RECOGNITION OF FIREARM’S CALIBRE.
In: ANAIS DO 14o SIMPóSIO BRASILEIRO DE AUTOMAçãO IN-
TELIGENTE, 2019, Ouro Preto. Anais do 14o Simpósio Brasileiro de
Automação Inteligente, 2019. v. 14.

– Published: DE SOUZA SANT’ANNA FOGLIATTO, MATHEUS ; MA-
NOEL DE OLIVEIRA SANTOS, TALYSSON ; BESSANI, MICHEL ;
MACIEL, CARLOS . Survival analysis of Electrical Power Distribution sys-
tems using Weibull Regression. In: ANAIS DO 14o SIMPÓSIO BRASILEIRO
DE AUTOMAçãO INTELIGENTE, 2019, Ouro Preto. Anais do 14o Sim-
pósio Brasileiro de Automação Inteligente, 2019. v. 14.
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6.3 REVIEWER ACTIVITIES

∙ Elsevier Measurement

∙ IEEE Latin America Transactions

∙ IEEE Access

∙ International Conference on Smart Energy Systems and Technologies: 2022

∙ Congresso Brasileiro de Automática: 2018 and 2020

∙ Simpósio Brasileiro de Automação Inteligente: 2019 and 2021
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