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ABSTRACT

JERONYMO, P. V. B. Markov Blanket Discovery without Causal Sufficiency:
Application in Credit Data. 2021. 79p. Master Dissertation - São Carlos School of
Engineering, University of São Paulo, São Carlos, 2021.

Faster feature selection algorithms become a necessity as Big Data dictates the zeitgeist.
An important class of feature selectors are Markov Blanket (MB) learning algorithms.
They are Causal Discovery algorithms that learn the local causal structure of a target
variable. A common assumption in their theoretical basis, yet often violated in practice,
is causal sufficiency. The M3B algorithm was proposed as the first to directly learn the
MB without demanding causal sufficiency. The main drawback of M3B is that it is time
inefficient, being intractable for high-dimensional inputs. Intending a faster method, we
derive the Fast Markov Blanket Discovery Algorithm (FMMB). Empirical results that
compare FMMB to M3B on the structural learning task show that FMMB outperforms
M3B in terms of time efficiency, while preserving structural accuracy given a large enough
sample size. Moreover, we introduce a new technique to aggregate bootstrapped MB
structures, that first extracts a consensus MB, than constructs the aggregated structure
as the union of the most probable path between each feature in the MB and the target.
Comparisons with the state of the art shows that the proposed aggregation has a smaller
loss of information. The analysis was conducted by using Credit-related data, with special
focus on Peer-to-Peer lending platforms. Our results validate the credit scoring models
used by these platforms as effective in identifying bad borrowers, yet still have room for
improvement. Finally, we propose an ensemble of Bayesian Network Classifiers trained
using the Cross-Entropy method. The ensemble performs better in credit scoring than
Logistic Regression and Random Forests in the selected datasets.

Keywords: Causal Discovery. Markov Blanket. Bayesian Networks. Credit.





RESUMO

JERONYMO, P. V. B. Descoberta de Markov Blankets Sem Suficiência Causal:
Aplicação em Dados de Crédito. 2021. 79p. Master Dissertation - São Carlos School
of Engineering, University of São Paulo, São Carlos, 2021.

Seleção de features com maior velocidade se torna uma necessidade conforme Big Data dita
o zeitgeist. Uma classe importante de seletores de features são algoritmos de descoberta de
Markov Blanket (MB).São algoritmos de descoberta causal que aprendem a estrutura causal
local de uma variável alvo. Uma suposição comum em sua base teórica, frequentemente
violada na prática, é a de suficiência causal: a crença de que todas as causas em comum das
variáveis que foram medidas, compondo o conjunto de dados, também estão no conjunto de
dados. Recentemente, o algoritmo M3B foi proposto. É o primeiro a aprender diretamente
o MB sem demandar suficiência causal. A maior desvantagem do M3B é sua ineficiência de
tempo, sendo intratável para entradas muito grandes. Aqui, nós derivamos o Fast Markov
Blanket Discovery Algorithm (FMMB). Resultados empíricos comparando o FMMB com o
M3B em termos de aprendizado estrutural mostram que o FMMB tem melhor desempenho
em termos de tempo, enquanto preservando a acurácia da estrutura causal dado um
tamanho amostral grande o suficiente. Além disso, nós introduzimos uma nova técnica
para agregar resultados de estruturas de MB que advém de bootstrap, que primeiro
extrai um consenso de qual é o MB, então constrói a estrutura agregada como a união
do caminho mais provável entre o alvo e as features que compõem o MB. Comparações
com o estado da arte mostram que a agregação proposta perde menos informação. As
analises foram conduzidas usando dados de crédito, com atenção especial à plataformas de
empréstimos interpessoais. Nossos resultados validam os modelos de crédito usados por
essas plataformas como efetivos na identificação de maus pagadores. Por fim, propomos
um ensemble de Classificadores Baseados em Redes Bayesianas treinado usando o Método
da Entropia Cruzada. O ensemble performou melhor em Credit Scoring do que Regressão
Linear e Random Forests nos conjuntos de dados selecionados.

Palavras-chave: Descoberta Causal. Markov Blanket. Redes Bayesianas. Crédito.
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1 INTRODUCTION

Credit scoring is of vital importance to credit bureaus and credit providers such as
banks, insurance companies and other financial institutions. A credit score is an estimation
of the ability a borrower has to repay a loan. The models developed to tackle this task
use data from previous completed loans and try to determine if a borrower has fully
repaid the loan or has defaulted (BAESENS; ROESCH; SCHEULE, 2016). Recent efforts
have been made to improve credit scoring models (ZHANG, W. et al., 2021; XIAO
et al., 2020; ZHANG, T. et al., 2018; LESSMANN et al., 2015), specially in the Peer-
to-peer (P2P) lending context, due to the public availability of data from P2P lending
platforms such as Prosper and Lending Club (MOSCATO; PICARIELLO; SPERLÍ, 2021;
MANCISIDOR et al., 2020; HOU et al., 2020; LI et al., 2017). Despite of technological
advancements, the most commonly used models by credit bureaus like Experian are linear
(EXPERIAN, 2021). A plausible argument for this preference is model interpretability.
Traditional institutions might feel less compelled to adopt more complex models such
as artificial neural networks due to their “black-box” reputation (LIPTON, 2018). An
essential aspect of improving credit models is understanding the relative importance of
the available features in predicting the causes of default. Previous research rely on linear
or lasso regression (CROUX et al., 2020; POLENA; REGNER, 2018; SERRANO-CINCA;
GUTIÉRREZ-NIETO; LÓPEZ-PALACIOS, 2015).

In this dissertation, we advocate for graphical modelling (KOLLER; FRIEDMAN,
2009). In particular, for Markov Blanket (MB) discovery. A MB is the minimum set
of features that carry all the information contained in a dataset about a target. The
concept of a MB was introduced by Pearl (1988) as part of his work on reasoning
under uncertainty, in which the theory of Bayesian Networks (BNs) is founded. BNs are
probabilistic graphical models that factor the joint probability distribution of the variables
in a system into a directed acyclic graph (DAG) (KOLLER; FRIEDMAN, 2009). MB
discovery is relevant in feature selection and local-to-global structural learning of Bayesian
Networks (RÍO; VILLANUEVA, 2021; YU; GUO, et al., 2020; WANG; LING, et al.,
2020a). Earlier applications of graphical modelling in credit scoring are limited to a few
papers (MASMOUDI; ABID; MASMOUDI, 2019; ANDERSON, 2019; LEONG, 2016;
CHANG et al., 2000). Preceding work learned the whole structure, then extracted the
MB of the target. We advocate for using algorithms that directly learn the MB. Using
non-linear measurements of dependence between the variables, such as mutual information
(BELGHAZI et al., 2018; COVER; THOMAS, 2006), we can represent the meaningful
connections between the features and the target in a graphical, interpretable manner,
while capturing facets of the data undetectable by linear methods (GLYMOUR; ZHANG;
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SPIRTES, 2019).

A fundamental assumption for graphical modelling is Faithfulness. A dataset is
faithful if its underlying probability distribution can be represented by a single graphical
model that reliably represents all the dependencies present in the data. In other works,
the faithfulness assumption is what enables graphical modelling (YU; WU, et al., 2016;
SPIRTES et al., 2000). For MB discovery, an even stronger version of this assumptions is
made. Its assumed that the underlying graphical model is a DAG ideally containing all of
the common causes between variables, being Causal Sufficient. If X is a parent of Y , then
X is a direct cause of Y . However, while the underlying DAG may be causally sufficient,
there is no guarantee that every common cause of two or more variables present in the
dataset is also in the dataset. Yet, this is often assumed by MB discovery algorithms (YU;
GUO, et al., 2020; KOLLER; FRIEDMAN, 2009).

To withdraw the causal sufficiency assumption, often violated in practice, the M3B
algorithm was proposed (YU; LIU, et al., 2018). To accommodate latent variables, it
models the underlying distribution as a Maximal Ancestral Graph (MAG), an extension
of DAGs that is capable of representing correlations and hidden common causes using
bidirected connections. In contrast to previous MAG learning algorithms such as FCI
(SPIRTES et al., 2000) and RFCI (COLOMBO et al., 2012) that required learning the
complete MAG before extracting the MB, it is the first to directly discover the MB without
assuming causal sufficiency. However, it is time demanding.

Recently, motivated by the desire for more time efficiency, we proposed the Fast
MAG Markov Blanket (FMMB) algorithm in the XXIII Brazilian Congress of Automatics
(CBA 2020) (JERONYMO; MACIEL, 2020). It adds features to the MB by directly testing
the connection between the feature and the target, in contrast to M3B’s indirect discovery,
that consists of adding new features by adjacency, aiming to preserve statistical power. In
this dissertation, a generalisation of M3B and FMMB is elaborated. We show that these
algorithms can be seen as extensions of algorithms that assume causal sufficiency. The
results demonstrate, using data from numerous areas that, given a large enough sample,
FMMB is faster than M3B with equal structural accuracy. We apply both algorithms to
analyse credit data, paying special attention to the P2P lending platforms.

We also explore the problem of combining the results of bootstrapping the algo-
rithms on the data, a crucial step in structural learning (GLYMOUR; ZHANG; SPIRTES,
2019). The stability of an algorithm can be assessed by observing the diversity of the
bootstrapped structures. Another byproduct is the estimation of probabilities for various
properties of the structure, such as occurrence of edges and nodes. It is also common prac-
tice to aggregate the bootstrapped structures to extract a single structure with meaningful
connections. Usually, it is assumed that the presence of an edge is independent of the
presence of other edges. A threshold τ representing the confidence level in the existence of
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an edge is chosen, and the aggregated structure is the union of all edges with probability
> τ . This method proposed by Friedman, Goldszmidt, and Wyner (2013) is ubiquitous
in the literature (GROSS et al., 2019; RODGERS et al., 2019; MCNALLY; HEEREN;
ROBINAUGH, 2017).

Here, we show that the structure aggregation approach universal in the literature
does not work well for MB bootstraps. To the best of our knowledge, no previous work
studied the implications of applying it to MB discovery nor proposed an alternative.
The way that MB discovery algorithms consider edges breaks the edge independence
assumption. Features included first affect the probability of inclusion of the remaining
features. In particular, algorithms that not only identify the members of the MB, but also
the structure, start by discovering the nodes adjacent to the target, then discover nodes at
greater depths (YU; GUO, et al., 2020). As there may be multiple possible paths between
a feature and the target, we experimentally show that the deeper the feature is, the more
likely it is that the algorithm will reach the same feature through distinct paths given
different bootstrap samples, diluting the frequency of occurrence of the edges. We show
that disregarding these facts by assuming total independence is too restrictive and leads to
aggregated structures with fewer nodes than the bootstraps, loosing information about the
target. We propose a two step method of aggregation. First, we aggregate by nodes, forming
a consensus of what is the most likely MB. Then, we form the aggregated structure as the
union of the most likely path between each feature in the consensus MB and the target. In
addition, we observe in the results the limitations of graphical modelling for some datasets.
If a dataset is not faithful, then there is not a unique MB, but possibly many (YU; GUO,
et al., 2020). Determining if a dataset is faithful in practice is difficult, because there is no
method that can directly measure the degree of faithfulness of data. Most advancements
are merely theoretical (WEINBERGER, 2018; SADEGHI, 2017). However we argue that
it is possible to observe signs of an unfaithful distribution. An observable consequence is a
high variability in the bootstrapped MBs, and the impossibility of reaching a consensus
MB with similar size, because not many features appear consistently.

As stated above, previous applications of graphical modelling in credit scoring
learned BNs using methods focused on general structural learning. The approach is not
only inefficient for MB discovery, but also is not optimized for the task of classifying a single
variable. We advocate for the use of Bayesian Network Classifiers (BNCs) which are a subset
of BN models specialized in classification. Here, a novel method for constructing BNCs
using the Cross-Entropy Method (CEM) combined with Bootstrap Aggregation (Bagging)
is proposed (HASTIE; TIBSHIRANI; FRIEDMAN, 2009). CEM is a Monte-Carlo program
for importance sampling and optimization (RUBINSTEIN; KROESE, 2013; DE BOER
et al., 2005). We used it to randomly generate and evaluate network structures. To the best
of our knowledge, CEM has not been used previously for learn BNs. It was chosen due to
it’s fast convergence and simplicity. This combined Monte-Carlo approach is employed to
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avoid a finer exploration of the super-exponential domain of possible structures (KLEITER,
1999). The core idea is to build an ensemble of simpler structures that together attempt to
form a good approximation of the underlying distribution. Additionally, Bagging improves
the average performance of noisy estimators (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).
We applied the algorithm in credit data for the task of credit scoring, and the results show
its potential. The algorithm will be applied to more datasets and compared with other
models. The final results will be submitted in January to the IEEE World Congress on
Computational Intelligence 2022.

Our main objective is introducing FMMB as faster method of local causal discovery,
aiming to mitigate the curse of dimensionality, imposed by the super-exponential nature
of the search space (GROSS et al., 2019; CAMPOS, 2006; KOLLER; FRIEDMAN, 2009).
The secondary goal is analysing the applicability of causal discovery to credit data. A
minor, yet related, objective is to explore the applicability of Bayesian Networks in the
task of credit scoring, realized by introducing the CEM trained BNC.

This dissertation is organized as follows. Ch. 2 covers concepts from Probability
and Statistics, Information Theory, Bayesian Networks, and other Probabilistic Graphical
Models. We mix concepts from the literature with our own definitions. Ch. 3 introduces
the FMMB algorithm and compares it with M3B, also bringing the proposed aggregation
method. Furthermore, it presents the method for creating a BNC emsemble using CEM.
Ch. 4 discusses the results obtained by applying the methods to credit-related datasets.
Finally, Ch. 5 concludes the dissertation, highlighting the main contributions to Bayesian
Networks, MB Discovery, and Credit Scoring.
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2 THEORY AND DEFINITIONS

2.1 Probability and Information Theory

2.1.1 Conditional Independence

The universe, i.e. the set of all variable in the system, is denoted as U . Two
variables X, Y ∈ U are conditionally independent given a set of observed variables Z,
denoted X ⊥⊥ Y | Z, if the joint probability distribution p(x, y | z) of X and Y given Z
can be factored as p(x | z) · p(y | z). On the other hand, if X and Y are not conditionally
independent, we denote X ⊥̸⊥ Y | Z.

2.1.2 Beta and Dirichlet Distributions

The Dirichlet distribution generalizes a Beta distribution for K ≥ 2 categories,
being the conjugate prior of the Multinomial. It has support over the open (K-1)–simplex
S = {(Θ1, ..., ΘK) | Θi > 0 ∧∑K

i=1 Θi = 1} and probability density function (PDF)

f(Θ1, ..., ΘK ; mi, ..., mK) = 1
B(m)

K∏
i=1

Θmi−1
i (2.1)

where B(m) =
∏K

i=1 Γ(mi)
Γ(

∑K

i=1 mi)
and m = [m1, ..., mK ], mi > 0 are the concentration parameters.

If {mi = 1}, the distribution generates uniform samples over its support, and {mi = 1/2}
is the Jeffreys prior (AGRESTI, 2003). Let m = ∑K

i=1 mi be called the effective sample
size (COOPER; HERSKOVITS, 1992). An alternative parameterization for the Dirichlet
distribution is

Θ = ⟨Θ1, ..., ΘK⟩ ∼ Dir(m; Θ̄1, ..., Θ̄K) (2.2)

where Θ̄i = E(Θi) = mi/m . If K = 2, since Θ1 + Θ2 = 1, let Θ1 = Θ and Θ2 = 1−Θ.
The Dirichlet reduces to a Beta distribution over Θ with parameters ν = m1 + m2 and
µ = m1/ν. Moreover, the variance can be expressed as

var(Θ) = µ(1− µ)
1 + ν

(2.3)

2.1.3 Mutual Information

Mutual information (MI) is an information theoretical quantity that quantifies the
degree of dependence between two variables X and Y , denoted as I(X, Y ). If the variables
are independent, then I(X, Y ) = 0, whereas if the value of Y is completely determined
if X is known, then I(X, Y ) is maximal. The normalized mutual information (NMI) is
defined in Eq. 2.4, where H(·) is the Shannon entropy. It has values in the interval [0, 1]
(COVER; THOMAS, 2006).
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NMI(X, Y ) = I(X, Y )
min{H(X), H(Y )} (2.4)

2.2 Probabilistic Graphical Models

2.2.1 Structural Learning and Conditional Independence Testing

The task of learning a graphical model that represents the conditional independence
relationships in the data is known as structural learning. Two important classes of structural
learning algorithms are those based on maximizing a score, i.e. the likelihood of the data
given the structure, and those based on conditional independence tests (CITs) (CAMPOS,
2006). A complementary approach is expert elicitation (CHEN; POLLINO, 2012). Here,
we focus on CIT based discovery. A commonly adopted CIT for discrete variables is the G-
squared. The G2 statistic is proportional to the empirical measure of MI: G2 = 2NÎ(X, Y )
where N is the sample size. Under the null hypothesis, the statistic has a asymptotic chi-
squared distribution with degrees of freedom (dof) equal to (rX−1)(rY −1) where rX is the
number of states of the variable X. Under the alternative hypothesis, the statistic assumes
a asymptotic non-central chi-squared distribution with the same dof and non-centrality
parameter proportional to the actual MI between the two variables: λ = 2NI(X, Y ), i.e.
the mutual information is calculated replacing the probabilities estimated from the sample
with the population values. Fig. 1 gives an example of the test’s workings (MCDONALD,
2009; AGRESTI, 2003; KULLBACK, 1997).

2.2.2 Intuition for the implications of the lack of causal sufficiency

Fig. 2 illustrates a hypothetical scenario useful for understanding the implications
of assuming causal sufficiency of the data. Imagine a patient arriving at the doctor with
Symptom 1. From the health history and genetic factors of the patient, the most likely cause
is Disease A. However, given the intensity of Symptom 1, unusual for A, but commonly
caused by Disease B, the doctor asks if the patient has Symptom 2, often manifested by
patients with B, but not caused by A. The response is positive. However, to complicate
matters, Symptom 2 may also be caused by a wide range of seasonal diseases such as
Disease C, common during the winter. The doctor asks if the patient was sick with C
recently, also receiving a positive response. This vastly decreases the chance that the
patient has B, and further increases the belief that A is the cause of 1. A medical exam that
tests for A was requested. The positive result made Disease A 99% likely. The fact that
the prompt diagnose of Disease B is not possible, makes the knowledge about Symptom
2 and Disease C affect the diagnose of 1, consequently affecting the probability of A, as
shown in Fig. 2b and 2c. If the answer to the question “Does the patient have Disease B?”
was immediately available, the doctor would not have to ask about Symptom 2 or Disease
C, as in Fig. 2a.
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Figure 1 – Example of G-squared test with dof = 12, significance level α = 0.5 and
power = 80%. The orange shaded area is the probability of a Type II error
β = 1− power. The mean of the chi-squared distribution is equal to dof , and
the mean of the noncentral chi-squared is equal to dof plus the effect size, or
non-centrality parameter, λ. If the G2 statistic calculated for the sample is
greater then the critical value Cα, the null hypothesis is rejected.

If presented with a dataset containing i.i.d. samples of the variables generated by
the underlying DAG of Fig. 2a, but lacking a column that indicates the presence of Disease
B, as in Fig. 2b, an algorithm assuming the causal sufficiency of the data will find the
relationship between Symptom 1 and Symptom 2, as represented in Fig. 2c, because it is
not possible to separate 2 from A without observing B. Yet, because it is expecting causal
sufficiency, it will treat 2 as a cause of A, and will never search for Disease C, thus missing
variables from the MB. The root of the mistake is the collider connection. It is a type of
connection that happens when there is variable X that is only connected to the target T

when some other variable Y is observed. If the collider connection between X and T is
detected in a causally sufficient dataset, the only possibility is that X and T are common
causes of Y (KOLLER; FRIEDMAN, 2009). Because Disease A and B form a collider
with Symptom 1, whether the patient has B affects the diagnose of A. But if Symptom 1
was not present, since the diseases are independent from each other, knowing B would not
bring any information about A. However, if B is not observable, the algorithm will think
that Symptom 2 and Disease A are common causes of Symptom 1, because 2 is collider
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(a)

(b)

(c)

Figure 2 – (a) Markov Blanket of Disease A shaded in blue and (b) induced Markov
Blanket of Disease A when hiding Disease B, composed of blue and green
shaded nodes. Because Disease B can no longer be observed, Disease C and
Symptom 2 influence Disease A through Symptom 1 (c) If Disease B is omitted,
e.g. because of a lack of knowledge of its presence, the relationship between
Symptom 1 and Symptom 2 is represented by a bidirected connection, indicating
a correlation, and hinting a possible hidden common cause.

connected to A through 1.

2.2.3 Preceding work in MB discovery

The MB was established as the optimal subset of features in the seminal paper of
Koller and Sahami (1996), gathering interest in the Feature Selection community. Estimat-
ing the MB of a target became feasible after Margaritis and Thrun (2000) proposed the
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first tractable solution, the Grow-Shrink (GS) algorithm, using CITs for variable selection.
First, it grows a candidate set of features by testing association with the target. Then,
it shrinks the candidates removing false positives. Since GS, IAMB (TSAMARDINOS;
ALIFERIS, 2003) and variants (Tsamardinos, Aliferis, Statnikov, and Statnikov (2003),
Yaramakala and Margaritis (2005) and Yang et al. (2019) among others) improved on
these ideas, forming the family of simultaneous algorithms.

Pena et al. (2007) showed that simultaneous algorithms are not data efficient.
The amount of data required to maintain the power of the CITs can sometimes surpass
the size of the dataset, as the conditioning set grows proportional to the candidate set.
Another drawback is that they do not differentiate immediate causes from variables
that are connected through colliders. To overcome these limitations, divide-and-conquer
algorithms were proposed, the pioneer being the MMMB algorithm (TSAMARDINOS;
ALIFERIS; STATNIKOV, 2003). They first learn the adjacent variables to the target T ,
then repeat the procedure, assigning each variable X adjacent to T as the new target.
The collider connection with T is tested for each candidate Y that is adjacent to X,
eliminating false positives, such as any descendant of X. This strategy reduces the sample
size requirements at the expense of a greater time complexity. A theoretical framework
and broad experimental evaluation for this family of algorithms was given in Aliferis et al.
(2010a) and Aliferis et al. (2010b).

Combining the strategies of simultaneous and divide-and-conquer algorithms to
derive a method capable of simultaneously learning the MB while distinguishing the
structure, the EEMB algorithm is among the latest developments in this line of research
(WANG; LING, et al., 2020b). An extensive review on MB learning algorithms is found in
Yu, Guo, et al. (2020).

2.2.4 Graphical models learned by CIT based MB discovery algorithms

Table 1 – Edge types present in the graphical models learned by MB discovery algorithms.
The arrowheads express our current knowledge about the relationship between
the nodes connected by the edge.

Edge Type Interpretation

X → Y X is a cause of Y ;
X ↔ Y X and Y are correlated, and may share a hidden common cause;
X◦→ Y Either X is a cause of Y , or X and Y are correlated, and may share a hidden common cause;

X ◦−◦ Y Any of the above may apply.

Tab. 1 shows the symbols used to represent connections in graphical models learned
by MB discovery and their interpretations. In practice, edges of the type X → Y , that
express total knowledge about the relationship, are not possible to learn from pure
observational data, needing the incorporation of domain knowledge or the realization of
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Figure 3 – Example of MB. The target is in orange. The nodes in blue are discovered by
algorithms that assume causal sufficiency, while the nodes in green are only
discovered by algorithms that do not assume causal sufficiency. The nodes in
red are not part of the MB.

interventional experiments (SHEN et al., 2020; MEGANCK; LERAY; MANDERICK,
2007; SPIRTES et al., 2000).

A path µ is a sequence of adjacent nodes in a graph [X1, X2, ..., Xn], or equivalently,
a sequence of edges [e1, e2, ..., en−1] connecting the nodes. A collider in a path is a variable
Xi that has connections of the type Xi−1◦→ Xi ←◦Xi+1. It entails that Xi−1 and Xi+1

are only connected through this path when Xi is observed. FMMB and M3B search for
members of the MB by building collider paths between the target and the features. A
collider path is a path in which every node except the endpoints are a collider, e.g. in the
path X1◦→ X2 ↔ X3 ←◦X4 there are two colliders, X2 and X3, connecting the endpoints
X1 and X4 (RICHARDSON; SPIRTES, et al., 2002). In Fig. 3, [T, E, F, K, M ] is a path
between M and T where E and F are colliders. The path [T, E, F, K, M ] is not a collider
path because M does not form a collider with its neighbour F , however the sub-path
[T, E, F, K] is a collider path, as well as the path [T, C, D]. A path µ connects X and Y

given Z if every non-collider in µ is not in Z, and every collider on µ either observed or
is an ancestor of some node in Z. If ∀X ∈ X and ∀Y ∈ Y all paths between X and Y

are not connected given Z, then Z separates X and Y. If Z separates X and Y then Z
is called a sepset or separator of X and Y . Denoted as σ(X, Y ) = Z (RICHARDSON;
SPIRTES, et al., 2002). In our example, that means that T and M are connected if:

1. Both E and F are observed and K is not observed;

2. E and a subset of {O, N} are observed, and K is not observed. That is because F is
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an ancestor of O and N , the collider is activate when either is observed.

Definition 1 (Depth of a node) The depth of a node is equal to the length of the
shortest collider path between X and T plus one. If a variable is adjacent to the target, we
define its collider path to be the empty path µ = [ ].

The structure defining a MB can be decomposed into the collider paths connecting
each of the variables in the MB and the target (YU; LIU, et al., 2018). We define the
depth of a node X in relation to the target T as of Def. 1. Algorithms that assume
causal sufficiency are able to detect every member of the MB with depth ≤ 2, whereas
algorithms that do not assume causal sufficiency can detect members at any depth (YU;
LIU, et al., 2018). We denote the set of all nodes adjacent to a target T as Adj(T ). In
Fig. 3, when a subset of {B, J} is observed, and E is not observed, F is separated from T .
Since B ∈ Adj(T ), a discovery algorithm will separate F from T , excluding it from the
candidates for Adj(T ). It will assign σ(T, F ) = {B}. When discovering nodes at depth 2,
it will find the node F through the path [T, E, F ], the only active path between F and
the target when Adj(T ) is known. The depth of F is therefore 2.

Formally, the graphical model that a discovery algorithm that do not assume causal
sufficiency outputs “is a complete partial ancestral graph (CPAG), representing the Markov
equivalence class of MAGs consistent with the data” – Meganck, Leray, and Manderick
(2007). In a CPAG, we have to interpret the directed edges as ancestral relationships instead
of immediate causal relationships. That means that if X◦→ Y then X is an ancestor of Y

in the underlying DAG with all the causes observable, but X is not necessarily adjacent
to Y in the DAG. To make causal inferences from these models, one first needs to convert
the CPAG to a representation suitable for causal inference, where every directed edge
does represent an immediate cause, and orient the necessary edges using interventional
experiments. Meganck, Leray, and Manderick (2007) describe the procedure in detail.

2.2.5 MB discovery through the lens of Information Theory

Although the mutual information is not an addictive measurement, meaning that
I(X, {Y, Z}) ̸= I(X, Y )+I(X, Z), a basic yet essential property is the chain rule of mutual
information. It states that the MI between X and {Y, Z} equals the information that Y

has about X when solely observed plus the additional information that Z has about X

given that we already know Y , formally expressed in Eq. (2.5).

I(X, {Y, Z}) = I(X, Y ) + I(X, Z | Y ) (2.5)

The data processing inequality, that can be derived using the chain rule, says
that if there is a mediator between two nodes, than the mutual information between the
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endpoints is less than or equal to the mutual information between each endpoint and the
mediator. That is, if X ◦−◦ Y ◦−◦ Z, then I(X, Z) ≤ min{I(X, Y ), I(Y, Z)} (COVER;
THOMAS, 2006). A corollary of the data processing inequality is that the connection
strength is monotonically non-increasing with the distance between the nodes. The greater
the connection strength, the more likely is adjacency to the target. As the Adj(T ) contains
all the nodes that cannot be separated from the target, the connection strength between
X ̸∈ Adj(T ) and T has to be smaller than the connection between the subset S ⊆ Adj(T )
that mediates the relationship between X and T . In a sense, a variable X that is part of
the MB but is not adjacent to the target can be viewed as attached to a subset S of the
adjacent variables, increasing the information that S have about the target. Moreover the
increment of information between T and S that is gained when observing X is precisely
the mutual information between X and T conditioned by the already known variables.
This theorem (Thm. 1) is easily proved using the chain rule of mutual information (Proof
1).

Theorem 1 If X is part of the MB of a target T but is not adjacent to T , then when
observed it increases the mutual information between T and S , where S ⊆ Adj(T ) is the
mediator between X and T .

Proof 1 If X ̸∈ Adj(T ), then it has a sepset σ(X, T ) ⊆ Adj(T ) \ S. Given that σ(X, T )
is observed, we can expand the MI between T and S in two different ways:

1. I(T, S | σ(X, T )) = I(T, S | σ(X, T )) + I(T, X | S, σ(X, T ))

2. I(T, S | σ(X, T )) =
����������: 0

I(T, X | σ(X, T )) + I(T, S | X, σ(X, T ))

The term I(T, X | σ(X, T )) is canceled by the definition of a separator. The
simplified equation expresses that adding a node and the separator of the node to the
observed variables has a net effect of zero information gain. From equating the expansions
is follows that

I(T, S | X, σ(X, T )) = I(T, S | σ(X, T )) + I(T, X | S, σ(X, T ))
⇒ I(T, S | X, σ(X, T )) ≥ I(T, S | σ(X, T )) ■

We define the attached set of a target T , denoted Att(T ), as the set of all members
of the MB that are not adjancent to the target. Since every attached variable has to
be connected to T through at least one collider path constituted of other MB members,
we define the attached set of the MB as in Def. 2. Of course, an attached variable can
be connected to T by many paths µi, being a member of every AttT [µi]. And, from the
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Figure 4 – A Bayesian Network representing the factorization P (U) = P (A) · P (B |
A) · P (C | A) · P (D | B, C). Two of the four CPDs (with fictitious values) are
displayed along with the structure.

definitions just made and fact the union of all collider paths form the MB, it is also true
that ⋃

µ AttT [µ] = AttT , and MB(T ) = Adj(T ) ∪AttT .

Definition 2 (Attached Set) The attached set AttT [µ] ⊆ AttT is the set of all X ∈
AttT \ µ that are connected to T given µ, where [T ] + µ + [X] is a collider path and the
path µ is a nonempty subset of MB(T ).

2.3 Bayesian Networks

Formally, a BN is a factorization of a system’s joint probability distribution that
is represented as a pair ⟨G, Θ⟩ where G is a directed acyclic graph (DAG) that encodes
the conditional independence relations between the system’s variables U , assuming the
Markov Condition: every X ∈ U is independent of all non-descendants given it’s parents.
This DAG is called the structure of the BN, and Θ is the set of conditional probability
distributions (CPDs) associated with each variable in U . Fig. 4 shows an example of a BN.

BNs accommodate discrete and continuous variables, but most of the applications
revolve around the discrete case. Usually, when dealing with Hybrid models, the contin-
uous variables are discretized. However it requires managing the trade-off between the
accuracy of the approximation and computational cost incurred by a finer-grained binning
(FRIEDMAN; GOLDSZMIDT, et al., 1996). Moreover, discretization acts as a low-pass
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filter, when correctly applied, reducing signal-to-noise ratio (PROAKIS; MANOLAKIS,
2004).

2.3.1 Parameter learning

The parameterization of a discrete BN can be expressed as Θ = {ΘX|f}(X,f) where
ΘX|f = [ΘX=x1|f, ..., ΘX=xK |f] and f is some instantiation of the parents F of X. For example,
in the BN of Fig. 4, ΘD|B=1,C=T = [0.13, 0.87]. Consider a structure G and a dataset D
consisting of N samples of P (U). Let F be the parents of X ∈ U and NX=xi|f denote the
number of times X = xi and F = f occurred simultaneously in D. It is common practice to
impose Dirichlet priors ΘX|f ∼ Dir(m1, ..., mK) and assume D is Multinomial (KOLLER;
FRIEDMAN, 2009). In this case, the posteriors are Dir(m1 + NX=x1|f, ..., mK + NX=xK |f)
because the Dirichlet is the conjugate prior of the Multinomial distribution (AGRESTI,
2003). For example, let X have one parent Y , the prior for ΘX|Y =1 be Dir(1, 1), suppose
(X = 0, Y = 1) occurred 10 times and (X = 1, Y = 1) occurred 4 times. The resulting
posterior is Dir(11, 5).

2.3.2 Inference

The simplest approach to answer probabilistic queries in BNs, is to use the Variable
Elimination (VE) algorithm. The main idea of VE is marginalizing one variable at a time
in the factorization, e.g. to answer the query P (B | D = T ) in the BN of Fig. 4, one might
compute

P (B | D = T ) ∝
∑
A,C

P (A, B, C, D = T )

=
∑
A,C

P (A)P (B | A)P (C | A)P (D = T | B, C)

=
∑
A

P (A)P (B | A)
∑
C

P (C | A)P (D = T | B, C)

=
∑
A

P (A)P (B | A)
∑
C

ϕ(A, B, C)

=
∑
A

P (A)P (B | A)τ(A, B)

=
∑
A

ϕ(A, B)

= τ(B)

where the τ ’s and ϕ’s denote factors, generalizations of discrete CPDs that allow values
greater then 1, being useful for postponing normalization until when necessary. After
normalizing τ(B) one gets P (B | D = T ). Refer to Koller and Friedman (2009, p. 287) for
a detailed explanation.
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2.3.3 Bayesian Network Classifiers

There are many BNCs (BIELZA; LARRAÑAGA, 2014). The simplest among them
is the Naive Bayes (NB) model (MARON; KUHNS, 1960), popular in text classification
(EYHERAMENDY; LEWIS; MADIGAN, 2003; CHEN; HUANG, et al., 2009) and spam
filtering (METSIS; ANDROUTSOPOULOS; PALIOURAS, 2006). It assumes the predictors
Xi ∈ X to be conditionally independent given the class C. (FRIEDMAN; GEIGER;
GOLDSZMIDT, 1997) proposed relaxing this strong assumption about independence by
extending NB with augmenting edges between predictors. If the structure of augmenting
edges form a tree, it characterizes the Tree Augmented NB (TAN) classifier. Generally, the
augmented structure can form any DAG, composing BN Augmented NB (BAN) classifiers.
Fig. 5 exemplifies each variety.

(a) NB
(b) TAN (c) BAN

Figure 5 – Varieties of Naive Bayes
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3 MATERIAL AND METHODS

In sec. 3.1, the contrast is made between direct and indirect discovery strategies by
comparing FMMB with the state of the art, M3B, in MB discovery and as feature selection
methods. We apply the algorithms to synthetic and real-world data. Then, in sec. 3.2 we
discuss how to bootstrap FMMB and M3B using credit dat, and describe our proposed
aggregation method. Finally, sec. 3.3 showcases how BNs can be used as a classifier for
credit scoring, describing how to construct a BNC using CEM.

An information theoretical way of determining which discovered MB has the most
information about a target T would be to directly measure the I(T, MB(T )). Unfortunately,
if the MB is too large, the number of samples required to accurately measure mutual
information becomes prohibitive (KULLBACK, 1997). Since the Bayes error rate is bounded
above and bellow by functions of mutual information (VERGARA; ESTÉVEZ, 2014),
classification performance using the MB as predictors is a feasible proxy for comparing
MB discovery algorithms (YU; GUO, et al., 2020). We use the area under the receiver
operating characteristic curve (AUC) as the classification performance metric, as it is
independent of the decision threshold and preferable for imbalanced datasets (LEE, 2019;
FAWCETT, 2006). We use the G2 CIT with a 0.01 significance level. Because this test is
based on contingency tables, it is susceptible to loss of statistical power when the tables
cannot be sufficiently populated, due to a large conditioning set or too few samples. In
order to mitigate these issues, two heuristics presented in Aliferis et al. (2010a) were
adopted. We limited the size of the conditioning set to a maximum of max-k variables,
and assumed independence if the ratio of samples to cells in the contingency tables is
smaller than a constant named h-ps. The only exception where the max-k heuristic is not
applied is when FMMB searches for candidates. Experiments used the values max-k = 5
and h-ps = 30, based on the results of Aliferis et al. (2010a) and Aliferis et al. (2010b).
Furthermore, the maximum depth was limited to 3 in both algorithms. Algorithms were
implemented in Python 3, and experiments were conducted using an AWS EC2 c5.2xlarge
instance running Amazon Linux. It is a high-performance computing machine, with 16GB
of RAM and an Intel Xeon Platinum 8124M CPU @ 3.00GHz processor.

3.1 MB discovery without causal sufficiency

3.1.1 The FMMB algorithm

Here, we show that M3B is an extension of the IPCMB algorithm (FU; DES-
MARAIS, 2008), and that MB algorithms that do not assume causal sufficiency can be
build by extending algorithms that assume sufficiency. At the same time, we define the
Fast MAG Markov Blanket (FMMB) algorithm as an extension of EEMB (WANG; LING,
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et al., 2020b).

We derived a generalized procedure that the algorithms use to discover nodes at
depth d presented in Alg. 1, also illustrated it in Fig. 6. These algorithms discover, in depth
first search (DFS) fashion, members of the MB at depths ≥ 2 starting from the structure
already discovered by the base algorithm. Alg. 2 formalizes the employed DFS procedure.
The differences between the algorithms lie in the inclusion and exclusion criteria they
use to select and filter candidates. The criteria differentiating the algorithms are in Tab.
2. M3B uses a subroutine Discover-Adj that is the same procedure used by IPCMB to
learn the nodes at depths 0 and 1. Discover-Adj selects as candidates every node that
is connected to the target when no other nodes are observed. It than filters a candidate
X if it can find a sepset σ(X, T ) among the other candidates (YU; LIU, et al., 2018; FU;
DESMARAIS, 2008). If we follow M3B’s algorithm as defined by Yu, Liu, et al. (2018)
and stop the search at depth 2, M3B is equivalent to IPCMB. The exclusion criterion
of FMMB and Discover-Adj in do not tell how the sepsets are found. The standard
procedure in the literature and the way it as implemented in this work is as follows: Sort
the candidates by connection strength with the target. Pick the candidates with the least
connection strength first. Iterate through the powerset of all candidates minus the current
candidate at consideration, in ascending subset size, and starting with the subsets that
contain candidates with the most connection strength (YU; GUO, et al., 2020). This way,
it is more likely that the false positives will be removed first, because of the data processing
inequality, that guaranties that the connection strength of a node X that is not part of
the MB is smaller than the connection strength between the target and the sepset of X.
The EMMB algorithm as a base algorithm, and the unique extension procedure created
by combining Alg. 1 and Alg. 2 with the criteria in Tab. 2, define the FMMB algorithm.

Now we give an example of how both algorithms would discover the nodes at depth
2 in Fig. 3, provided that a base algorithm already discovered the nodes at depths 0
and 1. FMMB searches the path µ1 = [T, C, D] and does not discover any candidates.
Then, it searches µ2 = [T, E, F ]. It discovers the true positives J and K, and the false
candidates L, M . Since they connect to T through the path µ2 + [K]. On the other hand,
{N, O} are never considered as candidates, because they are children of F , therefore are
separated when F is observed. FMMB then filters L and M from the candidates, because
they are separated from T when K is observed (X ⊥⊥ T | µ2 ∪ σ(X, T ) ∪ {K}, where
σ(X, T ) = ∅, ∀X ∈ {L, M}). When searching µ1, M3B calls Discover-Adj(D) and does
not find any candidates as well. Then, it searches µ2, calling Discover-Adj(F). The nodes
{J, K, N, O} are considered as candidates, because they are adjacent to F . However, {L, }
were already eliminated by Discover-Adj(F) because they are independent of F given
K. During the filter step, M3B asserts that J and K form a collider with F and E and
eliminates {N, O} because they fail to do so.
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Algoritmo 1: Discover-Att
Inputs :

T : Target
µ: Collider Path

Output : AttT [µ]: attached set of T given µ
/* Initialization */

1 N ← Search-Space (T, µ)
2 C ← ∅; A ← ∅; E ← ∅

/* Discover candidates */
3 for X ∈ N do
4 N ← N \ {X}
5 if Inclusion-Criteria(X, T, µ) is true then
6 C ← C ∪ {X}
7 else
8 E ← E ∪ {X}
9 end

10 end
/* Filter candidates */

11 for X ∈ C do
12 C ← C \ {X}
13 if Exclusion-Criteria(X, T, µ) is true then
14 E ← E ∪ {X}
15 else
16 A ← A∪ {X}
17 end
18 end
19 return A

Algoritmo 2: DFS-Att-Discovery
Inputs : T : Target, µ: Collider Path

1 AttT [µ]← Discover-Att(T, µ)
2 for X ∈ AttT [µ] do
3 DFS-Att-Discovery(T, µ + [X])
4 end

3.1.2 Validation tests

To assess the ability of the proposed method to learn causal structures, two test
cases (TCs) were elaborated using the Alarm Bayesian Network (BEINLICH et al., 1989).
The experiment verifies that FMMB works as intended by applying it to data sampled
from a distribution with a know underlying DAG. Fig. 7 displays Alarm’s structure.
TC 1 consists of discovering the MB of "VTUB" when "INT" and "PMB" are hidden.
TC 2 is finding MB of "HR" where "HYP" and "STKV" are hidden, and the connection
between "LVF" and "STKV" is removed (indicated by the dashed edge), making "LVF"
only detectable at depth 2 through the path ["HR", "CO", "LVV", "LVF"]. Fig. 8 shows the



38

Table 2 – Criteria for selecting variables as part of the MB that define each discovery
algorithm.

Algorithm Inclusion Criteria Exclusion Criteria Search Space

Discover-Adj X ⊥̸⊥ T | ∅ ∃S ⊆ A ∪ C \ {X}, X ⊥⊥ T | S U \ {T}
M3B X ∈ Discover-Adj(Ym, [ ])† X ⊥⊥ Ym−1 | Ym ∪ σ(X, Ym−1)† –

FMMB X ⊥̸⊥ T | µ ∪ σ(X, T ) ∃S ⊆ A ∪ C \ {X}, X ⊥⊥ T | µ ∪ σ(X, T ) ∪ S U \ ({T} ∪Adj(T ) ∪ µ)
† µ = [Y1, ..., Ym−1, Ym]

Figure 6 – Depiction of the states a node passed during the Discover-Att algorithm: not
visited (N ), candidate (C), admitted ((A), or excluded (E).

correct structures of TC 1 and 2. The standard metrics were applied:

• Precision: the number of true positives in the output of the algorithm divided by
the total size of the output of the algorithm. This measures the false positive rate in
the output;

• Recall: the number of true positives in the output of the algorithm divided by the
size of the true MB of the target. This reports the true positive rate in the output;

• F1: f1 = 2∗precision∗recall/(precision+recall) is the harmonic mean of precision
and recall.

• CITs: total number of CITs conducted;

• Runtime: elapsed time of execution.

3.1.3 Feature selection experiment

As this class of algorithms were originally developed as tools for feature selection, a
classification comparison after applying FMMB and M3B in ten real-world datasets is pre-
sented. Datasets were selected from the UCI Machine Learning Repository (DUA; GRAFF,
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Figure 7 – Alarm, a well-known network designed for monitoring patients in intensive care
unit, commonly used as a benchmark. From its structure, test cases (TCs) were
elaborated for validating the proposed algorithm. For each test case, a node
was selected as target and other nodes were hidden in order to violate causal
sufficiency. The target nodes are shaded in orange and the hidden nodes are
shaded in blue. The dashed arrow between "LVF" and "STKV" indicates that
the connection is present in the original network, but was removed to create
the test cases.

2017) and the KEEL dataset repository (ALCALÁ-FDEZ, 2011). Tab. 3 summarizes their
characteristics. Naive Bayes (NB) and Gradient Boosted Decision Trees (GBDT) (KE
et al., 2017) were chosen as classifiers due to NB’s simplicity and GBDT’s native capacity
to handle mixed data types, as the selected datasets are comprised of categorical, integer,
and continuous variables.

3.2 Aggregation of MB bootstraps and Application in Credit Data

3.2.1 Proposed Aggregation Method

The proposed method consists of first achieving a consensus in terms of nodes from
the bootstrapped MBs, then constructing the aggregated structure from the union of the
edges that form the most probable path µ⋆ between the target T and each feature X,
where µ⋆ is defined in Eq. (3.1).
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(a) Test Case 1: MB of "VTUB" when hiding "INT" and "PMB". There are also new bidirected
connections between "PRSS" and every variable in {"VALV", "MINV", "VLNG"} that are not
shown in the figure.

(b) Test Case 2: MB of "VTUB" when "HYP" and "STKV" are hidden, and "LVF" → "STKV" is
removed.

Figure 8 – Correct structure of each test case created from the Alarm Network. The nodes
in green only become members of the MB when the mentioned variables are
hidden, while the nodes in blue are also part of the MB when all the variables
are observable. Likewise, the arrows in green indicate connections that only
appear in the MAG.

µ⋆ = arg max
µ

∏
e∈µ

p(e) (3.1)

Finding the most probable path is easily solvable using Dijkstra’s algorithm by
transforming the problem of searching for the path with the greatest product of probabilities
into a shortest path problem (CORMEN et al., 2009). This is accomplished by applying
the map p 7→ − log(p) to the edge probabilities.

We consider two techniques to reach consensus. The first is modelling the proba-
bilities of occurrence of features in the bootstrapped MBs as independent of each other
and using a threshold τ to select features with frequency of occurrence > τ . Scutari and
Nagarajan (2013) have pointed out that most of the thresholds chosen in the literature
are arbitrary, and proposed a statistically motivated threshold. Using the order statistics
of the frequency of occurrence of edges, the method consists of solving for a threshold that
minimizes the loss between the observed values and the theoretically optimal network. We
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Table 3 – Summary of datasets used in feature selection experiment.

Dataset Features Samples
spect 22 267
spectf 44 267
splice 60 3190
chess 36 3196

mushroom 22 8124
polish 58 41340

connect-4 42 67557
kddcup99 39 100655

census 41 299285
covertype 54 581012

adapted Scutari’s method by using the order statistics of the probability of occurrence of
the nodes, instead of edges. The second is Hamming Clustering (HC) (WANG; PENG, 2014;
GASIENIEC; JANSSON; LINGAS, 2004). It is realized by transforming the bootstrapped
MBs to a set S of binary strings in which the ith bit indicates the presence of the ith

feature in the MB, following an arbitrary but fixed ordering. The simplest HC technique
is finding a consensus string that has the minimum Hamming distance (MHD) to every
other string in S. Formally, given a norm ν, the consensus string s⋆ is the answer to the
minimization problem expressed in Eq. (3.2), where dH denotes the Hamming distance
(BULTEAU; SCHMID, 2020; CHEN; HERMELIN; SORGE, 2018).

s⋆ = arg min
s′

∑
s∈S

dν
H(s, s′)

1/ν

(3.2)

We compare aggregation by nodes with aggregation by edges, testing Scutari’s
and MHD thresholds for each aggregation strategy. It is easy to show that for ν = 1 the
problem is reduced to selecting the most frequent bit value at each position, which is
equivalent to the first aggregation method with τ = 0.5. We also tested ν = 2 and ν =∞,
but did not find any significant differences in the results. Thus, opted for the simplest
approach, ν = 1. Similarly, using MHD to aggregate by edges is reduced to selecting edges
with frequency of occurrence > 50%.

3.2.2 Experimental design

Fig. 9 is a flowchart of the whole process, from data preprocessing to result
generation. During preprocessing, only completed loans were considered. Features with
more than 85% of missing values were dropped, and then, remaining entries with missing
values were dropped. The preprocessed datasets were split into 70% training and 30% testing
portions. The training portion was used for MB learning and classifier fitting. The test
portion was used to measure classification performance. We measured the performance of
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Figure 9 – Flowchart of the experimental design for studying aggregation methods.

Table 4 – Characteristics of credit datasets after preprocessing.

Dataset Target Features Samples

Lending Club Loan Default 29 1.74× 106

Prosper Loan Default 50 4.14× 104

PAKDD 2009 Credit Card Default 20 4.00× 104

Taiwan Credit Card Default 23 3.00× 104

Polish Bankruptcy 58 4.13× 104

the aggregated structure for each of the aggregation methods, and also of each bootstrapped
structure, for FMMB and M3B. We tested Logistic Regression (LR), Support Vector
Machine (SVM), Multilayer Perceptron (MLP), Gradient Boosted Decision Trees (GBDT),
and Random Forests (RF) as classifiers, but chose GBDT because it achieved the best
classification performance overall, does not require much data processing, and is well suited
for mixed datasets (KE et al., 2017; HASTIE; TIBSHIRANI; FRIEDMAN, 2009). For each
run, we generated 30 bootstraps of the data with 10% of the size of the original dataset.
The hyper-parameters were chosen following best practices (HASTIE; TIBSHIRANI;
FRIEDMAN, 2009).

3.2.3 Data description

Five publicly available credit related datasets were gathered. The Polish dataset,
also present whose associated task is to predict the bankruptcy of Polish companies, is
available at the UCI Machine Learning Repository. Also available at UCI is the Taiwan
dataset, whose task is the prediction of the default of credit card clients in Taiwan. The
PAKDD 2009 dataset was provided during the PAKDD 2009 Data Mining Competition,
with the goal of predicting the default of clients of a private label credit card of a major
Brazilian retail chain. The Prosper data are provided by Udacity as part of their Data
Analyst Nanodegree. Lastly, the Lending Club data, ranging from 2007 to 2020, are available
at Kaggle 1. Tab. 4 summarizes the characteristics of the datasets after preprocessing.
1 https://www.kaggle.com/ethon0426/lending-club-20072020q1

https://www.kaggle.com/ethon0426/lending-club-20072020q1
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3.3 Credit Scoring with Bayesian Network Classifier Ensembles

3.3.1 Learning BNCs using CEM

Figure 10 – Example of a mapping from a binary array to a BAN structure with five
features. Assuming an ordering σ = (X1, X2, X3, X4, X5), children (ch) edges
can be mapped to the initial positions of the array and augmenting (aug)
edges to the remaining positions following an upper triangular matrix, e.g.
(1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1).

The method consists of a Bagging ensemble of BNCs, where each classifier is learned
using CEM. In a nutshell, Bagging is the process of building and ensemble where, at
each iteration, the original dataset is resampled with replacement (bootstrapping) and a
classifier is trained using the bootstrapped data. The resulting ensemble uses majority
voting to make predictions. CEM is an iteration based optimizer that samples from some
distribution and selects the top performing members of the population according to a
performance function. The cross-entropy minimization principle is then used to unite the
selected members to update the distribution’s parameters. In our case, the population
members are BNCs with randomly generated structures, encoded by a binary array that
CEM can optimize. We decided to limit the search space to BAN structures, encoding
both augmenting edges, and edges between the class variable and the features (children
edges), as follows:

• Let Z = (Z1, ..., Zm) be a array of Bernoulli random variables with probabilities of
success p = (p1, ...pm), i.e. Z ∼ Ber(p);

• Given a fixed ordering of variables, there are m(m − 1)/2 possible augmenting
edges in a DAG comprising m feature variables. We opted to randomly generate a
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fixed ordering for each classifier in the ensemble, intending to increase search space
exploration;

• Every possible augmenting and child edge is assigned to a random variable in Z.
The value 1/0 indicates the presence/absence of an edge.

Fig. 10 demonstrates the mapping between a realization of Z and the resulting structure.
Next, consider the performance function S(Z) that measures minus the log-loss (HASTIE;
TIBSHIRANI; FRIEDMAN, 2009) of a BNC with edges encoded by Z when predicting
the training set. We have an optimization problem summarized in (3.3).

p⋆ = argmax
p

S(Z), Z ∼ Ber(p) (3.3)

The following variation of CEM, described in (DE BOER et al., 2005, p. 7), was
used to solve (3.3). At each iteration:

1. Draw samples Z1, ..., ZN from Ber(p), generating a population of size N ;

2. Let γ be the (1− ρ)% quantile according to the performance function S(Z). Select
top performing members of the population: {Zi | S(Zi) ≥ γ};

3. Update p using the cross-entropy minimization rule:

p←
∑N

i=1 I{S(Zi)≥γ}I{Zij=1}∑N
i=1 I{S(Zi)≥γ}

(3.4)

4. Stop if γ has not changed for a fixed number K of iterations or p has converged to
a binary array.

Following good practice, a smoothing during the update of the parameters was
employed (RUBINSTEIN; KROESE, 2013). Let λ be the smoothing factor, and p̂ be the
cross-entropy optimal parameter, calculated using Eq. (3.4). We update p using:

pk ← λp̂ + (1− λ)pk−1 (3.5)

3.3.2 Data preprocessing

Five publicly available credit related datasets were gathered. The australian, and
south-german datasets are available at the UCI Machine Learning Repository (DUA;
GRAFF, 2017). The pakdd2009 dataset was provided during the PAKDD 2009 Data
Mining Competition. Lastly, the Prosper data are provided by Udacity as part of their
Data Analyst Nanodegree. After 2009, policy changes happened at Prosper intending
to guarantee better credit grading and more security for lenders (YEN, 2019). Because
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Table 5 – Summary of the preprocessed credit datasets used for comparing classifiers.

Dataset Number of
Instances

Number of
Features

Bad
Borrowers (%)

pakdd2009 39997 20 19.80
prosper-2009+ 23028 28 23.14
prosper-2009 20008 26 35.42
south-german 1000 20 30.00

australian 690 14 55.51

of a possible heterogeneity, the data were split into two datasets: prosper-2009 and
prosper-2009+. Only completed loans were considered, and entries with missing values
were dropped. Finally, the preprocessed datasets were split into 70% training and 30%
testing data. Tab. 5 summarizes the five datasets. Notice that appart from australian,
the datasets are imbalanced such that the bad borrowers represent the minority class, as
expected.

3.3.3 Model training and evaluation

We compared the proposed method with Logistic Regression (LR) – a linear method,
and Random Forests (RF) – an ensemble of decision trees (DTs). When making a critical
or cost-sensitive decisions such as in credit scoring, well-calibrated probabilities become
an issue (DAWID, 1982). While LR produces well-calibrated probabilities, DTs and BNCs
might produce biased probabilities towards the edge of the probability space, that is, too
close to 0 or 1 (ZHANG, 2005; NICULESCU-MIZIL; CARUANA, 2005; ZADROZNY;
ELKAN, 2001; RISH et al., 2001; DOMINGOS; PAZZANI, 1997). For this reason, we
applied Platt scaling to calibrate RF and the proposed BNC (PLATT et al., 1999). In the
interest of increasing classification performance (MADDEN, 2008), BDeu-like priors with
an equivalent sample size (η) of 10 were used to smoothen the CPDs. That is, the prior
probability of every state is η/(rXqX) where rX is the cardinality of the variable X and
qX is the product of the cardinalities of the parents of X (CAMPOS, 2006). The models
were trained using Bayesian hyper-parameter optimization (SCIKIT-OPTIMIZE, 2021)
to decide the number of classifiers composing the ensemble in the case of RF and BNC,
and in the case of LR, the L1 and L2 regularization penalties (HASTIE; TIBSHIRANI;
FRIEDMAN, 2009). The chosen values for the hyper-parameters of CEM were N = 100,
ρ = 0.1, and K = 5, determined ad hoc.

Model comparison is made using these evaluation metrics:

• Precision: tp/(tp + fp) where tp is the number of true positives, and fp is the
number of false positives;

• Recall: tp/(tp + fn) where fn is the number of false negatives;
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• F1: the harmonic average of precision and recall;

• AUC: Area Under the (Receiver operating characteristic) Curve (HASTIE; TIB-
SHIRANI; FRIEDMAN, 2009).

Since the financial cost of a false negative is greater than that of a false positive, AUC and
recall should be preferred over other metrics. That is because wrongly classifying someone
that will ultimately default their loan as a good borrower implies a principal loss, whereas
classifying a potentially good borrower as bad only incurs an opportunity cost.



47

4 RESULTS AND DISCUSSION

4.1 MB discovery without causal sufficiency

Figure 11 – Normalized Mutual Information between every pair of features in the Alarm
Network.Entries in white indicate independence of the variables, given a G2

test at a significance level of 0.01.

In Fig. 11 we can notice the high range of connection strength magnitudes present
in the Alarm network. As the data was generated by sampling the network, it adheres
perfectly to the structure. Naturally, the further the distance between each end, the lower
the connection strength tends to be, as a consequence of the data processing inequality.
It is also noticeable that the nodes that are adjacent to the targets of each test case are
tightly coupled, with very high connection strengths.

Fig. 12 and 13 display the results of the structural learning experiments in the
Alarm network. For small sample sizes, FMMB is unstable, producing poor precision and



48

recall values. Due to it’s direct discovery strategy, as the conditioning sets increase in size,
the power of the G2 tests decrease. But given a large enough sample size, FMMB becomes
capable of detecting the correct MB more often. Notice in Fig. 12 that the performance
of M3B and FMMB decreases at 150000 samples, where a decay in precision is mainly
attributed to spurious connections that are now detectable by the G2 test that were not
filtered. This can be attended with a higher max-k value. TC 2 was the most challenging
for both algorithms, requiring a sample size of 20000 for M3B to achieve the correct result
50% of the time, whereas FMMB was not able to deliver a comparable performance even
with a sample size of 150000. As the precision of FMMB also decreased at that sample
size, a larger sample and increased max-k may be necessary. The main difference between
the two test cases is that the connection strengths between the target and the deepest
nodes are lower in TC 2, consequently being discovered less frequently. Nonetheless, when
comparing the peak performance of both algorithms, there is a large gap in the number
of CITs and execution time. For instance, in TC 2 at 50000 samples, FMMB conducted
a median of 805.5 CITs in 5.60s vs 2182.50 CITs in 12.70s by M3B. Both methods were
capable of discovering the correct structures in all the test cases. Overall, direct discovery
proved to be faster, however, less consistent than the indirect method.
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(a) (b) (c)

(d) (e)

Figure 12 – TC1 – Estimation of the MB of "VTUB" when "INT" and "PMB" are hidden. Results are the median of 30 runs of the experiment.
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(a) (b) (c)

(d) (e)

Figure 13 – TC2 – Estimation of the MB of "HR" when "HYP" and "STKV" are hidden, and the connection "LVF" → "STKV" is removed.
Results are the median of 30 runs of the experiment.
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Table 6 – Feature selection experiment results for M3B. Values in bold indicate a better
performance than it’s counterpart (FMMB), and values in italic indicate equality.
10-fold cross-validation was used in the five smaller datasets – the results are in
the format mean±std. For the five larger datasets, a single 70%/30% train/test
split was measured. Computational time for the execution of the feature selec-
tion algorithms was limited to 15000s. Elapsed time only encompasses feature
selection, i.e. classifier training and prediction times were excluded from the
measurements.

M3B
NB

Acc. (%)
GBDT

Acc. (%)
MMB
Size Time (s) CITs

spect 78.97 ±4.10 79.36 ±3.68 2.30 ±0.46 0.40±0.05 220.40±30.30
spectf 80.46 ±8.76 68.49 ±9.18 2.00 ±0.00 0.49±0.03 285.30±17.18
splice 94.58 ±0.53 94.23 ±0.92 8.20 ±0.40 4.77±0.29 2218.70±125.47
chess 89.05±1.98 98.40±0.99 23.60 ±1.85 20.25±3.17 9734.70±1491.28

mushroom 98.82 ±0.40 99.41 ±0.24 2.00 ±0.00 2.73±0.09 1073.20±8.95
polish – – – ≥ 15000 –

connect-4 72.47 83.78 32 2278.23 191249
kddcup99 99.80 99.97 11 183.47 14833

census 93.73 94.12 3 143.42 2313
covertype 62.19 86.28 10 614.81 5544

Table 7 – Feature selection experiment results for FMMB. Values in bold indicate a better
performance than it’s counterpart (M3B), and values in italic indicate equality.
10-fold cross-validation was used in the five smaller datasets – the results are in
the format mean±std. For the five larger datasets, a single 70%/30% train/test
split was measured. Elapsed time only encompasses feature selection, i.e. classifier
training and prediction times were excluded from the measurements.

FMMB
NB

Acc. (%)
GBDT

Acc. (%)
MMB
Size Time (s) CITs

spect 76.38±2.58 79.36 ±3.68 2.60±0.49 0.28 ±0.05 114.80 ±15.56
spectf 80.46 ±8.76 68.49 ±9.18 2.00 ±0.00 0.21 ±0.01 109.20 ±2.23
splice 94.58 ±0.53 94.23 ±0.92 8.20 ±0.40 1.92 ±0.16 804.40 ±59.44
chess 89.52 ±2.17 98.50 ±1.30 25.10±1.97 17.39 ±3.66 6548.50 ±1292.10

mushroom 98.76±0.35 99.27±0.18 3.00±0.00 0.39 ±0.02 137.40 ±5.39
polish 71.42 84.95 49 4859.74 464028

connect-4 72.36 81.29 22 343.29 25514
kddcup99 99.80 99.97 11 16.99 1391

census 91.92 93.83 5 24.36 401
covertype 62.19 86.28 10 61.49 944

Classification accuracy results for each dataset obtained applying both classifiers,
after feature selection using M3B and FMMB, are shown in Tab. 6 and 7. FMMB proved
to be much fast, specially in the five larger datasets, while displaying equal or very close
accuracy using both classifiers. Interestingly, with the exception of the connect-4 dataset,
the size of the MBs discovered by FMMB were also equal or slightly higher than those by
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M3B. This may indicate a higher false positive rate, as expected from the worse precision
observed in the structural learning experiment. The most discrepant gain in terms of
execution time and number of CITs occurred in the kddcup99 dataset, where FMMB was
10× faster and conducted 10× less CITs than M3B, while achieving identical accuracy in
both classifiers. The results obtained in the polish dataset are worth highlighting. Although
it’s medium in samples, it has the most features among the selected datasets. While M3B
could not terminate execution in a reasonable amount of time, FMMB was able to finish
execution, showcasing the necessity for faster feature selection algorithms. However, large
difference in the experimental design between sec. 3.1 and sec. 3.2 should be remembered.
In this experiment, the algorithms are not bootstrapped, using the whole dataset as input,
and producing a single output for the feature selection experiment. Whereas in sec. 3.2 the
data is bootstrapped. Each bootstrap has a fraction of the size of the original data. This
explains why the Polish dataset, present in both sections, did not produce any output for
the M3B algorithm in a feasible amount of time, while it was possible to produce results
for the bootstraps.

4.2 Aggregation of MB bootstraps and Application in Credit Data

From Fig. 14 and 15 we can infer that FMMB has an equivalent classification
performance to M3B, which indicates that both methods discover MBs of equal quality.
However, FMMB is significantly faster than M3B, with the largest speedup of two orders
of magnitude in the Lending Club dataset, which is also where the speedup is most felt,
since it is the dataset where the algorithms had the largest runtime. When comparing
aggregation methods, the aggregation by nodes performed better than or equal to the
aggregation by edges, and also produced MBs with sizes closer to the average size of the
bootstrapped MBs. Moreover, the MHD threshold performed consistently better or equal
to Scutari’s. Specifically, the aggregation by edges using Scutari’s threshold, when applied
to the bootstrapped structures of the FMMB algorithm in the Taiwan dataset, resulted in
an empty structure. Whereas the MHD threshold produced a result slight lower than the
median, implying that Scutari’s was too restrictive.

For each dataset, we measured the NMI between every pair of variables. The
results are displayed in heat maps contained in Fig. 16, 18, 20, 22, 24, for Lending Club,
Prosper, PAKDD2009, Taiwan, and Polish, respectively. Considering the MHD aggregation
by nodes, as it is the best performing overall, figures were produced showing the MB
discovered by FMMB and M3B for each of the datasets. The MB structures for Lending
Club, Prosper, PAKDD2009, Taiwan, and Polish are, respectively, in Fig. 17, 19, 21, 23,
25.

When analysing the results of the two P2P lending platforms, the heat maps paint
similar pictures, with Prosper being slightly more sparse in connectivity than Lending
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Club. In the structures it is noticeable that many of the most likely paths have edges
with frequency < 50%. In addition, the further the feature is from the target, the greater
is the number of possible paths between it and the target. The features at depth 3, for
example, were separated from the target when using aggregation by edges, because of
the many possible paths that dilute the frequency of occurrence of the edges connecting
the features to the rest of the MB. It is noticeable that the MB of the Prosper data is
almost a subset of the MB of Lending Club. FMMB selected “Interest Rate”, “Term” ,
the credit score rating – similar to the “FICO Rating” feature of Lending Club – and
“Total Inquiries” – the closest feature in Lending Club is “Inquiries (6 mth)”. The only
difference being that “Employment Status” is present in Prosper whereas “Income Verified”
is present in Lending Club, yet both are related to source of income. Results for M3B are
also similar, containing “Interest Rate”, the credit score rating, “Inquiries (6 mth)” – also
present in Lending Club – and “Employment Status”. The discovered MBs for Lending
Club by M3B (Fig. 17a) and FMMB (Fig. 17b) agree upon which features are adjacent to
the target, as well as on most of the connections. “Interest Rate” was selected in 100% of
the bootstrapped structures in both algorithms as adjacent to the target, and is also the
feature that shares the most amount of information with the target. (Fig. 16). From a
lender’s perspective, this shows that the models used for credit scoring at Lending Club
and Prosper are reliable, because the interest rate is equal to a base rate, determined by
the grade, adjusted for risk and volatility (CLUB, 2021), as was also concluded by other
authors. However, there is still room for improvement, since there are many other features
that compose the MB, thus providing additional information not completely captured in
their models.

Both algorithms agree that “Annual Income” is at depth two, but disagree on the
most likely collider. The most likely collider in M3B’s structure is “Debt to Income Ratio”.
In contrast, FMMB’s structure indicates a very low probability for this edge. Instead, it
chooses “Installment”, which has a high probability in both structures. Another difference
is that while M3B selects “Revolving Utilization”, the 12th most informative when solely
observed (Fig. 16), FMMB prefers “Total Credit Revolving Balance”, which is the 5th

most informative and highly correlated with “Revolving Utilization”. Both place similar
features at depth 2, considering the most probable paths. Two nodes appear at depth 2
in the M3B structure that are not in FMMB’s: “Total Credit Lines” and “Open Credit
Lines”, which are highly correlated yet both part of the MB. From the edge probabilities,
we can see that both features were most likely discovered from different paths and rarely
share an edge in the bootstrapped structures, which is confirmed by the following statistic:
They appeared simultaneously in half of the structures but shared an edge only 20% of
the time. This may be caused by inconsistencies in the indirect method employed by M3B,
or is a sign of a partially unfaithful distribution, where there are two possible MBs, each
exclusively containing one of the features. Both algorithms detected three nodes at depth
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3, agreeing on “Verified Income” and “Earliest Credit Line” but only FMMB includes
“Inquiries (6mth)”, and only M3B includes “Purpose”. While these are also concluded to be
relevant factors when using linear methods, here, their relative importance is diminished
because of their more distant relationship with the target.

Focusing on the FMMB structure, apart from “Installment”, which is the most
likely collider between Revolving Balance and the target in the FMMB structure, the
other members of Adj(T ) are equally frequent as members of the sepset of the feature in
the bootstrapped structures. Because the mutual information is so high, yet this feature
appears at depth two, we can infer that there is at least one activate path between the
feature and the target that is blocked by a subset Adj(T ). Either this path is a subset of
Adj(T ) minus the collider (“Installment”), which is likely since the connection strength
among the Revolving Balance and its most probable separators are high, as evidenced in
Fig. 16. But, because these connections are not necessary to discover the MB(T ), they
were not searched by the algorithm, therefore were omitted in the structure. Or, less likely
but possible is the existence of a latent variable between the separators and the feature
that creates an active path with the target when the separators are not observed. To
further clarify the matter, the MB of the Revolving Balance would have to the discovered,
which is beyond the scope of this work.

When comparing the two credit card related datasets, a major difference is the
essence of the features. In Taiwan, most of the features are related to the payment of the
last credit card bills. There are few social economical variables. Whereas in PAKDD2009
the situation is reversed. The features of this dataset bring almost no information about
the costumer’s credit history, the only variable being the quantity of additional cards in the
application. Most of the features are either social-economic or geographic. PAKDD2009
has the lowest average size of bootstrapped MBs. All the aggregation methods produced
shallow structures with the same two nodes adjacent to the target: the age of the costumer
and a Boolean variable that indicates whether the customer has a residential phone line.
The presence of a phone in the residency is one of the social-economic variables considered
in the census promoted by the Brazilian government and is an indicator of wealth. Age is
also correlated with wealth. Since the consensus structure had median performance, we
infer that these features carry most of the information about the target. The two outliers
that performed best either were able to capture connections that require greater sample
sizes to be detected consistently or are the product of noise during classification training.
In Taiwan, we see that M3B performed marginally better than FMMB (Fig. 14b). In
the discovered structures, while M3B discovered features up to depth 3, FMMB failed to
discover more than the nodes adjacent to the target. While FMMB only discovered the
Boolean variables indicating whether or not the payment due i months ago was payed, M3B
recovered the bill amount and the amount actually paid as well. However, the connections
of the M3B structure does not seam to have much meaning. From the heat map we can
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see that the credit history features are extremely correlated with each other, and that
the frequency of occurrence of the edges in the structure is directly proportional to the
magnitude of the NMI between the variables. Nonetheless, a general observation can
be inferred from the MB selected by both algorithms: The credit history is enough for
determining the behaviour of the client, eliminating the influence social economic variables
have on the target. It is an intuitive finding, since the social economic factors influence
the credit history, but is the credit history itself what ultimately determines if a credit
card has defaulted, since credit card default is when a client has not payed the bills for an
extended period of time.

We calculated the average of the NMI measurements in the heat maps and found
that Polish (0.052) and Taiwan (0.060) have averages more than two times higher than
the other datasets (< 0.018). While Taiwan’s results were similar to the other datasets,
all aggregation methods performed poorly in the Polish data. The average sizes of the
discovered MBs using M3B and FMMB in the Polish dataset were, respectively, 4.43
and 5.17. However, the aggregated structures of all methods had only 1 node, feature
“X45” – the features of this dataset are anonymized. The high connectivity, increasing the
possibility of existing many subsets of features that bring the same information about
the target, and the fact that no other features were discovered consistently, denying the
formation of a consensus structure of similar size, make us belief that the Polish data have
an unfaithful distribution, explaining the poor results.
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(a) AUC

(b) AUC (Amplified)

Figure 14 – Comparison of FMMB and M3B, as well as structure aggregation methods, in credit related datasets considering classification
performance (AUC). Each boxplot summarizes the results of 30 bootstraps.
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(a) Markov Blanket Size

(b) Runtime

Figure 15 – Comparison of FMMB and M3B, as well as structure aggregation methods, in credit related datasets considering MB size and
Runtime. Each boxplot summarizes the results of 30 bootstraps. The runtime of the aggregations is in the order of milliseconds.
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Figure 16 – Normalized Mutual Information between every pair of features in the Lending
Club dataset. Features are ordered by decreasing connection strength with the
target. Entries in white below the main diagonal indicate independence of the
variables, given a G2 test at a significance level of 0.01. Notice that “Accounts
Now Delinquent” and “Delinquent Amount” are not associated with any other
feature. An explanation is that these features have a very low percentage of
nonzero samples, making it unfeasible to detect a connection if any.
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(a) M3B

(b) FMMB

Figure 17 – Discovered structure of Lending Club using aggregation by nodes and the
MHD threshold. The percentages represent the frequency of occurrence of each
edge in the bootstraps. The target, and the most probable path between each
feature in the MB and the target, is highlighted in orange. Nodes adjacent to
the target are colored in yellow. Nodes at depth 2 are colored in light blue,
and nodes at depth 3 in dark blue.
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Figure 18 – Normalized Mutual Information between every pair of features in the Prosper dataset. Features are ordered by decreasing
connection strength with the target. Entries in white below the main diagonal indicate independence of the variables, given a
G2 test at a significance level of 0.01.
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(a) M3B

(b) FMMB

Figure 19 – Discovered structure of Prosper using aggregation by nodes and the MHD
threshold. The percentages represent the frequency of occurrence of each edge
in the bootstraps. The target, and the most probable path between each
feature in the MB and the target, is highlighted in orange. Nodes adjacent to
the target are colored in yellow. Nodes at depth 2 are colored in light blue,
and nodes at depth 3 in dark blue.
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Figure 20 – Normalized Mutual Information between every pair of features in the
PAKDD2009 dataset. Features are ordered by decreasing connection strength
with the target. Entries in white below the main diagonal indicate indepen-
dence of the variables, given a G2 test at a significance level of 0.01.

(a) M3B

(b) FMMB

Figure 21 – Discovered structure of PAKDD2009 using aggregation by nodes and the
MHD threshold. The percentages represent the frequency of occurrence of
each edge in the bootstraps. The target, and the most probable path between
each feature in the MB and the target, is highlighted in orange. Nodes adjacent
to the target are colored in yellow. Nodes at depth 2 are colored in light blue,
and nodes at depth 3 in dark blue.
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Figure 22 – Normalized Mutual Information between every pair of features in the Taiwan
dataset. Features are ordered by decreasing connection strength with the
target. Entries in white below the main diagonal indicate independence of the
variables, given a G2 test at a significance level of 0.01.
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(a) M3B

(b) FMMB

Figure 23 – Discovered structure of Taiwan using aggregation by nodes and the MHD threshold. The percentages represent the frequency of
occurrence of each edge in the bootstraps. The target, and the most probable path between each feature in the MB and the
target, is highlighted in orange. Nodes adjacent to the target are colored in yellow. Nodes at depth 2 are colored in light blue,
and nodes at depth 3 in dark blue.
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Figure 24 – Normalized Mutual Information between every pair of features in the Polish dataset. Features are ordered by decreasing
connection strength with the target. Entries in white below the main diagonal indicate independence of the variables, given a
G2 test at a significance level of 0.01.
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(a) M3B

(b) FMMB

Figure 25 – Discovered structure of Polish using aggregation by nodes and the MHD
threshold. The percentages represent the frequency of occurrence of each edge
in the bootstraps. The target, and the most probable path between each
feature in the MB and the target, is highlighted in orange. Nodes adjacent to
the target are colored in yellow. Nodes at depth 2 are colored in light blue,
and nodes at depth 3 in dark blue.

4.3 Credit Scoring with Bayesian Network Classifier Ensembles

Tab. 8 shows the experimental results. In four of the five datasets, the proposed
method achieved superior AUC and F1 scores, in spite of a worse precision than RF in
three of the five. The high precision value and negligible recall of RF in pakd2009 and
prosper-2009+ is an indication that RF was heavily biased towards the majority class,
explaining it’s higher precision over the BNC. The recall obtained in pakdd2009 was very
low for all models, and the AUC indicates that only the proposed method was capable
of performing better than assuming every borrower to be good for this dataset. As most
of the datasets are unbalanced, cost-sensitive training, that is, penalizing with heavier
weight classification mistakes of the minority class, might be necessary to improve the
performance of RF, whereas the proposed method displayed good performance even under
class imbalance. The proposed method was the most effective in the australian dataset
and least effective in the south-german dataset, however the better performance of LR
indicates that most of the relationships present in this particular dataset are linear. To
summarize, the proposed method proved to be a viable interpretable alternative to linear
models, being robust to class imbalance and delivering good recall and AUC overall.

The 100 iterations were never reached, taking approximately 20 iterations for the
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algorithm to converge. Since the core computations of the BNC were implemented in
Python, whereas the others were optimized in C, the average conversion time was of
about 1 hour, contrasted with a few minutes necessary to train the other classifiers. A
fair comparison would necessitate the optimization of the implementation the proposed
method. Another perspective is comparing the number of intensive computations required
by each method. Training RF requires hundreds of interactions, an order of magnitude
more than the proposed BNC. On the other hand, LR is very cheap to train, and achieved
similar performance to RF. Which algorithm to choose, BNC or LR, is a trade-off between
better classification performance and available computational resources and time.



68Table 8 – Experimental results. Values in bold indicate a clear winner when considering each metric individually, whereas values in italic
indicate a draw.

pakdd2009 prosper-2009+ prosper-2009 south-german australian
BNC RF LR BNC RF LR BNC RF LR BNC RF LR BNC RF LR

Precision 0.429 0.778 0.459 0.426 0.635 0.58 0.573 0.635 0.616 0.781 0.74 0.787 0.818 0.752 0.759
Recall 0.119 0.003 0.007 0.422 0.075 0.115 0.509 0.401 0.401 0.933 0.962 0.914 0.88 0.924 0.924
F1 0.186 0.006 0.014 0.424 0.134 0.192 0.539 0.491 0.486 0.85 0.836 0.846 0.848 0.829 0.833
AUC 0.54 0.501 0.503 0.625 0.531 0.545 0.651 0.637 0.632 0.661 0.587 0.668 0.862 0.84 0.845
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5 CONCLUSION

We revisited the problem of MB discovery without assuming causal sufficiency by
introducing the Fast MAG Markov Blanket (FMMB) algorithm, presented at CBA2020
(JERONYMO; MACIEL, 2020), with the aim to mitigate the curse of dimensionality by
using a faster method of discovery. Its key idea is the strategy of direct non-adjacent
member discovery, improving the state-of-the-art in terms of time efficiency by reducing the
number of CITs needed to find the MB of a target. In structural learning, the experiments
showed that the main drawback of FMMB is the requirement of a large enough sample size
for getting accurate outputs. The strategy used by M3B is data efficient, yielding precise
tests, but given a large enough sample size, FMMB’s strategy leads to accurate outputs in
significantly less time, however at the cost of consistency. In Feature Selection, FMMB
proved to be a viable alternative to M3B, achieving comparable classification accuracy
in ten real-world datasets, and again consuming much less execution time. In particular,
the results achieved in the Lending Club dataset were to two orders of magnitude faster.
These results inspire the application of MB feature selection in domains where it was
previously unfeasible. We conclude that the equivalence of classification performance with
lower runtime of FMMB, when compared to M3B, makes direct discovery preferable to
indirect discovery.

We also explored the aggregation of bootstrapped MB structures, as it is a crucial
step in learning a reliable structure. We showed that aggregating by nodes is better suited
for discovering MB structures because it produces MBs with sizes closer to the average
size of the bootstrapped MBs than aggregating by edges, consequently having a smaller
loss of information. Altogether, the methods that were analysed are relatively simple.
They do not demand much computation, but still fail to achieve median performance in
some datasets. In particular, they straggled when applied to the P2P lending platforms’
data. However, they share an important property, that is the justification of the chosen
threshold. However, more elaborate, and computationally intensive methods, could be
considered. For example, using Bayesian techniques.

We also contributed to the open problem of determining if a dataset is adequate for
graphical modelling by using the discrepancy between the average size of the bootstrapped
structures and the size of the aggregated structure as an indicator of unfaithfulness. A
critical path for progress is exploring the relaxation of other strong theoretical assumptions,
often violated in practice, such as the faithfulness assumption. Another important next
step towards better MB discovery is to develop new methods for testing conditional
independence that are both fast and resilient to the loss of statistical power when the size
of the conditioning set increases.
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In addition, we proved the necessity of handling latent factors by detecting features
at depths > 2, justifying the development of algorithms that do not assume causal suffi-
ciency. In the discussion, we highlighted the points of agreement and disagreement between
the results generated by both algorithms. We belief that such detailed comparisons are
fundamental for further development, yet lacking in the literature, so we encourage further
research. This work has implications in local-to-global structural learning methods that
rely on conditional independence based MB discovery algorithms. With faster structural
learning capabilities, FMMB inspires the development of new local-to-global structural
learning algorithms. While the proposed aggregation method challenges the literature,
where aggregation by edges predominates.

In credit scoring, we demonstrated the usefulness of graphical models and MB
discovery in studying the causes that lead to default, since many of the findings agree
with the literature, and others challenge it, such as the diminished importance of some
features, such as the purpose of the loan, in relation to the results from linear modelling.
We concluded that the models used at the P2P lending platforms analysed are effective in
grading bad borrowers because the interest rate feature, provided by the platforms, is the
most informative. However, they still have room for improvement, given that many other
features appear in the MB.

Furthermore, we introduced a novel Monte-Carlo based method for BNC learning
using CEM and Bootstrap Aggregation, as an interpretable alternative for RFs and LR.
From the results, we conclude that the proposed algorithm is promising when applied to
unbalanced datasets, and as a model for credit scoring and prediction of default. The main
drawback of the final model is its training time. While other classifiers take at most few
minutes to train, the proposed classifier can take hours depending on the hyper-parameters
chosen. A fair point is that the other classifiers were implemented efficiently in C, and
merely wrapped in Python, whereas the implementation of the proposed method is purely
in Python, and can be hugely optimized. The results bring interesting ideas of structural
learning using importance sampling in the space of DAGs. A natural extension of the
method is adapting it to learn general purpose BNs, where the focus is joint probability
estimation. The performance function can be easily switched to a traditional score for BNs
such as BDeu. Another possibility is merging the learned ensemble into a single, more
robust, structure with the goal of gaining structural knowledge. We hope to inspire further
research in the applications of CEM or related probabilistic methods of structural learning.
Future steps are incorporating cost-sensitive learning and decision making. For further
assessment, we intend to apply this algorithm to more datasets such as Lending Club and
Taiwan, and compare it to more classifiers, and other meta-heuristically trained models,
such as Genetic Algorithms, as well.

In summary, we fulfilled the main objective of developing a faster method of MB
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discovery, motivated by the limitations imposed by the super-exponential search space, and
the need of practical results in a viable amount of time. We leave with open theoretical and
practical questions. This super-exponential nature still currently limits the applicability of
current MB discovery methods to the order of < 100 variables. Parallel processing could
be applied to some extent, but the dependencies in the depth first search based algorithms
limit the achievable parallelism. How to mitigate these dependencies, and ideally create
embarrassingly parallel algorithms? Domains where variables are highly correlated are
also problematic, as we saw in the Polish data. A possibility is using dimensionality
reduction techniques such as PCA. However, the warping of the variables caused by the
transformations of the data in euclidean space could jeopardize interpretability. Another
possibility is using auto-encoders, yet, they require very large datasets to train properly,
and are computationally expensive. A suitable method should be computationally fast,
cheap to train, and preserve interpretability. How can MB discovery algorithms handle
highly correlated data better? Frequentist modelling is at the essence of the MB discovery
methods. Are there improvements to be made by replacing the CITs with Bayesian
alternatives? Can we extend these MB discovery methods for time series data? What
results and insights can be generated by applying these methods in other domains?
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