Master's Dissertation
DOI
https://doi.org/10.11606/D.18.2021.tde-19012022-092722
Document
Author
Full name
Paulo Victor Galvão Simplício
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2021
Supervisor
Committee
Terra, Marco Henrique (President)
Pimenta, Luciano Cunha de Araújo
Raffo, Guilherme Vianna
Title in Portuguese
Controle robusto e inteligente de quadricópteros sujeitos a distúrbios de vento
Keywords in Portuguese
Controle robusto
Estimativa de Distúrbios
Quadricóptero
Rastreamento de trajetória
Redes neurais
Abstract in Portuguese
O desenvolvimento de sistemas de controle aplicados a quadricópteros que atuam em ambientes hostis é um desafio complexo. Isto porque, para obter um bom desempenho de voo autônomo com robustez, deve-se projetar um sistema de controle que considere não só distúrbios externos como também outros fatores que possam depreciar a qualidade de voo. Recentemente, uma das técnicas mais utilizadas é o controle inteligente composto por redes neurais artificiais (RNAs). Neste caso, as redes são combinadas com controladores, formando uma arquitetura capaz de se adaptar ao ambiente de operação e, consequentemente, reduzir o erro de seguimento de trajetória. Diante disso, este trabalho tem o objetivo de desenvolver arquiteturas inteligentes para controle de posição de quadricópteros, melhorando o desempenho de voo durante o rastreamento de trajetória. As arquiteturas propostas combinam um regulador linear quadrático robusto (RLQR) com redes neurais profundas. Além disso, o desempenho das arquiteturas propostas é avaliado através de um estudo comparativo, utilizando outros três controladores presentes na literatura: regulador linear quadrático (LQR), proporcional-integral-derivativo (PID) e linearização por realimentação (LR). As arquiteturas foram desenvolvidas utilizando a plataforma robot operating system (ROS) e os experimentos foram realizados primeiramente em um ambiente simulado e, em seguida, utilizando um quadricóptero comercial, o ParrotTM Bebop 2.0. Para ambos os casos, foram realizados dois conjuntos de experimentos, com e sem a aplicação de distúrbio de vento na aeronave. Os resultados mostraram que a utilização de redes neurais combinadas com controladores, robustos ou não, melhoram o desempenho de voo de quadricópteros. Isto foi visualizado tanto para condições normais de voo quanto para voos em que o quadricóptero foi submetido à influência de distúrbios de vento.
Title in English
Robust and intelligent control of quadrotors subject to wind disturbances
Keywords in English
Disturbance
estimation
Neural networks
Quadrotor
Robust control
Trajectory tracking
Abstract in English
The development of control systems applied to quadrotors operating in hostile environments is a complex challenge. This is because, to obtain good autonomous flight performance with robustness, one must design a control system that considers external disturbances and factors that can depreciate flight quality. Nowadays, one of the techniques on the rise is intelligent control composed of artificial neural networks (ANNs). In this case, the networks are combined with controllers, forming an architecture capable of adapting to the operating environment and, consequently, reduce trajectory tracking error. In this context, this work aims to develop intelligent architectures to improve the flight performance of autonomous quadrotors. The proposed architectures combine a Robust Linear Quadratic Regulator (RLQR) with deep neural networks. Furthermore, the performance of the proposed architectures is evaluated through a comparative study using three other controllers present in the literature: linear quadratic regulator (LQR), proportional-integral-derivative (PID) and feedback linearization (FL). The architectures were developed using the robot operating system (ROS) platform, and the experiments were performed first in a simulated environment and then with a commercial quadrotor, the ParrotTM Bebop 2.0. Two sets of experiments were performed for both cases, with and without applying wind disturbance to the aircraft. The results showed that using neural networks combined with controllers, robust or not, improves quadrotor flight performance. The improvement was seen both for normal flight conditions and for flights where the quadrotor was subjected to wind disturbances.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-02-07