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Abstract

ROCHA, K. D. T. Robust Distributed Filtering for Sensor Networks under
Parametric Uncertainties. 2022. 174p. Thesis (Doctor) - São Carlos School of
Engineering, University of São Paulo, São Carlos, 2022.

In the past few years, we have witnessed the rapid popularization of networked
cooperative multi-agent systems, which consistently move towards becoming ubiquitous in
our society. As one of the most well-established examples of such systems, sensor networks
have been applied to increasingly more complex systems, demanding even more robust,
efficient, and reliable technologies. Distributed state estimation is the most fundamental
task that one can accomplish with these networks. The main objective of this thesis is
to develop robust distributed filtering strategies for sensor networks applied to linear
discrete-time systems subject to model parametric uncertainties. Specifically, we deal
with two types of uncertainties: norm-bounded and polytopic. To achieve this goal, we
also address other related problems, divided into two categories. The first category of
problems refers to the single-sensor state estimation task. Within this category, we consider
the scenarios in which the underlying models are perfectly known and where they are
subject to each of the two kinds of uncertainty. We propose nominal and robust filters
for each situation. The second category concerns the networks with multiple sensors,
considering the same three scenarios. For each one, we propose both centralized and
distributed estimators. We use the average consensus algorithm to obtain the distributed
filters, which approximate their centralized counterparts. The proposed filters are based on
the celebrated Kalman filter and present a similar recursive and relatively simple structure.
We evaluate the performance of the proposed estimators with application examples, in
which we also compare them to existing strategies from the related literature.

Keywords: Sensor networks. Distributed filtering. Consensus. Uncertain systems. Kalman
filter.





Resumo

ROCHA, K. D. T. Filtragem Distribuída Robusta para Redes de Sensores
Sujeitas a Incertezas Paramétricas. 2022. 174p. Tese (Doutorado) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Nos últimos anos, tem-se testemunhado a rápida popularização de sistemas multia-
gentes cooperativos em rede, que consistentemente tendem a se tornar onipresentes em
nossa sociedade. Sendo um dos exemplos mais bem estabelecidos de tais sistemas, as redes
de sensores têm sido aplicadas a sistemas cada vez mais complexos, exigindo tecnologias
cada vez mais robustas, eficientes e confiáveis. A estimação distribuída de estado é a tarefa
mais fundamental que podemos realizar com essas redes. O principal objetivo desta tese é
desenvolver estratégias robustas de filtragem distribuída para redes de sensores aplicadas
a sistemas lineares em tempo discreto sujeitos a incertezas paramétricas. Especificamente,
consideram-se dois tipos de incertezas: limitadas em norma e politópicas. Para atingir
esse objetivo, outros problemas relacionados também são abordados, divididos em duas
categorias. A primeira categoria de problemas refere-se à tarefa de estimativa de estado
baseada em um único sensor. Dentro dessa categoria, considera-se o cenário em que os
modelos são perfeitamente conhecidos, assim como os em que eles são sujeitos a cada um
dos dois tipos de incerteza. São propostos filtros nominais e robustos para cada situação.
A segunda categoria diz respeito às redes com múltiplos sensores, considerando os mesmos
três cenários. Para cada um, são propostos estimadores centralizados e distribuídos. O
algoritmo de consenso é utilizado para obter-se os filtros distribuídos, que aproximam suas
versões centralizadas correspondentes. Os filtros propostos são baseados no célebre filtro
de Kalman e apresentam uma estrutura recursiva semelhante e relativamente simples. O
desempenho dos estimadores propostos é avaliado por meio de exemplos de aplicação,
sendo também comparados com estratégias existentes na literatura relacionada.

Palavras-chave: Redes de sensores. Filtragem distribuída. Consenso. Sistemas com
incertezas. Filtro de Kalman.
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Chapter 1
Introduction

Over the past few decades, networked cooperative multi-agent systems (NCMASs)
have received significant attention from researchers of a diverse spectrum of disciplines,
including engineering, computer science, physics, biology, and economics, to name a few.
Such diversity explains how NCMASs has evolved into an intrinsically multidisciplinary
field. As the name suggests, NCMASs consist of multiple dynamical agents that can work
together to achieve collective group behaviors or tasks. The agents may represent different
entities, depending on the context. For instance, they can be robots, sensors, or computer
processes. The interaction is in information exchange via some communication channel,
hence the networked denomination.

The continuous and rapid advancements in computer miniaturization, communi-
cation, sensing, and actuation technologies have enabled the popularization of NCMASs
in a broad range of civilian and military applications. In addition, instead of using a
single complex agent to carry out a complicated task, using multiple simple agents can
significantly improve operational effectiveness, reduce costs, and increase the reliability
of the overall system. Moreover, teams of networked agents can carry out tasks that
would be impossible for a single entity to accomplish alone, like surveillance of a large
area. Some potential applications of NCMASs include satellite formation flying for space
interferometry and surveillance (BEARD; LAWTON; HADAEGH, 2001; TILLERSON;
INALHAN; HOW, 2002), formation control of unmanned aerial vehicles (UAVs) (DONG
et al., 2016), air and ground surveillance (GROCHOLSKY et al., 2006), healthcare systems
(ALEMDAR; ERSOY, 2010; SHAKSHUKI; REID, 2015), microgrid control in smart grids
(BIDRAM et al., 2013), and intelligent transportation systems (LEE; PARK, 2012; LU et
al., 2014). Another primary application of NCMASs is in sensor networks. They are present
in environment monitoring (BAI et al., 2018; OTHMAN; SHAZALI, 2012; MAINWARING
et al., 2002), target detection, classification and tracking (ARORA et al., 2004), robotics
(LI; SHEN, 2011), smart cities (ZANELLA et al., 2014), industrial cyber-physical systems
(DING et al., 2019), and several other applications.
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Figure 1 – Types of NCMASs architectures.

(a) Centralized. (b) Decentralized. (c) Distributed.

The connection architecture among the NCMASs can be classified into three types,
as shown in Figure 1. In a centralized architecture, there is a central node/agent (in orange)
with access to all other agents (in blue). One of the main drawbacks of this architecture is
that it contains a single point of failure, i.e., if the central node is lost, the whole system is
jeopardized. It also does not scale well as the number of agents increases since the central
node needs to communicate and process information from all agents. The decentralized
architecture divides the network into smaller, locally centralized units. The local centers
(in orange) directly communicate and process data from a limited set of agents. They can
access the rest of the network by interacting with the other local centers. This strategy
is more robust than the centralized one since the failure of a single agent only affects its
local unit. It is also more scalable, as it divides the information processing among the local
centers. Finally, in the distributed architecture, there is no central node whatsoever. Every
agent is independent and can only interact with a limited set of neighbors, thus reducing
communication and processing costs. For this reason, it is the most robust, flexible, and
scalable among the three (CHEN; REN, 2019). Given the advantages of the distributed
architecture compared to the others, it is the strategy we chose to focus on in this work.

Many ideas that are now well-established tools in distributed filtering and control of
NCMASs were inspired by nature. For instance, in flocks of birds, schools of fish, or swarms
of bees, the agents exploit local interaction mechanisms in order to achieve collective group
objectives that are essential for survival. These behaviors inspired works like the one by
Reynolds (1987), which proposed three rules: collision avoidance, velocity matching, and
flock centering, producing simulated flocking for computer graphics. Next, Vicsek et al.
(1995) proposed a simple discrete-time model of autonomous agents (called particles) that
move in a plane with the same speed but with different headings. At each time step, each
particle updates its heading to its nearest neighbors’ average direction of motion, with
some added random perturbation. Applying this simple local interaction rule eventually
leads all particles to align their headings, even when the neighborhood set of each particle
changes over time. Afterwards, Jadbabaie, Lin and Morse (2003) formally addressed the
alignment problem introduced by Vicsek et al. (1995), from a more theoretical viewpoint,
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based on graph theory and nonnegative matrices.

The alignment problem described above is a classic example of the so-called
consensus problem, a fundamental concept in distributed filtering and control of NCMASs.
In a consensus protocol, each agent in the network interacts with a limited set of neighbors
to agree on a specific quantity. The idea of consensus and its formal study originated in
management science and statistics in the 1960s (DEGROOT, 1974). However, consensus
problems also have a long history in computer science, being the basis for distributed
(LYNCH, 1996) and parallel (BERTSEKAS; TSITSIKLIS, 1989) computing. Later, the
pioneering works by Jadbabaie, Lin and Morse (2003) and Olfati-Saber and Murray (2004)
stimulated the ever-growing interest in consensus problems in the context of NCMASs,
helping to pave the way for the subsequent development of a series of works on the topic.
As aforementioned, Jadbabaie, Lin and Morse (2003) provided a theoretical treatment
for the alignment behavior observed in the discrete-time model of Vicsek et al. (1995).
On the other hand, Olfati-Saber and Murray (2004) established a general framework for
consensus in networks of continuous-time single integrator agents, including the effects of
switching communication topologies and time delays.

This thesis mainly focuses on applying sensor networks to perform consensus-based
robust distributed filtering of systems subject to parametric uncertainties. However, we
also address the robust estimation problem with a single sensor, which is the foundation of
robust distributed filtering. The following two sections introduce these types of estimation,
along with a brief literature review for each.

1.1 Robust Filtering

State estimation, also known as filtering, is paramount to many control systems
(ANDERSON; MOORE, 1979). The problem consists of estimating the state of a dynam-
ical system based on noisy measurement data. A broad range of applications employs
filtering techniques, such as robotics, computer vision, communications, power systems,
and economics, to name a few. Given its importance, state estimation has been extensively
studied over the past decades, especially after the early 1960s, when the celebrated Kalman
filter (KALMAN, 1960) was first introduced.

Due to its simplicity and practicality, the Kalman filter has been one of the most
popular and widely used approaches since its inception. It operates by minimizing the
estimation error variance. Nevertheless, one of its well-known shortcomings is assuming
exact knowledge of both the target system and sensing models, which seldom holds in
practice. Parametric uncertainties often arise from linearization, unmodeled dynamics,
model reduction, or varying parameters, and they can appreciably degrade the estimation
performance. Despite the numerous efforts towards alleviating such effects, this is still an
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active area of research.

There are several ways to model such parametric uncertainties. This work specifically
addresses two of the possible uncertainty models: the norm-bounded and the polytopic
uncertainty types, which we discuss in the following subsections.

1.1.1 Robust Filtering for Systems with Norm-Bounded
Uncertainties

The most representative robust state estimation approaches for systems subject to
norm-bounded parametric uncertainties found in the literature are H∞ filtering, guaranteed
cost designs, risk-sensitive filtering, and robust regularized least-squares strategies.

The objective in H∞ filtering is to minimize the H∞ norm of the mapping from the
disturbances to the estimation error. Some important results are reported in Xie, Souza and
Fu (1991), Geromel et al. (2000), Xie et al. (2004), and references therein. One drawback
of this approach, especially in online systems, is that it is hard to guarantee that the H∞

performance parameter γ will satisfy the filter existence conditions at every step. In robust
guaranteed-cost approaches, the goal is to design an estimator such that the estimation
error variance has a guaranteed upper bound for all admissible uncertainties (see, for
instance, Xie, Soh and Souza (1994), Theodor and Shaked (1996), Petersen and McFarlane
(1996), Zhu, Soh and Xie (2002), and Dong and You (2006)). The procedure usually
involves Riccati equations, which depend on selecting one or more scaling parameters to
guarantee a solution’s existence at each time step. This selection, however, is often not
straightforward and has a significant impact on the estimation performance.

On the other hand, risk-sensitive filtering has been recently applied to overcome
some of the shortcomings of the previous strategies. The goal is to minimize the expected
value of an exponential of the quadratic error function, ensuring a certain degree of
robustness against model uncertainties (SPEYER; DEYST; JACOBSON, 1974). For
instance, Levy and Zorzi (2016) proposed a block-update Kalman filter with clear and
easily computed conditions for the convergence of the associated risk-sensitive Riccati
equation. Additionally, Zorzi (2017) presented a robust Kalman filter whose gain is updated
based on a time-varying risk-sensitive parameter, which characterizes a tolerance upon the
divergence between the actual (uncertain) and nominal system models, guaranteeing a
well-defined filter at each iteration.

The fourth approach consists of formulating the estimation problem as a robust
regularized least-squares problem (SAYED; NASCIMENTO, 1999). The aim is to minimize
the worst-possible regularized residual norm over the set of admissible uncertainties. In
general, the resulting filters are recursive and resemble the classic Kalman filter, which is
convenient for online applications. Sayed (2001) was the first work to employ this approach



1.1 Robust Filtering 31

in robust filtering. It introduces the so-called bounded data uncertainties (BDU) filter,
which considers that the system is subject to norm-bounded parametric uncertainties.
However, Xu and Mannor (2009) point out that considering the worst-case effect of
uncertainties in least-squares designs may lead to over-conservative filters. They propose
an estimator that combines the Kalman and BDU filters to counteract this issue. Ishihara,
Terra and Cerri (2015) presented a robust filter in a symmetric matrix arrangement. Their
design does not depend on any parameter tuning and assumes that all parameter matrices of
the target system and sensing models have uncertainties. However, it involves the inversion
of a large matrix block at each time step. More recently, Abolhasani and Rahmani (2018)
extended the BDU filter to deal with both norm-bounded and stochastic uncertainties in
all parameter matrices. The filter results from the solution of an optimization problem
subject to a linear matrix inequality (LMI), which minimizes the estimation error variance
at each iteration. Nonetheless, LMI-based strategies often require excessive computational
effort, which might be prohibitive for real-time systems.

Motivated by this discussion, we propose a robust Kalman filter for uncertain linear
discrete-time systems in this thesis. Unlike most works, we assume that all matrices of the
target system and sensing models are subject to norm-bounded parametric uncertainties.
This way, it is also possible to handle systems with uncertain noise variance matrices, as
shown in Dong and You (2006).

We adopt a purely deterministic interpretation of the robust estimation problem,
as discussed in Bryson and Ho (1975) and Sayed (2001), and formulate a constrained
regularized least-squares estimation problem with norm-bounded uncertainties. We further
apply the penalty function method (LUENBERGER; YE, 2021) to transform it into a
more convenient unconstrained problem. The solution to this problem ultimately yields the
proposed robust filter, which we present in a recursive correction-prediction Kalman-like
structure. As such, we avoid using numerical solvers to derive the analytical filter equations.

The robust Kalman filter presented in this thesis was introduced in paper number 2,
shown in Section 1.3.

1.1.2 Robust Filtering for Systems with Polytopic Uncertainties

In the polytopic uncertainty model, we consider that the system parameters
arbitrarily vary within a convex polyhedron centered at the nominal parameters (CHANG;
PARK; TANG, 2015).

The last two decades have witnessed the rise of several robust filtering techniques for
systems subject to polytopic uncertainties. The pioneering work by Geromel et al. (2000)
presents both H2 and H∞ filters that are robust to polytopic uncertainties in discrete-time
systems. The proposed estimators are based on the quadratic stability concept, which
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uses a single Lyapunov matrix to evaluate the estimation error norm over the entire
uncertainty domain. However, the quadratic stability assumption is rather conservative for
time-invariant systems. Geromel, Oliveira and Bernussou (2002) addressed this drawback,
proposing a new stability condition based on parameter-dependent Lyapunov matrices.
The authors also provide a method to synthesize a robust H2 filter, obtained as the result
of a linear problem constrained by LMIs.

There has been a continuous effort to improve performance and reduce conserva-
tiveness of robust H2 and H∞ filters. A common strategy is to introduce additional slack
variables into the underlying LMIs, as reported in Shaked, Xie and Soh (2001), Xie et
al. (2004), Duan et al. (2006), Zhang, Xia and Shi (2009), and Chang, Park and Tang
(2015). While providing extra dimensions to the optimization problem solution space, this
approach also increases the computational burden required to solve the more complex LMIs.
Moreover, optimal filters usually demand fine-tuning of project parameters. Mixed H2/H∞

strategies are proposed, e.g., in Palhares and Peres (2001) and Gao et al. (2005). The goal
is to minimize an upper bound of the H2 norm of the estimation error whilst guaranteeing
a prescribed H∞ attenuation level. Additionally, there is the set-membership approach
(YANG; LI, 2011), which involves a recursive algorithm for calculating an ellipsoid that
always contains the true system state. More recently, the Finsler lemma has been used
to improve the performance of estimators for systems with state-multiplicative noise and
polytopic uncertainties, for instance, in Gershon and Shaked (2015), Morais et al. (2017),
and Gershon and Shaked (2020).

A common aspect among the strategies discussed above is their dependence on
solving optimization problems subject to LMIs. Usually, each vertex of the uncertainty
polytope provides one inequality constraint. Hence, the problem complexity increases with
the number of vertices. Moreover, introducing extra free parameters, which often rely on
additional optimization or manual tuning, increases the overall complexity. Nevertheless,
LMI-based robust filters have consistently been considered an effective and valuable state
estimation strategy. However, the numerical solvers involved in their solution often require
computational resources that may not be available in some applications.

With these points in mind, we propose a robust filter for linear discrete-time systems
subject to polytopic uncertainties. We also formulate the robust estimation problem from
a deterministic viewpoint (BRYSON; HO, 1975), as a min-max optimization problem
subject to linear equality constraints obtained from each polytope vertex. The proposed
polytopic robust filter has a recursive correction-prediction structure that resembles the
classic Kalman filter. Its main advantage compared to the aforementioned results is that
it does not depend on the solution of LMI-based optimization problems, avoiding the use
of computationally expensive numerical solvers.

The polytopic robust Kalman filter is also presented in paper 3, shown in Section 1.3.
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1.2 Robust Distributed Filtering

One of the major applications of NCMASs is in distributed filtering over sensor
networks and has thus been an important research field over the past few decades. These
networks are composed of interconnected nodes with sensing, computing, and communica-
tion capabilities. In a distributed filtering setup, each sensor observes a target dynamical
system and shares information with a limited set of neighboring sensors to collectively
obtain the best estimate of the system state. The cooperation between sensors allows for
improved estimation accuracy, flexibility, and reliability of the overall system. Furthermore,
unlike centralized architectures, a single sensor’s failure does not compromise the entire
system.

The average consensus protocol is among the most successful strategies used in
distributed filtering. Olfati-Saber (2005) is a pioneering work in this sense, combining
consensus and the Kalman filter (KALMAN, 1960) to propose a distributed Kalman
filter (DKF). The idea was to reproduce the result of a global centralized Kalman filter.
However, rather than having access to all sensor nodes at once, it uses a distributed
architecture where the sensors can only access their neighbors. Each sensor carries out
so-called micro-Kalman filter iterations, similar to a Kalman filter in its information
form. However, it uses consensus filters (OLFATI-SABER; SHAMMA, 2005) to fuse the
local measurements and innovation matrices (inverse of the measurement variance matrix)
among the sensor neighborhood. The literature now refers to this technique as consensus
on measurements (CM). A limitation of the DKF is that it assumes all sensors have
identical models, meaning that the target system has to be observable by every sensor.

Olfati-Saber (2007) further extended the DKF to accommodate heterogeneous
sensing models. The new filter is called the Kalman consensus filter (KCF). It also
introduces the consensus on estimates (CE) approach, in which the sensor nodes share
their prior state estimates, significantly increasing estimation accuracy. The KCF is
presented in both continuous-time and discrete-time versions. Later, Olfati-Saber (2009)
showed that the discrete-time KCF is a suboptimal solution to the distributed Kalman
filtering problem. It further proposed an optimal solution, which was shown to not be
scalable for large networks, as it requires the computation of cross-covariance matrices
between every pair of sensor nodes, a prohibitive process in terms of communication and
computational efforts. Nevertheless, the author proposed a feasible alternative to the
optimal filter by approximating the optimal consensus gain, assumed to be a constant
scale of the prior error covariance matrix. Using a Lyapunov-based stability analysis, the
author showed that this suboptimal KCF is stable.

Deshmukh, Kwon and Hwang (2017) proposed a different optimal KCF where both
the Kalman and consensus gains are derived as the solution to an optimization problem in
which the total network estimation error is minimized. However, it suffers from the same
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scalability problem of the simpler optimal KCF of Olfati-Saber (2009), requiring even
higher communication and computational burdens in exchange for minor performance
improvement.

Another consensus-based approach for distributed filtering was proposed in Battis-
telli and Chisci (2014), later referred to as the consensus on information (CI) approach.
The strategy consists of performing consensus on the information pairs, composed of
the posterior state estimates and information matrices (inverse of the error covariance
matrix) of the sensor nodes. A similar approach was reported in Kamal, Farrell and
Roy-Chowdhury (2013), which introduced the information-weighted consensus filter and
presented its application in a distributed camera network. The set of cameras performs a
target-tracking task, such that the filter should compensate for the fact that the target
may not be visible to all cameras.

Finally, in Battistelli et al. (2015), the authors propose the hybrid consensus
on measurements and information (HCMCI) approach, which combines the CM and
CI strategies mentioned above, leveraging their complementary features. Based on this
approach, they design a hybrid consensus filter applicable to linear and nonlinear systems.
For a comprehensive review of distributed filtering over sensor networks using consensus-
based strategies and alternatives such as diffusion-based and gossip-based approaches,
check the compilations in He et al. (2020) and Modalavalasa et al. (2021).

Note that many works on distributed filtering in the literature are based on the
Kalman filter. As such, they inherit the pitfall of requiring exact knowledge of the target
system and sensing models. In practice, these models are often subject to parametric
uncertainties, which can jeopardize the estimation performance. Therefore, dealing with
these uncertainties in distributed filtering has stirred attention from researchers and is the
primary motivation of this thesis. Analogous to the single-sensor robust estimation men-
tioned earlier, we also address two types of parametric uncertainties in robust distributed
filtering: norm-bounded and polytopic uncertainties, which we discuss in the following
subsections.

1.2.1 Robust Distributed Filtering for Systems with
Norm-Bounded Uncertainties

Different from the large body of research dedicated to the single-sensor robust
estimation problem for systems subject to norm-bounded uncertainties, as summarized
in Section 1.1.1, this problem has not been as well-explored in the context of distributed
estimation over sensor networks.

Most works concerning robust distributed filtering adopt a stochastic treatment
of uncertainties. For instance, Ding et al. (2012) and Wang et al. (2018) proposed H∞
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distributed filters for systems with stochastic uncertainties. The former also deals with
stochastic nonlinearities, and the latter further considers successive missing measurements.
Feng, Wang and Zeng (2013), Tian, Sun and Li (2016), and Ding et al. (2017) presented
recursive Kalman-like distributed filters. The first two additionally address auto- and cross-
correlated noises, whereas the third assumes uniform quantization effects and compensates
for deception attacks. Rastgar and Rahmani (2018) extended the work of Deshmukh, Kwon
and Hwang (2017) to systems with stochastic uncertainties, proposing an optimal consensus-
based distributed filter. Nonetheless, it relies on computing cross-covariance matrices
between sensors to achieve optimality, which renders a computationally and communication-
intensive filter. Later, in Rastgar and Rahmani (2020), the authors circumvented this issue
and proposed a distributed estimator based on the HCMCI approach.

On the other hand, Shen, Wang and Hung (2010), Dong, Ding and Ren (2014),
Hedayati and Rahmani (2020), and Han et al. (2021) proposed H∞-consensus filters to
handle norm-bounded uncertainties. The first three also deal with the missing measurements
problem. The work by Hedayati and Rahmani (2020) further considers state time delays.
However, they rely on the solution of complex LMIs and compute the filter gains all at
once, requiring knowledge of the whole network. Zhang, He and Zhou (2018) proposed a
robust recursive distributed filter for sensor networks with parameter and network topology
uncertainties without assuming any particular structure. At each time step, it minimizes
the trace of the estimation error covariance. As in the previous estimators, it also computes
the filter gains altogether. Hence, the works above are not fully distributed strategies since
they require network-wide information. In contrast, Duan et al. (2020) and Rocha and
Terra (2020) proposed fully distributed robust recursive filters. While the former only
considers norm-bounded uncertainties in the target system model, the latter also treats
uncertainties in the sensing models. Moreover, both employ a single consensus iteration.

Considering the low number of works on the subject, we propose a robust fully
distributed consensus-based filter for sensor networks estimating systems subject to norm-
bounded parametric uncertainties. To derive this filter, we first propose a robust centralized
Kalman filter, which generalizes the robust Kalman filter mentioned in Section 1.1.1 to
the multiple sensor case. In this setup, a fusion center gathers the measurements from all
the sensors. Then, through the HCMCI protocol, we arrive at the distributed formulation,
which approximates the centralized estimator’s behavior but considers only the local
interactions between each sensor and its neighborhood.

A preliminary version of this distributed filter which employs a single iteration of
the CI protocol was first presented in paper number 1, listed in Section 1.3, whereas paper
number 4 features the final version of the robust distributed filter.
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1.2.2 Robust Distributed Filtering for Systems with Polytopic
Uncertainties

The literature on robust distributed estimation for systems with polytopic uncer-
tainties is even more scarce than the norm-bounded uncertainty type. Shen, Wang and
Hung (2010) and Souza, Coutinho and Kinnaert (2016) are among the few works that
tackle this problem. The former proposed an H∞-consensus filter and also considered
the effects of missing measurements. The latter presented distributed filters with a more
general structure, whose matrices are designed to minimize the mean squared estimation
error. Two strategies are proposed: one based on the observability Gramian and the other
based on the controllability Gramian. A common drawback of the aforementioned solutions
is that they require knowledge of the whole network structure when computing the filter
gains, which reduces their flexibility. Moreover, they depend on the solution of LMI-based
optimization problems, whose complexity increases with the number of sensors in the
network and the number of vertices of the uncertainty polytopes, which may be prohibitive
for real-time systems.

To help fill the gap regarding this specific type of problem, in this thesis, we propose
a robust and fully distributed consensus-based filter for estimating the state of systems
subject to polytopic uncertainties using sensor networks. Similar to the norm-bounded
uncertainty case discussed in Section 1.2.1, we first propose a centralized filter, extending the
polytopic robust Kalman filter mentioned in Section 1.1.2 to the multiple-sensor scenario.
Then, we also employ the HCMCI protocol to derive a distributed implementation of the
centralized estimator, aiming to approximate its performance.

Paper number 5, shown in Section 1.3, also presents the polytopic robust distributed
filter proposed here.
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1.4 Document Structure

This thesis is organized into five chapters and an appendix, described as follows:

• Chapter 1: Introduces the networked cooperative multi-agent systems, including the
sensor networks, the central subject of this work. Moreover, it explains the different
robust and distributed filtering problems to be addressed, featuring brief reviews of
the related works in the literature.

• Chapter 2: Presents preliminary concepts that are fundamental to the development
of this work, namely, the penalty function method, least-squares problems, notions
of graph theory, and the average consensus algorithm.

• Chapter 3: Addresses the state estimation problem in the single-sensor scenario,
explaining the deterministic approach to derive nominal and robust filters as the
outcome of solving least-squares problems. Furthermore, it presents the two proposed
robust Kalman filters for systems with norm-bounded and polytopic uncertainties.

• Chapter 4: Extends the results in Chapter 3 for applications using sensor networks.
It presents the robust centralized and consensus-based distributed versions of the
respective filters proposed in the previous chapter, considering the two distinct types
of parametric uncertainties: norm-bounded and polytopic.
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• Chapter 5: Presents the concluding remarks of this work and suggests possible
directions to extend the proposed results further.

• Appendix A: Provides a collection of matrix analysis results used throughout this
document.
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Chapter 2
Preliminary Concepts

This chapter introduces preliminary concepts fundamental to this work’s develop-
ment. The proposed robust and distributed filters result from the solution of optimization
problems subject to linear equality constraints. When dealing with these problems, using
the penalty function method is a standard approach. It approximates the constrained
problem with a sequence of unconstrained problems, which are more convenient to solve.
The approximation includes the constraint equations into the objective function multiplied
by a parameter that penalizes violations of the constraints.

In addition, the classic least-squares problem, as well as its weighted and reg-
ularized variants, are reviewed. We also present the regularized least-squares problem
with uncertainties and an adapted version that sits at the foundation of the estimation
algorithms proposed in this thesis.

A graph is a standard instrument to model the intercommunication among sensors
in a network. Therefore, this chapter also presents some basic graph theory notions and
results used in this work. We conclude the chapter with an introduction to the average
consensus algorithm, a paramount technique in distributed estimation.

2.1 Penalty Function Method

This section presents the penalty function method, a technique used to solve
optimization problems subject to linear equality constraints. The following results are
extracted from Luenberger and Ye (2021).

Consider the constrained optimization problem

min
z

f(z)

s.t. h(z) = 0,
(2.1)

where z ∈ Rn, f : Rn → R is a continuous objective function, and h : Rn → R is a linear
equality constraint. The penalty function method consists of replacing the constrained
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problem (2.1) by an unconstrained problem of the form

min
z

q(z, µ) = f(z) + µP (z), (2.2)

in which q(z, µ) is a new objective function with a constant penalty parameter µ > 0 and
penalty function P (z) = h(z)T h(z). Observe that the penalty parameter is associated with
the constraint term h(z) in a way that the penalty function P (z) is penalized when the
constraint is violated, i.e., if h(z) ̸= 0. This way, µ determines how close the solution
to (2.2) is to the solution of the original problem (2.1).

In general, we apply the penalty function method as an iterative process. At each
step k ≥ 0, the penalty parameter µk is fixed and the optimal solution zk of problem (2.2) is
then obtained. At each iteration, µk is updated, such that an ascending sequence {µk}+∞

k=0

is generated. As µk → +∞, the penalty in function P (z) increases and, in the limit,
P (z)→ 0. Consequently, h(z)→ 0 and the unconstrained problem becomes equivalent to
the constrained problem. Algorithm 2.1 summarizes the procedure for the penalty function
method.

Algorithm 2.1 Penalty function method
Initialization: Set a desired precision ϵ > 0 and µ0 > 0

for k = 0, 1, . . . do
Define the auxiliary objective function q(z, µk) = f(z) + µkP (z)
Obtain zk = arg min

z
q(z, µk)

if µkP (zk) < ϵ then
Stop and return the solution zk

else
µk ← µk+1 > µk

k ← k + 1
end if

end for

The following results concern the convergence of the penalty function method. The
detailed proofs can be found in Luenberger and Ye (2021).

Lemma 2.1. (LUENBERGER; YE, 2021) Consider an ascending sequence of penalty pa-
rameters {µk}+∞

k=0 and the corresponding sequence of functions {q(z, µk)}+∞
k=0, with q(z, µk) =

f(z) + µkP (z). The following properties hold:

(i) q(zk, µk) ≤ q(zk+1, µk+1);

(ii) P (zk) ≥ P (zk+1);

(iii) f(zk) ≤ f(zk+1).

Lemma 2.2. (LUENBERGER; YE, 2021) Let z∗ be a solution to problem (2.1). Then,
for each k,

f(z∗) ≥ q(zk, µk) ≥ f(zk).
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Definition 2.1. A point z is a limit point of sequence {zk} if there exists a subsequence
of {zk} that converges to z. Equivalently, z is a limit point of {zk} if there exists a subset
K ⊂ Z+ such that {zk}k∈K converges to z.

The next theorem establishes the global convergence of the penalty function method.
More precisely, it states that the limit point of any sequence of solutions to unconstrained
problem (2.2) corresponds to the solution to the original constrained problem (2.1). The
result follows from the two previous lemmas.

Theorem 2.1. (LUENBERGER; YE, 2021) Let {zk} be a sequence generated by the penalty
function method. Then, any limit point of this sequence is a solution to problem (2.1).

2.2 Least-Squares Problems

This section reviews the classic least-squares problem and some variations: the
weighted least-squares, the regularized least-squares, and the regularized least-squares
with uncertainties. Further details about the classic problems and their solutions can be
found, for instance, in Kailath, Sayed and Hassibi (2000a).

2.2.1 Least-Squares Problem

Consider the quadratic optimization problem

min
z

J(z), (2.3)

with objective function J : Rn → R given by

J(z) = ∥Az − b∥2 = (Az − b)T (Az − b), (2.4)

in which z ∈ Rn is an unknown vector and A ∈ Rm×n and b ∈ Rm are known.

Lemma 2.3. A vector z∗ is a solution to problem (2.3)-(2.4) if, and only if, it satisfies
the normal equation

ATAz∗ = AT b. (2.5)

The resulting minimum value of the objective function is then given by

J(z∗) = ∥Az∗ − b∥2 = ∥b∥2 − ∥Az∗∥2.

If A has full column rank n, then ATA is nonsingular and there is a unique z∗ satisfying
(2.5) given by

z∗ =
(
ATA

)−1
AT b.

Furthermore, the resulting minimum value of the objective function is

J(z∗) = ∥Az∗ − b∥2 = bT
(
Im −A

(
ATA

)−1
AT

)
b.
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2.2.2 Weighted Least-Squares Problem

Consider the optimization problem

min
z

J(z), (2.6)

with objective function J : Rn → R given by

J(z) = ∥Az − b∥2
W = (Az − b)TW(Az − b), (2.7)

where z ∈ Rn is an unknown vector, W ∈ Rm×m is a known symmetric positive definite
weighting matrix, and A ∈ Rm×n and b ∈ Rm are also known. Notice that this is a
generalization of the previous least-squares problem, for which W = Im.

Lemma 2.4. A vector z∗ is a solution to problem (2.6)-(2.7) if, and only if, it satisfies
the normal equation

ATWAz∗ = ATWb. (2.8)

The minimum value of the objective function is thus given by

J(z∗) = ∥Az∗ − b∥2
W = bTWb− bTWAz∗.

If A has full column rank n, then ATWA is nonsingular and there is a unique z∗ satisfying
(2.8) given by

z∗ =
(
ATWA

)−1
ATWb.

Furthermore, the minimum value of the objective function is

J(z∗) = ∥Az∗ − b∥2
W = bT

(
W−WA

(
ATWA

)−1
ATW

)
b.

2.2.3 Regularized Least-Squares Problem

Consider the optimization problem defined by

min
z

J(z), (2.9)

with objective function J : Rn → R given by

J(z) = ∥z∥2
Q + ∥Az − b∥2

W = zTQz + (Az − b)TW(Az − b), (2.10)

where z ∈ Rn is an unknown vector, Q ∈ Rn×n and W ∈ Rm×m are known symmetric
weighting matrices, with Q ≻ 0 and W ⪰ 0, and A ∈ Rm×n and b ∈ Rm are also known.
Unlike the weighted least-squares problem, this function has an additional regularization
term.
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Lemma 2.5. The unique optimal solution z∗ to problem (2.9)-(2.10) is given by

z∗ =
(
Q + ATWA

)−1
ATWb (2.11)

and the minimum value of the objective function is

J(z∗) = bT
(
W−WA

(
Q + ATWA

)−1
ATW

)
b = bT

(
W−1 + AQ−1AT

)−1
b.

Note that, in Lemma 2.5, the uniqueness of the solution is guaranteed by requiring
that Q ≻ 0. However, as we shall see in Section 3.1.2, we are rather interested in the
case where Q ⪰ 0 and W ≻ 0, such that an additional condition is needed to ensure the
uniqueness of the solution. Therefore, in the following lemma, we provide such conditions
when dealing with this alternative problem.

Lemma 2.6. Consider problem (2.9)-(2.10) with Q =
Q1 0

0 Q2

 ⪰ 0, in which Q1 ⪰ 0

and Q2 ≻ 0, and W ≻ 0. Define I2 :=
[
0 I2

]
, where the identity matrix I2 has the same

dimensions as Q2. If the block
I2

A

 has full column rank n, the optimal solution z∗ given

in (2.11) is unique.

Proof. The uniqueness of the optimal solution z∗ in (2.11) is a consequence of the invert-
ibility of the term (Q + ATWA). Let us rewrite this term as

IT
1 Q1I1 + IT

2 Q2I2 + ATWA = IT
1 Q1I1 +

[
IT

2 AT
] Q2 0

0 W

I2

A

 ,

in which we define I1 :=
[
I1 0

]
and I2 :=

[
0 I2

]
, where I1 and I2 are identity matrices

with the same dimensions as Q1 and Q2, respectively. From Lemma A.5 (item (i)), since
Q1 ⪰ 0, the first term is positive semidefinite. The central block diagonal matrix in the

last term is positive definite, thus, according to Lemma A.5 (item (ii)), if the block
I2

A


has full column rank, the last term is also positive definite, and so is the full expression.
In consequence, we ensure its invertibility and the uniqueness of the optimal solution.

2.2.4 Regularized Least-Squares Problem with Uncertainties

Consider now a regularized least-squares problem with parametric uncertainties
defined by

min
z

max
δA,δb

J(z, δA, δb), (2.12)

with objective function given by

J(z, δA, δb) = ∥z∥2
Q + ∥(A + δA)z − (b + δb)∥2

W

= zTQz +
[
(A + δA)z − (b + δb)

]T
W
[
(A + δA)z − (b + δb)

]
, (2.13)
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in which z ∈ Rn is an unknown vector, Q ∈ Rn×n and W ∈ Rm×m are known symmetric
weighting matrices, with Q ≻ 0 and W ⪰ 0. A ∈ Rm×n and b ∈ Rm are known and subject
to parametric uncertainties δA ∈ Rm×n and δb ∈ Rm, modeled as[

δA δb
]

= M∆
[
EA Eb

]
, (2.14)

where M ̸= 0, EA and Eb are known matrices with appropriate dimensions, and ∆ is an
arbitrary contraction matrix, such that ∥∆∥ ≤ 1. Notice that the objective function should
be minimized under the maximum influence of the parametric uncertainties.

The unique optimal solution to problem (2.12)-(2.14) is shown next. It was proposed
in Sayed and Nascimento (1999), where the detailed proof can be found.

Lemma 2.7. (SAYED; NASCIMENTO, 1999) Problem (2.12)-(2.14) admits a unique
solution z∗ given by

z∗ =
(
Q̂ + ATŴA

)−1(
ATŴb + λ̂ET

AEb

)
, (2.15)

where Q̂ and Ŵ are modified weighting matrices defined as

Q̂ := Q + λ̂ET
AEA,

Ŵ := W + WM
(
λ̂I −MTWM

)†
MTW,

and λ̂ is a nonnegative scalar parameter obtained as the solution to the optimization
problem

λ̂ := arg min
λ≥∥MT WM∥

Γ(λ), (2.16)

with objective function Γ(λ) given by

Γ(λ) := ∥z(λ)∥2
Q + λ ∥EAz(λ)− Eb∥2 + ∥Az(λ)− b∥2

W(λ), (2.17)

in which

Q(λ) := Q + λET
AEA,

W(λ) := W + WM
(
λI −MTWM

)†
MTW,

z(λ) :=
(
Q(λ) + ATW(λ)A

)−1(
ATW(λ)b + λET

AEb

)
.

Remark 2.1. (SAYED, 2001) In Lemma 2.7, if λ > ∥MTWM∥ and W is positive definite,
the term

(
λI −MTWM

)
also becomes positive definite. In this case, the pseudoinverse

operations in Ŵ and W(λ) can thus be replaced by normal matrix inverse operations.

Remark 2.2. (SAYED, 2001) Instead of explicitly solving the auxiliary problem (2.16)-
(2.17) in Lemma 2.7, we can reasonably approximate the optimal λ̂ parameter as λ̂ =
(1 + ξ) ∥MTWM∥, for some ξ > 0. This comes from the observation that the function Γ(λ)
tends to reach amplitudes close to its minimum for values of λ that are generally close to
its lower bound ∥MTWM∥, as reported in Sayed and Chen (2002).



2.3 Notions of Graph Theory 47

Similar to the nominal regularized least-squares problem (Section 2.2.3), by re-
quiring that Q ≻ 0, we guarantee the uniqueness of the solution presented in Lemma 2.7.
Nevertheless, as we will see in Section 3.2.2 and Section 3.3.2, we are interested in the
problem where Q ⪰ 0 and W ≻ 0. Thus, to ensure the uniqueness of the solution in
(2.15), we need an additional condition on the problem parameters, as the following lemma
explains.

Lemma 2.8. Consider problem (2.12)-(2.14) with Q =
Q1 0

0 Q2

 ⪰ 0, in which Q1 ⪰ 0

and Q2 ≻ 0, and W ≻ 0. Define I2 :=
[
0 I2

]
, where the identity matrix I2 has the same

dimensions as Q2. If the block


I2

A

EA

 has full column rank n, the optimal solution z∗ given

in (2.15) is unique.

Proof. The uniqueness of the optimal solution z∗ in (2.15) is a consequence of the invert-
ibility of the term

(
Q̂ + ATŴA

)
. Let us rewrite this term as

IT
1 Q1I1 + IT

2 Q2I2 + ATŴA + λ̂ET
AEA = IT

1 Q1I1 +
[
IT

2 AT ET
A

] 
Q2 0 0
0 Ŵ 0
0 0 λ̂I



I2

A

EA

 ,

in which we define I1 :=
[
I1 0

]
and I2 :=

[
0 I2

]
, where I1 and I2 are identity matrices

with the same dimensions as Q1 and Q2, respectively. From Lemma A.5 (item (i)), since
Q1 ⪰ 0, the first term is positive semidefinite. As mentioned in Remark 2.1, given that
W ≻ 0 and λ̂ > ∥MTWM∥ > 0, we have that Ŵ ≻ 0. Hence, the central block diagonal
matrix in the last term is positive definite. According to Lemma A.5 (item (ii)), if the

block


I2

A

EA

 has full column rank, the last term is also positive definite, and so is the full

expression. In consequence, we ensure its invertibility and the uniqueness of the optimal
solution.

2.3 Notions of Graph Theory

Graphs can naturally represent the structure of information exchange among agents
in a multi-agent system. For this reason, this section introduces basic notions of graph
theory that are essential to model the sensor networks considered in this work. The
concepts are borrowed from the tutorial presented in Ren, Beard and Atkins (2007). For a
more in-depth study on graph theory, see Diestel (2017) and Godsil and Royle (2001).
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2.3.1 Basic Definitions

A graph is a pair G = (S,E), in which S = {v1, . . . , vS} is the nonempty finite
vertex or node set and E ⊆ S× S is the edge set. The elements of E are denoted (vi, vj),
meaning in this case that nodes vi and vj are adjacent, or neighbors.

In a directed graph (or digraph), the edge (vi, vj) indicates that node vj, called
the child, receives information from node vi, called the parent, but not necessarily vice
versa. Moreover, vi is an (in-)neighbor of vj. The neighborhood of a node vi is the set
Ni = {vj | (vj, vi) ∈ E}. The in-degree of vi, denoted |Ni|, is the cardinality of its neigh-
borhood, i.e., the number of elements in Ni. In contrast, in undirected graphs, the edges
are bidirectional, such that (vi, vj) ∈ E⇒ (vj, vi) ∈ E,∀i, j, and edges can be treated as
unordered pairs.

We can assign weights to the edges of a graph, yielding the so-called weighted
graphs. For example, we assign weight aij to the edge (vj, vi). Note the order of the indices
here. For weighted undirected graphs, we have that aij = aji, ∀i, j.

A directed path is a sequence of nodes v0, v1, . . . , vr such that (vk, vk+1) ∈ E, for
k = 0, 1, . . . , r − 1. Node vi is connected to node vj if there is a directed path between
them. A directed graph is strongly connected if there is a directed path between every pair
of distinct nodes. Analogously, undirected graphs are said to be connected in this case.
The qualifier “strongly” is omitted since if there is a directed path from vi to vj, there is
also one from vj to vi in undirected graphs.

2.3.2 Algebraic Graph Theory

The structure and properties of a graph can be studied by analyzing the properties
of certain matrices that can be associated with it. In this section, consider a weighted
graph G = (S,E) with node set S = {v1, . . . , vS} and edge weights aij.

The graph can be represented by an adjacency matrix A = [aij], in which aij > 0
if (vj, vi) ∈ E and aij = 0 otherwise. Recall that, for undirected graphs, aij = aji, ∀i, j,
therefore, the adjacency matrix is symmetrical in this case. Moreover, its eigenvalues are
all real. If weights are not relevant, simply set aij = 1 whenever (vj, vi) ∈ E. A graph is
said to be balanced if ∑S

j=1 aij = ∑S
j=1 aji,∀i. This implies that all undirected graphs are

balanced.

Another important matrix that can characterize a graph is the Laplacian matrix
L = [ℓij], defined as

ℓij =


S∑

j=1,i ̸=j

aij, if i = j,

−aij, if i ̸= j.
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There is an equivalent definition of the Laplacian matrix, given by L = D − A. Here,
D = [dij] is the weighted in-degree matrix, where dij = 0 if i ≠ j and dii = ∑S

j=1,i ̸=j aij,
i = 1, . . . , S, and A is the adjacency matrix. Note that, for undirected graphs, the Laplacian
matrix is symmetric, thus all of its eigenvalues are real.

2.4 Average Consensus

A consensus algorithm (or protocol) is an interaction rule that defines how infor-
mation should be exchanged among agents in a network. We say that the agents reach
a consensus when they agree on a certain numerical entity of interest (a scalar, vector,
or matrix) that depends on the states of all agents (OLFATI-SABER; FAX; MURRAY,
2007). By design, consensus algorithms are distributed and rely only on the information
exchange between each agent and its limited set of neighbors, i.e., no fusion center is
required (REN; BEARD; ATKINS, 2007).

In particular, the average consensus is an algorithm to compute the arithmetic
mean of a set of numerical entities. Consider a network described by a connected undirected
graph G with S nodes. Each node i ∈ S := {1, 2, . . . , S} can exchange data with a limited
set Ni of neighbors at discrete instants of time. Suppose that each node is initialized
with a state αi(0). At each step ℓ, the nodes update their state using data from their
neighborhood. As ℓ→∞, the goal is to make the state αi(ℓ) of all nodes converge to the
average value of their initial states. Through Algorithm 2.2, adapted from Ren, Beard and
Atkins (2007), we can achieve average consensus in a distributed fashion.

Algorithm 2.2 Average consensus (each node i ∈ S) (REN; BEARD; ATKINS, 2007)
Initialization: Set initial consensus state αi(0).

for ℓ = 0, 1, . . . , L− 1 do
1. Send the current state αi(ℓ) to all neighbors j ∈ Ni.
2. Receive the current state αj(ℓ) from all neighbors j ∈ Ni.
3. Update the consensus state

αi(ℓ + 1) =
S∑

j=1
πijαj(ℓ)

end for

Definition 2.2. In step 3 of Algorithm 2.2, πij, ∀i, j ∈ S, are the so-called consensus
weights, for which we assume the following characteristics:

(i) πij > 0, if i = j;

(ii) πij > 0, if j ∈ Ni;

(iii) πij = 0, otherwise;
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(iv) ∑S
j=1 πij = 1, ∀i ∈ S.

Moreover, we define the weighted adjacency matrix Π := [πij ], which describes the network
communication topology.

The following lemma outlines some properties of the weighted adjacency matrix Π
defined above.

Lemma 2.9. The weighted adjacency matrix Π (Definition 2.2) that describes the undi-
rected connected graph G has the following properties:

(i) Π is a nonnegative doubly stochastic matrix;

(ii) Π is an irreducible matrix;

(iii) All eigenvalues of Π are real and ρ(Π) = 1;

(iv) ρ(Π) = 1 is an algebraically simple eigenvalue of Π;

(v) Π is a primitive matrix.

Proof. Let us address each of one the properties:

(i) This property holds by the way we construct Π. Since πij ≥ 0, Π is nonnegative
(see Definition A.3) and, given that the underlying graph G is undirected, πij = πji,
∀i, j ∈ S, then Π is symmetric. Moreover, as ∑S

j=1 πij = 1, ∀i ∈ S, every row and
column sum of Π is unitary, therefore, it is doubly stochastic (see Definition A.4).

(ii) The second property follows directly from Lemma A.6, as the underlying graph G is
undirected and connected.

(iii) The eigenvalues of Π are all real because it is a real symmetric matrix. The unitary
spectral radius property follows from the Geršgorin Disk theorem (Theorem A.1)
and the fact that it is doubly stochastic.

(iv) This property holds according to the Perron-Frobenius theorem (Theorem A.2), since
Π is an irreducible matrix and ρ(Π) = 1.

(v) Finally, since Π is irreducible and has a single nonzero eigenvalue of maximum
modulus, the last property follows directly from the definition of a primitive matrix
(Definition A.6).

The next theorem establishes the main result about the convergence of Algorithm 2.2
and how it achieves average consensus.
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Theorem 2.2. Consider a network described by a connected undirected graph G with
S nodes and associated weighted adjacency matrix Π having the properties outlined in
Lemma 2.9. If each node i ∈ S performs Algorithm 2.2 with an infinite number of consensus
iterations, i.e., L→∞, the states of all nodes converge asymptotically to the average value
of their initial states, i.e.,

lim
L→∞

αi(L) = 1
S

S∑
i=1

αi(0), ∀i ∈ S, (2.18)

for any set of initial states.

Proof. Given the properties of the weighted adjacency matrix Π in Lemma 2.9, from its
irreducibility and the fact that ρ(Π) = 1, the Perron-Frobenius theorem (Theorem A.2)
states that there exist unique vectors v ∈ RS and w ∈ RS such that Πv = v and wT Π = wT .
Moreover, vT w = 1. Since Π is doubly stochastic, v = 1S, which implies that w = (1/S)1S,
where 1S is a column vector of S ones. Then, as Π is primitive, Lemma A.7 indicates that

lim
ℓ→∞

Πℓ = vwT = 1
S

1S1T
S . (2.19)

To conclude, note that the collective dynamics of the network under Algorithm 2.2 can be
written as α(ℓ) = Πℓα(0), where α(ℓ) is a column vector which stacks the states αi(ℓ) of
all nodes. Therefore, substituting Πℓ by the result in (2.19), we obtain (2.18).

Xiao, Boyd and Lall (2005) propose a possible choice of consensus weights πij that
satisfy the necessary conditions discussed above, the so-called Metropolis weights:

πij =



1
1 + max{Ni, Nj}

, if i ̸= j, ∀j ∈ Ni,

1−
∑

j∈Ni

πij, if i = j,

0, otherwise,

(2.20)

where Ni and Nj are the number of neighbors of nodes i and j, respectively.
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Chapter 3
Robust Kalman Filtering

This chapter addresses the problem of estimating the state of a dynamical system
based on measurements obtained by a single sensor. It is divided into three sections. In
the first section, we consider that the underlying target system and sensing models are
nominal, i.e., perfectly known. However, exact models are seldom available in practice
due to factors such as unmodeled dynamics, linearization, model reduction, and varying
parameters. Therefore, in the second and third sections, we respectively assume that
these models are subject to norm-bounded and polytopic parametric uncertainties. In each
section, we propose a filtering strategy inspired by the celebrated Kalman filter (KALMAN,
1960), taking advantage of its efficiency and simplicity whilst overcoming one of its main
weaknesses by compensating for the model uncertainties.

To develop the nominal and robust filters, we adopt a deterministic viewpoint
(BRYSON; HO, 1975) and propose estimation problems constrained by each situation’s
specific target system and sensing models. Then, we develop a similar framework to solve
them and obtain the filter expressions. The procedure fundamentally consists of applying
the penalty function method (Section 2.1) to rewrite the estimation problems in the same
form as one of the classic least-squares problems discussed in Section 2.2, depending on
the presence and type of model uncertainties.

3.1 Nominal Kalman Filtering

In this section, we revisit the classic Kalman Filter (KALMAN, 1960), referring
to it as the Nominal Kalman Filter (KF), to emphasize that all the parameter matrices
that define the linear discrete-time target system and sensing models are perfectly known.
Nevertheless, we assume a slightly more general model than usually found in the related
works. The framework we develop here will serve as the foundation and reference to derive
all the filters proposed in this work.

We formulate the nominal estimation problem from a deterministic viewpoint as a
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constrained regularized least-squares problem (Section 2.2.3), which we transform into
an unconstrained equivalent by applying the penalty function method (Section 2.1). The
solution to this modified problem then provides the recursive expressions of the Nominal
Kalman Filter. We conclude the section with a stability analysis of the proposed estimator,
assuming a time-invariant model.

3.1.1 Problem Formulation

3.1.1.1 System Model

Consider the following discrete-time state-space description of a linear dynamical
system:

xk+1 = Fkxk + Gkuk + Hkwk,

yk = Ckxk + Dkvk,
(3.1)

for k = 0, 1, . . . , N , with state vector xk ∈ Rn, input vector uk ∈ Rm, system noise vector
wk ∈ Rp, measurement vector yk ∈ Rr, and measurement noise vector vk ∈ Rq. Fk ∈ Rn×n,
Gk ∈ Rn×m, Hk ∈ Rn×p, Ck ∈ Rr×n, and Dk ∈ Rr×q are known nominal parameter
matrices.

In a stochastic setting, it is usually assumed that x0, wk, and vk are mutually
independent zero-mean Gaussian random variables with respective variances

E
{
x0x

T
0

}
= P0 ≻ 0, E

{
wkwT

l

}
= Qkδkl ≻ 0, and E

{
vkvT

l

}
= Rkδkl ≻ 0,

where δkl is the Kronecker delta function, such that δkl = 1 if k = l, and δkl = 0 otherwise.
Nonetheless, as we shall see, the strategy we adopt to derive the filter does not require
that these variables have any particular distribution.

3.1.1.2 Nominal Estimation Problem

Since the system state sequence {xk} is not perfectly observed, the problem consists
of obtaining an estimate x̂k of xk leveraging all the information available up to time instant
k, denoted

Y k = {y0, . . . , yk, u0, . . . , uk}. (3.2)

In this context, we define two types of state estimates:

a) x̂k|k denotes the filtered (or posterior) estimate of xk, given Y k;

b) x̂k+1|k denotes the predicted (or predicted prior) estimate of xk+1, given Y k.

As discussed in Bryson and Ho (1975), stochastic estimation problems also admit
a deterministic interpretation and can be formulated as least-squares problems. To avoid
confusion, here we adopt the variables x̂k, x̂k+1, ŵk, and v̂k as substitutes of the random
variables xk, xk+1, wk, and vk in the stochastic model (3.1).
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In the deterministic context, the estimation problem consists of obtaining x̂k, x̂k+1,
ŵk, and v̂k that best fit the model

x̂k+1 = Fkx̂k + Gkuk + Hkŵk,

yk = Ckx̂k + Dkv̂k,
(3.3)

where ŵk and v̂k are interpreted as fitting errors, weighted by matrices Qk ≻ 0 and
Rk ≻ 0, respectively. In addition, we define the approximation errors ek|k = x̂k − x̂k|k and
ek+1|k = x̂k+1 − x̂k+1|k, respectively weighted by matrices Pk|k ≻ 0 and Pk+1|k ≻ 0.

The goal is to formulate an optimization problem whose optimal solution (x̂∗
k, x̂∗

k+1,
ŵ∗

k, v̂∗
k) satisfy model (3.3), given the available observation set Y k in (3.2). We can then

relate this solution to the best estimates of the original random variables xk, xk+1, wk,
and vk, according to the following definitions:

x̂k|k := x̂∗
k, x̂k+1|k := x̂∗

k+1, ŵk|k := ŵ∗
k, and v̂k|k := v̂∗

k.

To fulfill this objective, based on Kailath, Sayed and Hassibi (2000a) and Sayed
(2001), assuming that at each time step k, an a priori state estimate x̂k|k−1, a measurement
yk, and the input uk are available, we formulate a constrained optimization problem with
a one-step quadratic objective function, as follows:

min
x̂k, x̂k+1,

ŵk, v̂k

Jk(x̂k, ŵk, v̂k) = ∥x̂k − x̂k|k−1∥2
P −1

k|k−1
+ ∥ŵk∥2

Q−1
k

+ ∥v̂k∥2
R−1

k

,

subject to
x̂k+1 = Fkx̂k + Gkuk + Hkŵk,

yk = Ckx̂k + Dkv̂k,

(3.4)

for k = 0, 1, . . . , N . The solution to this problem recursively provides the filtered and
predicted state estimates x̂k|k and x̂k|k+1, respectively. Note that, from a stochastic view-
point, matrices Qk and Rk represent the variances of the random variables wk and vk.
Nevertheless, in this more general deterministic setting, they are understood as weighting
matrices. We refer to problem (3.4) as a regularized least-squares estimation problem, which
we discuss in the next section.

3.1.2 Regularized Least-Squares Estimation Problem

Consider the general problem of obtaining an estimate x̂ of an unknown vector x

based on measurements y, related to x according to the linear system

y = Ax + Bw, (3.5)

where w is a noise vector, also unknown, A and B are known matrices, and y is a known
measurement vector. Furthermore, assume that an a priori estimate x̄ of x is available as
well.
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From a deterministic viewpoint, we formulate the so-called regularized least-squares
estimation problem as

min
x, w

J(x, w) = ∥x− x̄∥2
P̄

+ ∥w∥2
Q,

subject to y = Ax + Bw,
(3.6)

where P̄ ⪰ 0 and Q ≻ 0 are given weighting matrices respectively associated with the a
priori estimation error x− x̄ and the model fitting error w.

The first step we take to solve the constrained problem (3.6) is to transform it
into a more convenient unconstrained problem. Since the linear constraint (3.5) is quite
general, it cannot be inserted into the objective function by direct substitution. Therefore,
we apply the penalty function method presented in Section 2.1. The constraint is thus
included into the objective function as a quadratic term multiplied by a penalty parameter
µ > 0. Violating the problem constraint will thus be penalized by this parameter. Hence,
for a fixed µ > 0, we rewrite problem (3.6) as

min
x, w

Jµ(x, w), (3.7)

with a new objective function

Jµ(x, w) =
x− x̄

w

T P̄ 0
0 Q

x− x̄

w

+
[A B

] x− x̄

w

− (y − Ax̄)
T

µI
(
•
)
. (3.8)

Notice that problem (3.7)-(3.8) has the form of a regularized least-squares problem
(Section 2.2.3), considering the following mappings between (2.10) and (3.8):

z ←

x− x̄

w

 , Q←

P̄ 0
0 Q

 , A←
[
A B

]
, b← y − Ax̄, and W← µI. (3.9)

Therefore, to find a solution to problem (3.7)-(3.8), we use the results presented in
Section 2.2.3. From the solution, we then extract the estimate x̂µ of x, conditioned by the
penalty parameter µ, as the next lemma shows.

Lemma 3.1. Consider problem (3.7)-(3.8), in which P̄ ⪰ 0, Q ≻ 0, and A has full column
rank. The estimate x̂µ of x, conditioned by the penalty parameter µ > 0, is given by

x̂µ =
(
P̄ + AT

(
µ−1I + BQ−1BT

)−1
A
)−1(

P̄ x̄ + AT
(
µ−1I + BQ−1BT

)−1
y
)
. (3.10)

Proof. As previously mentioned, problem (3.7)-(3.8) is a regularized least-squares problem,
considering the mappings in (3.9). Since P̄ ⪰ 0, Q ≻ 0, and µ > 0, we have that Q ⪰ 0
and W ≻ 0. Therefore, we can use Lemma 2.6 to find the solution. Additionally, the block0 I

A B

 should have full column rank, which is satisfied, since A is required to have full
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column rank. Thus, substituting the mappings (3.9) into the unique solution (2.11) yieldsx̂µ − x̄

ŵµ

 =
P̄ + µAT A µAT B

µBT A Q + µBT B

−1 µAT
(
y − Ax̄

)
µBT

(
y − Ax̄

) .

Summing
x̄

0

 to both sides then gives

 x̂µ

ŵµ

 =
P̄ + µAT A µAT B

µBT A Q + µBT B

−1 P̄ x̄ + µAT y

µBT y

 .

The equation above represents a system of simultaneous equations. Hence, one can write
the following set of equations:(

P̄ + µAT A
)
x̂µ + µAT Bŵµ = P̄ x̄ + µAT y, (3.11)

µBT Ax̂µ +
(
Q + µBT B

)
ŵµ = µBT y. (3.12)

Isolating ŵµ in (3.12), we have

ŵµ =
(
Q + µBT B

)−1
µBT

(
y − Ax̂µ

)
.

Substituting ŵµ back into (3.11) yields[
P̄ + AT

(
µI − µB

(
Q + µBT B

)−1
BT µ

)
A
]
x̂µ =

P̄ x̄ + AT
(
µI − µB

(
Q + µBT B

)−1
BT µ

)
y. (3.13)

From Lemma A.1, we have that
(
µI − µB

(
Q + µBT B

)−1
BT µ

)
=
(
µ−1I + BQ−1BT

)−1
.

Then, substituting this term in (3.13) and isolating x̂µ, we obtain the estimate shown in
(3.10).

Recall from Section 2.1 that according to the penalty function method, when
the penalty parameter µ → +∞, we have that problems (3.6) and (3.7)-(3.8) become
equivalent. In this case, the solution to the unconstrained problem yields the optimal
estimate x̂, no longer conditioned by µ.

Corollary 3.1. Consider the estimate x̂µ obtained in Lemma 3.1 as part of the solution to
problem (3.7)-(3.8). If A has full column rank, B has full row rank, and we let µ→ +∞,
then the optimal estimate x̂ of x is given by

x̂ =
(
P̄ + AT

(
BQ−1BT

)−1
A
)−1(

P̄ x̄ + AT
(
BQ−1BT

)−1
y
)
. (3.14)

Proof. By letting µ→ +∞ in (3.10), we have that µ−1 → 0, such that the term
(
µ−1I +

BQ−1BT
)−1

becomes
(
BQ−1BT

)−1
and we obtain the optimal estimate x̂ in (3.14). In

addition, as explained in Lemma A.5 (item (ii)), given that B has full row rank, we ensure
invertibility of the term

(
BQ−1BT

)
, assuming that Q ≻ 0.
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Finally, the next lemma shows that if we adopt a stochastic viewpoint of the
estimation problem discussed here, we can further derive a variance matrix to associate
with the estimation error x− x̂.

Lemma 3.2. Consider that in the linear system (3.5), the noise w and the prior estimation
error x−x̄ are mutually independent zero-mean Gaussian variables with respective variances
E
{
wwT

}
= Q−1 and E

{
(x− x̄)(x− x̄)T

}
= P̄ † =

(
P̄ T P̄

)−1
P̄ T . The variance matrix of

the estimation error x− x̂, for x̂ as in (3.14), is given by

E
{
(x− x̂)(x− x̂)T

}
=
(
P̄ + AT

(
BQ−1BT

)−1
A
)−1

. (3.15)

Proof. First, define P̂ :=
(
P̄ + AT

(
BQ−1BT

)−1
A
)−1

. Then, substituting y from (3.5) into
(3.14) yields

x̂ = P̂
[
P̄ x̄ + AT

(
BQ−1BT

)−1(
Ax + Bw

)]
.

By adding P̂ P̄ x to both sides of the equation above and performing some algebraic
operations, we obtain the estimation error

x− x̂ = P̂
[
P̄
(
x− x̄

)
− AT

(
BQ−1BT

)−1
Bw

]
.

Then, we compute the estimation error variance matrix, as follows:

E
{
(x− x̂)(x− x̂)T

}
= P̂

[
P̄E

{
(x− x̄)(x− x̄)T

}
P̄ T +

AT
(
BQ−1BT

)−1
BE

{
wwT

}
BT

(
BQ−1BT

)−1
A
]
P̂ .

Since E
{

(x− x̄)(x− x̄)T
}

= P̄ † =
(
P̄ T P̄

)−1
P̄ T , with P̄ = P̄ T , and E

{
wwT

}
= Q−1, the

equation above becomes

E
{
(x− x̂)(x− x̂)T

}
= P̂

(
P̄ + AT

(
BQ−1BT

)−1
A
)
P̂ = P̂ P̂ −1P̂ = P̂ ,

which corresponds to the result shown in (3.15).

Remark 3.1. In a deterministic context, the estimation error variance matrix found in
Lemma 3.2 can be interpreted as a weighting matrix on the estimation error x− x̂.

3.1.3 Nominal Kalman Filter

We are now ready to use the results presented in Section 3.1.2 and ultimately
obtain the Nominal Kalman Filter. As mentioned earlier, the deterministic estimation
problem (3.4) is a special case of a regularized least-squares estimation problem, according
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to the following mappings between (3.4) and (3.6):

x←

 x̂k

x̂k+1

 , x̄←

x̂k|k−1

0

 , w ←

ŵk

v̂k

 , P̄ ←

P −1
k|k−1 0
0 0

 , Q←

Q−1
k 0
0 R−1

k

 ,

y ←

−Gkuk

yk

 , A←

Fk −In

Ck 0

 , and B ←

Hk 0
0 Dk

 .

(3.16)
Note that, since P −1

k|k−1 ≻ 0, we have that P̄ ⪰ 0. Also, Q−1
k ≻ 0 and R−1

k ≻ 0, such
that Q ≻ 0. Therefore, by using the results in Corollary 3.1 and Lemma 3.2, we obtain
the optimal filtered and predicted state estimates, x̂k|k and x̂k+1|k, along with their
corresponding error weighting matrices Pk|k and Pk+1|k.

Theorem 3.1. Consider the regularized least-squares estimation problem (3.4) with Hk and
Dk full row rank and given initial conditions x̂0|−1, P0|−1 = P0 ≻ 0, Qk ≻ 0, and Rk ≻ 0.
For each k = 0, 1, . . . , N , its solution recursively provides the filtered and predicted state
estimates of system (3.1), x̂k|k and x̂k+1|k, as well as their corresponding error weighting
matrices, Pk|k and Pk+1|k, according to the procedure outlined in Algorithm 3.1.

Algorithm 3.1 Nominal Kalman Filter (KF)
Model: Assume the system model in (3.1).
Initialization: Set x̂0|−1, P0|−1 = P0 ≻ 0, Qk ≻ 0, and Rk ≻ 0.

for k = 0, 1, . . . , N do
1. Obtain a measurement yk.
2. Compute the auxiliary matrices:

Q̂k = HkQkHT
k R̂k = DkRkDT

k

3. Correction step:
3.1. Compute the posterior error weighting matrix:

Pk|k =
(
P −1

k|k−1 + CT
k R̂−1

k Ck

)−1

3.2. Compute the filtered state estimate:

x̂k|k = Pk|k
(
P −1

k|k−1x̂k|k−1 + CT
k R̂−1

k yk

)
4. Prediction step:

4.1. Update the predicted prior error weighting matrix:

Pk+1|k = FkPk|kF T
k + Q̂k

4.2. Update the predicted prior state estimate:

x̂k+1|k = Fkx̂k|k + Gkuk

end for
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Proof. Since problem (3.4) is a regularized least-squares estimation problem, one can apply
the result in Corollary 3.1 to obtain the optimal system state estimates x̂k|k and x̂k+1|k.
Thus, substituting the mappings (3.16) into the optimal solution (3.14) gives x̂k|k

x̂k+1|k

 =
P −1

k|k−1 + F T
k Q̂−1

k Fk + CT
k R̂−1

k Ck −F T
k Q̂−1

k

−Q̂−1
k Fk Q̂−1

k

−1

×
P −1

k|k−1x̂k|k−1 + CT
k R̂−1

k yk − F T
k Q̂−1

k Gkuk

Q̂−1
k Gkuk

 ,

in which we define the auxiliary matrices Q̂k := HkQkHT
k and R̂k := DkRkDT

k , whose
positive definiteness is guaranteed according to Lemma A.5 (item (ii)), since Qk ≻ 0,
Rk ≻ 0, and Hk and Dk have full row rank.

The equation above also represents a system of simultaneous equations. Therefore,
we can write it as the following set of equations:(

P −1
k|k−1 + F T

k Q̂−1
k Fk + CT

k R̂−1
k Ck

)
x̂k|k − F T

k Q̂−1
k x̂k+1|k =

P −1
k|k−1x̂k|k−1 + CT

k R̂−1
k yk − F T

k Q̂−1
k Gkuk, (3.17)

− Q̂−1
k Fkx̂k|k + Q̂−1

k x̂k+1|k = Q̂−1
k Gkuk. (3.18)

Isolating x̂k+1|k in (3.18), we have

x̂k+1|k = Fkx̂k|k + Gkuk,

which corresponds to the update equation of the predicted prior state estimate in step 4.2
of Algorithm 3.1. Then, substituting x̂k+1|k back into (3.17) and isolating x̂k|k yields

x̂k|k =
(
P −1

k|k−1 + CT
k R̂−1

k Ck

)−1(
P −1

k|k−1x̂k|k−1 + CT
k R̂−1

k yk

)
,

which corresponds to the equation for computing the filtered state estimate in step 3.2 of
Algorithm 3.1.

Now, to obtain the error weighting matrices associated with x̂k|k and x̂k+1|k, we
apply Lemma 3.2, assuming a deterministic context, as mentioned in Remark 3.1. Thus,
substituting the mappings (3.16) into (3.15) gives1

Pk|k ∗
∗ Pk+1|k

 =
P −1

k|k−1 + F T
k Q̂−1

k Fk + CT
k R̂−1

k Ck −F T
k Q̂−1

k

−Q̂−1
k Fk Q̂−1

k

−1

︸ ︷︷ ︸
M−1

=:
M1 M2

MT
2 M3

−1

,

where we define the partitioned matrix M. To find its inverse, we use the Banachiewicz
inversion formula (Lemma A.4, item (ii)). According to Lemma A.3, the Schur complement
of M3 in M is

(M/M3) = M1 −M2M
−1
3 MT

2 = P −1
k|k−1 + CT

k R̂−1
k Ck.

1 The elements marked with ∗ are byproducts with no particular meaning in our context.
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The posterior error weighting matrix in step 3.1 of Algorithm 3.1 is then obtained as
follows:

Pk|k = (M/M3)−1 =
(
P −1

k|k−1 + CT
k R̂−1

k Ck

)−1
.

Finally, we obtain the predicted prior error weighting matrix

Pk+1|k = M−1
3 + M−1

3 MT
2 (M/M3)−1M2M

−1
3 = FkPk|kF T

k + Q̂k,

as shown in step 4.1 of Algorithm 3.1.

Notice that when Gk = 0, Hk = In, and Dk = Ir, Algorithm 3.1 collapses to the
standard Kalman filter. In this case, if one chooses the noise vectors weighting matrices Qk

and Rk as the noise variance matrices, then the posterior and predicted prior estimation
error weighting matrices Pk|k and Pk+1|k can be interpreted as error variance matrices.
Hence, although a deterministic viewpoint was used to derive the filter equations, there is
an equivalence with the stochastic viewpoint. Nevertheless, the former can handle more
generic problems, since no assumptions on the distributions of wk and vk are necessary.
Furthermore, we emphasize how the use of the penalty function approach enabled the
inclusion of matrices Hk and Dk in the more general linear discrete-time target system
model (3.1).

3.1.4 Stability Analysis

In this section, we conclude the discussion on nominal Kalman filtering by examining
the steady-state behavior of the estimator described in Algorithm 3.1 when the system
model parameters are constant and there is no input uk. Thus, consider the following
discrete-time state-space description of a linear system:

xk+1 = Fxk + Hwk,

yk = Cxk + Dvk,
(3.19)

for k ≥ 0. We seek to establish conditions for the stability of the steady-state filter.

Let us consider the system model (3.19). Thus, the KF equations in steps 3 and 4
of Algorithm 3.1 become:

Pk|k =
(
P −1

k|k−1 + CT R̂−1C
)−1

, (3.20)

x̂k|k = Pk|k
(
P −1

k|k−1x̂k|k−1 + CT R̂−1yk

)
, (3.21)

Pk+1|k = FPk|kF T + Q̂, (3.22)

x̂k+1|k = Fx̂k|k, (3.23)

where Q̂ = HQHT and R̂ = DRDT . Applying the matrix inversion lemma (Lemma A.1),
we expand expression (3.20), as follows:

Pk|k = Pk|k−1 − Pk|k−1C
T
(
R̂ + CPk|k−1C

T
)−1

CPk|k−1. (3.24)
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Then, combining (3.24) with (3.21) and substituting in (3.23) yields the steady-state
predicted state estimate

x̂k+1|k = F̃kx̂k|k−1 + F̃kPk|k−1C
T R̂−1yk, (3.25)

where
F̃k = F

(
In − Pk|k−1C

T
(
R̂ + CPk|k−1C

T
)−1

C
)

is the filter closed-loop matrix. Moreover, substituting Pk|k from (3.24) into (3.22), we
obtain the following expression for the predicted prior error weighting matrix:

Pk+1|k = F
(
Pk|k−1 − Pk|k−1C

T
(
R̂ + CPk|k−1C

T
)−1

CPk|k−1
)
F T + Q̂. (3.26)

The following theorem establishes a result concerning the convergence of the filter
to a stable steady-state filter.

Theorem 3.2. Consider the linear system model (3.19) and the corresponding filter
(3.25)-(3.26). Assume that {F, C} is detectable and {F, Q̂1/2} is controllable. Then, for
any initial condition P0|−1 ≻ 0, Pk+1|k converges to the unique stabilizing solution P ≻ 0
of the algebraic Riccati equation

P = F
(
P − PCT

(
R̂ + CPCT

)−1
CP

)
F T + Q̂. (3.27)

The solution P is stabilizing in the sense that the steady-state filter closed-loop matrix

F̃ = F
(
In − PCT

(
R̂ + CPCT

)−1
C
)

(3.28)

is Schur stable.

Proof. As shown in Kailath, Sayed and Hassibi (2000b), detectability of {F, C} and
controllability of {F, Q̂1/2} ensure the convergence of Pk+1|k in (3.26) to the unique
stabilizing positive definite solution P of the algebraic Riccati equation (3.27) that stabilizes
(3.28), which is the filter steady-state closed-loop matrix.

3.2 Robust Kalman Filtering for Systems with
Norm-Bounded Uncertainties

In this section, we present a robust version of the Nominal Kalman Filter introduced
in Section 3.1. We address the special case where the underlying target system and sensing
models are subject to norm-bounded parametric uncertainties.

We extend the framework used in Section 3.1 to derive a robust filter. Analogously,
we formulate the robust estimation problem as a deterministic constrained regularized least-
squares problem with uncertainties (Section 2.2.4). We then apply the penalty function
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method (Section 2.1) to transform it into a more convenient unconstrained problem, whose
solution ultimately provides the recursive expressions of the Robust Kalman Filter (RKF).
The estimator is presented as correction-prediction algorithm, similar to the Nominal
Kalman Filter. We further study the stability properties of the proposed estimator and
conclude the section with an illustrative example.

3.2.1 Problem Formulation

3.2.1.1 System Model

Consider the following discrete-time state-space description of a linear system with
uncertainties:

xk+1 = (Fk + δFk)xk + (Gk + δGk)uk + (Hk + δHk)wk,

yk = (Ck + δCk)xk + (Dk + δDk)vk,
(3.29)

for k = 0, 1, . . . , N , with state vector xk ∈ Rn, input vector uk ∈ Rm, system noise vector
wk ∈ Rp, measurement vector yk ∈ Rr, and measurement noise vector vk ∈ Rq. Fk ∈ Rn×n,
Gk ∈ Rn×m, Hk ∈ Rn×p, Ck ∈ Rr×n, and Dk ∈ Rr×q are known nominal parameter
matrices, whereas δFk ∈ Rn×n, δGk ∈ Rn×m, δHk ∈ Rn×p, δCk ∈ Rr×n, and δDk ∈ Rr×q

are norm-bounded parametric uncertainties modeled as[
δFk δGk δHk

]
= M1,k∆1,k

[
EFk

EGk
EHk

]
, ∥∆1,k∥ ≤ 1,[

δCk δDk

]
= M2,k∆2,k

[
ECk

EDk

]
, ∥∆2,k∥ ≤ 1,

(3.30)

where M1,k ∈ Rn×s1 and M2,k ∈ Rr×s2 are known nonzero matrices, EFk
∈ Rt1×n, EGk

∈
Rt1×m, EHk

∈ Rt1×p, ECk
∈ Rt2×n and EDk

∈ Rt2×q are also known, and ∆1,k ∈ Rs1×t1

and ∆2,k ∈ Rs2×t2 are arbitrary contraction matrices. Perturbations of the form (3.30) are
useful when modeling tolerance specifications on the physical parameters of a system and
are thus common in robust filtering and control (SAYED, 2001).

In a stochastic interpretation, we usually assume that x0, wk, and vk are mutually
independent zero-mean Gaussian random variables with respective variances

E
{
x0x

T
0

}
= P0 ≻ 0, E

{
wkwT

l

}
= Qkδkl ≻ 0, and E

{
vkvT

l

}
= Rkδkl ≻ 0,

where δkl is the Kronecker delta function, such that δkl = 1 if k = l, and δkl = 0 otherwise.
Nevertheless, the strategy we adopt to derive the robust filter does not require that these
variables have any particular distribution.

3.2.1.2 Robust Estimation Problem

The goal is to design a robust state estimator for the uncertain system (3.29)-(3.30).
As the system state sequence {xk} is not perfectly observed, the problem consists of using
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all the information available up to time instant k, Y k = {y0, . . . , yk, u0, . . . , uk}, to obtain
a so-called filtered state estimate x̂k|k of xk, as well as a predicted estimate x̂k+1|k of xk+1,
despite the presence of model uncertainties δk := {δFk, δGk, δHk, δCk, δDk}.

Following the procedure described in Section 3.1.1.2 for the Nominal Kalman Filter,
we adopt a deterministic viewpoint (BRYSON; HO, 1975). Moreover, we introduce the
variables x̂k, x̂k+1, ŵk, and v̂k as substitutes for the random variables xk, xk+1, wk, and vk

in the stochastic model (3.29). Then, based on Sayed (2001) and Ishihara, Terra and Cerri
(2015), assuming that at each time step k, an a priori state estimate x̂k|k−1, a measurement
yk, and the input uk are available, we formulate a min-max constrained optimization
problem in which a one-step quadratic objective function should be minimized under the
maximum influence of the model parametric uncertainties δk, i.e.,

min
x̂k, x̂k+1,

ŵk, v̂k

max
δk

Jk(x̂k, ŵk, v̂k) = ∥x̂k − x̂k|k−1∥2
P −1

k|k−1
+ ∥ŵk∥2

Q−1
k

+ ∥v̂k∥2
R−1

k

,

subject to
x̂k+1 = (Fk + δFk)x̂k + (Gk + δGk)uk + (Hk + δHk)ŵk,

yk = (Ck + δCk)x̂k + (Dk + δDk)v̂k,

(3.31)

for k = 0, 1, . . . , N and uncertainties δk as defined in (3.30). Here, ŵk and v̂k are fitting
errors weighted respectively by Qk ≻ 0 and Rk ≻ 0, and Pk|k−1 ≻ 0 weights the a priori
estimation error xk − x̂k|k−1. Note that, from a stochastic viewpoint, matrices Qk and
Rk represent the variances of the random variables wk and vk. Nevertheless, in this more
general deterministic framework, they are treated as weighting matrices.

The solution to this problem recursively provides the filtered and predicted robust
state estimates x̂k|k and x̂k|k+1. We refer to problem (3.31) as a regularized least-squares
estimation problem with norm-bounded uncertainties, which is the topic of the next section.

3.2.2 Regularized Least-Squares Estimation Problem with
Norm-Bounded Uncertainties

Consider the general problem of obtaining an estimate x̂ of an unknown vector x

based on measurements y, related to x according to the uncertain linear system

(y + δy) = (A + δA)x + (B + δB)w, (3.32)

where w is a noise vector, also unknown, A and B are known matrices, and y is a known
measurement vector. The parametric uncertainties δy, δA, and δB are norm-bounded,
being modeled as [

δy δA δB
]

= M∆
[
Ey EA EB

]
, ∥∆∥ ≤ 1, (3.33)

in which M is a known nonzero matrix, Ey, EA, and EB are also known, and ∆ is an
arbitrary contraction matrix. Furthermore, assume that an a priori estimate x̄ of x is
available as well.
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From a deterministic viewpoint, we formulate the so-called regularized least-squares
estimation problem with norm-bounded uncertainty as

min
x, w

max
δy, δA, δB

J(x, w) = ∥x− x̄∥2
P̄

+ ∥w∥2
Q,

subject to (y + δy) = (A + δA)x + (B + δB)w,
(3.34)

where P̄ ⪰ 0 and Q ≻ 0 are given weighting matrices respectively associated with the a
priori estimation error x− x̄ and the model fitting error w. The objective function should
thus be minimized under the maximum influence of the parametric uncertainties.

Similar to the procedure carried out in Section 3.1.2 for the regularized least-
squares estimation problem, we first transform the constrained problem (3.34) into an
unconstrained problem. The linear constraint (3.32) has a general form and cannot be
directly inserted into the objective function by substitution. Therefore, we apply the
penalty function method presented in Section 2.1, whereby the constraint is included in
the objective function as a quadratic term multiplied by a penalty parameter µ > 0, which
penalizes constraint violations. Hence, for a fixed µ > 0, we rewrite problem (3.34) as

min
x, w

max
δy, δA, δB

Jµ(x, w, δy, δA, δB), (3.35)

with a new objective function

Jµ(x, w, δy, δA, δB) =
x− x̄

w

T P̄ 0
0 Q

x− x̄

w

 +


( [

A B
]

+
[
δA δB

] ) x− x̄

w

− [(y − Ax̄) + (δy − δAx̄)
]

T

µI
{
•
}
. (3.36)

Problem (3.35)-(3.36) has the form of a regularized least-squares problem with
uncertainties (Section 2.2.4), considering the following mappings between (2.13) and (3.36):

z ←

x− x̄

w

 , Q←

P̄ 0
0 Q

 , A←
[
A B

]
, b← y − Ax̄, W← µI,

δA←
[
δA δB

]
, and δb← δy − δAx̄.

(3.37)

Moreover, the correspondence with the norm-bounded parametric uncertainty model in
(2.14) is given by [

δA δb
]

= M∆
[
EA Eb

]
, ∥∆∥ ≤ 0,

where
M ←M, ∆← ∆, EA ←

[
EA EB

]
, and Eb ← Ey − EAx̄. (3.38)

Therefore, to find a solution to problem (3.35)-(3.36), we use the results in Sec-
tion 2.2.4. From the solution, we then extract the estimate x̂µ of x, conditioned by the
penalty parameter µ, as shown in the next lemma.
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Lemma 3.3. Consider problem (3.35)-(3.36) with norm-bounded parametric uncertainties

given by (3.33), in which P̄ ⪰ 0, Q ≻ 0, and
 A

EA

 has full column rank. The estimate x̂µ

of x, conditioned by the penalty parameter µ > 0, is given by

x̂µ =
(
P̄ + ÂT Q̂−1Â + ET

AQ̄−1EA

)−1(
P̄ x̄ + ÂT Q̂−1ŷ + ET

AQ̄−1Ey

)
, (3.39)

in which we define the auxiliary entities

Φ := µI + µM
(
λ̂I − µMT M

)−1
MT µ =

(
µ−1I − λ̂−1MMT

)−1
,

Q̄ := λ̂−1I + EBQ−1ET
B, Q̂ := Φ−1 + B

(
Q + λ̂ET

BEB

)−1
BT ,

Â := A−BQ−1ET
BQ̄−1EA, ŷ := y −BQ−1ET

BQ̄−1Ey,

(3.40)

where λ̂ is a nonnegative scalar parameter obtained from the auxiliary optimization problem

λ̂ := arg min
λ>µ ∥MT M∥

Γ(λ), (3.41)

with objective function Γ(λ) given by

Γ(λ) := ∥z(λ)∥2
Q + λ∥EAz(λ)− Eb∥2 + ∥Az(λ)− b∥2

Φ(λ), (3.42)

in which

Φ(λ) := µI + µM
(
λI − µMT M

)−1
MT µ,

z(λ) :=
(
Q + AT Φ(λ)A + λET

AEA

)−1(
AT Φ(λ)b + λET

AEb

)
,

considering the definitions in (3.37) and (3.38).

Proof. As we mentioned previously, problem (3.35)-(3.36) is a regularized least-squares
problem with uncertainties, considering the mappings in (3.37) and (3.38). Since P̄ ⪰ 0,
Q ≻ 0, and µ > 0, we have that Q ⪰ 0 and W ≻ 0. Therefore, we can use Lemma 2.8 to

find the solution. Additionally, the block


0 I

A B

EA EB

 should have full column rank, which

is satisfied by the requirement of
 A

EA

 having full column rank. Thus, substituting the

mappings (3.37) and (3.38) into the unique solution (2.15) yields
x̂µ − x̄

ŵµ

 =
P̄ + AT ΦA + λ̂ET

AEA AT ΦB + λ̂ET
AEB

BT ΦA + λ̂ET
BEA Q + BT ΦB + λ̂ET

BEB

−1

×
AT Φ(y − Ax̄) + λ̂ET

A(Ey − EAx̄)
BT Φ(y − Ax̄) + λ̂ET

B(Ey − EAx̄)

 ,
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where we define Φ := µI + µM
(
λ̂I − µMT M

)−1
MT µ. Adding

x̄

0

 to both sides of the

equation above then gives x̂µ

ŵµ

 =
P̄ + AT ΦA + λ̂ET

AEA AT ΦB + λ̂ET
AEB

BT ΦA + λ̂ET
BEA Q + BT ΦB + λ̂ET

BEB

−1 P̄ x̄ + AT Φy + λ̂ET
AEy

BT Φy + λ̂ET
BEy

 .

This equation also represents a system of simultaneous equations. Hence, we can write it
as the following set of equations:(

P̄ + AT ΦA + λ̂ET
AEA

)
x̂µ +

(
AT ΦB + λ̂ET

AEB

)
ŵµ = P̄ x̄ + AT Φy + λ̂ET

AEy, (3.43)(
BT ΦA + λ̂ET

BEA

)
x̂µ +

(
Q + BT ΦB + λ̂ET

BEB

)
ŵµ = BT Φy + λ̂ET

BEy. (3.44)

Isolating ŵµ in (3.44), we have

ŵµ =
(
Q + BT ΦB + λ̂ET

BEB

)−1(
BT Φy + λ̂ET

BEy −
(
BT ΦA + λ̂ET

BEA

)
x̂µ
)
.

Substituting ŵµ back into (3.43) then yields[
P̄ + AT ΦA + λ̂ET

AEA−(
AT ΦB + λ̂ET

AEB

)(
Q + BT ΦB + λ̂ET

BEB

)−1(
BT ΦA + λ̂ET

BEA

)]
x̂µ =

P̄ x̄ + AT Φy + λ̂ET
AEy −

(
AT ΦB + λ̂ET

AEB

)(
Q + BT ΦB + λ̂ET

BEB

)−1(
BT Φy + λ̂ET

BEy

)
(3.45)

Expanding the left-hand side of (3.45), we obtain[
P̄ + AT

(
Φ− ΦB

(
Q + λ̂ET

BEB + BT ΦB
)−1

BT Φ
)
A−

AT ΦB
(
Q + λ̂ET

BEB + BT ΦB
)−1

λ̂ET
BEA − λ̂ET

AEB

(
Q + λ̂ET

BEB + BT ΦB
)−1

BT ΦA +

λ̂ET
AEA − λ̂ET

AEB

(
Q + λ̂ET

BEB + BT ΦB
)−1

ET
BEAλ̂

]
x̂µ. (3.46)

Applying Lemma A.1, we can simplify the second term of (3.46), as follows:

AT
(
Φ− ΦB

(
Q + λ̂ET

BEB + BT ΦB
)−1

BT Φ
)
A =

AT
(

Φ−1 + B
(
Q + λ̂ET

BEB

)−1
BT︸ ︷︷ ︸

Q̂

)−1
A = AT Q̂−1A. (3.47)

Now, we simplify the third term of (3.46) by applying Lemma A.2 twice:

AT ΦB
(
Q + λ̂ET

BEB + BT ΦB
)−1

λ̂ET
BEA =

AT
(

Φ−1 + B
(
Q + λ̂ET

BEB

)−1
BT︸ ︷︷ ︸

Q̂

)−1
BQ−1ET

B

(
λ̂−1I + EBQ−1ET

B︸ ︷︷ ︸
Q̄

)−1
EA =

AT Q̂−1BQ−1ET
BQ̄−1EA. (3.48)



68 Chapter 3 Robust Kalman Filtering

Applying the same procedure above for the fourth term of (3.46) yields

λ̂ET
AEB

(
Q + λ̂ET

BEB + BT ΦB
)−1

BT ΦA = ET
AQ̄−1EBQ−1BT Q̂−1A. (3.49)

Next, we use Lemma A.1 and Lemma A.2 to expand the last two terms of (3.46), as
follows:

λ̂ET
AEA − λ̂ET

AEB

(
Q + λ̂ET

BEB + BT ΦB
)−1

ET
BEAλ̂ =

λ̂ET
AEA − λ̂ET

AEB

[(
Q + λ̂ET

BEB

)−1
−(

Q + λ̂ET
BEB

)−1
BT

(
Φ−1 + B

(
Q + λ̂ET

BEB

)−1
BT︸ ︷︷ ︸

Q̂

)−1
B
(
Q + λ̂ET

BEB

)−1
]
ET

BEAλ̂ =

ET
A

(
λ̂I − λ̂EB

(
Q + λ̂ET

BEB

)−1
ET

Bλ̂
)
EA +

ET
A

(
λ̂−1I + EBQ−1ET

B︸ ︷︷ ︸
Q̄

)−1
EBQ−1BT Q̂−1BQ−1ET

B

(
λ̂−1I + EBQ−1ET

B︸ ︷︷ ︸
Q̄

)−1
EA =

ET
A

(
λ̂−1I + EBQ−1ET

B︸ ︷︷ ︸
Q̄

)−1
EA + ET

AQ̄−1EBQ−1BT Q̂−1BQ−1ET
BQ̄−1EA =

ET
AQ̄−1EA + ET

AQ̄−1EBQ−1BT Q̂−1BQ−1ET
BQ̄−1EA. (3.50)

Then, substituting (3.47), (3.48), (3.49), and (3.50) back into (3.46) leads to[
P̄ + ET

AQ̄−1EA + AT Q̂−1
(

A−BQ−1ET
BQ̄−1EA︸ ︷︷ ︸

Â

)
−

ET
AQ̄−1EBQ−1BT Q̂−1

(
A−BQ−1ET

BQ̄−1EA︸ ︷︷ ︸
Â

)]
x̂µ =

[
P̄ + ET

AQ̄−1EA +

(
AT − ET

AQ̄−1EBQ−1BT︸ ︷︷ ︸
ÂT

)
Q̂−1Â

]
x̂µ =

(
P̄ + ÂT Q̂−1Â + ET

AQ̄−1EA

)
x̂µ. (3.51)

Similarly, we expand the right-hand side of (3.45) to obtain

P̄ x̄ + AT
(
Φ− ΦB

(
Q + λ̂ET

BEB + BT ΦB
)−1

BT Φ
)
y−

AT ΦB
(
Q + λ̂ET

BEB + BT ΦB
)−1

λ̂ET
BEy − λ̂ET

AEB

(
Q + λ̂ET

BEB + BT ΦB
)−1

BT Φy +

λ̂ET
AEy − λ̂ET

AEB

(
Q + λ̂ET

BEB + BT ΦB
)−1

ET
BEyλ̂. (3.52)

We first simplify the second term of (3.52) using Lemma A.1:

AT
(
Φ− ΦB

(
Q + λ̂ET

BEB + BT ΦB
)−1

BT Φ
)

y =

AT
(

Φ−1 + B
(
Q + λ̂ET

BEB

)−1
BT︸ ︷︷ ︸

Q̂

)−1
y = AT Q̂−1y. (3.53)
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Then, we apply Lemma A.2 twice to simplify the third term of (3.52):

AT ΦB
(
Q + λ̂ET

BEB + BT ΦB
)−1

λ̂ET
BEy =

AT
(

Φ−1 + B
(
Q + λ̂ET

BEB

)−1
BT︸ ︷︷ ︸

Q̂

)−1
BQ−1ET

B

(
λ̂−1I + EBQ−1ET

B︸ ︷︷ ︸
Q̄

)−1
Ey =

AT Q̂−1BQ−1ET
BQ̄−1Ey. (3.54)

The same procedure is used to simplify the fourth term of (3.52), such that

λ̂ET
AEB

(
Q + λ̂ET

BEB + BT ΦB
)−1

BT Φy = ET
AQ̄−1EBQ−1BT Q̂−1y. (3.55)

Now, we expand the last two terms of (3.52) using Lemma A.1 and Lemma A.2:

λ̂ET
AEy − λ̂ET

AEB

(
Q + λ̂ET

BEB + BT ΦB
)−1

ET
BEyλ̂ =

λ̂ET
AEy − λ̂ET

AEB

[(
Q + λ̂ET

BEB

)−1
−(

Q + λ̂ET
BEB

)−1
BT

(
Φ−1 + B

(
Q + λ̂ET

BEB

)−1
BT︸ ︷︷ ︸

Q̂

)−1
B
(
Q + λ̂ET

BEB

)−1
]
ET

BEyλ̂ =

ET
A

(
λ̂I − λ̂EB

(
Q + λ̂ET

BEB

)−1
ET

Bλ̂
)
Ey +

ET
A

(
λ̂−1I + EBQ−1ET

B︸ ︷︷ ︸
Q̄

)−1
EBQ−1BT Q̂−1BQ−1ET

B

(
λ̂−1I + EBQ−1ET

B︸ ︷︷ ︸
Q̄

)−1
Ey =

ET
A

(
λ̂−1I + EBQ−1ET

B︸ ︷︷ ︸
Q̄

)−1
Ey + ET

AQ̄−1EBQ−1BT Q̂−1BQ−1ET
BQ̄−1Ey =

ET
AQ̄−1Ey + ET

AQ̄−1EBQ−1BT Q̂−1BQ−1ET
BQ̄−1Ey. (3.56)

Hence, substituting (3.53), (3.54), (3.55), and (3.56) back into (3.52) gives

P̄ x̄ + ET
AQ̄−1Ey +

(
AT − ET

AQ̄−1EBQ−1BT︸ ︷︷ ︸
ÂT

)
Q̂−1y−

(
AT − ET

AQ̄−1EBQ−1BT︸ ︷︷ ︸
ÂT

)
Q̂−1BQ−1ET

BQ̄−1Ey = P̄ x̄ + ET
AQ̄−1Ey +

ÂT Q̂−1
(

y −BQ−1ET
BQ̄−1Ey︸ ︷︷ ︸

ŷ

)
= P̄ x̄ + ÂT Q̂−1ŷ + ET

AQ̄−1Ey. (3.57)

Lastly, we substitute the left- and right-hand sides of (3.45) respectively by (3.51) and
(3.57) and isolate x̂µ to obtain the estimate in (3.39).

Furthermore, we follow the procedure described in Lemma 2.7 to obtain the auxiliary
parameter λ̂, i.e., by solving the optimization problem (3.41)-(3.42). Note that, according
to Remark 2.1, as we search for λ > µ∥MT M∥ in problem (3.41)-(3.42) and µ > 0, the
invertibility of Φ is ensured.
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At this point, it is important to analyze how the penalty parameter µ influences the
solution presented in Lemma 3.3. As explained in Section 2.1, when applying the penalty
function method with µ → ∞, the solution to the unconstrained problem (3.35)-(3.36)
approaches the optimal solution to the original constrained problem (3.34) and we say
that they are equivalent. Nevertheless, note that, in the process of obtaining a solution x̂µ

to (3.35)-(3.36), we are faced with the auxiliary minimization problem (3.41)-(3.42), in
which an optimal parameter λ̂ is sought. Since λ > µ ∥MT M∥, if one lets µ→∞, we have
that λ→∞ and Φ(λ)→∞. As a consequence, the second and third terms in Γ(λ) will
be excessively penalized compared to the first term, leading to an unbalanced objective
function.

Therefore, in this robust estimation context, unlike the suggestion in Ishihara, Terra
and Cerri (2015), the penalty parameter µ should rather be understood as a robustness
measure of the estimator, taking finite values instead of approaching infinity. In this sense,
when the system model is subject to significant uncertainty, smaller values of µ will increase
the robustness, which translates into better estimation performance. On the other hand,
when we have more confidence in the system model, larger values of µ can be used. In
the limit, when there are no uncertainties, the model is exact, meaning that one can let
µ→∞.

Furthermore, some works, such as Xu and Mannor (2009) and Liu and Zhou (2017),
point out that robust least-squares estimators obtained by considering the worst-case
influence of the model uncertainties may be over-conservative, which in turn leads to poor
estimation performance. Tuning the penalty parameter µ is therefore a possible approach
to counteract this effect.

Remark 3.2. The solution outlined in Lemma 3.3 depends on the solution of the op-
timization problem (3.41)-(3.42) to compute the λ̂ parameter. A constrained line search
method can be used to obtain a solution, however, this requires additional computation
time. Nevertheless, as Remark 2.2 points out, a practical and reasonable approximation
for λ̂ is to select λ̂ = (1 + ξ) µ ∥MT M∥, for some ξ > 0.

To conclude this section, we propose a result equivalent to Lemma 3.2 and associate
a weighting matrix P̂ to the estimation error x− x̂µ. Since the underlying model considered
in the regularized least-squares estimation problem is subject to parametric uncertainties,
unlike the nominal case (Section 3.1.2), we cannot refer to this weighting matrix as an
error variance matrix, which, in fact, we cannot compute analytically (SAYED, 2001).
Therefore, we rely on the deterministic understanding of the problem and associate the
following error weighting matrix, considering the estimate x̂µ in (3.39):

P̂ =
(
P̄ + ÂT Q̂−1Â + ET

AQ̄−1EA

)−1
. (3.58)
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3.2.3 Robust Kalman Filter

At this point, we are ready to apply the results in Section 3.2.2 and obtain the
Robust Kalman Filter. Recall that the deterministic estimation problem (3.31) is a special
case of a regularized least-squares estimation problem with norm-bounded uncertainties,
considering the following mappings between (3.31) and (3.34):

x←

 x̂k

x̂k+1

 , x̄←

x̂k|k−1

0

 , w ←

ŵk

v̂k

 , P̄ ←

P −1
k|k−1 0
0 0

 , Q←

Q−1
k 0
0 R−1

k

 ,

y ←

−Gkuk

yk

 , A←

Fk −In

Ck 0

 , B ←

Hk 0
0 Dk

 ,

δy ←

−δGkuk

0

 , δA←

δFk 0
δCk 0

 , and δB ←

δHk 0
0 δDk

 .

(3.59)
Moreover, consider the following mappings between the uncertainty models (3.30) and
(3.33):

M ←

M1,k 0
0 M2,k

 , ∆←
∆1,k 0

0 ∆2,k

 ,

Ey ←

−EGk
uk

0

 , EA ←

EFk
0

ECk
0

 , and EB ←

EHk
0

0 EDk

 .

(3.60)

Since P −1
k|k−1 ≻ 0, we have that P̄ ⪰ 0. In addition, Q−1

k ≻ 0 and R−1
k ≻ 0, such that Q ≻ 0.

Therefore, by using the results in Lemma 3.3 and in equation (3.58), we obtain the filtered
and predicted robust state estimates, x̂k|k and x̂k+1|k, along with their corresponding error
weighting matrices Pk|k and Pk+1|k.

Theorem 3.3. Consider the regularized least-squares estimation problem with norm-
bounded uncertainties (3.31) with given initial conditions x̂0|−1, P0|−1 = P0 ≻ 0, Qk ≻ 0,
Rk ≻ 0, and fixed parameters µ > 0 and ξ > 0. For each k = 0, 1, . . . , N , its solution
recursively provides the filtered and predicted robust state estimates of system (3.29)-(3.30),
x̂k|k and x̂k+1|k, as well as their corresponding error weighting matrices, Pk|k and Pk+1|k,
according to the procedure outlined in Algorithm 3.2.

Proof. Problem (3.31) is a regularized least-squares estimation problem with norm-bounded
uncertainties, hence we can apply the result in Lemma 3.3 to obtain the robust system
state estimates x̂k|k and x̂k+1|k. Thus, we first substitute the mappings (3.59) and (3.60)
into (3.40) to compute the modified system and sensing model matrices

Φ =


(
µ−1In − λ̂−1

k M1,kMT
1,k

)−1
0

0
(
µ−1Ir − λ̂−1

k M2,kMT
2,k

)−1

 =:
Φ−1

1,k 0
0 Φ−1

2,k

 ,
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Algorithm 3.2 Robust Kalman Filter (RKF)
Model: Assume the uncertain system model in (3.29)-(3.30).
Initialization: Set x̂0|−1, P0|−1 = P0 ≻ 0, Qk ≻ 0, Rk ≻ 0, µ > 0, and ξ > 0.

for k = 0, 1, . . . , N do
1. Obtain a measurement yk.
2. Compute λ̂k using the approximation:

λ̂k = (1 + ξ) µ
∥∥∥diag

(
MT

1,kM1,k, MT
2,kM2,k

)∥∥∥
3. Compute the modified system and sensing model matrices:

Φ1,k = µ−1In − λ̂−1
k M1,kMT

1,k Q̂k = Φ1,k+Hk

(
Q−1

k +λ̂kET
Hk

EHk

)−1
HT

k

Φ2,k = µ−1Ir − λ̂−1
k M2,kMT

2,k R̂k = Φ2,k+Dk

(
R−1

k +λ̂kET
Dk

EDk

)−1
DT

k

Q̄k = λ̂−1
k It1 + EHk

QkET
Hk

R̄k = λ̂−1
k It2 + EDk

RkET
Dk

F̂k = Fk −HkQkET
Hk

Q̄−1
k EFk

Ĉk = Ck −DkRkET
Dk

R̄−1
k ECk

Ĝk = Gk −HkQkET
Hk

Q̄−1
k EGk

4. Correction step:
4.1. Compute the posterior error weighting matrix:

Pk|k =
(
P −1

k|k−1 + ĈT
k R̂−1

k Ĉk + ET
Ck

R̄−1
k ECk

+ ET
Fk

Q̄−1
k EFk

)−1

4.2. Compute the filtered robust state estimate:

x̂k|k = Pk|k
(
P −1

k|k−1x̂k|k−1 + ĈT
k R̂−1

k yk − ET
Fk

R̄−1
k EGk

uk

)
5. Prediction step:

5.1. Update the predicted prior error weighting matrix:

Pk+1|k = F̂kPk|kF̂ T
k + Q̂k

5.2. Update the predicted prior robust state estimate:

x̂k+1|k = F̂kx̂k|k + Ĝkuk

end for

Q̄ =
λ̂−1

k It1 + EHk
QkET

Hk
0

0 λ̂−1
k It2 + EDk

RkET
Dk

 =:
Q̄k 0

0 R̄k

 ,

Q̂=

Φ1,k+Hk

(
Q−1

k +λ̂kET
Hk

EHk

)−1
HT

k 0
0 Φ2,k+Dk

(
R−1

k +λ̂kET
Dk

EDk

)−1
DT

k

=:
Q̂k 0

0 R̂k

 ,

Â =
Fk −HkQkET

Hk
Q̄−1

k EFk
−In

Ck −DkRkET
Dk

R̄−1
k ECk

0

 =:
F̂k −In

Ĉk 0

 ,

ŷ =
−(Gk −HkQkET

Hk
Q̄−1

k EGk

)
uk

yk

 =:
−Ĝkuk

yk

 . (3.61)



3.2 Robust Kalman Filtering for Systems with Norm-Bounded Uncertainties 73

Moreover, to compute the λ̂k parameter, we consider the practical approximation discussed
in Remark 3.2, such that

λ̂k = (1 + ξ) µ
∥∥∥diag

(
MT

1,kM1,k, MT
2,kM2,k

)∥∥∥,
for some ξ > 0. Now, we substitute the mappings (3.59) and (3.60), as well as the modified
matrices (3.61) into the solution (3.39) to obtain x̂k|k

x̂k+1|k

 =
P −1

k|k−1 + F̂ T
k Q̂−1

k F̂k + ĈT
k R̂−1

k Ĉk + ET
Fk

Q̄−1
k EFk

+ ET
Ck

R̄−1
k ECk

−F̂ T
k Q̂−1

k

−Q̂−1
k F̂k Q̂−1

k

−1

×
P −1

k|k−1x̂k|k−1 + ĈT
k R̂−1

k yk −
(
F̂ T

k Q̂−1
k Ĝk + ET

Fk
Q̄−1

k EGk

)
uk

Q̂−1
k Ĝkuk

 . (3.62)

Note that (3.62) also represents a system of simultaneous equations. Therefore, we can
write it as the following set of equations:(

P −1
k|k−1 + F̂ T

k Q̂−1
k F̂k + ĈT

k R̂−1
k Ĉk + ET

Fk
Q̄−1

k EFk
+ ET

Ck
R̄−1

k ECk

)
x̂k|k − F̂ T

k Q̂−1
k x̂k+1|k =

P −1
k|k−1x̂k|k−1 + ĈT

k R̂−1
k yk −

(
F̂ T

k Q̂−1
k Ĝk + ET

Fk
Q̄−1

k EGk

)
uk, (3.63)

− Q̂−1
k F̂kx̂k|k + Q̂−1

k x̂k+1|k = Q̂−1
k Ĝkuk. (3.64)

Isolating x̂k+1|k in (3.64) yields

x̂k+1|k = F̂kx̂k|k + Ĝkuk, (3.65)

which is the update equation of the predicted prior robust state estimate in step 5.2 of
Algorithm 3.2. Then, substituting x̂k+1|k back into (3.63) and isolating x̂k|k gives

x̂k|k =
(
P −1

k|k−1 + ĈT
k R̂−1

k Ĉk + ET
Ck

R̄−1
k ECk

+ ET
Fk

Q̄−1
k EFk

)−1
×(

P −1
k|k−1x̂k|k−1 + ĈT

k R̂−1
k yk − ET

Fk
Q̄−1

k EGk
uk

)
,

which corresponds to the equation for computing the filtered robust state estimate in step
4.2 of Algorithm 3.2.

Now, to obtain the error weighting matrices associated with x̂k|k and x̂k+1|k, we
use equation (3.58), assuming a deterministic context. Thus, substituting the mappings
(3.59) and (3.60), and the modified matrices (3.61) into (3.58) yields2

Pk|k ∗
∗ Pk+1|k

 =

P −1
k|k−1+F̂ T

k Q̂−1
k F̂k+ĈT

k R̂−1
k Ĉk+ET

Fk
Q̄−1

k EFk
+ET

Ck
R̄−1

k ECk
−F̂ T

k Q̂−1
k

−Q̂−1
k F̂k Q̂−1

k

−1

︸ ︷︷ ︸
M−1

=:
M1 M2

MT
2 M3

−1

,

2 The elements marked with ∗ are byproducts with no particular meaning in our context.
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where we define the partitioned matrix M. To find its inverse, we use the Banachiewicz
inversion formula (Lemma A.4, item (ii)). According to Lemma A.3, the Schur complement
of M3 in M is

(M/M3) = M1 −M2M
−1
3 MT

2 = P −1
k|k−1 + ĈT

k R̂−1
k Ĉk + ET

Ck
R̄−1

k ECk
+ ET

Fk
Q̄−1

k EFk
.

The posterior error weighting matrix in step 4.1 of Algorithm 3.2 is then obtained as
follows:

Pk|k = (M/M3)−1 =
(
P −1

k|k−1 + ĈT
k R̂−1

k Ĉk + ET
Ck

R̄−1
k ECk

+ ET
Fk

Q̄−1
k EFk

)−1
.

Finally, we obtain the predicted prior error weighting matrix

Pk+1|k = M−1
3 + M−1

3 MT
2 (M/M3)−1M2M

−1
3 = F̂kPk|kF̂ T

k + Q̂k,

as shown in step 5.1 of Algorithm 3.2.

Notice that in Algorithm 3.2, we consider that the penalty parameter µ assumes a
finite value, which, based on the discussion in Section 3.2.2, we can tune to increase the
filter performance in terms of smaller estimation error. The filter also depends on the ξ

parameter, used to approximate λ̂k, as Remark 3.2 states. In most cases, choosing a small
value for ξ within the interval (0, 1) generally leads to adequate results.

Remark 3.3. The expressions for the Robust Kalman Filter outlined in Algorithm 3.2
resemble those of the Nominal Kalman Filter, as shown in Algorithm 3.1. In fact, if there
are no uncertainties, i.e., M1,k, M2,k, EFk

, EGk
, EHk

, ECk
, and EDk

are all zero, and
we let µ → ∞, we have that Q̂k = HkQkHT

k , R̂k = DkRkDT
k , F̂k = Fk, Ĝk = Gk, and

Ĉk = Ck. This way, the expressions in steps 4 and 5 of Algorithm 3.2 collapse to the
expressions in steps 3 and 4 of Algorithm 3.1. For this reason, we say that the proposed
estimator is a robust Kalman filter.

To conclude this section, we emphasize the importance of using the penalty function
method when deriving the proposed robust filter. This strategy allowed for uniformly
considering parametric uncertainties in all system matrices, as well as provided a parameter
µ that can be conveniently used to adjust the filter estimation performance when necessary.
Furthermore, much like the standard Kalman filter, the robust filter recursive expressions
outlined in Algorithm 3.2 can be easily implemented in online applications.

3.2.4 Stability Analysis

In this section, we investigate the stability properties of the proposed Robust
Kalman Filter, as well as the boundedness of its estimation error variance. Based on
the procedure described in Section 3.1.4 and Sayed (2001), we examine the steady-state
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behavior of Algorithm 3.2 when the system model parameters are constant and there is
no input uk. Nonetheless, we still assume that the contraction matrices ∆1,k and ∆2,k

are time-varying. Thus, consider the following discrete-time state-space description of an
uncertain linear system:

xk+1 = (F + δFk)xk + (H + δHk)wk,

yk = (C + δCk)xk + (D + δDk)vk,
(3.66)

for k ≥ 0, with time-varying norm-bounded parametric uncertainties[
δFk δHk

]
= M1∆1,k

[
EF EH

]
, ∥∆1,k∥ ≤ 1,[

δCk δDk

]
= M2∆2,k

[
EC ED

]
, ∥∆2,k∥ ≤ 1.

(3.67)

Let us first study the stability of the RKF in Algorithm 3.2. Considering the
uncertain system model (3.66)-(3.67), the robust filter equations in steps 4 and 5 of
Algorithm 3.2 become:

Pk|k =
(
P −1

k|k−1 + ĈT R̂−1Ĉ + ET
CR̄−1EC + ET

F Q̄−1EF

)−1
, (3.68)

x̂k|k = Pk|k
(
P −1

k|k−1x̂k|k−1 + ĈT R̂−1yk

)
, (3.69)

Pk+1|k = F̂Pk|kF̂ T + Q̂, (3.70)

x̂k+1|k = F̂ x̂k|k, (3.71)

where the modified system and sensing model parameter matrices are given by the
corresponding equations listed in step 3 of Algorithm 3.2, considering constant parameters.
The constant λ̂ parameter is analogously computed as in step 2. To simplify the analysis,
we further define the augmented matrices

C̃ :=


Ĉ

EC

EF

 and R̃ :=


R̂ 0 0
0 R̄ 0
0 0 Q̄

 ,

such that Pk|k in (3.68) can be written in a more compact way, as

Pk|k =
(
P −1

k|k−1 + C̃T R̃−1C̃
)−1

.

Applying Lemma A.1 to expand this expression, we obtain

Pk|k = Pk|k−1 − Pk|k−1C̃
T
(
R̃ + C̃Pk|k−1C̃

T
)−1

C̃Pk|k−1. (3.72)

Now, combining (3.72) with (3.69) and substituting in (3.71) yields the steady-state
predicted robust state estimate

x̂k+1|k = F̃kx̂k|k−1 + F̃kPk|k−1Ĉ
T R̂−1yk, (3.73)
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where
F̃k = F̂

(
In − Pk|k−1C̃

T
(
R̃ + C̃Pk|k−1C̃

T
)−1

C̃
)

is the filter closed-loop matrix. Moreover, substituting Pk|k from (3.72) into (3.70), we
obtain the expression for the predicted prior error weighting matrix:

Pk+1|k = F̂
(
Pk|k−1 − Pk|k−1C̃

T
(
R̃ + C̃Pk|k−1C̃

T
)−1

C̃Pk|k−1
)
F̂ T + Q̂. (3.74)

The next theorem establishes a result concerning the convergence of the proposed
robust filter to a stable steady-state filter.

Theorem 3.4. Consider the linear system model (3.66) with norm-bounded uncertainties
(3.67) and the corresponding robust filter (3.73)-(3.74). Assume that {F̂ , C̃} is detectable
and {F̂ , Q̂1/2} is controllable. Then, for any initial condition P0|−1 ≻ 0, ξ > 0, and µ > 0,
Pk+1|k converges to the unique stabilizing solution P ≻ 0 of the algebraic Riccati equation

P = F̂
(
P − PC̃T

(
R̃ + C̃P C̃T

)−1
C̃P

)
F̂ T + Q̂. (3.75)

The solution P is stabilizing in the sense that the steady-state filter closed-loop matrix

F̃ = F̂
(
In − PC̃T

(
R̃ + C̃P C̃T

)−1
C̃
)

(3.76)

is Schur stable.

Proof. The conditions ξ > 0 and µ > 0 imply that λ̂ > 0, ensuring that matrices F̂ , C̃, R̃,
and Q̂ are well-defined. According to Kailath, Sayed and Hassibi (2000b), detectability of
{F̂ , C̃} and controllability of {F̂ , Q̂1/2} ensure the convergence of Pk+1|k in (3.74) to the
unique stabilizing positive definite solution P of the algebraic Riccati equation (3.75) that
stabilizes (3.76), which is the robust filter steady-state closed-loop matrix.

We now investigate the robust filter estimation error variance. Again, consider the
uncertain linear discrete-time system model (3.66)-(3.67). Moreover, assume that wk and
vk are uncorrelated zero-mean Gaussian noise processes with joint covariance matrix

Q = E


wk

vk

 [wT
k vT

k

] =
Q 0

0 R

 ≻ 0. (3.77)

Additionally, assume that there is no correlation between the parametric uncertainties and
the system and measurement noises.

Definition 3.1. (XIE; SOH; SOUZA, 1994) The uncertain system (3.66)-(3.67) is said
to be quadratically stable if there exists a symmetric positive definite matrix U such that

(F + M1∆1,kEF )T U(F + M1∆1,kEF )− U ≺ 0

for all admissible contractions ∆1,k.
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Remark 3.4. (PETERSEN; MCFARLANE, 1996) Conversely, the uncertain system
(3.66)-(3.67) is quadratically stable if, and only if

1. F is Schur stable, i.e., all its eigenvalues lie inside the open unit disk;

2. The discrete-time H∞ normal bound
∥∥∥EF (zIn − F )−1M1

∥∥∥
∞

< 13 is satisfied.

In order to show that the proposed robust filter presents a bounded steady-state
estimation error variance, we make the following assumptions about the uncertain system
and the filter itself.

Assumption 3.1. The uncertain system (3.66)-(3.67) is quadratically stable, according to
Definition 3.1.

Assumption 3.2. The conditions outlined in Theorem 3.4 are satisfied, such that the
robust filter steady-state closed-loop matrix F̃ is Schur stable.

Under Assumption 3.1 and Assumption 3.2, we can show that the steady-state
robust filter (3.73) is also quadratically stable. For a more compact notation, we define
the so-called steady-state filter gain

K̃ := F̃P ĈT R̂−1,

where F̃ is given by (3.76), with P being the stabilizing solution of the algebraic Riccati
equation (3.75). This way, the steady-state robust filter equation can be rewritten as

x̂k+1|k = F̃ x̂k|k−1 + K̃yk. (3.78)

Now, substituting yk from (3.66) into (3.78) yields

x̂k+1|k = F̃ x̂k|k−1 + K̃(C + δCk)xk + K̃(D + δDk)vk. (3.79)

In addition, we introduce the state estimation error vector ek := xk − x̂k|k−1. Then,
subtracting (3.79) from xk+1 in (3.66) gives

ek+1 =
[
(F − F̃ − K̃C) + (δFk− K̃δCk)

]
xk + F̃ ek + (H + δHk)wk− K̃(D + δDk)vk. (3.80)

Consider now an augmented system composed of the target system state xk and the
estimation error ek. Therefore, from (3.66), (3.67), and (3.80), this augmented system is
described by

ζk+1 = (F + δFk)ζk + (H + δHk)ηk,[
δFk δHk

]
= M ∆k

[
EF EH

]
,

(3.81)

3 ∥ · ∥∞ denotes the maximum singular value of its argument for values of z on the unit disk.
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where

ζk :=
xk

ek

 , ηk :=
wk

vk

 , F :=
 F 0
F − F̃ − K̃C F̃

 , H :=
H 0
H −K̃D

 ,

M :=
M1 0
M1 −K̃M2

 , ∆k :=
∆1,k 0

0 ∆2,k

 , EF :=
EF 0
EC 0

 , EH :=
EH 0

0 ED

 .

Lemma 3.4. Given that Assumption 3.1 and Assumption 3.2 are satisfied, the augmented
system (3.81) is quadratically stable.

Proof. Observe that the augmented system matrix F is lower triangular with diagonal
elements F and F̃ , which are both Schur stable. Therefore, F is also Schur stable. Moreover,
we have that

EF(zI2n −F)−1M =
EF 0
EC 0

  zIn − F 0
−(F − F̃ − K̃C) zIn − F̃

−1 M1 0
M1 −K̃M2


=
EF (zIn − F )−1M1 0
EC(zIn − F )−1M1 0

 =
EF

EC

 (zIn − F )−1
[
M1 0

]
.

In addition, note that

F + M1∆1,kEF = F +
[
M1 0

] ∆1,k 0
0 ∆2,k

EF

EC

 .

Since system (3.66)-(3.67) is quadratically stable, according to Remark 3.4, we have∥∥∥∥∥∥
EF

EC

 (zIn − F )−1
[
M1 0

]∥∥∥∥∥∥
∞

< 1,

for all admissible contractions ∆1,k and ∆2,k. Therefore,
∥∥∥EF(zI2n −F)−1M

∥∥∥
∞

< 1 and
the augmented system (3.81) is also quadratically stable.

We now define the covariance matrix of the augmented system state as Pk :=
E
{
ζkζT

k

}
. Then, it follows from (3.81) that Pk satisfies the Lyapunov recursion

Pk+1 = (F + δFk)Pk(F + δFk)T + (H + δHk)Q(H + δHk)T , (3.82)

where Q is defined in (3.77). The next theorem provides a result on the boundedness of
the steady-state estimation error variance of the proposed robust filter.

Theorem 3.5. Under Assumption 3.1 and Assumption 3.2, the state estimation error
variance of the steady-state robust filter (3.78) satisfies

lim
k→∞

E
{
ekeT

k

}
⪯ V22,
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where V22 is the (2, 2) block entry with the smallest trace among all (2, 2) block entries of
matrices V ≻ 0 that satisfy the inequality

(F + M∆EF) V (F + M∆EF)T + (H + M∆EH)Q (H + M∆EH)T − V ⪯ 0,

for all admissible contraction matrices ∆, with ∥∆∥ ≤ 1.

Proof. From Lemma 3.4, the augmented system (3.81) is quadratically stable, therefore,
according to Definition 3.1, there exists a matrix U ≻ 0 such that

(F + M∆kEF) U (F + M∆kEF)T − U ≺ 0,

for any admissible contraction matrix ∆k. Based on the arguments developed in Petersen
and McFarlane (1996) and Sayed (2001), the existence of matrix U ≻ 0 above guarantees
the existence of a sufficiently large scaling parameter ϵ > 0, such that we can find a matrix
V = ϵ U that satisfies

(F + M∆kEF) V (F + M∆kEF)T + (H + M∆kEH)Q (H + M∆kEH)T ⪯ V.

Thus, subtracting the recursion for the augmented system covariance (3.82) from the
inequality above yields

(F + M∆kEF)(V −Pk)(F + M∆kEF)T ⪯ V −Pk+1,

or, equivalently,

V −Pk+1 = (F + M∆kEF)(V −Pk)(F + M∆kEF)T + Wk,

for some Wk ⪰ 0. Finally, since the augmented system is quadratically stable, as k →∞,
we have that V −Pk+1 ⪰ 0, or Pk+1 ⪯ V. The (2, 2) block entry of Pk corresponds to the
estimation error variance, which is thus bounded.

3.2.5 Illustrative Example

In this section, we assess the performance of the proposed Robust Kalman Filter
with a numerical example. We further compare our results with other existing robust
filtering strategies from the literature, as well as with the Nominal Kalman filter.

Consider a discrete-time linear system with norm-bounded uncertainties, as de-
scribed in (3.29)-(3.30) with the following constant parameter matrices (adapted from Xie,
Soh and Souza (1994)):

Fk =
0 −0.5
1 1

 , Gk =
0
0

 , Hk =
−6

1

 , Ck =
[
−100 10

]
, Dk = 1,

M1,k =
 0
10

 , M2,k = 10, EFk
= ECk

=
[
0.01 0.03

]
, EGk

= 0, EHk
= EDk

= 0.01.
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No input signal uk is present and the system and measurement noises, wk and vk, are
mutually independent zero-mean white Gaussian signals with variances Qk = 1 and Rk = 1,
respectively. The initial state is x0 =

[
2 1

]T
.

Then, we apply Algorithm 3.2 with the following initialization data:

x̂0|−1 =
[
0 0

]T
, P0|−1 = I2, µ = 1, and ξ = 0.1.

Figure 2 shows the evolution of the actual system state along with the estimation performed
by the proposed Robust Kalman Filter. At each time step, ∆1,k and ∆2,k are real numbers
randomly chosen from a uniform distribution with interval [−1, 1]. The results show that
the proposed RKF can successfully track the state of the target system, despite the
norm-bounded parametric uncertainties, present in all matrices of the target system and
sensing models.

Figure 2 – Actual (solid lines) and estimated (dashed lines) target system state obtained
with the proposed RKF (Algorithm 3.2).
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We further evaluate the proposed RKF by comparing its performance with that
of some other existing robust filtering strategies. Namely, the optimal robust filter of
Ishihara, Terra and Cerri (2015), the robust regularized bounded data uncertainties filter
of Sayed (2001), the robust guaranteed cost filter proposed in Dong and You (2006), the
robust risk-sensitive Kalman filter presented in Zorzi (2017), and the LMI-based robust
Kalman filter of Abolhasani and Rahmani (2018). All filters also assume uncertainties in
all parameter matrices, except for the one by Sayed (2001), which only takes into account
the uncertainties in the target system model. Furthermore, we also compare the RKF with
the Nominal Kalman Filter outlined in Algorithm 3.1.
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The simulation consists of performing M = 5000 Monte Carlo experiments, each
with time horizon N = 1000. At each time step k, we compute the mean squared estimation
error (MSE), averaged over all experiments, as follows:

MSEk = 1
M

M∑
e=1
∥xk − x̂k|k,e∥2.

Since one cannot analytically compute the actual estimation error variance due to the
model uncertainties, we use this ensemble average as a reasonable approximation, as
suggested in Sayed (2001).

The results are depicted in Figure 3 and summarized in Table 1, which reports the
estimation performance of each simulated filter by listing the mean MSE and standard
deviation σ(MSE) of their error variances, respectively computed as

MSE =
N∑

k=0

MSEk

N + 1 and σ2(MSE) =
N∑

k=0

(MSEk −MSE)2

N + 1 ,

as well as the average time each iteration takes to be executed, ∆titer. The simulation was
performed on a 2.3 GHz i7-12700H CPU with 32 GB of RAM using MATLAB R2022b,
the YALMIP toolbox (LÖFBERG, 2004), and the SeDuMi solver (STURM, 1999).

Figure 3 – Estimation error variance curves of the robust filters.
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Table 1 – Estimation performance of each robust filter.

Filter MSE (dB) σ(MSE) (dB) ∆titer (ms)
1 RKF (Algorithm 3.2) 10.79 0.5694 0.0325
2 Ishihara, Terra and Cerri (2015) 16.70 0.7245 0.0512
3 Sayed (2001) 22.93 2.2207 0.0099
4 Abolhasani and Rahmani (2018) 24.34 1.5437 68.729
5 Zorzi (2017) 31.40 0.6517 0.5289
6 Dong and You (2006) 36.03 0.8235 0.0096

KF (Algorithm 3.1) 37.38 6.8568 0.0085
Bold numbers indicate the smallest values.

The proposed RKF outperforms all the other robust filtering strategies in terms of
error variance. The KF, however, was not able to estimate the system state, presenting an
exponentially increasing error variance. Hence, it is not shown in Figure 3. This emphasizes
how the parametric uncertainties can severely degrade its performance. Comparing the
RKF with the robust filter in Ishihara, Terra and Cerri (2015) corroborates how choosing
a smaller value of the penalty parameter µ instead of letting µ → ∞ can increase the
estimation performance. Moreover, using the algebraic expressions in Algorithm 3.2 rather
than inverting a large matrix block also reduces execution time. The other robust filtering
strategies exhibit significantly larger error variances compared to the RKF. Naturally, the
KF has the largest mean error variance, as it assumes a nominal system model. The RKF
also presents the smallest standard deviation. In terms of execution time, as expected, the
KF takes the least time due to its simplicity. The RKF requires slightly more time than the
filters by Dong and You (2006) and Sayed and Nascimento (1999), which is compensated
by its superior estimation quality. In contrast, the robust LMI-based filter (ABOLHASANI;
RAHMANI, 2018) demands significantly more time than the other strategies, since it
depends on the solution of an LMI at each time step, which might be problematic in online
applications. The risk-sensitive filter (ZORZI, 2017) also requires a relatively large amount
of time for each iteration, mainly due to the computation of the risk-sensitive parameter.
Overall, the proposed RKF features a satisfactory estimation performance at a reasonable
computational cost, being therefore suitable for real-time applications.

Additionally, we take a closer look at how the two parameters of the proposed
RKF, namely the penalty parameter µ and the approximation parameter ξ, influence the
filter performance. Figure 4 compiles the results of a series of simulations with several
combinations of the RKF parameters. For each combination, we compute the mean
estimation error variance MSE, as previously described. As pointed out in Section 3.2.3, we
obtain better results when ξ ∈ (0, 1). Furthermore, within this range, smaller values of µ

lead to smaller mean error variances. Above this range, the filter performance significantly
degrades.
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Figure 4 – Effect of the RKF parameters µ and ξ on the mean error variance MSE.
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3.3 Robust Kalman Filtering for Systems with
Polytopic Uncertainties

In this section, we propose another robust version of the Nominal Kalman Filter
introduced in Section 3.1. This time, we address the case where the underlying system
is subject to polytopic parametric uncertainties. In this specific model description, we
consider that the system parameters arbitrarily vary within a convex polyhedron centered
at the nominal parameters (CHANG; PARK; TANG, 2015).

We follow a similar procedure as the one outlined in Section 3.2 to propose a
robust filter for linear discrete-time systems subject to polytopic uncertainties. From a
deterministic viewpoint, we formulate the robust estimation problem as a constrained
regularized least-squares estimation problem with uncertainties (Section 2.2.4). The linear
equality constraints correspond to each vertex of the uncertainty polytope. We also use the
penalty function method (Section 2.1) to transform this problem into an unconstrained
equivalent, whose solution provides the recursive expressions of the Polytopic Robust
Kalman Filter (PRKF). Like the previous estimators, we present the PRKF as a correction-
prediction algorithm. Additionally, we analyze the stability properties of the proposed
filter and conclude the section with an illustrative example.

3.3.1 Problem Formulation

3.3.1.1 System Model

Consider the following discrete-time state-space description of an uncertain linear
system:

xk+1 = (F0,k + δFk)xk + (G0,k + δGk)uk + (H0,k + δHk)wk,

yk = (C0,k + δCk)xk + (D0,k + δDk)vk,
(3.83)
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for k = 0, 1, . . . , N , where xk ∈ Rn is a state vector, uk ∈ Rm is an input vector, wk ∈ Rp

is the system noise, yk ∈ Rr is a measurement vector, and vk ∈ Rq the measurement noise.
F0,k ∈ Rn×n, G0,k ∈ Rn×m, H0,k ∈ Rn×p, C0,k ∈ Rr×n, and D0,k ∈ Rr×q are known nominal
parameter matrices, whereas δFk ∈ Rn×n, δGk ∈ Rn×m, δHk ∈ Rn×p, δCk ∈ Rr×n, and
δDk ∈ Rr×q are unknown uncertainties bounded to a convex polyhedral domain described
by V vertices,

Vk :=
{(

δFk, δGk, δHk, δCk, δDk

)
=

V∑
ν=1

αν,k

(
Fν,k, Gν,k, Hν,k, Cν,k, Dν,k

)}
, (3.84)

where Fν,k ∈ Rn×n, Gν,k ∈ Rn×m, Hν,k ∈ Rn×p, Cν,k ∈ Rr×n and Dν,k ∈ Rr×q are known,
and αk :=

[
α1,k · · · αV,k

]T
belongs to the unit simplex

ΛV :=
α ∈ RV :

V∑
ν=1

αν = 1, αν ≥ 0
. (3.85)

When a stochastic interpretation is adopted, we usually assume that x0, wk, and vk

are mutually independent zero-mean Gaussian random variables with respective variances

E
{
x0x

T
0

}
= P0 ≻ 0, E

{
wkwT

l

}
= Qkδkl ≻ 0, and E

{
vkvT

l

}
= Rkδkl ≻ 0,

where δkl is the Kronecker delta function, such that δkl = 1 if k = l, and δkl = 0 otherwise.
However, the strategy we develop to derive the polytopic robust filter does not require
that these variables have any particular distribution.

3.3.1.2 Robust Estimation Problem

The goal is to design a robust state estimator for the uncertain system (3.83)-
(3.84). Since the system state sequence {xk} is not readily available nor is perfectly
observed, the problem consists of using all the information available up to time instant k,
Y k = {y0, . . . , yk, u0, . . . , uk}, to obtain a so-called filtered state estimate x̂k|k of xk, as
well as a predicted estimate x̂k+1|k of xk+1, despite the presence of the polytopic model
uncertainties δk := {δFk, δGk, δHk, δCk, δDk}.

Following the procedure described in Section 3.1.1.2 for the Nominal Kalman Filter,
we adopt a deterministic viewpoint (BRYSON; HO, 1975). As such, we introduce the
variables x̂k, x̂k+1, ŵk, and v̂k as substitutes for the corresponding random variables xk,
xk+1, wk, and vk in the stochastic model (3.83). Then, based on Sayed (2001) and Ishihara,
Terra and Cerri (2015), assuming that at each time step k, an a priori state estimate x̂k|k−1,
a measurement yk, and the input uk are available, we formulate a min-max constrained
optimization problem in which a one-step quadratic objective function should be minimized
under the maximum influence of the polytopic parametric uncertainties δk, i.e.,

min
x̂k, x̂k+1,

ŵk, v̂k

max
δk

Jk(x̂k, ŵk, v̂k) = ∥x̂k − x̂k|k−1∥2
P −1

k|k−1
+ ∥ŵk∥2

Q−1
k

+ ∥v̂k∥2
R−1

k
, (3.86)
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subject to the set of constraints
In

...
In

 x̂k+1 =


F0,k + α1,kV F1,k

...
F0,k + αV,kV FV,k

 x̂k +


G0,k + α1,kV G1,k

...
G0,k + αV,kV GV,k

uk +


H0,k + α1,kV H1,k

...
H0,k + αV,kV HV,k

 ŵk,

(3.87a)
Ir

...
Ir

 yk =


C0,k + α1,kV C1,k

...
C0,k + αV,kV CV,k

 x̂k +


D0,k + α1,kV D1,k

...
D0,k + αV,kV DV,k

 v̂k, (3.87b)

for k = 0, 1, . . . , N , where ŵk and v̂k are fitting errors weighted respectively by Qk ≻ 0
and Rk ≻ 0, and Pk|k−1 ≻ 0 weights the a priori estimation error xk − x̂k|k−1. Recall that,
from a stochastic viewpoint, matrices Qk and Rk represent the variances of the random
variables wk and vk. Nonetheless, in this more general deterministic setting, they are rather
understood as weighting matrices.

Remark 3.5. The constraints (3.87) of problem (3.86) are derived from (3.83)-(3.84) by
individually considering each vertex of the polytope. The equivalence between them can be
easily shown by summing all the correspondent state and measurement equations in (3.87),
as follows:

x̂k+1 =
(

F0,k +
V∑

ν=1
αν,kFν,k

)
x̂k +

(
G0,k +

V∑
ν=1

αν,kGν,k

)
uk +

(
H0,k +

V∑
ν=1

αν,kHν,k

)
ŵk,

yk =
(

C0,k +
V∑

ν=1
αν,kCν,k

)
x̂k +

(
D0,k +

V∑
ν=1

αν,kDν,k

)
v̂k,

which correspond to the same equations in (3.83)-(3.84), considering the deterministic
variables.

To simplify the notation, we rewrite the constraints in (3.87) in the more compact
form

Inx̂k+1 = (F 0,k + δF k)x̂k + (G0,k + δGk)uk + (H0,k + δHk)ŵk,

Iryk = (C0,k + δCk)x̂k + (D0,k + δDk)v̂k,
(3.88)

in which we define

In := 1V ⊗ In, F 0,k := 1V ⊗ F0,k, G0,k := 1V ⊗G0,k, H0,k := 1V ⊗H0,k,

Ir := 1V ⊗ Ir, C0,k := 1V ⊗ C0,k, and D0,k := 1V ⊗D0,k,
(3.89)

where 1V :=
[
1 · · · 1

]T
∈ RV and ⊗ denotes the Kronecker product. Moreover, the

uncertainties are given by[
δF k δGk δHk

]
= ᾱ1,k V

[
F̄ k Ḡk H̄k

]
,[

δCk δDk

]
= ᾱ2,k V

[
C̄k D̄k

]
,

(3.90)



86 Chapter 3 Robust Kalman Filtering

where

ᾱ1,k :=


α1,kIn · · · 0

... . . . ...
0 · · · αV,kIn

 , F̄ k :=


F1,k

...
FV,k

 , Ḡk :=


G1,k

...
GV,k

 , H̄k :=


H1,k

...
HV,k

 ,

ᾱ2,k :=


α1,kIr · · · 0

... . . . ...
0 · · · αV,kIr

 , C̄k :=


C1,k

...
CV,k

 , and D̄k :=


D1,k

...
DV,k

 .

(3.91)

The solution to problem (3.86)-(3.87) recursively provides the filtered and predicted
robust state estimates x̂k|k and x̂k|k+1, which compose the Polytopic Robust Kalman Filter.
In addition, we refer to this problem as a regularized least-squares estimation problem with
polytopic uncertainties, whose details we discuss in the next section.

3.3.2 Regularized Least-Squares Estimation Problem with
Polytopic Uncertainties

Consider the general problem of obtaining an estimate x̂ of an unknown vector x

based on measurements y0, related to x according to the uncertain linear system

(y0 + δy) = (A0 + δA)x + (B0 + δB)w, (3.92)

where w is a noise vector, also unknown, A0 and B0 are known matrices, and y0 is a
known measurement vector. The parametric uncertainties δy, δA, and δB are unknown
but bounded to a convex polyhedral domain described by V vertices,

V :=
{(

δy, δA, δB
)

=
V∑

ν=1
αν

(
yν , Aν , Bν

)}
, (3.93)

in which yν , Aν , and Bν are known and α :=
[
α1 · · · αV

]T
belongs to the unit simplex

ΛV :=
α ∈ RV :

V∑
ν=1

αν = 1, αν ≥ 0
. (3.94)

Moreover, assume that an a priori estimate x̄ of x is available as well.

Adopting a deterministic viewpoint, we formulate the regularized least-squares
estimation problem with polytopic uncertainty as

min
x, w

max
δy, δA, δB

J(x, w) = ∥x− x̄∥2
P̄ + ∥w∥2

Q, (3.95)

subject to the set of constraints
y0 + α1V y1

...
y0 + αV V yV

 =


A0 + α1V A1

...
A0 + αV V AV

x +


B0 + α1V B1

...
B0 + αV V BV

w. (3.96)
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In the objective function of problem (3.95), P̄ ⪰ 0 and Q ≻ 0 are given weighting matrices
respectively associated with the a priori estimation error x− x̄ and the model fitting error
w. Therefore, we minimize the objective function under the maximum influence of the
parametric polytopic uncertainties.

Remark 3.6. We derive the constraints (3.96) of problem (3.95) from (3.92)-(3.93) by
individually considering each vertex of the polytope. The equivalence between them can be
shown by pre-multiplying both sides of (3.96) by

[
I · · · I

]
= 1T

V ⊗ I, such that

y0 +
V∑

ν=1
ανyν =

(
A0 +

V∑
ν=1

ανAν

)
x +

(
B0 +

V∑
ν=1

ανBν

)
w

which corresponds to the same equation in (3.92)-(3.93).

To use a simpler notation, we rewrite the constraints in (3.96) in a more compact
form, as follows:

y0 + δy = (A0 + δA)x + (B0 + δB)w, (3.97)

where we define

y0 := 1V ⊗ y0, A0 := 1V ⊗ A0, and B0 := 1V ⊗B0, (3.98)

and the uncertainties are given by[
δy δA δB

]
= ᾱ V

[
ȳ Ā B̄

]
, (3.99)

in which

ᾱ :=


α1I · · · 0

... . . . ...
0 · · · αV I

 , ȳ :=


y1
...

yV

 , Ā :=


A1
...

AV

 , and B̄ :=


B1
...

BV

 . (3.100)

The first step to solve the constrained problem (3.95)-(3.96) is transforming it into
a more convenient unconstrained problem. Since the linear constraints in (3.96) cannot be
inserted into the objective function by direct substitution, we rely on the penalty function
method presented in Section 2.1. This way, we include the redefined constraints (3.97)
in the objective function as a quadratic term multiplied by a penalty parameter µ > 0,
which penalizes constraint violations. Therefore, for a fixed µ > 0, we rewrite problem
(3.95)-(3.96) as

min
x, w

max
δy, δA, δB

Jµ(x, w, δy, δA, δB), (3.101)

with a new objective function

Jµ(x, w, δy, δA, δB) =
x− x̄

w

T P̄ 0
0 Q

x− x̄

w

 +


( [

A0 B0

]
+
[
δA δB

] ) x− x̄

w

− [(y0 −A0x̄) + (δy − δAx̄)
]

T

µI
{
•
}
, (3.102)
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considering the definitions in (3.97) through (3.100). Moreover, note that since α =[
α1 · · · αV

]T
belongs to the unit simplex ΛV in (3.94), we have that ∥ᾱ∥ ≤ 1 in (3.99).

Problem (3.101)-(3.102) thus has the form of a regularized least-squares problem
with uncertainties (Section 2.2.4), considering the following mappings between (2.13) and
(3.102):

z ←

x− x̄

w

 , Q←

P̄ 0
0 Q

 , A←
[
A0 B0

]
, b← y0 −A0x̄, W← µI,

δA←
[
δA δB

]
, and δb← δy − δAx̄.

(3.103)

In addition, the correspondence between the parametric uncertainty model in (2.14) and
the polytopic uncertainty model in (3.99) is given by

[
δA δb

]
= M∆

[
EA Eb

]
, ∥∆∥ ≤ 0,

where

M ← I, ∆← ᾱ⊗ I, EA ← V
[
Ā B̄

]
, and Eb ← V

(
ȳ − Āx̄

)
. (3.104)

Hence, to solve problem (3.101)-(3.102), we use the results in Section 2.2.4. From
the solution, we then extract the estimate x̂µ of x, which is conditioned by the penalty
parameter µ, as we shown in the following lemma.

Lemma 3.5. Consider problem (3.101)-(3.102) with polytopic parametric uncertainties

given by (3.99), in which P̄ ⪰ 0, Q ≻ 0, and
A0

Ā

 has full column rank. The estimate x̂µ

of x, conditioned by the penalty parameter µ > 0, is given by

x̂µ =
(
P̄ + ÂT Q̂−1Â + Ā

T
Q̄−1Ā

)−1(
P̄ x̄ + ÂT Q̂−1ŷ + Ā

T
Q̄−1ȳ

)
, (3.105)

in which we define the auxiliary entities

Φ := λ̂ µ V
(
λ̂− µ

)−1
I, φ := λ̂V 2,

Q̄ := φ−1I + B̄Q−1B̄
T
, Q̂ := Φ−1 + B0

(
Q + φB̄

T
B̄
)−1

BT
0 ,

Â := A0 −B0Q
−1B̄

T
Q̄−1Ā, ŷ := y0 −B0Q

−1B̄
T
Q̄−1ȳ,

(3.106)

where λ̂ is a nonnegative scalar parameter obtained from the auxiliary optimization problem

λ̂ := arg min
λ>µ

Γ(λ), (3.107)

with objective function Γ(λ) given by

Γ(λ) := ∥z(λ)∥2
Q + λ∥EAz(λ)− Eb∥2 + ∥Az(λ)− b∥2

W(λ), (3.108)
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in which

W(λ) := λ µ
(
λ− µ

)−1
I

z(λ) :=
(
Q + ATW(λ)A + λET

AEA

)−1(
ATW(λ)b + λET

AEb

)
,

considering the definitions in (3.103) and (3.104).

Proof. Problem (3.101)-(3.102) is a special case of a regularized least-squares problem
with uncertainties, considering the mappings in (3.103) and (3.104). Moreover, as P̄ ⪰ 0,
Q ≻ 0, and µ > 0, we have that Q ⪰ 0 and W ≻ 0, such that we can use Lemma 2.8 to

find the solution. It is further required that the block


0 I

A0 B0

Ā B̄

 should have full column

rank, which is satisfied by conditioning
A0

Ā

 to have full column rank. Therefore, by

substituting the mappings (3.103) and (3.104) into the unique solution (2.15), we obtainx̂µ − x̄

ŵµ

 =
P̄ + AT

0 ΦA0 + φĀ
T
Ā AT

0 ΦB0 + φĀ
T
B̄

BT
0 ΦA0 + φB̄

T
Ā Q + BT

0 ΦB0 + φB̄
T
Ā

−1

×
AT

0 Φ(y0 − A0x̄) + φĀ
T (ȳ − Āx̄)

BT
0 Φ(y0 − A0x̄) + φB̄

T (ȳ − Āx̄)

 ,

in which we define Φ := λ̂ µ V
(
λ̂−µ

)−1
I and φ := λ̂V 2. Then, summing

x̄

0

 to both sides

of the equation above yields x̂µ

ŵµ

 =
P̄ + AT

0 ΦA0 + φĀ
T
Ā AT

0 ΦB0 + φĀ
T
B̄

BT
0 ΦA0 + φB̄

T
Ā Q + BT

0 ΦB0 + φB̄
T
B̄

−1 P̄ x̄ + AT
0 Φy0 + φĀ

T
ȳ

BT
0 Φy0 + φB̄

T
ȳ

 .

Note that the equation above represents a system of simultaneous equations, such that we
can write it as the following set equations:(

P̄ + AT
0 ΦA0 + φĀ

T
Ā
)
x̂µ +

(
AT

0 ΦB0 + φĀ
T
B̄
)
ŵµ = P̄ x̄ + AT

0 Φy0 + φĀ
T
ȳ, (3.109)(

BT
0 ΦA0 + φB̄

T
Ā
)
x̂µ +

(
Q + BT

0 ΦB0 + φB̄
T
B̄
)
ŵµ = BT

0 Φy0 + φB̄
T
ȳ. (3.110)

Then, isolating ŵµ in (3.110) gives

ŵµ =
(
Q + BT

0 ΦB0 + φB̄
T
B̄
)−1(

BT
0 Φy0 + φB̄

T
ȳ −

(
BT

0 ΦA0 + φB̄
T
Ā
)
x̂µ
)
.

Substituting ŵµ back into (3.109) thus yields[
P̄ + AT

0 ΦA0 + φĀ
T
Ā−(

AT
0 ΦB0 + φĀ

T
B̄
)(

Q + BT
0 ΦB0 + φB̄

T
B̄
)−1(

BT
0 ΦA0 + φB̄

T
Ā
)]

x̂µ =

P̄ x̄+AT
0 Φy0 + φĀ

T
ȳ −

(
AT

0 ΦB0 + φĀ
T
B̄
)(

Q + BT
0 ΦB0 + φB̄

T
B̄
)−1(

BT
0 Φy0 + φB̄

T
ȳ
)

(3.111)
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Now, we expand the left-hand side of (3.111) and obtain
[
P̄ + AT

0

(
Φ− ΦB0

(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

BT
0 Φ
)
A0−

AT
0 ΦB0

(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

φB̄
T
Ā− φĀ

T
B̄
(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

BT
0 ΦA0 +

φĀ
T
Ā− φĀ

T
B̄
(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

B̄
T
Āφ

]
x̂µ. (3.112)

We can simplify the second term of (3.112) by applying Lemma A.1, as follows:

AT
0

(
Φ− ΦB0

(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

BT
0 Φ
)
A0 =

AT
0

(
Φ−1 + B0

(
Q + φB̄

T
B̄
)−1

BT
0︸ ︷︷ ︸

Q̂

)−1
A0 = AT

0 Q̂−1A0. (3.113)

Then, we simplify the third term of (3.112) using Lemma A.2 twice:

AT
0 ΦB0

(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

φB̄
T
Ā =

AT
0

(
Φ−1 + B0

(
Q + φB̄

T
B̄
)−1

BT
0︸ ︷︷ ︸

Q̂

)−1
B0Q

−1B̄
T
(

φ−1I + B̄Q−1B̄
T︸ ︷︷ ︸

Q̄

)−1
Ā =

AT
0 Q̂−1B0Q

−1B̄
T
Q̄−1Ā. (3.114)

Applying the same procedure above for the fourth term of (3.112) gives

φĀ
T
B̄
(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

BT
0 ΦA0 = Ā

T
Q̄−1B̄Q−1BT

0 Q̂−1A0. (3.115)

Now, we expand the last two terms of (3.112) using both Lemma A.1 and Lemma A.2, as
follows:

φĀ
T
Ā− φĀ

T
B̄
(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

B̄
T
Āφ =

φĀ
T
Ā− φĀ

T
B̄
[(

Q + φB̄
T
B̄
)−1
−(

Q + φB̄
T
B̄
)−1

BT
0

(
Φ−1 + B0

(
Q + φB̄

T
B̄
)−1

BT
0︸ ︷︷ ︸

Q̂

)−1
B0
(
Q + φB̄

T
B̄
)−1

]
B̄

T
Āφ =

Ā
T
(
φI − φB̄

(
Q + φB̄

T
B̄
)−1

B̄
T
φ
)
Ā +

Ā
T
(

φ−1I + B̄Q−1B̄
T︸ ︷︷ ︸

Q̄

)−1
B̄Q−1BT

0 Q̂−1B0Q
−1B̄

T
(

φ−1I + B̄Q−1B̄
T︸ ︷︷ ︸

Q̄

)−1
Ā =

Ā
T
(

φ−1I + B̄Q−1B̄
T︸ ︷︷ ︸

Q̄

)−1
Ā + Ā

T
Q̄−1B̄Q−1BT

0 Q̂−1B0Q
−1B̄

T
Q̄−1Ā =

Ā
T
Q̄−1Ā + Ā

T
Q̄−1B̄Q−1BT

0 Q̂−1B0Q
−1B̄

T
Q̄−1Ā. (3.116)
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Then we substitute (3.113), (3.114), (3.115), and (3.116) back into (3.112) to obtain[
P̄ + Ā

T
Q̄−1Ā + AT

0 Q̂−1
(

A0 −B0Q
−1B̄

T
Q̄−1Ā︸ ︷︷ ︸

Â

)
−

Ā
T
Q̄−1B̄Q−1BT

0 Q̂−1
(

A0 −B0Q
−1B̄

T
Q̄−1Ā︸ ︷︷ ︸

Â

)]
x̂µ =

[
P̄ + Ā

T
Q̄−1Ā +

(
AT

0 − Ā
T
Q̄−1B̄Q−1BT

0︸ ︷︷ ︸
ÂT

)
Q̂−1Â

]
x̂µ =

(
P̄ + ÂT Q̂−1Â + Ā

T
Q̄−1Ā

)
x̂µ. (3.117)

In a similar fashion, we expand the right-hand side of (3.111), as follows:

P̄ x̄ + AT
0

(
Φ− ΦB0

(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

BT
0 Φ
)
y0−

AT
0 ΦB0

(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

φB̄
T
ȳ − φĀ

T
B̄
(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

BT
0 Φy0 +

φĀ
T
ȳ − φĀ

T
B̄
(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

B̄
T
ȳφ. (3.118)

First, we apply Lemma A.1 to simplify the second term of (3.118):

AT
0

(
Φ− ΦB0

(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

BT
0 Φ
)

y0 =

AT
0

(
Φ−1 + B0

(
Q + φB̄

T
B̄
)−1

BT
0︸ ︷︷ ︸

Q̂

)−1
y0 = AT

0 Q̂−1y0. (3.119)

Next, we simplify the third term of (3.118) using Lemma A.2 twice:

AT
0 ΦB0

(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

φB̄
T
ȳ =

AT
0

(
Φ−1 + B0

(
Q + φB̄

T
B̄
)−1

BT
0︸ ︷︷ ︸

Q̂

)−1
B0Q

−1B̄
T
(

φ−1I + B̄Q−1B̄
T︸ ︷︷ ︸

Q̄

)−1
ȳ =

AT
0 Q̂−1B0Q

−1B̄
T
Q̄−1ȳ. (3.120)

The same procedure is used to simplify the fourth term of (3.118), such that

φĀ
T
B̄
(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

BT
0 Φy0 = Ā

T
Q̄−1B̄Q−1BT

0 Q̂−1y0. (3.121)

Then, we apply Lemma A.1 and Lemma A.2 to expand the last two terms of (3.118):

φĀ
T
ȳ − φĀ

T
B̄
(
Q + φB̄

T
B̄ + BT

0 ΦB0
)−1

B̄
T
ȳφ =

φĀ
T
ȳ − φĀ

T
B̄
[(

Q + φB̄
T
B̄
)−1
−(

Q + φB̄
T
B̄
)−1

BT
0

(
Φ−1 + B0

(
Q + φB̄

T
B̄
)−1

BT︸ ︷︷ ︸
Q̂

)−1
B0
(
Q + φB̄

T
B̄
)−1

]
B̄

T
ȳφ =

Ā
T
(
φI − φB̄

(
Q + φB̄

T
B̄
)−1

B̄
T
φ
)
ȳ +

Ā
T
(

φ−1I + B̄Q−1B̄
T︸ ︷︷ ︸

Q̄

)−1
B̄Q−1BT

0 Q̂−1B0Q
−1B̄

T
(

φ−1I + B̄Q−1B̄
T︸ ︷︷ ︸

Q̄

)−1
ȳ =
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Ā
T
(

φ−1I + B̄Q−1B̄
T︸ ︷︷ ︸

Q̄

)−1
ȳ + Ā

T
Q̄−1B̄Q−1BT

0 Q̂−1B0Q
−1B̄

T
Q̄−1ȳ =

Ā
T
Q̄−1ȳ + Ā

T
Q̄−1B̄Q−1BT

0 Q̂−1B0Q
−1B̄

T
Q̄−1ȳ. (3.122)

Thus, substituting (3.119), (3.120), (3.121), and (3.122) back into (3.118) yields

P̄ x̄ + Ā
T
Q̄−1ȳ +

(
AT

0 − Ā
T
Q̄−1B̄Q−1BT

0︸ ︷︷ ︸
ÂT

)
Q̂−1y0−

(
AT

0 − Ā
T
Q̄−1B̄Q−1BT

0︸ ︷︷ ︸
ÂT

)
Q̂−1B0Q

−1B̄
T
Q̄−1ȳ = P̄ x̄ + Ā

T
Q̄−1ȳ +

ÂT Q̂−1
(

y0 −B0Q
−1B̄

T
Q̄−1ȳ︸ ︷︷ ︸

ŷ

)
= P̄ x̄ + ÂT Q̂−1ŷ + Ā

T
Q̄−1ȳ. (3.123)

Finally, we substitute the left- and right-hand sides of (3.111) respectively by (3.117) and
(3.123) and isolate x̂µ to obtain the estimate in (3.105).

Moreover, the procedure described in Lemma 2.7 is followed to obtain the parameter
λ̂, i.e., by solving the auxiliary optimization problem (3.107)-(3.108). Notice that, since we
search for λ > µ > 0 in problem (3.107)-(3.108), according to Remark 2.1, the invertibility
of Φ is ensured.

Remark 3.7. The solution in Lemma 3.5 depends on the optimal parameter λ̂, which
results from solving the optimization problem (3.107)-(3.108). While a constrained line
search method can be used to obtain a solution, this requires additional computation time.
Therefore, we rather adopt the practical approximation λ̂ = (1 + ξ) µ, for some ξ > 0, as
explained in Remark 2.2.

Remark 3.8. As discussed in the end of Section 3.2.2, in a robust estimation context, the
penalty parameter µ can be understood as a robustness measure of the estimator. In this
sense, when the system model is subject to significant uncertainties, smaller values of µ

increase the estimator robustness. Conversely, for mild uncertainties, larger values of µ

can be used.

To conclude the section, we further associate a weighting matrix P̂ to the estimation
error x − x̂µ. Recall that, since the underlying model contains parametric polytopic
uncertainties, we cannot refer to this weighting matrix as an error variance matrix, as we
cannot compute it analytically. Hence, based on the result in Lemma 3.2 and relying on
the deterministic view of the robust estimation problem, we associate the weighting matrix

P̂ =
(
P̄ + ÂT Q̂−1Â + Ā

T
Q̄−1Ā

)−1
(3.124)

to the estimation error x− x̂µ, considering the estimate x̂µ in (3.105).
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3.3.3 Polytopic Robust Kalman Filter

In this section, we apply the results in Section 3.3.2 to obtain the so-called Polytopic
Robust Kalman Filter. As aforementioned, the deterministic estimation problem (3.86)-
(3.87) is a special case of a regularized least-squares estimation problem with polytopic
uncertainties, considering the following mappings between (3.86)-(3.88) and (3.95)-(3.97):

x←

 x̂k

x̂k+1

 , x̄←

x̂k|k−1

0

 , w ←

ŵk

v̂k

 , P̄ ←

P −1
k|k−1 0
0 0

 , Q←

Q−1
k 0
0 R−1

k

 ,

y0 ←

−G0,kuk

Iryk

 , A0 ←

F 0,k −In

C0,k 0

 , B0 ←

H0,k 0
0 D0,k

 ,

δy ←

−δGkuk

0

 , δA←

δF k 0
δCk 0

 , and δB ←

δHk 0
0 δDk

 .

(3.125)
Moreover, consider the following mappings between the uncertainty models (3.90) and
(3.99):

ᾱ←

ᾱ1,k 0
0 ᾱ2,k

 , ȳ ←

−Ḡkuk

0

 , Ā←

F̄ k 0
C̄k 0

 , and B̄ ←

H̄k 0
0 D̄k

 . (3.126)

Notice that P −1
k|k−1 ≻ 0, thus P̄ ⪰ 0. In addition, Q−1

k ≻ 0 and R−1
k ≻ 0, such that Q ≻ 0.

Therefore, by using the results in Lemma 3.5 and in equation (3.124), we obtain the filtered
and predicted robust state estimates, x̂k|k and x̂k+1|k, as well as their corresponding error
weighting matrices Pk|k and Pk+1|k.

Theorem 3.6. Consider the regularized least-squares estimation problem with polytopic
uncertainties (3.86)-(3.87) with given initial conditions x̂0|−1, P0|−1 = P0 ≻ 0, Qk ≻ 0,
Rk ≻ 0, and fixed parameters µ > 0 and ξ > 0. For each k = 0, 1, . . . , N , its solution
recursively provides the filtered and predicted robust state estimates of system (3.83)-(3.84),
x̂k|k and x̂k+1|k, as well as their corresponding error weighting matrices, Pk|k and Pk+1|k,
according to the procedure outlined in Algorithm 3.3.

Proof. Since problem (3.86)-(3.87) is a regularized least-squares estimation problem with
polytopic uncertainties, we can leverage the result in Lemma 3.5 to obtain the robust
system state estimates x̂k|k and x̂k+1|k. Therefore, recalling the definitions in (3.89) and
(3.91) we first substitute the mappings (3.125) and (3.126) into (3.106) to compute the
modified system and sensing model matrices

φ = λ̂V 2 = (1 + ξ)µV 2,

Φ =

λ̂ µ V
(
λ̂− µ

)−1
In 0

0 λ̂ µ V
(
λ̂− µ

)−1
Ir

 =
φ(ξV )−1In 0

0 φ(ξV )−1Ir

 =:
Φ−1

1 0
0 Φ−1

2

 ,
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Algorithm 3.3 Polytopic Robust Kalman Filter (PRKF)
Model: Assume the uncertain system model in (3.83)-(3.84).
Initialization: Set x̂0|−1, P0|−1 = P0 ≻ 0, Qk ≻ 0, Rk ≻ 0, µ > 0, and ξ > 0.

for k = 0, 1, . . . , N do
1. Obtain a measurement yk.
2. Compute φ using the approximation for λ̂:

φ = λ̂V 2 = (1 + ξ) µV 2

3. Compute the modified target system and sensing model matrices:

Φ1,k = ξV φ−1In Q̂k = Φ1+H0,k

(
Q−1

k +φH̄
T

k H̄k

)−1
HT

0,k

Φ2,k = ξV φ−1Ir R̂k = Φ2+D0,k

(
R−1

k +φD̄
T

k D̄k

)−1
DT

0,k

Q̄k = φ−1InV + H̄kQkH̄
T

k R̄k = φ−1IrV + D̄kRkD̄
T

k

F̂k = F0,k −H0,kQkH̄
T

k Q̄−1
k F̄ k Ĉk = C0,k −D0,kRkD̄

T

k R̄−1
k C̄k

Ĝk = G0,k −H0,kQkH̄
T

k Q̄−1
k Ḡk

4. Correction step:
4.1. Compute the posterior error weighting matrix:

Pk|k =
(
P −1

k|k−1 + ĈT
k R̂−1

k Ĉk + C̄
T

k R̄−1
k C̄k + F̄

T

k Q̄−1
k F̄ k

)−1

4.2. Compute the filtered robust state estimate:

x̂k|k = Pk|k
(
P −1

k|k−1x̂k|k−1 + ĈT
k R̂−1

k yk − F̄
T

k R̄−1
k Ḡkuk

)
5. Prediction step:

5.1. Update the predicted prior error weighting matrix:

Pk+1|k = F̂kPk|kF̂ T
k + Q̂k

5.2. Update the predicted prior robust state estimate:

x̂k+1|k = F̂kx̂k|k + Ĝkuk

end for

Q̄ =
φ−1InV + H̄kQkH̄

T

k 0
0 φIrV + D̄kRkD̄

T

k

 =:
Q̄k 0

0 R̄k

 ,

Q̂=

Φ1+H0,k

(
Q−1

k +φH̄
T

k H̄k

)−1
HT

0,k 0
0 Φ2+D0,k

(
R−1

k +φD̄
T

k D̄k

)−1
DT

0,k

=:
Q̂k 0

0 R̂k

 ,

Â =
F0,k −H0,kQkH̄

T

k Q̄−1
k F̄ k −In

C0,k −D0,kRkD̄
T

k R̄−1
k C̄k 0

 =:
F̂k −In

Ĉk 0

 ,

ŷ =
−(G0,k −H0,kQkH̄

T

k Q̄−1
k Ḡk

)
uk

yk

 =:
−Ĝkuk

yk

 . (3.127)
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Notice that we consider Remark 3.7 to approximate the parameter λ̂ = (1 + ξ) µ, for
some ξ > 0. Now, we substitute the mappings (3.125) and (3.126), as well as the modified
matrices (3.127) into the solution (3.105), which yields x̂k|k

x̂k+1|k

 =
P −1

k|k−1 + F̂ T
k Q̂−1

k F̂k + ĈT
k R̂−1

k Ĉk + F̄
T

k Q̄−1
k F̄ k + C̄

T

k R̄−1
k C̄k −F̂ T

k Q̂−1
k

−Q̂−1
k F̂k Q̂−1

k

−1

×
P −1

k|k−1x̂k|k−1 + ĈT
k R̂−1

k yk −
(
F̂ T

k Q̂−1
k Ĝk + F̄

T

k Q̄−1
k Ḡk

)
uk

Q̂−1
k Ĝkuk

 . (3.128)

Note that (3.128) also represents a system of simultaneous equations, such that we can
write it as the following set of equations:(

P −1
k|k−1 + F̂ T

k Q̂−1
k F̂k + ĈT

k R̂−1
k Ĉk + F̄

T

k Q̄−1
k F̄ k + C̄

T

k R̄−1
k C̄k

)
x̂k|k − F̂ T

k Q̂−1
k x̂k+1|k =

P −1
k|k−1x̂k|k−1 + ĈT

k R̂−1
k yk −

(
F̂ T

k Q̂−1
k Ĝk + F̄

T

k Q̄−1
k Ḡk

)
uk, (3.129)

− Q̂−1
k F̂kx̂k|k + Q̂−1

k x̂k+1|k = Q̂−1
k Ĝkuk. (3.130)

Isolating x̂k+1|k in (3.64) then gives

x̂k+1|k = F̂kx̂k|k + Ĝkuk, (3.131)

which is the update equation of the predicted prior robust state estimate in step 5.2 of
Algorithm 3.3. Then, we substitute x̂k+1|k back into (3.129) and isolate x̂k|k to obtain

x̂k|k =
(
P −1

k|k−1 + ĈT
k R̂−1

k Ĉk + C̄
T

k R̄−1
k C̄k + F̄

T

k Q̄−1
k F̄ k

)−1
×(

P −1
k|k−1x̂k|k−1 + ĈT

k R̂−1
k yk − F̄

T

k Q̄−1
k Ḡkuk

)
,

which is the equation for computing the filtered robust state estimate in step 4.2 of
Algorithm 3.3.

Lastly, assuming a deterministic context, we use equation (3.58) to obtain the
error weighting matrices associated with x̂k|k and x̂k+1|k. Thus, substituting the mappings
(3.125) and (3.126), and the modified matrices (3.127) into (3.124) gives4Pk|k ∗
∗ Pk+1|k

 =

P −1
k|k−1 + F̂ T

k Q̂−1
k F̂k + ĈT

k R̂−1
k Ĉk + F̄

T

k Q̄−1
k F̄ k + C̄

T

k R̄−1
k C̄k −F̂ T

k Q̂−1
k

−Q̂−1
k F̂k Q̂−1

k

−1

︸ ︷︷ ︸
M−1

=:
M1 M2

MT
2 M3

−1

,

where we define the partitioned matrix M. To find its inverse, we use the Banachiewicz
inversion formula (Lemma A.4, item (ii)). According to Lemma A.3, the Schur complement
of M3 in M is

(M/M3) = M1 −M2M
−1
3 MT

2 = P −1
k|k−1 + ĈT

k R̂−1
k Ĉk + C̄

T

k R̄−1
k C̄k + F̄

T

k Q̄−1
k F̄ k.

4 The elements marked with ∗ are byproducts with no particular meaning in our context.
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Thus, the posterior error weighting matrix in step 4.1 of Algorithm 3.3 is obtained as
follows:

Pk|k = (M/M3)−1 =
(
P −1

k|k−1 + ĈT
k R̂−1

k Ĉk + C̄
T

k R̄−1
k C̄k + F̄

T

k Q̄−1
k F̄ k

)−1
.

Finally, we obtain the predicted prior error weighting matrix

Pk+1|k = M−1
3 + M−1

3 MT
2 (M/M3)−1M2M

−1
3 = F̂kPk|kF̂ T

k + Q̂k,

as shown in step 5.1 of Algorithm 3.3.

As in the Robust Kalman Filter for systems subject to norm-bounded uncertainties
(Section 3.2.3), here we consider that the penalty parameter µ assumes a finite value,
which we can tune to adjust the filter estimation performance, as explained in Remark 3.8.
Due to the approximation of the λ̂ parameter, the Polytopic Robust Kalman Filter also
depends on the ξ parameter, which is usually chosen as a value within the interval (0, 1).

Remark 3.9. The expressions for the Polytopic Robust Kalman Filter in Algorithm 3.3
resemble those of the Nominal Kalman Filter outlined in Algorithm 3.1. In fact, if there
are no uncertainties, i.e., F̄ k, Ḡk, H̄k, C̄k, and D̄k are all zero, and we let µ→∞, we
have that Q̂k = H0,kQkHT

0,k, R̂k = D0,kRkDT
0,k, F̂k = F0,k, Ĝk = G0,k, and Ĉk = C0,k. This

way, the expressions in steps 4 and 5 of Algorithm 3.3 collapse to the same expressions in
steps 3 and 4 of Algorithm 3.1.

To conclude this section, we reiterate the importance of the penalty function method
in the development of the proposed robust filter. This strategy enabled us to consider
polytopic uncertainties in all parameter matrices of the target system and sensing models,
as well as to collectively weight all the vertices with a single parameter. Moreover, the
penalty parameter can be carefully adjusted to improve the filter estimation performance,
according to the level of uncertainty. Finally, the PRKF is a recursive estimator and does
not depend on the solution of LMIs or the use of numerical solvers, which is a valuable
computational advantage in online applications.

3.3.4 Stability Analysis

This section addresses the stability properties and estimation error variance bound-
edness of the proposed Polytopic Robust Kalman Filter. Following a procedure similar
to the one shown in Section 3.2.4, we study the steady-state behavior of Algorithm 3.3,
considering that the system model parameters are time-invariant and there is no input uk.
Nevertheless, we maintain the assumption that the polytope coefficients αk are time-varying.
Thus, consider the following discrete-time uncertain linear system:

xk+1 = (F0 + δFk)xk + (H0 + δHk)wk,

yk = (C0 + δCk)xk + (D0 + δDk)vk,
(3.132)
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for k ≥ 0, with time-varying parametric uncertainties bounded by the convex polyhedron

Vk =
{(

δFk, δHk, δCk, δDk

)
=

V∑
ν=1

αν,k

(
Fν , Hν , Cν , Dν

)}
, (3.133)

where αk =
[
α1,k · · ·αV,k

]T
belongs to the unit simplex ΛV in (3.85), with V vertices.

First, let us investigate the stability conditions of the PRKF in Algorithm 3.3. Con-
sidering the uncertain system model (3.132)-(3.133), the polytopic robust filter equations
in steps 4 and 5 of Algorithm 3.3 become:

Pk|k =
(
P −1

k|k−1 + ĈT R̂−1Ĉ + C̄
T
R̄−1C̄ + F̄

T
Q̄−1F̄

)−1
, (3.134)

x̂k|k = Pk|k
(
P −1

k|k−1x̂k|k−1 + ĈT R̂−1yk

)
, (3.135)

Pk+1|k = F̂Pk|kF̂ T + Q̂, (3.136)

x̂k+1|k = F̂ x̂k|k, (3.137)

in which the modified model parameter matrices are given by the corresponding equations
listed in step 3 of Algorithm 3.3, assuming constant parameters. To simplify the analysis,
we also define the augmented matrices

C̃ :=


Ĉ

C̄

F̄

 and R̃ :=


R̂ 0 0
0 R̄ 0
0 0 Q̄

 .

Then, we can rewrite Pk|k in (3.134) in a more compact way, as follows:

Pk|k =
(
P −1

k|k−1 + C̃T R̃−1C̃
)−1

= Pk|k−1 − Pk|k−1C̃
T
(
R̃ + C̃Pk|k−1C̃

T
)−1

C̃Pk|k−1, (3.138)

where we applied Lemma A.1 to further expand the expression. Now, combining (3.138)
with (3.135) and substituting back into (3.137), we obtain the steady-state predicted
robust state estimate

x̂k+1|k = F̃kx̂k|k−1 + F̃kPk|k−1Ĉ
T R̂−1yk, (3.139)

where
F̃k = F̂

(
In − Pk|k−1C̃

T
(
R̃ + C̃Pk|k−1C̃

T
)−1

C̃
)

is the filter closed-loop matrix. Then, we substitute Pk|k from (3.138) into (3.136) to obtain
the expression for the predicted prior error weighting matrix:

Pk+1|k = F̂
(
Pk|k−1 − Pk|k−1C̃

T
(
R̃ + C̃Pk|k−1C̃

T
)−1

C̃Pk|k−1
)
F̂ T + Q̂. (3.140)

In the following theorem, we establish a result about the conditions for convergence
of the proposed robust filter to a stable steady-state filter.
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Theorem 3.7. Consider the linear system model (3.132) with polytopic uncertainties
(3.133) and the corresponding robust filter (3.139)-(3.140). Assume that {F̂ , C̃} is de-
tectable and {F̂ , Q̂1/2} is controllable. Then, for any initial condition P0|−1 ≻ 0, ξ > 0,
and µ > 0, Pk+1|k converges to the unique stabilizing solution P ≻ 0 of the algebraic
Riccati equation

P = F̂
(
P − PC̃T

(
R̃ + C̃P C̃T

)−1
C̃P

)
F̂ T + Q̂. (3.141)

The solution P is stabilizing in the sense that the steady-state filter closed-loop matrix

F̃ = F̂
(
In − PC̃T

(
R̃ + C̃P C̃T

)−1
C̃
)

(3.142)

is Schur stable.

Proof. The conditions ξ > 0 and µ > 0 imply that φ > 0, such that matrices F̂ , C̃, R̃,
and Q̂ are well-defined. Moreover, from Kailath, Sayed and Hassibi (2000b), we have
that detectability of {F̂ , C̃} and controllability of {F̂ , Q̂1/2} guarantee the convergence of
Pk+1|k in (3.140) to the unique stabilizing solution P ≻ 0 of the algebraic Riccati equation
(3.141) that stabilizes (3.142), which is the polytopic robust filter steady-state closed-loop
matrix.

Now, let us establish the conditions for the boundedness of the estimation error
variance of the proposed robust filter. Again, consider the uncertain linear discrete-time
system model (3.132)-(3.133). Note that we can write the polytopic uncertainties described
in (3.133) alternatively as

[
δFk δHk

]
=
[
In · · · In

] 
α1,kIn · · · 0

... . . . ...
0 · · · αV,kIn




F1 H1
... ...

FV HV

 =: M1 ᾱ1,k

[
F̄ H̄

]
,

[
δCk δDk

]
=
[
Ir · · · Ir

] 
α1,kIr · · · 0

... . . . ...
0 · · · αV,kIr




C1 D1
... ...

CV DV

 =: M2 ᾱ2,k

[
C̄ D̄

]
,

(3.143)

in which, since αk =
[
α1,k · · ·αV,k

]T
belongs to the unit simplex ΛV in (3.85), we have

that ∥ᾱ1,k∥ ≤ 1 and ∥ᾱ2,k∥ ≤ 1. Moreover, we assume that wk and vk are uncorrelated
zero-mean Gaussian noise processes with joint covariance matrix

Q = E


wk

vk

 [wT
k vT

k

] =
Q 0

0 R

 ≻ 0. (3.144)

In addition, assume that there is no correlation between the parametric uncertainties and
the system and measurement noises.

Recall Definition 3.1 of quadratic stability for systems with norm-bounded un-
certainties. In the following, we make an adaptation of this definition, considering the
alternative representation of the polytopic uncertainties in (3.143).
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Definition 3.2. The uncertain system (3.132)-(3.143) is quadratically stable if there
exists a symmetric positive definite matrix U such that

(
F0 + M1ᾱ1,kF̄

)T
U
(
F0 + M1ᾱ1,kF̄

)
− U ≺ 0

for all admissible ᾱ1,k.

Remark 3.10. Similar to Remark 3.4, we can also conversely say that the uncertain
system (3.132)-(3.143) is quadratically stable if, and only if

1. F0 is Schur stable;

2. The discrete-time H∞ normal bound
∥∥∥F̄ (zIn − F0)−1M1

∥∥∥
∞

< 15 is satisfied.

Now, we make the following assumptions about the uncertain system and the
robust filter to show that it presents a bounded steady-state estimation error variance.

Assumption 3.3. The uncertain system (3.132)-(3.143) is quadratically stable, according
to Definition 3.2.

Assumption 3.4. The conditions of Theorem 3.7 are satisfied, meaning that the polytopic
robust filter steady-state closed-loop matrix F̃ is Schur stable.

First, we show that if Assumption 3.3 and Assumption 3.4 are satisfied, the steady-
state polytopic robust filter (3.139) is also quadratically stable. To simplify the notation,
we define the steady-state filter gain, as follows:

K̃ := F̃P ĈT R̂−1,

where F̃ is given by (3.142) and P is the stabilizing solution of the algebraic Riccati
equation (3.141). Thus, the steady-state robust filter equation becomes

x̂k+1|k = F̃ x̂k|k−1 + K̃yk. (3.145)

Now, we substitute yk from (3.132) into (3.145), such that

x̂k+1|k = F̃ x̂k|k−1 + K̃(C0 + δCk)xk + K̃(D0 + δDk)vk. (3.146)

In addition, we define the state estimation error vector ek := xk− x̂k|k−1. Then, subtracting
(3.146) from xk+1 in (3.132) yields

ek+1 =
[
(F0−F̃−K̃C0)+(δFk−K̃δCk)

]
xk+F̃ ek+(H0+δHk)wk−K̃(D0+δDk)vk. (3.147)

5 ∥ · ∥∞ denotes the maximum singular value of its argument for values of z on the unit disk.
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We also introduce an augmented system comprised of the system state xk and the estimation
error ek. Hence, from (3.132), (3.143), and (3.147), this augmented system is given by

ζk+1 = (F + δFk)ζk + (H + δHk)ηk,[
δFk δHk

]
= M ᾱk

[
F̄ H̄

]
,

(3.148)

where

ζk :=
xk

ek

 , ηk :=
wk

vk

 , F :=
 F0 0
F0 − F̃ − K̃C0 F̃

 , H :=
H0 0
H0 −K̃D0

 ,

M :=
M1 0
M1 −K̃M2

 , ᾱk :=
ᾱ1,k 0

0 ᾱ2,k

 , F̄ :=
F̄ 0
C̄ 0

 , H̄ :=
H̄ 0

0 D̄

 .

Lemma 3.6. If Assumption 3.3 and Assumption 3.4 are satisfied, then the augmented
system (3.148) is quadratically stable.

Proof. The augmented system matrix F is lower triangular with diagonal elements F0 and
F̃ , which are both Schur stable. Hence, F is also Schur stable. In addition, we have that

F̄(zI2n −F)−1M =
F̄ 0
C̄ 0

  zIn − F0 0
−(F0 − F̃ − K̃C0) zIn − F̃

−1 M1 0
M1 −K̃M2


=
F̄ (zIn − F0)−1M1 0
C̄(zIn − F0)−1M1 0

 =
F̄

C̄

 (zIn − F0)−1
[
M1 0

]
.

Also, note that

F0 + M1ᾱ1,kF̄ = F0 +
[
M1 0

] ᾱ1,k 0
0 ᾱ2,k

 F̄

C̄

 .

Given that system (3.132)-(3.143) is quadratically stable, according to Remark 3.10, we
have ∥∥∥∥∥∥

F̄

C̄

 (zIn − F0)−1
[
M1 0

]∥∥∥∥∥∥
∞

< 1,

for all admissible contractions ᾱ1,k and ᾱ2,k. In consequence,
∥∥∥F̄(zI2n −F)−1M

∥∥∥
∞

< 1
and the augmented system (3.148) is also quadratically stable.

Now, define the covariance matrix of the augmented system state as Pk := E
{
ζkζT

k

}
.

Then, it follows from (3.148) that Pk satisfies the Lyapunov recursion

Pk+1 = (F + δFk)Pk(F + δFk)T + (H + δHk)Q(H + δHk)T , (3.149)

with Q as defined in (3.144). In the following theorem, we provide a result on the
boundedness of the steady-state estimation error variance of the proposed polytopic robust
filter.
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Theorem 3.8. Consider that Assumption 3.3 and Assumption 3.4 are satisfied. Then, the
state estimation error variance of the steady-state polytopic robust filter (3.145) satisfies

lim
k→∞

E
{
ekeT

k

}
⪯ V22,

where V22 is the (2, 2) block entry with the smallest trace among all (2, 2) block entries of
matrices V ≻ 0 that satisfy the inequality

(F + MᾱF̄) V (F + MᾱF̄)T + (H + MᾱH̄)Q (H + MᾱH̄)T − V ⪯ 0,

for all admissible ᾱ, with ∥ᾱ∥ ≤ 1.

Proof. From Lemma 3.6, we have that the augmented system (3.148) is quadratically
stable, then, according to Definition 3.2, there exists a matrix U ≻ 0 such that

(F + MᾱkF̄) U (F + MᾱkF̄)T − U ≺ 0,

for any admissible ᾱk. Based on Petersen and McFarlane (1996) and Sayed (2001), the
existence of such a matrix U ≻ 0 guarantees the existence of a sufficiently large scaling
parameter ϵ > 0, such that one can find a matrix V = ϵ U that satisfies

(F + MᾱkF̄) V (F + MᾱkF̄)T + (H + MᾱkH̄)Q (H + MᾱkH̄)T ⪯ V.

Subtracting the recursion for the augmented system covariance (3.149) from the above
inequality then gives

(F + MᾱkF̄)(V −Pk)(F + MᾱkF̄)T ⪯ V −Pk+1,

or, equivalently,

V −Pk+1 = (F + MᾱkF̄)(V −Pk)(F + MᾱkF̄)T + Wk,

for some Wk ⪰ 0. To conclude, since the augmented system is quadratically stable, as
k →∞, we have that V−Pk+1 ⪰ 0, or Pk+1 ⪯ V. The (2, 2) block entry of Pk corresponds
to the estimation error variance, which is therefore bounded.

3.3.5 Illustrative Example

In this section, we evaluate the performance of the proposed Polytopic Robust
Kalman Filter with a numerical example. We also compare the results with other existing
polytopic robust filter from the literature, as well as with the Nominal Kalman filter.

Consider a discrete-time linear system with polytopic uncertainties, as described in
(3.83)-(3.84), with the following constant nominal parameter matrices (adapted from Xie,
Soh and Souza (1994)):

F0,k =
0 −0.5
1 1

 , G0,k =
0
0

 , H0,k =
−6

1

 , C0,k =
[
−100 10

]
, D0,k = 1
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and uncertainties bounded by a 2-vertex polytope given by

F1,k =
 0 0
0.1 0.3

 , G1,k =
0
0

 , H1,k =
 0
0.1

 , C1,k =
[
0.1 0.3

]
, D1,k = 0.1,

(
F2,k, G2,k, H2,k, C2,k, D2,k

)
= −

(
F1,k, G1,k, H1,k, C1,k, D1,k

)
.

There is no input signal uk and the system and measurement noises, wk and vk, are mutually
independent zero-mean white Gaussian signals with variances Qk = 1 and Rk = 1. The
initial state is x0 =

[
2 1

]T
.

Then, we apply the PRKF (Algorithm 3.3) with the following initialization data:

x̂0|−1 =
[
0 0

]T
, P0|−1 = I2, µ = 1, and ξ = 0.01.

Figure 5 depicts the evolution of the true target system state along with the estimation
performed by the PRKF. At each time step, the coefficients αk ∈ Λ2 (see (3.85)) are
randomly selected. The results show that, despite the presence of polytopic uncertainties in
both the target system and sensing models, the proposed PRKF can successfully estimate
the state of the system.

Figure 5 – Actual (solid lines) and estimated (dashed lines) target system state obtained
with the proposed PRKF (Algorithm 3.3).

0 10 20 30 40 50 60 70 80 90 100
−20

−10

0

10

20

x
1,

k

0 10 20 30 40 50 60 70 80 90 100
−20

−10

0

10

20

Time Step k

x
2,

k

We further evaluate the proposed PRKF by comparing its performance with some
other existing polytopic robust filtering strategies. Namely, the robust H∞ filters proposed
by Chang, Park and Tang (2015), Gershon and Shaked (2015), Morais et al. (2017), and
Gershon and Shaked (2020), as well as the H2 filter from Gershon and Shaked (2020). We
also consider the Nominal Kalman filter (Algorithm 3.1) as a baseline. Like the proposed
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PRKF, all of the robust filters in consideration also assume polytopic uncertainties in
all parameter matrices. However, unlike the PRKF, they assume time-invariant polytope
vertices.

The simulation consists of performing M = 5000 Monte Carlo experiments, each
with time horizon N = 1000. At each time step k, we compute the mean squared estimation
error (MSE), averaged over all experiments, as follows:

MSEk = 1
M

M∑
e=1
∥xk − x̂k|k,e∥2,

which, as commented in Sayed (2001) and in Section 3.2.5, is a reasonable approximation
of the estimation error variance, as it cannot be analytically computed due to the model
uncertainties.

The simulation results are presented in Figure 6 and are also summarized in
Table 2, which shows the mean MSE and standard deviation σ(MSE) of the estimation
error variances, respectively computed as

MSE =
N∑

k=0

MSEk

N + 1 and σ2(MSE) =
N∑

k=0

(MSEk −MSE)2

N + 1 .

Figure 6 – Estimation error variance curves of the polytopic robust filters.
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1 PRKF (Algorithm 3.3) 4 H∞ (GERSHON; SHAKED, 2020)

2 H∞ (CHANG; PARK; TANG, 2015) 5 H2 (GERSHON; SHAKED, 2020)

3 H∞ (MORAIS et al., 2017) 6 H∞ (GERSHON; SHAKED, 2015)
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Table 2 – Estimation performance of each polytopic robust filter.

Filter MSE (dB) σ(MSE) (dB) ∆tcomp (ms)
1 PRKF (Algorithm 3.3) 9.705 0.3154 0.8914
2 H∞ (CHANG; PARK; TANG, 2015) 18.04 0.4615 106.28
3 H∞ (MORAIS et al., 2017) 23.68 0.5307 78.591
4 H∞ (GERSHON; SHAKED, 2020) 24.47 0.7211 68.729
5 H2 (GERSHON; SHAKED, 2020) 25.57 0.6152 168.99
6 H∞ (GERSHON; SHAKED, 2015) 31.23 1.1380 66.360

KF (Algorithm 3.1) 34.17 6.8900 0.4201
Bold numbers indicate the smallest values.

Since all of the simulated robust H2 and H∞ filters have a similar structure, with
constant design matrices computed offline, we measured the time each one demands to
obtain these matrices, which result from the solution of LMI-based optimization problems.
For comparison purposes, we also measure the time needed to compute the constant parts
of the PRKF and KF, as the example system model parameter matrices are time-invariant.
The results are shown in the column ∆tcomp in Table 2. The simulation was performed on
a 2.3 GHz i7-12700H CPU with 32 GB of RAM using MATLAB R2022b, the YALMIP
toolbox (LÖFBERG, 2004), and the SeDuMi solver (STURM, 1999).

The simulation results in Figure 6 and Table 2 indicate that the proposed PRKF
outperforms all the other robust filtering strategies in terms of error variance. The
Nominal Kalman Filter, however, was unable to estimate the system state, presenting an
exponentially increasing error variance. For this reason, it is not shown in Figure 6. This
corroborates the fact that parametric uncertainties can indeed significantly degrade its
performance. The H2 and H∞ filters exhibit considerably larger error variances compared
to the PRKF. For instance, the robust H∞ filter of Chang, Park and Tang (2015) presents
a mean error variance twice as large as that of the PRKF. The H∞ filters of Morais et al.
(2017) and Gershon and Shaked (2020) show similar results, closely followed by the H2

filter of Gershon and Shaked (2020). The H∞ filter in Gershon and Shaked (2015) exhibits
the largest error variance among the estimators. In terms of standard deviation, all of the
robust filters present similar results, with the PRKF being the smallest among them.

Naturally, the Nominal Kalman Filter requires the least amount of computation
time to obtain its results, but it is closely followed by the PRKF, as Table 2 shows. On the
other hand, the other robust filtering approaches depend on the solution of optimization
problems subject to LMIs, usually one for each vertex of the polytope, which requires
more computational effort. This explains their significantly larger computation times.
Therefore, the recursive and analytic expressions of the PRKF yield a satisfactory trade-off
between estimation performance and computational cost, being thus suitable for online
applications.
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To conclude the evaluation, we further study how the two parameters of the
PRKF, namely the penalty parameter µ and the approximation parameter ξ, influence
the filter performance. Figure 7 compiles the results of a series of simulations with several
combinations of these parameters. For each combination, we compute the mean estimation
error variance MSE, as previously described. As commented in Section 3.3.3, choosing
0 < ξ < 1 generally yields better results. In addition, within this range, we found that
smaller values of µ lead to smaller mean error variances. Above this range, the filter
performance experiences some degradation.

Figure 7 – Effect of the PRKF parameters µ and ξ on the mean error variance MSE.
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Chapter 4
Robust Distributed Kalman Filtering

In this chapter, we discuss the distributed filtering problem for discrete-time linear
systems in the context of sensor networks. As in the previous chapter, we also divide it into
three sections. In the first section, we assume exact knowledge of the underlying target
system and sensor models. This simpler setting will lay the foundation to the other two
sections, in which we address the cases where the models are subject to norm-bounded and
polytopic parametric uncertainties. As we previously pointed out, these uncertainties are
usually unavoidable in practical systems, arising due to factors like unmodeled dynamics,
linearization, model reduction, and varying parameters. Moreover, they can appreciably
degrade the estimation performance if not taken into consideration.

Sensor networks are composed of nodes that have sensing, computing, and commu-
nication capabilities. In the distributed filtering context, these sensors observe a target
system and exchange information to estimate the target system state. In general, the
use of multiple sensors can significantly improve the estimation accuracy. Furthermore, it
provides more flexibility and reliability to the overall system. Many distributed filtering
strategies in the literature are based on the combination of the Kalman filter (KALMAN,
1960) with the average consensus protocol (Section 2.4). We also take advantage of this
successful combination in this chapter, overcoming one of the main shortcomings of the
Kalman filter by compensating for model parametric uncertainties with robust estimators.

In each of the upcoming sections, we obtain centralized and distributed versions
of the filters proposed in the previous chapter. First, we formulate the corresponding
centralized estimation problems, assuming access to all sensors in the network at once. These
centralized estimation problems are also built from a deterministic point of view (BRYSON;
HO, 1975), as regularized least-squares estimation problems, thoroughly discussed in
Chapter 3. Then, we employ the hybrid consensus on measurement and information
(HCMCI) approach (BATTISTELLI et al., 2015) to derive distributed implementations
of the corresponding centralized estimators. With enough consensus iterations, these
distributed filters become reasonable approximations of their centralized counterparts.
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4.1 Nominal Distributed Kalman Filtering

In this section, we extend the Nominal Kalman Filter introduced in Section 3.1 to
the multiple sensor case. As the nominal denomination suggests, we assume perfect target
system and sensing models. Before dealing with the distributed estimation problem, we first
tackle the centralized scenario, in which a fusion center has access to measurements from
all sensors in the network. Following the framework developed in Section 3.1, we formulate
the centralized estimation problem in a deterministic manner, as a regularized least-
squares estimation problem (Section 3.1.2), whose solution yields the so-called Nominal
Centralized Kalman Filter (CKF). Then, by taking advantage of the HCMCI protocol
(BATTISTELLI et al., 2015), we derive a distributed variant of the CKF, called Nominal
Distributed Kalman Consensus Filter (DKCF). We show that, for a large enough number of
consensus steps, the DKCF approaches the behavior of the CKF. Since the centralized and
distributed filters are based on the Nominal Kalman Filter, we present both as recursive
correction-prediction algorithms. The section concludes with a stability analysis of both
proposed estimators, assuming a time-invariant model.

4.1.1 Problem Formulation

4.1.1.1 System Model

Consider a sensor network featuring S sensors. The communication among them is
represented by the undirected graph G = (S,E), with node set S = {1, 2, . . . , S} and edge
set E ⊆ S× S. The neighborhood of a sensor i is denoted by Ni = {j ∈ S | (i, j) ∈ E} and
has cardinality Ni (see Section 2.3 for an introduction on graph theory).

Assumption 4.1. The undirected graph G has a fixed topology and is connected, i.e.,
there is a path between every pair of nodes.

Consider the following discrete-time state-space description of a linear target
dynamical system:

xk+1 = Fkxk + Gkuk + Hkwk, (4.1)

which is observed by the set of S sensors S = {1, 2, . . . , S}, each described by the model

yi
k = Ci

kxk + Di
kvi

k, ∀i ∈ S, (4.2)

for k = 0, 1, . . . , N , with state vector xk ∈ Rn, input vector uk ∈ Rm, and system noise
vector wk ∈ Rp. For each sensor i ∈ S, yi

k ∈ Rr is the measurement vector and vi
k ∈ Rq is

the measurement noise. Fk ∈ Rn×n, Gk ∈ Rn×m, Hk ∈ Rn×p, Ci
k ∈ Rr×n, and Di

k ∈ Rr×q

are known nominal parameter matrices.
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In a stochastic setting, we usually assume that x0, wk, and {vi
k}S

i=1 are mutually
independent zero-mean Gaussian random variables with respective variances

E
{
x0x

T
0

}
= P0 ≻ 0, E

{
wkwT

l

}
= Qkδkl ≻ 0, and E

{
vi

k(vj
l )T

}
= Ri

kδklδij ≻ 0,

where δab is the Kronecker delta function, such that δab = 1 if a = b, and δab = 0 otherwise.
Nonetheless, as we shall see, the strategy we adopt does not require that these variables
have any particular distribution.

4.1.1.2 Nominal Centralized Estimation Problem

Before addressing the distributed estimation problem, we first design a centralized
state estimator for the system (4.1)-(4.2). In a centralized setup, we assume that the
measurements obtained from all sensors in the network are available to a central estimator.
As the system state sequence {xk} is not perfectly observed, the goal is thus to leverage
all the information available up to time instant k,

Y k =
{
{yi

0}S
i=1, . . . , {yi

k}S
i=1, u0, . . . , uk

}
,

to compute a so-called filtered state estimate x̂c
k|k of xk, as well as a predicted estimate

x̂c
k+1|k of xk+1. Here, we use the superscript c to indicate the centralized entities.

We follow the procedure reported in Section 3.1.1.2 for the Nominal Kalman Filter,
where a deterministic interpretation is assumed to the stochastic estimation problem.
In this context, we introduce the variables x̂k, x̂k+1, ŵk, and {v̂i

k}S
i=1 as substitutes for

the random variables xk, xk+1, wk, and {vi
k}S

i=1 in the stochastic model (4.1)-(4.2). Then,
assuming that at each time step k, an a priori state estimate x̂c

k|k−1, a set of measurements
{yi

k}S
i=1, and the input uk are available, we formulate the constrained optimization problem

with a one-step quadratic objective function, as follows:

min
x̂k, x̂k+1,

ŵk, v̂k

Jk(x̂k, ŵk, v̂k) = ∥x̂k − x̂c
k|k−1∥2

(P c
k|k−1)−1 + ∥ŵk∥2

Q−1
k

+ ∥v̂k∥2
R−1

k

,

subject to
x̂k+1 = Fkx̂k + Gkuk + Hkŵk,

Yk = Ckx̂k + Dkv̂k,

(4.3)

for k = 0, 1, . . . , N , where we define the aggregated vectors and matrices

Yk :=


y1

k
...

yS
k

, v̂k :=


v̂1

k
...

v̂S
k

, Ck :=


C1

k
...

CS
k

, Dk :=


D1

k · · · 0
... . . . ...
0 · · · DS

k

, and Rk :=


R1

k · · · 0
... . . . ...
0 · · · RS

k

.

(4.4)
Note that, ŵk and {v̂i

k}S
i=1 are fitting errors weighted respectively by Qk ≻ 0 and Ri

k ≻ 0,
∀i ∈ S, and P c

k|k−1 ≻ 0 weights the a priori estimation error xk− x̂c
k|k−1. From a stochastic

viewpoint, matrices Qk and Ri
k represent the variances of the random variables wk and
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{vi
k}S

i=1. However, in this deterministic setting, they are rather understood as general
weighting matrices.

Problem (4.3) is the special case of a regularized least-squares estimation problem,
as described in Section 3.1.2. Its solution recursively provides the filtered and predicted
central state estimates x̂c

k|k and x̂c
k|k+1, respectively.

4.1.1.3 Nominal Distributed Estimation Problem

In the distributed estimation case, there is no central estimator, such that each
sensor in the network should estimate the state of the target system using only its own
data and information gathered from its neighbors. Hence, the goal of each sensor node
i ∈ S is to obtain the best estimates x̂i

k|k of xk and x̂i
k+1|k of xk+1, referred to as filtered

and predicted state estimates, in a distributed rather than centralized fashion.

To achieve this objective, we can leverage the distributed feature of the average
consensus algorithm (Algorithm 2.2) to approximate the results of a centralized estimator.
Similar strategies are applied, e.g., in Kamal, Farrell and Roy-Chowdhury (2013) and
Battistelli et al. (2015).

4.1.2 Nominal Centralized Kalman Filter

In this section, we present the solution to problem (4.3) and ultimately propose the
Nominal Centralized Kalman Filter (CKF). As aforementioned, problem (4.3) is a special
case of the regularized least-squares estimation problem (Section 3.1.2). Thus, consider
the following mappings between (4.3) and (3.6):

x←

 x̂k

x̂k+1

, x̄←

x̂c
k|k−1

0

, w ←

ŵk

v̂k

, P̄ ←

(P c
k|k−1)−1 0

0 0

, Q←

Q−1
k 0
0 R−1

k

,

y ←

−Gkuk

Yk

, A←

Fk −In

Ck 0

, and B ←

Hk 0
0 Dk

,

(4.5)
with the bold aggregated vectors and matrices as defined in (4.4). Note that since
(P c

k|k−1)−1 ≻ 0, we have that P̄ ⪰ 0. Also, Q−1
k ≻ 0 and R−1

k ≻ 0, such that Q ≻ 0.
Therefore, we can use the results in Corollary 3.1 and Lemma 3.2 to obtain the optimal fil-
tered and predicted central state estimates, x̂c

k|k and x̂c
k+1|k, along with their corresponding

error weighting matrices P c
k|k and P c

k+1|k, as stated in the following theorem.

Theorem 4.1. Consider the regularized least-squares centralized estimation problem (4.3)
with Hk and Dk full row rank and given initial conditions x̂c

0|−1, P c
0|−1 = P0 ≻ 0, Qk ≻ 0,

and Ri
k ≻ 0, ∀i ∈ S. For each k = 0, 1, . . . , N , its solution recursively provides the filtered

and predicted central state estimates of system (4.1)-(4.2), x̂c
k|k and x̂c

k+1|k, as well as their
respective error weighting matrices, P c

k|k and P c
k+1|k, according to the procedure described

in Algorithm 4.1.
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Algorithm 4.1 Nominal Centralized Kalman Filter (CKF)
Model: Assume the system model in (4.1)-(4.2).
Initialization: Set x̂c

0|−1, P c
0|−1 = P0 ≻ 0, Qk ≻ 0, and Ri

k ≻ 0, ∀i ∈ S.
for k = 0, 1, . . . , N do

1. Obtain measurements yi
k from all sensors i ∈ S.

2. Compute the auxiliary matrices, for all i ∈ S:

Q̂k = HkQkHT
k R̂i

k = Di
kRi

k(Di
k)T

3. Correction step:
3.1. Compute the posterior error weighting matrix:

P c
k|k =

(P c
k|k−1)−1 +

S∑
i=1

(Ci
k)T (R̂i

k)−1Ci
k

−1

3.2. Compute the filtered central state estimate:

x̂c
k|k = P c

k|k

(P c
k|k−1)−1x̂c

k|k−1 +
S∑

i=1
(Ci

k)T (R̂i
k)−1yi

k


4. Prediction step:

4.1. Update the predicted prior error weighting matrix:

P c
k+1|k = FkP c

k|kF T
k + Q̂k

4.2. Update the predicted prior central state estimate:

x̂c
k+1|k = Fkx̂c

k|k + Gkuk

end for

Proof. As previously mentioned, problem (4.3) is a regularized least-squares estimation
problem. Then, we apply the result in Corollary 3.1 to obtain the central state estimates
x̂c

k|k and x̂c
k+1|k. This is achieved by substituting the mappings (4.5) into the solution (3.14).

The algebraic details are quite similar to the steps described in the proof of Theorem 3.1
and are thus omitted here for brevity. The main difference is the presence of the summation
terms present in step 3 of Algorithm 4.1, which appear due to the aggregate vectors and
matrices defined in (4.4), which account for all the sensors in the network. Given their
block column and diagonal structures, we have that

CT
k R̂

−1
k Ck =

S∑
i=1

(Ci
k)T (R̂i

k)−1Ci
k and CT

k R̂
−1
k Yk =

S∑
i=1

(Ci
k)T (R̂i

k)−1yi
k,

where R̂k := diag
(
R̂1

k, . . . , R̂S
k

)
, with each R̂i

k as defined in step 2 of Algorithm 4.1.
Analogously, we use Lemma 3.2 to obtain the corresponding estimation error weighting
matrices P c

k|k and P c
k+1|k, as also shown in the proof of Theorem 3.1. To conclude, note

that, by requiring Hk and Dk to have full row rank, we ensure that Q̂k ≻ 0 and R̂i
k ≻ 0,

∀i ∈ S.
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4.1.3 Nominal Distributed Kalman Consensus Filter

As we mentioned earlier, the CKF is our benchmark for a distributed formulation.
In this section, we address the problem proposed in Section 4.1.1.3 and show how the
average consensus strategy can be employed to derive a distributed approximation of the
CKF presented in Algorithm 4.1.

We assume that each sensor i ∈ S is initialized with the same prior state estimate
x̂i

0|−1 and prior error weighting matrix P i
0|−1 ≻ 0. Then, by communicating with its

neighbors j ∈ Ni, each sensor i ∈ S can receive their specific data and use it to improve
its estimation performance. By adopting the hybrid consensus on measurements and
information (HCMCI) approach proposed in Battistelli et al. (2015) each sensor is able to
attain an approximation of the filtered and predicted prior central state estimates in a
distributed fashion.

The proposed Nominal Distributed Kalman Consensus Filter (DKCF) is thus
shown in Algorithm 4.2. The HCMCI strategy consists of simultaneously performing the
average consensus protocol (Algorithm 2.2) for each sensor’s so-called prior information
and innovations pairs, denoted

(
Ωi

k, ωi
k

)
and

(
δΩi

k, δωi
k

)
, respectively. This is done in

steps 4 and 5 of Algorithm 4.2. In step 5.3, the consensus weights πij should satisfy the
conditions established in Definition 2.2, such that the consensus states of each node i ∈ S
are updated with a convex combination of the corresponding states within its inclusive
neighborhood. One possible choice for these weights is the Metropolis weights (XIAO;
BOYD; LALL, 2005), shown in (2.20), and is the one we will adopt here. Then, based on
the outcome of the consensus step and on step 3 of the CKF (Algorithm 4.1), we perform
the correction stage shown in step 6 of Algorithm 4.2. Note that we introduce a corrective
scalar weight ρi

k to compensate for the scaling effect of the average consensus process
(more details on this later). Finally, the prediction stage in step 7 of Algorithm 4.2 is the
same as step 4 of the centralized filter (Algorithm 4.1).

The following theorem shows that, considering enough consensus iterations, the
proposed distributed filter approaches the same result as the centralized estimator.

Theorem 4.2. Consider the Nominal Distributed Kalman Consensus Filter in Algo-
rithm 4.2 and that Assumption 4.1 is satisfied. Assume that the consensus weights πij are
chosen according to Definition 2.2, the number of consensus iterations L→∞ in step 5,
and that ρi

k = S in step 6. Then, the filtered and predicted prior state estimates, x̂i
k|k and

x̂i
k+1|k, and their respective error weighting matrices, P i

k|k and P i
k+1|k, obtained by each

sensor i ∈ S converge to the corresponding central state estimates x̂c
k|k and x̂c

k+1|k, and
error weighting matrices P c

k|k and P c
k+1|k computed via the Nominal Centralized Kalman

Filter in Algorithm 4.1.
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Algorithm 4.2 Nominal Distributed Kalman Consensus Filter (DKCF) (each sensor i)
Model: Assume the system model in (4.1)-(4.2).
Initialization: Set x̂i

0|−1, P i
0|−1 = P0 ≻ 0, Qk ≻ 0, Ri

k ≻ 0, and L ≥ 1.
for k = 0, 1, . . . , N do

1. Obtain a measurement yi
k.

2. Compute the auxiliary matrices:

Q̂k = HkQkHT
k R̂i

k = Di
kRi

k(Di
k)T

4. Initialize the consensus states:

Ωi
k(0) = (P i

k|k−1)−1 δΩi
k(0) = (Ci

k)T (R̂i
k)−1Ci

k

ωi
k(0) = (P i

k|k−1)−1x̂i
k|k−1 δωi

k(0) = (Ci
k)T (R̂i

k)−1yi
k

5. Consensus step:
for ℓ = 0, 1, . . . , L− 1 do

5.1. Send
{
Ωi

k(ℓ), ωi
k(ℓ), δΩi

k(ℓ), δωi
k(ℓ)

}
to all neighbors j ∈ Ni.

5.2. Receive
{
Ωj

k(ℓ), ωj
k(ℓ), δΩj

k(ℓ), δωj
k(ℓ)

}
from all neighbors j ∈ Ni.

5.3. Update the consensus states:

Ωi
k(ℓ + 1) =

S∑
j=1

πij Ωj
k(ℓ) δΩi

k(ℓ + 1) =
S∑

j=1
πij δΩj

k(ℓ)

ωi
k(ℓ + 1) =

S∑
j=1

πij ωj
k(ℓ) δωi

k(ℓ + 1) =
S∑

j=1
πij δωj

k(ℓ)

end for
6. Correction step:

6.1. Compute the posterior error weighting matrix:

P i
k|k =

[
Ωi

k(L) + ρi
k δΩi

k(L)
]−1

6.2. Compute the filtered state estimate:

x̂i
k|k = P i

k|k

[
ωi

k(L) + ρi
k δωi

k(L)
]

7. Prediction step:
7.1. Update the predicted prior error weighting matrix:

P i
k+1|k = FkP i

k|kF T
k + Q̂k

7.2. Update the predicted prior state estimate:

x̂i
k+1|k = Fkx̂i

k|k + Gkuk

end for
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Proof. Given that the undirected graph G describing the sensor network is connected and
that the consensus weights πij are properly selected, for instance, the Metropolis weights
are chosen, as previously discussed, the associated weighted adjacency matrix Π has the
properties listed in Lemma 2.9. Since we assume that the number of consensus iterations
L→∞, the convergence of the average consensus algorithm is guaranteed according to
Theorem 2.2. Let us then prove that the DKCF described in Algorithm 4.2 approaches
the CKF in Algorithm 4.1 through induction.

Assume that the CKF is initialized with x̂c
0|−1 = x̂0 and P c

0|−1 = P0 ≻ 0, whereas all
sensors i ∈ S initialize a DKCF with x̂i

0|−1 = x̂0 and P i
0|−1 = P0 ≻ 0. According to (2.18),

as L→∞, after the consensus step 5 of the DKCF, the information and innovation pairs
of all sensors converge in the following manner:

Ωi
0(L)→ 1

S

S∑
j=1

P −1
0 = P −1

0 , δΩi
0(L)→ 1

S

S∑
j=1

(Cj
0)T (R̂j

0)−1Cj
0 ,

ωi
0(L)→ 1

S

S∑
j=1

P −1
0 x̂0 = P −1

0 x̂0, δωi
0(L)→ 1

S

S∑
j=1

(Cj
0)T (R̂j

0)−1yj
0.

Then, substituting these consensus outcomes into the equations in step 6 and considering
that the corrective scalar weight ρi

0 = S, we get

P i
0|0 →

P −1
0 + S

1
S

S∑
j=1

(Cj
0)T (R̂j

0)−1Cj
0

−1

=
P −1

0 +
S∑

j=1
(Cj

0)T (R̂j
0)−1Cj

0

−1

= P c
0|0,

x̂i
0|0 → P i

0|0

P −1
0 x̂0 + S

1
S

S∑
j=1

(Cj
0)T (R̂j

0)−1yj
0

 = P c
0|0

P −1
0 x̂0 +

S∑
j=1

(Cj
0)T (R̂j

0)−1yj
0

 = x̂c
0|0,

for all sensors i ∈ S. Note here the importance of the scalar weight ρi
0, which compensates

for the 1/S factor that appears in the outcome of the innovation pair
(
δΩi

0, δωi
0

)
due

to the averaging process. The convergence above thus implies that in step 7, we have
P i

1|0 → P c
1|0 and x̂i

1|0 → x̂c
1|0. Therefore, for k = 0, the results of the DKCF do converge to

those of the CKF.

Now, assume that at time step k−1, we have that P i
k−1|k−1 → P c

k−1|k−1, x̂i
k−1|k−1 →

x̂c
k−1|k−1, P i

k|k−1 → P c
k|k−1, and x̂i

k|k−1 → x̂c
k|k−1, ∀i ∈ S. Then, at time step k, we achieve

the following outcome after performing step 5 of the DKCF:

Ωi
k(L)→ 1

S

S∑
j=1

(P c
k|k−1)−1 = (P c

k|k−1)−1, δΩi
k(L)→ 1

S

S∑
j=1

(Cj
k)T (R̂j

k)−1Cj
k,

ωi
k(L)→ 1

S

S∑
j=1

(P c
k|k−1)−1x̂c

k|k−1 = (P c
k|k−1)−1x̂c

k|k−1, δωi
k(L)→ 1

S

S∑
j=1

(Cj
k)T (R̂j

k)−1yj
k.
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Thus, substituting these outcomes into the equations in step 6 of the DKCF, considering
ρi

k = S, yields

P i
k|k →

(P c
k|k−1)−1+S

1
S

S∑
j=1

(Cj
k)T (R̂j

k)−1Cj
k

−1

=
(P c

k|k−1)−1+
S∑

j=1
(Cj

k)T (R̂j
k)−1Cj

k

−1

= P c
k|k,

x̂i
k|k → P i

k|k

(P c
k|k−1)−1x̂c

k|k−1 + S
1
S

S∑
j=1

(Cj
k)T (R̂j

k)−1yj
k

 =

P c
k|k

(P c
k|k−1)−1x̂c

k|k−1 +
S∑

j=1
(Cj

k)T (R̂j
k)−1yj

k

 = x̂c
k|k,

for all sensors i ∈ S. Plugging the results above into the equations in step 7 of the DKCF
gives us that P i

k+1|k → P c
k+1|k and x̂i

k+1|k → x̂c
k+1|k. Hence, given the aforementioned

conditions, by induction, we have that for k = 0, 1, . . . , N , the DKCF in Algorithm 4.2
converges to the CKF in Algorithm 4.1.

The result in Theorem 4.2 shows how powerful the average consensus protocol is
when applied to the context of distributed estimation over sensor networks. However, it is
a theoretical outcome since, in practice, only a finite number of consensus iterations L is
possible. Nevertheless, for a sufficiently large L, the performance of the distributed and
centralized approaches can still be quite similar.

Remark 4.1. In step 6 of Algorithm 4.2, we multiply the consensus outcome of the
innovation pair

(
δΩi

k(L), δωi
k(L)

)
by a corrective scalar weight ρi

k. The reason for this is to
avoid the underweighting of the innovation pair due to scaling from the average consensus
procedure. This actually turns Algorithm 4.2 into a family of distributed filters, depending
on the choice of this weight.

Remark 4.2. As Theorem 4.2 states, to correctly approximate the centralized estimator,
ideally one should have ρi

k = S. However, the total number of sensors S is usually not
available to each sensor in the network. Nonetheless, according to Garin and Schenato
(2010), we can also use average consensus to compute S in a distributed fashion, as follows.
Initialize the consensus state of the sensors as α1(0) = 1 and αi(0) = 0, i = 2, . . . , S.
Each sensor then performs Algorithm 2.2, such that αi(L)→ 1/S. Therefore, we can use
ρi

k = 1/αi(L), if αi(L) > 0, or ρi
k = 1 otherwise. Note that this consensus procedure can be

performed along with steps 4 and 5 in Algorithm 4.2.

4.1.4 Stability Analysis

This section discusses the stability properties of both the proposed Nominal Cen-
tralized Kalman Filter and the Nominal Distributed Kalman Consensus Filter. To this
end, we examine the steady-state behavior of Algorithm 4.1 and Algorithm 4.2 when the
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target system and sensing model parameters are constant and there is no input uk. Thus,
for k ≥ 0, equations (4.1)-(4.2) take the form

xk+1 = Fxk + Hwk,

yi
k = Cixk + Divi

k, ∀i ∈ S.
(4.6)

Based on the strategy adopted in Kamal, Farrell and Roy-Chowdhury (2013), we
conduct our analysis under the assumptions described in Theorem 4.2. This way, we can
assume that the DKCF converges to the CKF. This, in turn, allows us to extend the
stability properties of the centralized filter to its distributed counterpart.

Therefore, let us first study the stability of the CKF described in Algorithm 4.1.
Consider the time-invariant system model (4.6). Thus, the CKF equations in steps 3 and
4 of Algorithm 4.1 become:

P c
k|k =

[
(P c

k|k−1)−1 + CT R̂
−1
C
]−1

, (4.7)

x̂c
k|k = P c

k|k

[
(P c

k|k−1)−1x̂c
k|k−1 + CT R̂

−1
Yk

]
, (4.8)

P c
k+1|k = FP c

k|kF T + Q̂, (4.9)

x̂c
k+1|k = Fx̂c

k|k, (4.10)

where

Yk =


y1

k
...

yS
k

 , C =


C1

...
CS

 , R̂ =


R̂1 · · · 0
... . . . ...
0 · · · R̂S

 , R̂i = DiRi(Di)T , and Q̂ = HQHT .

Then, we expand expression (4.7) using the matrix inversion lemma (Lemma A.1), as
follows:

P c
k|k = P c

k|k−1 − P c
k|k−1C

T
(
R̂ + CP c

k|k−1C
T
)−1

CP c
k|k−1. (4.11)

Combining (4.11) with (4.8) and substituting in (4.10) yields the steady-state predicted
state estimate

x̂c
k+1|k = F̃kx̂c

k|k−1 + F̃kP c
k|k−1C

T R̂
−1
Yk, (4.12)

in which
F̃k = F

(
In − P c

k|k−1C
T
(
R̂ + CP c

k|k−1C
T
)−1

C
)

is the centralized filter closed-loop matrix. In addition, substituting P c
k|k from (4.11) into

(4.9), we obtain the expression for the predicted prior error weighting matrix:

P c
k+1|k = F

(
P c

k|k−1 − P c
k|k−1C

T
(
R̂ + CP c

k|k−1C
T
)−1

CP c
k|k−1

)
F T + Q̂. (4.13)
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Theorem 4.3. Consider the linear system model (4.6) and the corresponding centralized
filter (4.12)-(4.13). Assume that {F,C} is detectable and {F, Q̂1/2} is controllable. Then,
for any initial condition P c

0|−1 ≻ 0, P c
k+1|k converges to the unique stabilizing solution

P c ≻ 0 of the algebraic Riccati equation

P c = F
(
P c − P cCT

(
R̂ + CP cCT

)−1
CP c

)
F T + Q̂. (4.14)

The solution P c is stabilizing in the sense that the steady-state filter closed-loop matrix

F̃ = F
(
In − P cCT

(
R̂ + CP cCT

)−1
C
)

(4.15)

is Schur stable.

Proof. From Kailath, Sayed and Hassibi (2000b), detectability of {F,C} and controllability
of {F, Q̂1/2} ensure the convergence of P c

k+1|k in (4.13) to the unique stabilizing positive
definite solution P c of the algebraic Riccati equation (4.14) that stabilizes (4.15), which is
the centralized filter steady-state closed-loop matrix.

Corollary 4.1. Given that the assumptions in Theorem 4.2 hold, the DKCF in Algo-
rithm 4.2 converges to the CKF in Algorithm 4.1 and thus shares its stability properties,
according to Theorem 4.3.

4.2 Robust Distributed Kalman Filtering for
Systems with Norm-Bounded Uncertainties

In this section, we present robust versions of the nominal centralized and distributed
Kalman filters developed in Section 4.1. We specifically address the case in which both
the underlying target system and sensing models are subject to norm-bounded parametric
uncertainties.

Based on the procedure reported in Section 4.1, we start by dealing with the
scenario in which measurements from all sensors in the network are available to a central
estimator. This centralized estimation problem is formulated as a regularized least-squares
estimation problem with norm-bounded uncertainties (Section 3.2.2) and its solution
provides the Robust Centralized Kalman Filter (RCKF). Then, similar to the nominal case
in the previous section, we leverage the HCMCI protocol (BATTISTELLI et al., 2015) to
implement the RCKF in a distributed fashion, leading to the Robust Distributed Kalman
Consensus Filter (RDKCF), which approaches the RCKF if enough consensus iterations are
carried out. Both the RCKF and RDKCF are presented as recursive correction-prediction
algorithms, which resemble the single-sensor Robust Kalman Filter (Algorithm 3.2).
Furthermore, we evaluate the stability properties of both estimators and conclude the
section with an illustrative example.
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4.2.1 Problem Formulation

4.2.1.1 System Model

Consider a sensor network composed of S sensors. The communication among them
is represented by the undirected graph G = (S,E), with node set S = {1, 2, . . . , S} and
edge set E ⊆ S× S. The neighborhood of a sensor i is denoted by Ni = {j ∈ S | (i, j) ∈ E}
and has cardinality Ni (see Section 2.3 for an introduction on graph theory).

Assumption 4.2. The undirected graph G has a fixed topology and is connected, i.e.,
there is a path between every pair of nodes.

Consider the following discrete-time state-space description of a linear target system
subject to uncertainties:

xk+1 = (Fk + δFk)xk + (Gk + δGk)uk + (Hk + δHk)wk, (4.16)

which is observed by the set of S sensors S = {1, 2, . . . , S}, each described by the uncertain
model

yi
k = (Ci

k + δC i
k)xk + (Di

k + δDi
k)vi

k, ∀i ∈ S, (4.17)

for k = 0, 1, . . . , N , with state vector xk ∈ Rn, input vector uk ∈ Rm, and system noise
vector wk ∈ Rp. For each sensor i ∈ S, yi

k ∈ Rr is the measurement vector and vi
k ∈ Rq is

the measurement noise. Fk ∈ Rn×n, Gk ∈ Rn×m, Hk ∈ Rn×p, Ci
k ∈ Rr×n, and Di

k ∈ Rr×q

are known nominal parameter matrices, whereas δFk ∈ Rn×n, δGk ∈ Rn×m, δHk ∈ Rn×p,
δC i

k ∈ Rr×n, and δDi
k ∈ Rr×q are norm-bounded parametric uncertainties modeled as[

δFk δGk δHk

]
= M1,k∆1,k

[
EFk

EGk
EHk

]
, ∥∆1,k∥ ≤ 1,[

δCi
k δDi

k

]
= M i

2,k∆i
2,k

[
Ei

Ck
Ei

Dk

]
, ∥∆i

2,k∥ ≤ 1,
(4.18)

where M1,k ∈ Rn×s1 and M i
2,k ∈ Rr×s2 are known nonzero matrices, EFk

∈ Rt1×n, EGk
∈

Rt1×m, EHk
∈ Rt1×p, Ei

Ck
∈ Rt2×n and Ei

Dk
∈ Rt2×q are also known, and ∆1,k ∈ Rs1×t1 and

∆i
2,k ∈ Rs2×t2 are arbitrary contraction matrices. Perturbations of this form are useful

when modeling tolerance specifications on the physical parameters of a system and are
common in robust filtering and control (SAYED, 2001).

In a stochastic setting, it is usually assumed that x0, wk, and {vi
k}S

i=1 are mutually
independent zero-mean Gaussian random variables with respective variances

E
{
x0x

T
0

}
= P0 ≻ 0, E

{
wkwT

l

}
= Qkδkl ≻ 0, and E

{
vi

k(vj
l )T

}
= Ri

kδklδij ≻ 0,

where δab is the Kronecker delta function, such that δab = 1 if a = b, and δab = 0
otherwise. However, we adopt a strategy which does not require that these variables have
any particular distribution.



4.2 Robust Distributed Kalman Filtering for Systems with Norm-Bounded Uncertainties 119

4.2.1.2 Robust Centralized Estimation Problem

As aforementioned, prior to tackling the robust distributed estimation problem,
we first derive a centralized estimator for system (4.16)-(4.17). In the centralized case, we
assume that a central estimator has access to all measurements obtained by the sensors in
the network. Since the target system state sequence {xk} is not perfectly observed, nor is
readily available, the goal is thus to use all the information available up to time instant k,
Y k =

{
{yi

0}S
i=1, . . . , {yi

k}S
i=1, u0, . . . , uk

}
, to compute a so-called filtered robust central

state estimate x̂c
k|k of xk, as well as a predicted robust central estimate x̂c

k+1|k of xk+1,
despite the presence of the model uncertainties δk :=

{
δFk, δGk, δHk, {δCi

k}S
i=1, {δDi

k}S
i=1

}
.

Note that we use the superscript c to indicate the centralized entities.

We build upon the procedure described in Section 4.1.1.2 for the Nominal Central-
ized Kalman Filter, in which we adopt a deterministic interpretation of the centralized
estimation problem (BRYSON; HO, 1975). Moreover, we introduce the variables x̂k, x̂k+1,
ŵk, and {v̂i

k}S
i=1 as substitutes for the random variables xk, xk+1, wk, and {vi

k}S
i=1 in the

stochastic model (4.16)-(4.17). Then, based on Sayed (2001) and Ishihara, Terra and Cerri
(2015), assuming that at each time step k, an a priori state estimate x̂c

k|k−1, a set of
measurements {yi

k}S
i=1, and the input uk are available, we formulate a min-max constrained

optimization problem in which a one-step quadratic objective function should be minimized
under the maximum influence of the parametric uncertainties δk defined in (4.18), i.e.,

min
x̂k, x̂k+1,

ŵk, v̂k

max
δk

Jk(x̂k, ŵk, v̂k) = ∥x̂k − x̂c
k|k−1∥2

(P c
k|k−1)−1 + ∥ŵk∥2

Q−1
k

+ ∥v̂k∥2
R−1

k

,

subject to
x̂k+1 = (Fk + δFk)x̂k + (Gk + δGk)uk + (Hk + δHk)ŵk,

Yk = (Ck + δCk)x̂k + (Dk + δDk)v̂k,

(4.19)

for k = 0, 1, . . . , N , in which we define the aggregated vectors and matrices

Yk :=


y1

k
...

yS
k

 , v̂k :=


v̂1

k
...

v̂S
k

 , Ck :=


C1

k
...

CS
k

 , Dk :=


D1

k · · · 0
... . . . ...
0 · · · DS

k

 , Rk :=


R1

k · · · 0
... . . . ...
0 · · · RS

k

 ,

(4.20)
and, based on (4.18), we also define the aggregated sensing uncertainty model[

δCk δDk

]
= M2,k∆2,k

[
ECk

EDk

]
, ∥∆2,k∥ ≤ 1, (4.21)

where

δCk :=


δC1

k
...

δCS
k

 , δDk :=


δD1

k · · · 0
... . . . ...
0 · · · δDS

k

 , M2,k :=


M1

2,k · · · 0
... . . . ...
0 · · · MS

2,k

 ,

∆2,k :=


∆1

2,k · · · 0
... . . . ...
0 · · · ∆S

2,k

 , ECk
:=


E1

Ck...
ES

Ck

 , and EDk
:=


E1

Dk
· · · 0

... . . . ...
0 · · · ES

Dk

 .

(4.22)
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Notice that in (4.19), ŵk and {v̂i
k}S

i=1 are fitting errors weighted respectively by
Qk ≻ 0 and Ri

k ≻ 0, ∀i ∈ S, whereas P c
k|k−1 ≻ 0 weights the a priori estimation error

xk − x̂c
k|k−1. In a stochastic interpretation, matrices Qk and Ri

k represent the variances of
the random variables wk and {vi

k}S
i=1. However, in this deterministic framework, they are

treated as general weighting matrices.

Problem (4.19) is a special case of a regularized least-squares estimation problem
with norm-bounded uncertainties, as discussed in Section 3.2.2. Its solution recursively
yields the filtered and predicted robust central state estimates x̂c

k|k and x̂c
k|k+1, respectively.

4.2.1.3 Robust Distributed Estimation Problem

Regarding the robust distributed estimation case, there is no central estimator,
such that the goal of each sensor in the network is to estimate the state of the target
system using only its own information and data gathered from its neighbors. Hence, each
sensor node i ∈ S should obtain the best estimates x̂i

k|k of xk and x̂i
k+1|k of xk+1, referred

to as filtered and predicted robust state estimates, in a distributed rather than centralized
fashion.

To attain this goal, we leverage the distributed characteristic of the average
consensus algorithm (Algorithm 2.2) to approximate the results of a centralized estimator,
as we did in Section 4.1. This strategy has also been applied, for instance, in Kamal,
Farrell and Roy-Chowdhury (2013) and Battistelli et al. (2015).

4.2.2 Robust Centralized Kalman Filter

This section presents the Robust Centralized Kalman Filter (RCKF), obtained
as the outcome of the solution to problem (4.19). As previously mentioned, problem
(4.19) has the form of a regularized least-squares estimation problem with norm-bounded
uncertainties, as discussed in Section 3.2.2. Therefore, consider the following mappings
between (4.19) and (3.34):

x←

 x̂k

x̂k+1

 , x̄←

x̂k|k−1

0

 , w ←

ŵk

v̂k

 , P̄ ←

(P c
k|k−1)−1 0

0 0

 , Q←

Q−1
k 0
0 R−1

k

 ,

y ←

−Gkuk

Yk

 , A←

Fk −In

Ck 0

 , B ←

Hk 0
0 Dk

 ,

δy ←

−δGkuk

0

 , δA←

δFk 0
δCk 0

 , and δB ←

δHk 0
0 δDk

 ,

(4.23)
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with the bold aggregated vectors and matrices as defined in (4.20). Moreover, consider the
following mappings between the uncertainty models (4.18)-(4.21) and (3.33):

M ←

M1,k 0
0 M2,k

 , ∆←
∆1,k 0

0 ∆2,k

 ,

Ey ←

−EGk
uk

0

 , EA ←

EFk
0

ECk
0

 , and EB ←

EHk
0

0 EDk

 ,

(4.24)

with the uncertainty aggregated vectors and matrices as defined in (4.22).

Since (P c
k|k−1)−1 ≻ 0, we have that P̄ ⪰ 0. In addition, Q−1

k ≻ 0 and R−1
k ≻ 0, such

that Q ≻ 0. Therefore, by using the results in Lemma 3.3 and in equation (3.58), we can
obtain the filtered and predicted robust central state estimates, x̂c

k|k and x̂c
k+1|k, along with

their respective error weighting matrices P c
k|k and P c

k+1|k, as the following theorem states.

Theorem 4.4. Consider the regularized least-squares centralized estimation problem with
norm-bounded uncertainties (4.19) with given initial conditions x̂c

0|−1, P c
0|−1 = P0 ≻ 0,

Qk ≻ 0, Ri
k ≻ 0, ∀i ∈ S, and fixed parameters µ > 0 and ξ > 0. For each k = 0, 1, . . . , N ,

its solution recursively provides the filtered and predicted robust central state estimates
of system (4.16)-(4.17), x̂c

k|k and x̂c
k+1|k, along with their corresponding error weighting

matrices, P c
k|k and P c

k+1|k, according to the procedure outlined in Algorithm 4.3.

Proof. Problem (4.19) is a regularized least-squares estimation problem with norm-bounded
uncertainties, hence one can apply the result in Lemma 3.3 to obtain the robust central
state estimates x̂c

k|k and x̂c
k+1|k. Then, we substitute the mappings (4.23) and (4.24) into

(3.40) to compute the modified system and sensing model matrices and then into the
solution (3.39). The algebraic procedure closely follows the one described in the proof of
Theorem 3.3 and we thus omit it for brevity. The main difference is in the summation
terms present in step 4 of Algorithm 4.3, which appear due to the aggregate vectors and
matrices defined in (4.20) and (4.22), which account for all the sensors in the network.
Given their block column and diagonal structures, we have that

Ĉ
T

k R̂
−1
k Ĉk + ET

Ck
R̄

−1
k ECk

=
S∑

i=1

[
(Ĉi

k)T (R̂i
k)−1Ĉi

k + (Ei
Ck

)T (R̄i
k)−1Ei

Ck

]
,

Ĉ
T

k R̂
−1
k Yk =

S∑
i=1

(Ĉi
k)T (R̂i

k)−1yi
k,

where Ĉk := col
(
Ĉ1

k , . . . , ĈS
k

)
, ECk

:= col
(
E1

Ck
, . . . , ES

Ck

)
, R̂k := diag

(
R̂1

k, . . . , R̂S
k

)
, and

R̄k := diag
(
R̄1

k, . . . , R̄S
k

)
, with each Ĉi

k, R̂i
k, and R̄i

k as defined in step 3 of Algorithm 4.3.
Similarly, we use (3.58) to obtain the corresponding estimation error weighting matrices
P c

k|k and P c
k+1|k, as also shown in the proof of Theorem 3.3. Moreover, note that to compute

the λ̂k parameter, we consider the practical approximation discussed in Remark 3.2.
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Algorithm 4.3 Robust Centralized Kalman Filter (RCKF)
Model: Assume the uncertain system model in (4.16)-(4.17).
Initialization: Set x̂c

0|−1, P c
0|−1 = P0 ≻ 0, Qk ≻ 0, Ri

k ≻ 0, ∀i ∈ S, µ > 0, and ξ > 0.
for k = 0, 1, . . . , N do

1. Obtain measurements yi
k from all sensors i ∈ S.

2. Compute λ̂k using the approximation:

λ̂k = (1 + ξ) µ
∥∥∥diag

(
MT

1,kM1,k, MT
2,kM2,k

)∥∥∥
3. Compute the modified system and sensing model matrices, for all i ∈ S:

Φ1,k = µ−1In − λ̂−1
k M1,kMT

1,k Q̂k = Φ1,k + Hk

(
Q−1

k + λ̂kET
Hk

EHk

)−1
HT

k

Φi
2,k = µ−1Ir − λ̂−1

k M i
2,k(M i

2,k)T R̂i
k = Φi

2,k + Di
k

[
(Ri

k)−1 + λ̂k(Ei
Dk

)T Ei
Dk

]−1
(Di

k)T

Q̄k = λ̂−1
k It1 + EHk

QkET
Hk

R̄i
k = λ̂−1

k It2 + Ei
Dk

Ri
k(Ei

Dk
)T

F̂k = Fk −HkQkET
Hk

Q̄−1
k EFk

Ĉi
k = Ci

k −Di
kRi

k(Ei
Dk

)T (R̄i
k)−1Ei

Ck

Ĝk = Gk −HkQkET
Hk

Q̄−1
k EGk

4. Correction step:
4.1. Compute the posterior error weighting matrix:

P c
k|k =

(P c
k|k−1)−1 +

S∑
i=1

[
(Ĉi

k)T (R̂i
k)−1Ĉi

k + (Ei
Ck

)T (R̄i
k)−1Ei

Ck

]
+ ET

Fk
Q̄−1

k EFk

−1

4.2. Compute the filtered robust central state estimate:

x̂c
k|k = P c

k|k

(P c
k|k−1)−1x̂c

k|k−1 +
S∑

i=1
(Ĉi

k)T (R̂i
k)−1yi

k − ET
Fk

Q̄−1
k EGk

uk


5. Prediction step:

5.1. Update the predicted prior error weighting matrix:

P c
k+1|k = F̂kP c

k|kF̂ T
k + Q̂k

5.2. Update the predicted prior robust central state estimate:

x̂c
k+1|k = F̂kx̂c

k|k + Ĝkuk

end for

Remark 4.3. Analogous to the RKF in Algorithm 3.2, the RCKF proposed in Algorithm 4.3
also depends on the penalty parameter µ and the approximation parameter ξ. As also
discussed in Section 3.2.3, one can tune µ based on the severity of uncertainties. For
significant perturbations, smaller values of µ are recommended, otherwise, it can be increased
for mild uncertainties. Regarding the ξ parameter, choosing values within the (0, 1) interval
generally yields satisfactory results.
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4.2.3 Robust Distributed Kalman Consensus Filter

In this section, we address the distributed estimation problem described in Sec-
tion 4.2.1.3. As established earlier, we use the average consensus algorithm (Section 2.4) to
derive a fully distributed approximation of the Robust Centralized Kalman Filter presented
in Algorithm 4.3, which serves as our benchmark.

We assume that each sensor i ∈ S is initialized with the same prior state estimate
x̂i

0|−1 and prior error weighting matrix P i
0|−1 ≻ 0. By adopting the hybrid consensus

on measurements and information (HCMCI) approach (BATTISTELLI et al., 2015),
each sensor i ∈ S exchanges information with its neighbors j ∈ Ni to ultimately obtain
approximations of the filtered and predicted prior robust central state estimates in a
distributed fashion.

In order to approximate the RCKF in Algorithm 4.3, note that the sensors first
need to compute the λ̂k parameter, which depends on M2,k, composed of all matrices
M i

2,k, ∀i ∈ S. However, each sensor only has access to its own matrix and the matrices
of its neighbors. Nevertheless, given the block diagonal structure of M2,k, one can apply
a variant of the average consensus algorithm to compute λ̂k in a distributed manner, as
shown in Algorithm 4.4.

Algorithm 4.4 Distributed computation of λ̂k (each node i ∈ S)
Initialization: Set the initial consensus state

λ̂i
k(0) = (1 + ξ) µ

∥∥∥diag
(
MT

1,kM1,k, (M i
2,k)T M i

2,k

)∥∥∥
for ℓ = 0, 1, . . . , L− 1 do

1. Send the current λ̂i
k(ℓ) to all neighbors j ∈ Ni.

2. Receive the current λ̂j
k(ℓ) from all neighbors j ∈ Ni.

3. Update the consensus state

λ̂i
k(ℓ + 1) = max

{
λ̂i

k(ℓ), λ̂j
k(ℓ)

}
, ∀j ∈ Ni

end for
Output: λ̂i

k(L) = λ̂k

Algorithm 4.5 displays the proposed Robust Distributed Kalman Consensus Filter
(RDKCF). Following the HCMCI protocol, in steps 4 and 5, we simultaneously perform
the average consensus algorithm (Algorithm 2.2) for each sensor’s prior information and
innovation pairs, denoted

(
Ωi

k, ωi
k

)
and

(
δΩi

k, δωi
k

)
, respectively. Notice that, in step 5.3,

the consensus weights πij should satisfy the conditions listed in Definition 2.2, such that the
consensus states of each node i are updated with a convex combination of the corresponding
states within its inclusive neighborhood. The Metropolis weights (XIAO; BOYD; LALL,
2005), shown in (2.20), satisfy these conditions and are thus adopted here. Considering
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Algorithm 4.5 Robust Distributed Kalman Consensus Filter (RDKCF) (each sensor i)
Model: Assume the uncertain system model in (4.16)-(4.17).
Initialization: Set x̂i

0|−1, P i
0|−1 = P0 ≻ 0, Qk ≻ 0, Ri

k ≻ 0, µ > 0, ξ > 0, and L ≥ 1.
for k = 0, 1, . . . , N do

1. Obtain a measurement yi
k.

2. Compute λ̂k using Algorithm 4.4.
3. Compute the modified system and sensing model matrices:

Φ1,k = µ−1In − λ̂−1
k M1,kMT

1,k Q̂k = Φ1,k + Hk

(
Q−1

k + λ̂kET
Hk

EHk

)−1
HT

k

Φi
2,k = µ−1Ir − λ̂−1

k M i
2,k(M i

2,k)T R̂i
k = Φi

2,k + Di
k

[
(Ri

k)−1 + λ̂k(Ei
Dk

)T Ei
Dk

]−1
(Di

k)T

Q̄k = λ̂−1
k It1 + EHk

QkET
Hk

R̄i
k = λ̂−1

k It2 + Ei
Dk

Ri
k(Ei

Dk
)T

F̂k = Fk −HkQkET
Hk

Q̄−1
k EFk

Ĉi
k = Ci

k −Di
kRi

k(Ei
Dk

)T (R̄i
k)−1Ei

Ck

Ĝk = Gk −HkQkET
Hk

Q̄−1
k EGk

4. Initialize the consensus states:

Ωi
k(0) = (P i

k|k−1)−1 δΩi
k(0) = (Ĉi

k)T (R̂i
k)−1Ĉi

k + (Ei
Ck

)T (R̄i
k)−1Ei

Ck

ωi
k(0) = (P i

k|k−1)−1x̂i
k|k−1 δωi

k(0) = (Ĉi
k)T (R̂i

k)−1yi
k

5. Consensus step:
for ℓ = 0, 1, . . . , L− 1 do

5.1. Send
{
Ωi

k(ℓ), ωi
k(ℓ), δΩi

k(ℓ), δωi
k(ℓ)

}
to all neighbors j ∈ Ni.

5.2. Receive
{
Ωj

k(ℓ), ωj
k(ℓ), δΩj

k(ℓ), δωj
k(ℓ)

}
from all neighbors j ∈ Ni.

5.3. Update the consensus states:

Ωi
k(ℓ + 1) =

S∑
j=1

πij Ωj
k(ℓ) δΩi

k(ℓ + 1) =
S∑

j=1
πij δΩj

k(ℓ)

ωi
k(ℓ + 1) =

S∑
j=1

πij ωj
k(ℓ) δωi

k(ℓ + 1) =
S∑

j=1
πij δωj

k(ℓ)

end for
6. Correction step:

6.1. Compute the posterior error weighting matrix:

P i
k|k =

[
Ωi

k(L) + ρi
k δΩi

k(L) + ET
Fk

Q̄−1
k EFk

]−1

6.2. Compute the filtered state estimate:

x̂i
k|k = P i

k|k

[
ωi

k(L) + ρi
k δωi

k(L)− ET
Fk

Q̄−1
k EGk

uk

]
7. Prediction step:

7.1. Update the predicted prior error weighting matrix:

P i
k+1|k = F̂kP i

k|kF̂ T
k + Q̂k

7.2. Update the predicted prior state estimate:

x̂i
k+1|k = F̂kx̂i

k|k + Ĝkuk

end for
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the outcome of the consensus step and based on step 4 of the RCKF (Algorithm 4.3),
we perform the correction stage outlined in step 6 of Algorithm 4.5. Note that, as in the
nominal distributed case (Algorithm 4.2), we also introduce the corrective scalar weight
ρi

k to compensate for the possible underweighting of the innovation pair
(
δΩi

k, δωi
k

)
due

to the average consensus process. Then, we conclude the algorithm with the prediction
stage in step 7, which corresponds to step 4 of the RCKF (Algorithm 4.3).

The next theorem shows that for a large number of consensus iterations, the
proposed robust distributed filter attains the same result as its centralized counterpart.

Theorem 4.5. Consider the Robust Distributed Kalman Consensus Filter in Algorithm 4.5
and that Assumption 4.1 is satisfied. Assume that the consensus weights πij are chosen
according to Definition 2.2, the number of consensus iterations L→∞ in step 5, and that
ρi

k = S in step 6. Then, the filtered and predicted prior robust state estimates, x̂i
k|k and

x̂i
k+1|k, and their respective error weighting matrices, P i

k|k and P i
k+1|k, obtained by each

sensor i ∈ S converge to the corresponding robust central state estimates x̂c
k|k and x̂c

k+1|k,
and error weighting matrices P c

k|k and P c
k+1|k computed via the Robust Centralized Kalman

Filter in Algorithm 4.3.

Proof. Since the undirected graph G describing the sensor network is connected and the
consensus weights πij are properly selected, the associated weighted adjacency matrix Π
has the properties listed in Lemma 2.9. Assuming that the number of consensus iterations
L→∞, the convergence of the average consensus algorithm is guaranteed (Theorem 2.2).

Through induction, we now prove that the RDKCF detailed in Algorithm 4.5
converges to the RCKF in Algorithm 4.3. At time step k = 0, assume that the RCKF
is initialized with x̂c

0|−1 = x̂0 and P c
0|−1 = P0 ≻ 0, whereas all sensors i ∈ S initialize the

RDKCF with x̂i
0|−1 = x̂0 and P i

0|−1 = P0 ≻ 0. Then, Theorem 2.2 indicates that after the
consensus step 5 of the RDKCF, the information and innovation pairs of all the sensors
converge in the following way:

Ωi
0(L)→ 1

S

S∑
j=1

P −1
0 = P −1

0 , δΩi
0(L)→ 1

S

S∑
j=1

[
(Ĉj

0)T (R̂j
0)−1Ĉj

0 + (Ej
C0)T (R̄j

0)−1Ej
C0

]
,

ωi
0(L)→ 1

S

S∑
j=1

P −1
0 x̂0 = P −1

0 x̂0, δωi
0(L)→ 1

S

S∑
j=1

(Ĉj
0)T (R̂j

0)−1yj
0.

Then, substituting these consensus outcomes into the equations in step 6 and considering
that the corrective scalar weight ρi

0 = S, we obtain

P i
0|0 →

P −1
0 + S

1
S

S∑
j=1

[
(Ĉj

0)T (R̂j
0)−1Ĉj

0 + (Ej
C0)T (R̄j

0)−1Ej
C0

]
+ ET

F0Q̄−1
0 EF0

−1

=

P −1
0 +

S∑
j=1

[
(Ĉj

0)T (R̂j
0)−1Ĉj

0 + (Ej
C0)T (R̄j

0)−1Ej
C0

]
+ ET

F0Q̄−1
0 EF0

−1

= P c
0|0,
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x̂i
0|0 → P i

0|0

P −1
0 x̂0 + S

1
S

S∑
j=1

(Ĉj
0)T (R̂j

0)−1yj
0 − ET

F0R̄−1
0 EG0u0

 =

P c
0|0

P −1
0 x̂0 +

S∑
j=1

(Ĉj
0)T (R̂j

0)−1yj
0 − ET

F0Q̄−1
0 EG0u0

 = x̂c
0|0,

for all sensors i ∈ S. Notice how the choice of scalar weight ρi
0 = S correctly compensates

for the 1/S factor that appears in the outcome of the innovation pair
(
δΩi

0, δωi
0

)
due

to the averaging process. The convergence above implies that in step 7, P i
1|0 → P c

1|0 and
x̂i

1|0 → x̂c
1|0. Hence, for k = 0, we have that the RDKCF indeed converges to the RCKF.

Now, let us assume that at time step k−1, one has P i
k−1|k−1 → P c

k−1|k−1, x̂i
k−1|k−1 →

x̂c
k−1|k−1, P i

k|k−1 → P c
k|k−1, and x̂i

k|k−1 → x̂c
k|k−1, ∀i ∈ S. Then, based on Theorem 2.2, at

time step k, we achieve the following consensus outcome after performing step 5 of the
RDKCF:

Ωi
k(L)→ 1

S

S∑
j=1

(P c
k|k−1)−1 = (P c

k|k−1)−1,

δΩi
k(L)→ 1

S

S∑
j=1

[
(Ĉj

k)T (R̂j
k)−1Ĉj

k + (Ej
Ck

)T (R̄j
k)−1Ej

Ck

]
,

ωi
k(L)→ 1

S

S∑
j=1

(P c
k|k−1)−1x̂c

k|k−1 = (P c
k|k−1)−1x̂c

k|k−1,

δωi
k(L)→ 1

S

S∑
j=1

(Ĉj
k)T (R̂j

k)−1yj
k.

Thus, substituting these outcomes back into the equations in step 6 of the RDKCF,
considering ρi

k = S, yields

P i
k|k →

(P c
k|k−1)−1 + S

1
S

S∑
j=1

[
(Ĉj

k)T (R̂j
k)−1Ĉj

k + (Ej
Ck

)T (R̄j
k)−1Ej

Ck

]
+ ET

Fk
Q̄−1

k EFk

−1

=

(P c
k|k−1)−1 +

S∑
j=1

[
(Ĉj

k)T (R̂j
k)−1Ĉj

k + (Ej
Ck

)T (R̄j
k)−1Ej

Ck

]
+ ET

Fk
Q̄−1

k EFk

−1

= P c
k|k,

x̂i
k|k → P i

k|k

(P c
k|k−1)−1x̂c

k|k−1 + S
1
S

S∑
j=1

(Ĉj
k)T (R̂j

k)−1yj
k − ET

Fk
Q̄−1

k EGk
uk

 =

P c
k|k

(P c
k|k−1)−1x̂c

k|k−1 +
S∑

j=1
(Ĉj

k)T (R̂j
k)−1yj

k − ET
Fk

Q̄−1
k EGk

uk

 = x̂c
k|k,

for all sensors i ∈ S. Finally, plugging the results above back into the equations in step 7
of the RDKCF gives us that P i

k+1|k → P c
k+1|k and x̂i

k+1|k → x̂c
k+1|k. Hence, under the

aforementioned conditions, by induction, we have that for k = 0, 1, . . . , N , the RDKCF in
Algorithm 4.5 converges to the RCKF in Algorithm 4.3.
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The robust distributed filter proposed in Algorithm 4.5 depends on the parameters
µ and ξ. Remark 4.3 presents some guidelines on how to tune them based on the level of
parametric uncertainties. As commented in the nominal distributed case, we reiterate how
the HCMCI protocol combined with the average consensus algorithm allowed us to design
a robust estimator that, despite being distributed, is able to approach the performance of
a centralized estimator. Of course, true convergence cannot be achieved in practice, as
only a finite number of consensus iterations L is possible. Nonetheless, we show with an
illustrative example that with a sufficiently large L it is still possible to closely approximate
the performance of the centralized filter using a distributed setup.

Remark 4.4. As in the Nominal Distributed Kalman Consensus Filter presented in
Algorithm 4.2, we also introduce a corrective scalar weight ρi

k in step 6 of Algorithm 4.5 to
avoid the possible underweighting of the innovation pair

(
δΩi

k(L), δωi
k(L)

)
due to scaling

from the average consensus procedure. This turns Algorithm 4.5 into a family of robust
distributed filters, depending on the choice of ρi

k. As explained in Remark 4.2, ideally, we
should have ρi

k = S to correctly approximate the centralized performance. The remark also
provides a distributed procedure to compute S in case it is not available to the sensors.

4.2.4 Stability Analysis

In this section, we discuss the stability properties of both the proposed Robust
Centralized Kalman Filter and the Robust Distributed Kalman Consensus Filter, as
well as the boundedness of their estimation error variance. To this end, we examine the
steady-state behavior of Algorithm 4.3 and Algorithm 4.5 when the target system and
sensing model parameters are constant and there is no input uk. Nonetheless, we still
assume that the contraction matrices ∆1,k and ∆i

2,k are time-varying, ∀i ∈ S. Thus, for
k ≥ 0, equations (4.16)-(4.17) take the form

xk+1 = (F + δFk)xk + (H + δHk)wk,

yi
k = (Ci + δCi

k)xk + (Di + δDi
k)vi

k, ∀i ∈ S,
(4.25)

with time-varying norm-bounded parametric uncertainties[
δFk δHk

]
= M1∆1,k

[
EF EH

]
, ∥∆1,k∥ ≤ 1,[

δCi
k δDi

k

]
= M i

2∆i
2,k

[
Ei

C Ei
D

]
, ∥∆i

2,k∥ ≤ 1, ∀i ∈ S.
(4.26)

Based on the strategy adopted in Kamal, Farrell and Roy-Chowdhury (2013) and
in Section 4.1.4, we conduct our analysis under the assumptions described in Theorem 4.5,
i.e., assuming that the RDKCF converges to the RCKF. This allows us to extend the
stability properties of the robust centralized filter to its distributed counterpart.

Let us first study the stability of the robust centralized filter presented in Al-
gorithm 4.3. Consider the time-invariant system model (4.25)-(4.26). Then, the RCKF
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equations in steps 4 and 5 of Algorithm 4.3 become:

P c
k|k =

[
(P c

k|k−1)−1 + Ĉ
T
R̂

−1
Ĉ + ET

CR̄
−1

EC + ET
F Q̄−1EF

]−1
, (4.27)

x̂c
k|k = P c

k|k

[
(P c

k|k−1)−1x̂c
k|k−1 + Ĉ

T
R̂

−1
Yk

]
, (4.28)

P c
k+1|k = F̂P c

k|kF̂ T + Q̂, (4.29)

x̂c
k+1|k = F̂ x̂c

k|k, (4.30)

where

Yk =


y1

k
...

yS
k

 , Ĉ =


Ĉ1

...
ĈS

 , EC =


E1

C
...

ES
C

 , R̂ =


R̂1 · · · 0
... . . . ...
0 · · · R̂S

 , and R̄ =


R̄1 · · · 0
... . . . ...
0 · · · R̄S

 ,

with each Ĉi, R̂i, and R̄i, ∀i ∈ S, as well as F̂ , Q̂, and Q̄ given by the corresponding
equations listed in step 3 of Algorithm 4.3, considering constant parameters. The constant
λ̂ parameter is analogously computed as in step 2. To simplify the notation, we further
define the augmented matrices

C̃ :=


Ĉ

EC

EF

 and R̃ :=


R̂ 0 0
0 R̄ 0
0 0 Q̄

 ,

such that one can rewrite P c
k|k in (4.27) in a more compact way, as

P c
k|k =

[
(P c

k|k−1)−1 + C̃
T
R̃

−1
C̃
]−1

.

Then, we apply Lemma A.1 to expand this expression and obtain

P c
k|k = P c

k|k−1 − P c
k|k−1C̃

T(
R̃ + C̃P c

k|k−1C̃
T)−1

C̃P c
k|k−1. (4.31)

Combining (4.31) with (4.28) and substituting back into (4.30) gives us the steady-state
predicted robust central state estimate

x̂c
k+1|k = F̃kx̂c

k|k−1 + F̃kP c
k|k−1Ĉ

T
R̂

−1
Yk, (4.32)

in which
F̃k = F̂

(
In − P c

k|k−1C̃
T(

R̃ + C̃P c
k|k−1C̃

T)−1
C̃
)

is the robust centralized filter closed-loop matrix. Moreover, substituting P c
k|k from (4.31)

into (4.29) yields the expression for the predicted prior error weighting matrix:

P c
k+1|k = F̂

(
P c

k|k−1 − P c
k|k−1C̃

T(
R̃ + C̃P c

k|k−1C̃
T)−1

C̃P c
k|k−1

)
F̂ T + Q̂. (4.33)



4.2 Robust Distributed Kalman Filtering for Systems with Norm-Bounded Uncertainties 129

Theorem 4.6. Consider the linear system model (4.25) with norm-bounded uncertainties
(4.25) and the corresponding robust centralized filter (4.32)-(4.33). Assume that {F̂ , C̃} is
detectable and {F̂ , Q̂1/2} is controllable. Then, for any initial condition P c

0|−1 ≻ 0, ξ > 0,
and µ > 0, P c

k+1|k converges to the unique stabilizing solution P c ≻ 0 of the algebraic
Riccati equation

P c = F̂
(
P c − P cC̃

T(
R̃ + C̃P cC̃

T)−1
C̃P c

)
F̂ T + Q̂. (4.34)

The solution P c is stabilizing in the sense that the steady-state filter closed-loop matrix

F̃ = F̂
(
In − P cC̃

T(
R̃ + C̃P cC̃

T)−1
C̃
)

(4.35)

is Schur stable.

Proof. The conditions ξ > 0 and µ > 0 imply that λ̂ > 0, ensuring that matrices F̂ , C̃, R̃,
and Q̂ are well-defined. According to Kailath, Sayed and Hassibi (2000b), detectability of
{F̂ , C̃} and controllability of {F̂ , Q̂1/2} ensure the convergence of P c

k+1|k in (4.33) to the
unique stabilizing positive definite solution P c of the algebraic Riccati equation (4.34) that
stabilizes (4.35), which is the robust centralized filter steady-state closed-loop matrix.

We now investigate the conditions for the boundedness of the estimation error
variance of the RCKF. Again, consider the uncertain linear discrete-time system model
(4.25)-(4.26). In addition, assume that wk and {vk}S

i=1 are mutually uncorrelated zero-mean
Gaussian noise processes with joint covariance matrix

Q = E


wk

vk

 [wT
k vT

k

] =
Q 0

0 R

 ≻ 0, (4.36)

in which vk = col
(
v1

k, . . . , vS
k

)
and R = diag

(
R1, . . . , RS

)
. Moreover, assume that there

is no correlation between the parametric uncertainties and the system and measurement
noises. Finally, consider the following assumptions about the uncertain system and the
robust centralized filter.

Assumption 4.3. The uncertain system (4.25)-(4.26) is quadratically stable, according to
Definition 3.1.

Assumption 4.4. The conditions of Theorem 4.6 are satisfied, such that the robust
centralized filter steady-state closed-loop matrix F̃ is Schur stable.

Now, we show that under Assumption 3.1 and Assumption 3.2, the steady-state
robust centralized filter (4.32) is also quadratically stable. To simplify the notation, we
also define the following steady-state filter gain

K̃ := F̃P cĈ
T
R̂

−1
,
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with F̃ given by (4.35), in which P c is the stabilizing solution of the algebraic Riccati
equation (4.34). Then, the steady-state robust centralized filter equation can be rewritten
as

x̂c
k+1|k = F̃x̂c

k|k−1 + K̃Yk, (4.37)

where Yk = col
(
y1

k, . . . , yS
k

)
. Now, substituting each yi

k from (4.25) into (4.37) yields

x̂c
k+1|k = F̃x̂c

k|k−1 + K̃(C + δCk)xk + K̃(D + δDk)vk, (4.38)

in which the aggregate matrices C, δCk, D, and δDk are defined in (4.20), (4.21), and
(4.22). Furthermore, we introduce the central state estimation error vector ec

k := xk− x̂c
k|k−1.

Then, we subtract (4.38) from xk+1 in (4.25) to obtain

ec
k+1 =

[
(F − F̃−K̃C)+(δFk−K̃δCk)

]
xk + F̃ec

k +(H +δHk)wk−K̃(D+δDk)vk. (4.39)

Consider now the augmented system composed of the target system state xk and the
central estimation error ec

k. Thus, from (4.25), (4.26), and (4.39), this augmented system
is described by

ζc
k+1 = (F + δFk)ζc

k + (H + δHk)ηc
k,[

δFk δHk

]
= M ∆k

[
EF EH

]
,

(4.40)

where

ζc
k :=

xk

ec
k

 , ηc
k :=

wk

vk

 , F :=
 F 0
F − F̃− K̃C F̃

 , H :=
H 0
H −K̃D

 ,

M :=
M1 0
M1 −K̃M2

 , ∆k :=
∆1,k 0

0 ∆2,k

 , EF :=
EF 0
EC 0

 , EH :=
EH 0

0 ED

 ,

in which the aggregate matrix definitions can be found in (4.20), (4.21), and (4.22).

Lemma 4.1. Given that Assumption 4.3 and Assumption 4.4 hold, the augmented system
(4.40) is quadratically stable.

Proof. Since the augmented system matrix F is lower triangular with diagonal elements
F and F, which are both Schur stable, we have that F is also Schur stable. Moreover,
note that

EF(zI2n −F)−1M =
EF 0
EC 0

  zIn − F 0
−(F − F̃− K̃C) zIn − F̃

−1 M1 0
M1 −K̃M2


=
EF (zIn − F )−1M1 0
EC(zIn − F )−1M1 0

 =
EF

EC

 (zIn − F )−1
[
M1 0

]
.

In addition, one has

F + M1∆1,kEF = F +
[
M1 0

] ∆1,k 0
0 ∆2,k

EF

EC

 .
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Since system (4.25)-(4.26) is quadratically stable, according to Remark 3.4, we have∥∥∥∥∥∥
EF

EC

 (zIn − F )−1
[
M1 0

]∥∥∥∥∥∥
∞

< 1,

for all admissible contractions ∆1,k and ∆2,k. Therefore,
∥∥∥EF(zI2n −F)−1M

∥∥∥
∞

< 1 and
the augmented system (4.40) is also quadratically stable.

Now, let us define the covariance matrix of the augmented system state as Pc
k :=

E
{
ζc

k(ζc
k)T

}
. Then, it follows from (4.40) that Pc

k satisfies the Lyapunov recursion

Pc
k+1 = (F + δFk)Pc

k(F + δFk)T + (H + δHk)Q(H + δHk)T , (4.41)

where Q is defined in (4.36).

Theorem 4.7. Given that Assumption 4.3 and Assumption 4.4 hold, the state estimation
error variance of the steady-state robust centralized filter (4.37) satisfies

lim
k→∞

E
{
ec

k(ec
k)T

}
⪯ V22,

where V22 is the (2, 2) block entry with the smallest trace among all (2, 2) block entries of
matrices V ≻ 0 that satisfy the inequality

(F + M∆EF) V (F + M∆EF)T + (H + M∆EH)Q (H + M∆EH)T − V ⪯ 0,

for all admissible contraction matrices ∆, with ∥∆∥ ≤ 1.

Proof. Lemma 4.1 indicates that the augmented system (4.40) is quadratically stable.
Thus, from Definition 3.1, there exists a matrix U ≻ 0 such that

(F + M∆kEF) U (F + M∆kEF)T − U ≺ 0,

for any admissible contraction matrix ∆k. As discussed in Petersen and McFarlane (1996)
and Sayed (2001), the existence of matrix U ≻ 0 guarantees the existence of a sufficiently
large scaling parameter ϵ > 0, such that one can find a matrix V = ϵ U satisfying

(F + M∆kEF) V (F + M∆kEF)T + (H + M∆kEH)Q (H + M∆kEH)T ⪯ V.

Subtracting the recursion for the augmented system covariance (4.41) from the inequality
above thus yields

(F + M∆kEF)(V −Pc
k)(F + M∆kEF)T ⪯ V −Pc

k+1,

or, equivalently,

V −Pc
k+1 = (F + M∆kEF)(V −Pc

k)(F + M∆kEF)T + Wk,

for some Wk ⪰ 0. To conclude, since the augmented system is quadratically stable, as
k → ∞, V −Pc

k+1 ⪰ 0, or Pc
k+1 ⪯ V. The (2, 2) block entry of Pc

k corresponds to the
estimation error variance, which is thus bounded.
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Corollary 4.2. Given that the assumptions in Theorem 4.5 hold, as well as Assumptions
4.3 and 4.4, the RDKCF in Algorithm 4.5 converges to the RCKF in Algorithm 4.3 and
thus shares its stability and bounded estimation error variance properties, according to
Theorems 4.6 and 4.7.

4.2.5 Illustrative Example

In this section, we assess the performance of the proposed RDKCF with an example
adapted from Xie, Soh and Souza (1994) and Section 3.2.5. In addition, we also evaluate
the RCKF, considered a benchmark for the distributed strategy. Furthermore, we compare
our results with other existing robust distributed filtering strategies from the literature.
For completeness, to establish a baseline, we further test the nominal centralized and
distributed filters developed in Section 4.1.

Consider a linear discrete-time target-system with norm-bounded uncertainties, as
described in (4.16)-(4.18) with the following constant parameter matrices:

Fk =
0 −0.5
1 1

 , Gk =
0
0

 , Hk =
−6

1

 ,

M1,k =
 0
10

 , EFk
=
[
0.01 0.03

]
, EGk

= 0, EHk
= 0.01.

There is no input signal uk and wk is a zero-mean white Gaussian noise signal with variance
Qk = 1. The initial state is x0 =

[
2 1

]T
.

A set of S = 25 sensors arranged in a random geometric undirected network, shown
in Figure 8, measure the target system. The sensing model is described as in (4.17)-(4.18),
with vi

k as zero-mean white Gaussian noise signals with variances Ri
k. Two distinct types

of sensors are considered. Sensors with odd number, i.e., i = 1, 3, . . . , 25, are of the first
type, having constant parameter matrices

Ci
k =

[
−100 9

]
, Di

k = 1, M i
2,k = 10, Ei

Ck
=
[
0.01 0.03

]
, Ei

Dk
= 0.01, Ri

k = 1.

Sensors with even number, i.e., i = 2, 4, . . . , 24, are of the second type, with matrices

Ci
k =

[
−50 12

]
, Di

k = 1, M i
2,k = 15, Ei

Ck
=
[
0.01 0.03

]
, Ei

Dk
= 0.02, Ri

k = 0.8.

Then, we apply the proposed RDKCF in Algorithm 4.5 with the following initial-
ization data for all sensors:

x̂i
0|−1 =

[
0 0

]T
, P i

0|−1 = I2, µ = 0.01, ξ = 0.01, and L = 10,

where µ and ξ are chosen according to the guidelines in Remark 4.3. In addition, for the
consensus iterations, we adopt the Metropolis weights shown in (2.20).
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Figure 8 – Sensor network with 25 nodes and 81 edges.

A

B
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Type 2

Figure 9 shows the evolution of the actual target system state along with the
estimation performed by sensors A (Type 1) and B (Type 2), identified in Figure 8, using
the proposed RDKCF. At each time step, ∆1,k and ∆2,k are real numbers randomly selected
from a uniform distribution with interval [−1, 1]. The results show that both sensors were
able to successfully track the state of the target system, irrespective of the norm-bounded
parametric uncertainties. Moreover, their estimates are practically indistinguishable, which
indicates that they reach consensus at each time step.

In order to further evaluate the proposed RDKCF, we carry out some comparisons.
Moreover, we consider two distinct scenarios. In the first one, named RDKCF-1, we assume
that the total number S of sensors in the network is available to every node, such that
in step 6 of Algorithm 4.5, we choose ρi

k = S. In the second, RDKCF-2, the number S

is estimated using the strategy in Remark 4.4. Then, we compare the results with those
obtained with the robust centralized benchmark RCKF (Algorithm 4.3). To establish
a baseline, we also apply the nominal centralized and distributed filters presented in
Section 4.1, respectively CKF (Algorithm 4.1) and DKCF (Algorithm 4.2). In addition,
we also compare the RDKCF with other robust distributed estimators from the literature,
namely the recursive filters proposed in Rocha and Terra (2020) and Duan et al. (2020),
as well as the H∞-consensus filter presented by Shen, Wang and Hung (2010).

The simulation consists of performing M = 1000 Monte Carlo experiments, each
with time horizon N = 100. At each time step k, we compute the mean squared estimation
error (MSE), averaged over all experiments and sensors in the network, as follows:

MSEk = 1
SM

S∑
i=1

M∑
e=1
∥xk − x̂i

k|k,e∥2,

which provides an approximation of the estimation error variance since, due to the
parametric uncertainties, we cannot compute its actual value, as discussed in Sayed (2001).



134 Chapter 4 Robust Distributed Kalman Filtering

Figure 9 – Actual (solid lines) and estimated (dashed lines) target system state obtained
by sensors A and B with the proposed RDKCF (Algorithm 4.5).
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The results are presented in Figure 10 and Table 3, which summarizes the mean
MSE and standard deviation σ(MSE) of the estimation error variances, calculated as

MSE =
N∑

k=0

MSEk

N + 1 and σ2(MSE) =
N∑

k=0

(MSEk −MSE)2

N + 1 .

Since the RCKF has access to all sensors at once, it naturally presents the best pos-
sible performance, thus being considered a benchmark. Among the distributed approaches,
the RDKCF exhibits the smallest estimation error. As expected, the RDKCF-1 (S is
known) presents a slightly better performance compared to the RDKCF-2 (S is estimated).
Moreover, they closely follow the RCKF, fulfilling their goal. Next, we have the robust
distributed filters proposed by Rocha and Terra (2020) and Duan et al. (2020), which
present a similar performance. The former considers uncertainties in all parameter matrices
and performs a single consensus on information step, whereas the latter only assumes
uncertainties in matrix Fk and does not use the consensus protocol. Then, we have the
nominal centralized and distributed nominal estimators, CKF (Algorithm 4.1) and DKCF
(Algorithm 4.2). They achieve similar results, but with significantly larger error variance,
compared to the previous estimators, which was expected, as they do not compensate for
model uncertainties. Finally, the robust H∞-consensus filter by Shen, Wang and Hung
(2010) obtained the highest error variance. It assumes uncertainties in matrices Fk and
Ci

k and depends on the solution of an optimization problem subject to complex LMIs.
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Figure 10 – Estimation error variance curves of the robust distributed filters.
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Moreover, it is not fully distributed, as the gains are collectively computed, which may not
scale well as the number of sensors increases. In terms of standard deviation, notice that
both versions of the RDKCF exhibit smaller values compared to the RCKF. The nominal
approaches present the largest deviations, again, due to the uncompensated uncertainties.

Furthermore, we investigate how the number of consensus iterations L affects
the RDKCF performance. Figure 11 compiles a series of simulations with several values
of L, considering both scenarios of the RDKCF. For each value, we compute the mean
estimation error MSE over the whole time horizon, as previously described. The RCKF
is also presented for comparison purposes. Note that, as the value of L increases, the
distributed filters indeed approach the result of the centralized filter. This, however, requires
more computation time, indicating a performance trade-off. In addition, the results show
that the impact of knowing S beforehand or estimating it online is not significant, as both
versions of the RDKCF present very similar results.
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Table 3 – Estimation performance of each robust distributed filter.

Filter MSE (dB) σ(MSE) (dB)
1 RCKF (Algorithm 4.3) -55.78 0.9655
2 RDKCF-1 (Algorithm 4.5, S known) -53.37 0.9461
3 RDKCF-2 (Algorithm 4.5, S estimated) -53.34 0.9558
4 Rocha and Terra (2020) -30.55 1.6681
5 Duan et al. (2020) -30.38 1.7212
6 CKF (Algorithm 4.1) 7.399 11.055
7 DKCF (Algorithm 4.2) 7.497 10.849
8 Shen, Wang and Hung (2010) 32.62 2.2911

Bold numbers indicate the smallest values.

Figure 11 – Effect of the number of consensus iterations L on the RDKCF (Algorithm 4.5).

1 5 10 15 20 25 30

−56

−54

−52

−50

−48

−46

−44

Number of Consensus Iterations L

M
SE

(d
B

)

RCKF (Algorithm 4.3)
RDKCF-1 (Algorithm 4.5, S known)
RDKCF-2 (Algorithm 4.5, S estimated)

4.3 Robust Distributed Kalman Filtering for
Systems with Polytopic Uncertainties

In this section, we propose a second kind of robust alternatives to the nominal
centralized and distributed Kalman filters presented in Section 4.1. We address the case
where the underlying target system and sensing models are subject to polytopic parametric
uncertainties, i.e., the parameters arbitrarily vary within a convex polyhedron centered at
the nominal parameters (CHANG; PARK; TANG, 2015).

We follow a similar strategy as the one adopted in the previous norm-bounded
case (Section 4.2). As such, we start by addressing the centralized estimation problem,
assuming availability of measurements from all sensors in the network to a fusion center.
Using a deterministic interpretation, we formulate this centralized estimation problem as
a regularized least-squares estimation problem with polytopic uncertainties (Section 3.3.2).
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From its solution, we extract the Polytopic Robust Centralized Kalman Filter (PRCKF),
which is then modified to tackle the robust distributed estimation problem. This is achieved
through the HCMCI protocol (BATTISTELLI et al., 2015), yielding the Polytopic Robust
Distributed Kalman Consensus Filter (PRDKCF). With sufficiently many consensus steps,
both filters achieve similar results. As in the previous sections, we present the robust
centralized and distributed estimators as recursive correction-prediction algorithms, which,
in this case, resemble the Polytopic Robust Kalman Filter (Algorithm 3.3). Additionally,
we study the stability properties of both filters and conclude the section with an illustrative
example.

4.3.1 Problem Formulation

4.3.1.1 System Model

Consider a sensor network featuring S sensors. The communication among them is
represented by the undirected graph G = (S,E), with node set S = {1, 2, . . . , S} and edge
set E ⊆ S× S. The neighborhood of a sensor i is denoted by Ni = {j ∈ S | (i, j) ∈ E} and
has cardinality Ni (see Section 2.3 for an introduction on graph theory).

Assumption 4.5. The undirected graph G has a fixed topology and is connected, i.e.,
there is a path between every pair of nodes.

Consider the following discrete-time state-space description of a linear target system
subject to uncertainties:

xk+1 = (F0,k + δFk)xk + (G0,k + δGk)uk + (H0,k + δHk)wk, (4.42)

which is observed by the set of S sensors S = {1, 2, . . . , S}, each described by the uncertain
model

yi
k = (Ci

0,k + δCi
k)xk + (Di

0,k + δDi
k)vi

k, ∀i ∈ S, (4.43)

for k = 0, 1, . . . , N , where xk ∈ Rn is a state vector, uk ∈ Rm is an input vector, and
wk ∈ Rp is the system noise. For each sensor i ∈ S, yi

k ∈ Rr is the measurement vector and
vi

k ∈ Rq is the measurement noise. F0,k ∈ Rn×n, G0,k ∈ Rn×m, H0,k ∈ Rn×p, Ci
0,k ∈ Rr×n,

and Di
0,k ∈ Rr×q are known nominal parameter matrices, whereas δFk ∈ Rn×n, δGk ∈ Rn×m,

δHk ∈ Rn×p, δC i
k ∈ Rr×n, and δDi

k ∈ Rr×q are unknown uncertainties bounded to a convex
polyhedral domain described by V vertices,

Vk :=
{(

δFk, δGk, δHk, δCi
k, δDi

k

)
=

V∑
ν=1

αν,k

(
Fν,k, Gν,k, Hν,k, Ci

ν,k, Di
ν,k

)}
, (4.44)

where Fν,k ∈ Rn×n, Gν,k ∈ Rn×m, Hν,k ∈ Rn×p, Ci
ν,k ∈ Rr×n and Di

ν,k ∈ Rr×q are known,
and αk :=

[
α1,k · · · αV,k

]T
belongs to the unit simplex

ΛV :=
α ∈ RV :

V∑
ν=1

αν = 1, αν ≥ 0
. (4.45)
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In a stochastic setting, we usually assume that x0, wk, and {vi
k}S

i=1 are mutually
independent zero-mean Gaussian random variables with respective variances

E
{
x0x

T
0

}
= P0 ≻ 0, E

{
wkwT

l

}
= Qkδkl ≻ 0, and E

{
vi

k(vj
l )T

}
= Ri

kδklδij ≻ 0,

where δab is the Kronecker delta function, such that δab = 1 if a = b, and δab = 0 otherwise.
Nonetheless, the strategy we develop here does not require that these variables have any
particular distribution.

4.3.1.2 Robust Centralized Estimation Problem

Before addressing the robust distributed estimation problem, we first design a
centralized estimator for system (4.42)-(4.43). In the centralized problem, there is a central
estimator with access to measurements obtained by all the sensors in the network. As
the target system state sequence {xk} is not perfectly observed, the goal is to use all
the information available up to time instant k, Y k =

{
{yi

0}S
i=1, . . . , {yi

k}S
i=1, u0, . . . , uk

}
,

to compute a so-called filtered robust central state estimate x̂c
k|k of xk, as well as a

predicted robust central estimate x̂c
k+1|k of xk+1, despite the presence of the polytopic

model uncertainties δk :=
{
δFk, δGk, δHk, {δCi

k}S
i=1, {δDi

k}S
i=1

}
. Here, the superscript c

indicates the centralized entities.

Following the procedure reported in 4.1.1.2 for the Nominal Centralized Kalman
Filter, we adopt a deterministic interpretation of the centralized estimation problem
(BRYSON; HO, 1975). Then, to avoid confusion, we introduce the variables x̂k, x̂k+1,
ŵk, and {v̂i

k}S
i=1 as substitutes for the random variables xk, xk+1, wk, and {vi

k}S
i=1 in the

stochastic model (4.42)-(4.43). Based on Sayed (2001) and Ishihara, Terra and Cerri (2015),
assuming that at each time step k, an a priori state estimate x̂c

k|k−1, a set of measurements
{yi

k}S
i=1, and the input uk are available, we formulate a min-max constrained optimization

problem in which a one-step quadratic objective function should be minimized under the
maximum influence of the polytopic parametric uncertainties δk, i.e.,

min
x̂k, x̂k+1,

ŵk, v̂k

max
δk

Jk(x̂k, ŵk, v̂k) = ∥x̂k − x̂c
k|k−1∥2

(P c
k|k−1)−1 + ∥ŵk∥2

Q−1
k

+ ∥v̂k∥2
R−1

k
, (4.46)

subject to the set of constraints
In

...
In

 x̂k+1 =


F0,k + α1,kV F1,k

...
F0,k + αV,kV FV,k

 x̂k +


G0,k + α1,kV G1,k

...
G0,k + αV,kV GV,k

uk +


H0,k + α1,kV H1,k

...
H0,k + αV,kV HV,k

 ŵk,

(4.47a)
Ir

...
Ir

 yi
k =


Ci

0,k + α1,kV Ci
1,k

...
Ci

0,k + αV,kV Ci
V,k

 x̂k +


Di

0,k + α1,kV Di
1,k

...
Di

0,k + αV,kV Di
V,k

 v̂i
k, ∀i ∈ S, (4.47b)
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for k = 0, 1, . . . , N , in which we define v̂k := col
(
v1

k, . . . , vS
k

)
and Rk := diag

(
R1

k, . . . , RS
k

)
.

In the objective function, ŵk and {v̂i
k}S

i=1 are fitting errors weighted respectively by Qk ≻ 0
and Ri

k ≻ 0, ∀i ∈ S, and P c
k|k−1 ≻ 0 weights the a priori estimation error xk − x̂c

k|k−1.
Recall that, from a stochastic viewpoint, matrices Qk and Ri

k represent the variances of
the random variables wk and {vi

k}S
i=1. Nonetheless, in this general deterministic framework,

they are rather understood as weighting matrices.

Remark 4.5. We derive the constraints (4.47) of problem (4.46) from (4.42), (4.43), and
(4.44) by individually considering each vertex of the polytope. The equivalence between
them can be easily shown by summing all the correspondent target system and sensing
model equations in (4.47), as follows:

x̂k+1 =
(

F0,k +
V∑

ν=1
αν,kFν,k

)
x̂k +

(
G0,k +

V∑
ν=1

αν,kGν,k

)
uk +

(
H0,k +

V∑
ν=1

αν,kHν,k

)
ŵk,

yi
k =

(
Ci

0,k +
V∑

ν=1
αν,kCi

ν,k

)
x̂k +

(
Di

0,k +
V∑

ν=1
αν,kDi

ν,k

)
v̂i

k, ∀i ∈ S,

which correspond to the same equations in (4.42), (4.43), and (4.44), considering the
deterministic variables.

To simplify the notation, we rewrite the constraints in (4.47) in the following more
compact form:

Inx̂k+1 = (F 0,k + δF k)x̂k + (G0,k + δGk)uk + (H0,k + δHk)ŵk, (4.48a)
Iry

i
k = (Ci

0,k + δCi
k)x̂k + (Di

0,k + δDi
k)v̂i

k, ∀i ∈ S, (4.48b)

in which we define

In := 1V ⊗ In, F 0,k := 1V ⊗ F0,k, G0,k := 1V ⊗G0,k, H0,k := 1V ⊗H0,k,

Ir := 1V ⊗ Ir, Ci
0,k := 1V ⊗ Ci

0,k, and Di
0,k := 1V ⊗Di

0,k,
(4.49)

where 1V :=
[
1 · · · 1

]T
∈ RV and ⊗ denotes the Kronecker product. Moreover, the

uncertainties in (4.48) are given by[
δF k δGk δHk

]
= ᾱ1,k V

[
F̄ k Ḡk H̄k

]
, (4.50a)[

δCi
k δDi

k

]
= ᾱ2,k V

[
C̄

i

k D̄
i

k

]
, ∀i ∈ S, (4.50b)

where

ᾱ1,k :=


α1,kIn · · · 0

... . . . ...
0 · · · αV,kIn

 , F̄ k :=


F1,k

...
FV,k

 , Ḡk :=


G1,k

...
GV,k

 , H̄k :=


H1,k

...
HV,k

 ,

ᾱ2,k :=


α1,kIr · · · 0

... . . . ...
0 · · · αV,kIr

 , C̄
i

k :=


Ci

1,k
...

Ci
V,k

 , and D̄
i

k :=


Di

1,k
...

Di
V,k

 .

(4.51)
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We can further aggregate the equations for each sensor i in (4.48b) into a single
expression, as follows:

Yk = (C0,k + δCk)x̂k + (D0,k + δDk)v̂k, (4.52)

in which we define the aggregated vectors and matrices

Yk :=


Iry

1
k

...
Iry

S
k

 , v̂k :=


v̂1

k
...

v̂S
k

 , C0,k :=


C1

0,k
...

CS
0,k

 , and D0,k :=


D1

0,k · · · 0
... . . . ...
0 · · · DS

0,k

 , (4.53)

considering the definitions in (4.49). Similarly, we aggregate the sensing uncertainty models
in (4.50b) into the single expression[

δCk δDk

]
= (IS ⊗ ᾱ2,k) V

[
C̄k D̄k

]
, (4.54)

with

δCk :=


δC1

k
...

δCS
k

 , δDk :=


δD1

k · · · 0
... . . . ...
0 · · · δDS

k

 , C̄k :=


C̄

1
k

...
C̄

S

k

 , and D̄k :=


D̄

1
k · · · 0

... . . . ...
0 · · · D̄

S

k

 ,

(4.55)
according to the definitions in (4.51).

Problem (4.46)-(4.47) has the form of a regularized least-squares estimation problem
with polytopic uncertainties, as presented in Section 3.3.2. Therefore, by solving it, we
obtain the filtered and predicted robust central state estimates x̂c

k|k and x̂c
k|k+1, respectively.

4.3.1.3 Robust Distributed Estimation Problem

In the distributed estimation setting, the goal of each sensor node i ∈ S is to obtain
the best estimates x̂i

k|k of xk and x̂i
k+1|k of xk+1, referred to as filtered and predicted robust

state estimates, irrespective of the polytopic uncertainties.

Moreover, these estimates should be computed in a distributed rather than cen-
tralized fashion. Therefore, each sensor node only has access to its own data and to
information provided by its neighbors. We achieve this objective by taking advantage
of the distributed characteristic of the average consensus protocol (Algorithm 2.2) to
approximate the results of a robust centralized estimator. This strategy is similar to the one
we applied in Section 4.1 and Section 4.2, as well as in Kamal, Farrell and Roy-Chowdhury
(2013) and Battistelli et al. (2015).

4.3.2 Polytopic Robust Centralized Kalman Filter

In this section, we present the Polytopic Robust Centralized Kalman Filter
(PRCKF), obtained as part of the solution to problem (4.46)-(4.47). As aforementioned,
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problem (4.46)-(4.47) is a special case of regularized least-squares problem with polytopic
uncertainties (Section 3.3.2). This can be verified by mapping the objective function in
(4.46) with (3.95), and the compact aggregated constraints (4.48a)-(4.52) with (3.97), as
follows:

x←

 x̂c
k

x̂c
k+1

 , x̄←

x̂c
k|k−1

0

 , w ←

ŵk

v̂k

 , P̄ ←

(P c
k|k−1)−1 0

0 0

 , Q←

Q−1
k 0
0 R−1

k

 ,

y0 ←

−G0,kuk

Yk

 , A0 ←

F 0,k −In

C0,k 0

 , B0 ←

H0,k 0
0 D0,k

 ,

δy ←

−δGkuk

0

 , δA←

δF k 0
δCk 0

 , and δB ←

δHk 0
0 δDk

 ,

(4.56)
in which the definitions in (4.49) and (4.53) are taken into consideration. In addition,
consider the following mappings between the compact aggregated uncertainty models
(4.50a)-(4.54) and (3.99):

ᾱ←

ᾱ1,k 0
0 IS ⊗ ᾱ2,k

, ȳ ←

−Ḡkuk

0

, Ā←

F̄ k 0
C̄k 0

, and B̄ ←

H̄k 0
0 C̄k

, (4.57)

where the definitions in (4.51) and (4.55) are considered.

Given that (P c
k|k−1)−1 ≻ 0, one has P̄ ⪰ 0. Also, Q−1

k ≻ 0 and R−1
k ≻ 0 imply

that Q ≻ 0. Hence, we use the results in Lemma 3.5 and in equation (3.124) to obtain
the filtered and predicted robust central state estimates, x̂c

k|k and x̂c
k+1|k, as well as their

respective error weighting matrices P c
k|k and P c

k+1|k, as stated in the following theorem.

Theorem 4.8. Consider the regularized least-squares centralized estimation problem with
polytopic uncertainties (4.46)-(4.47) with given initial conditions x̂c

0|−1, P c
0|−1 = P0 ≻ 0,

Qk ≻ 0, Ri
k ≻ 0, ∀i ∈ S, and fixed parameters µ > 0 and ξ > 0. For each k = 0, 1, . . . , N ,

its solution recursively provides the filtered and predicted robust central state estimates of
system (4.42)-(4.43), x̂c

k|k and x̂c
k+1|k, along with their respective error weighting matrices,

P c
k|k and P c

k+1|k, according to the procedure described in Algorithm 4.6.

Proof. Since problem (4.46)-(4.47) is a regularized least-squares estimation problem with
polytopic uncertainties, we can use the result in Lemma 3.5 to obtain the robust central
state estimates x̂c

k|k and x̂c
k+1|k. Thus, we substitute the mappings (4.56) and (4.57) into

(3.106) to compute the modified target system and sensing model matrices. Next, we plug
the mappings into the solution (3.105). The algebraic procedure is similar to the one
described in the proof of Theorem 3.6 and we thus omit it for brevity. The main difference
is the presence of the summation terms in step 4 of Algorithm 4.6, which appear due to
the aggregate vectors and matrices defined in (4.53) and (4.55), which account for all the
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Algorithm 4.6 Polytopic Robust Centralized Kalman Filter (PRCKF)
Model: Assume the uncertain system model in (4.42)-(4.43).
Initialization: Set x̂c

0|−1, P c
0|−1 = P0 ≻ 0, Qk ≻ 0, Ri

k ≻ 0, ∀i ∈ S, µ > 0, and ξ > 0.
for k = 0, 1, . . . , N do

1. Obtain measurements yi
k from all sensors i ∈ S.

2. Compute φ using the approximation for λ̂:

φ = λ̂V 2 = (1 + ξ) µV 2

3. Compute the modified target system and sensing model matrices, for all i ∈ S:

Φ1,k = ξV φ−1In Q̂k = Φ1,k + H0,k

(
Q−1

k + φH̄
T

k H̄k

)−1
HT

0,k

Φ2,k = ξV φ−1Ir R̂i
k = Φ2,k + Di

0,k

[
(Ri

k)−1 + φ(D̄i

k)T D̄
i

k

]−1
(Di

0,k)T

Q̄k = φ−1InV + H̄kQkH̄
T

k R̄i
k = φ−1IrV + D̄

i

kRi
k(D̄i

k)T

F̂k = F0,k −H0,kQkH̄
T

k Q̄−1
k F̄ k Ĉi

k = Ci
0,k −Di

0,kRi
k(D̄i

k)T (R̄i
k)−1C̄

i

k

Ĝk = G0,k −H0,kQkH̄
T

k Q̄−1
k Ḡk

4. Correction step:
4.1. Compute the posterior error weighting matrix:

P c
k|k =

(P c
k|k−1)−1 +

S∑
i=1

[
(Ĉi

k)T (R̂i
k)−1Ĉi

k + (C̄i

k)T (R̄i
k)−1C̄

i

k

]
+ F̄

T

k Q̄−1
k F̄ k

−1

4.2. Compute the filtered robust central state estimate:

x̂c
k|k = P c

k|k

(P c
k|k−1)−1x̂c

k|k−1 +
S∑

i=1
(Ĉi

k)T (R̂i
k)−1yi

k − F̄
T

k Q̄−1
k Ḡkuk


5. Prediction step:

5.1. Update the predicted prior error weighting matrix:

P c
k+1|k = F̂kP c

k|kF̂ T
k + Q̂k

5.2. Update the predicted prior robust central state estimate:

x̂c
k+1|k = F̂kx̂c

k|k + Ĝkuk

end for

sensors in the network. Given their block column and diagonal structures, we have that

Ĉ
T

k R̂
−1
k Ĉk + C̄

T

k R̄
−1
k C̄k =

S∑
i=1

[
(Ĉi

k)T (R̂i
k)−1Ĉi

k + (C̄i

k)T (R̄i
k)−1C̄

i

k

]
,

Ĉ
T

k R̂
−1
k yk =

S∑
i=1

(Ĉi
k)T (R̂i

k)−1yi
k,

where yk := col
(
y1

k, . . . , yS
k

)
, Ĉk := col

(
Ĉ1

k , . . . , ĈS
k

)
, C̄k := col

(
C̄

1
k, . . . , C̄

S

k

)
, R̂k :=



4.3 Robust Distributed Kalman Filtering for Systems with Polytopic Uncertainties 143

diag
(
R̂1

k, . . . , R̂S
k

)
, and R̄k := diag

(
R̄1

k, . . . , R̄S
k

)
, with each Ĉi

k, R̂i
k, and R̄i

k as defined in
step 3 of Algorithm 4.6. Analogously, we use (3.124) to obtain the corresponding estimation
error weighting matrices P c

k|k and P c
k+1|k, as also shown in the proof of Theorem 3.6. To

conclude, note that to compute the λ̂ parameter, we consider the practical approximation
explained in Remark 3.7.

Remark 4.6. The proposed Polytopic Robust Centralized Kalman Filter (Algorithm 4.6)
depends on the penalty and approximation parameters µ and ξ, respectively. They influence
the PRCKF performance in a similar way to what is observed in the PRKF (Algorithm 3.3).
Therefore, as discussed in Section 3.3.3, we tune µ based on the level of model uncertainties.
The more severe the perturbations, the smaller the value of µ. As for the approximation
parameter ξ, it is recommended to select a small value within the (0, 1) interval.

4.3.3 Polytopic Robust Distributed Kalman Concensus Filter

This section tackles the distributed estimation problem proposed in Section 4.3.1.3.
As previously mentioned, in order to solve it, we leverage the average consensus algorithm
(Section 2.4) to develop a distributed implementation that can approximate the Polytopic
Robust Centralized Kalman Filter presented in Algorithm 4.6, which is considered a
benchmark.

In the distributed estimation context, we assume that each sensor i ∈ S is initialized
with the same prior state estimate x̂i

0|−1 and prior error weighting matrix P i
0|−1 ≻ 0.

We adopt the hybrid consensus on measurements and information (HCMCI) approach
(BATTISTELLI et al., 2015), such that each sensor i ∈ S exchanges information with its
neighbors j ∈ Ni to ultimately obtain an approximation of the filtered and predicted prior
robust central state estimates in a distributed fashion.

We propose the so-called Polytopic Robust Distributed Kalman Consensus Filter
(PRDKCF) shown in Algorithm 4.7. In accordance with the HCMCI protocol, in steps
4 and 5, we simultaneously perform the average consensus algorithm (Algorithm 2.2) to
each sensor’s prior information and innovation pairs, denoted

(
Ωi

k, ωi
k

)
and

(
δΩi

k, δωi
k

)
,

respectively. Moreover, in step 5.3, the consensus weights πij should satisfy the conditions
outlined in Definition 2.2, such that the consensus states of each node i are updated with
a convex combination of the corresponding states within its inclusive neighborhood. Here,
we adopt the Metropolis weights (XIAO; BOYD; LALL, 2005), shown in (2.20), for which
these conditions hold. Then, based on step 4 of the PRCKF (Algorithm 4.6), we use the
outcome of the consensus step in the correction stage shown in step 6 of Algorithm 4.7.
Analogous to the nominal distributed case (Algorithm 4.2), we include the corrective scalar
ρi

k to compensate for the possible underweighting of the innovation pair
(
δΩi

k, δωi
k

)
due

to the average consensus process. Concluding the algorithm, in step 7, we perform the
prediction step, which is based on step 5 of the PRCKF (Algorithm 4.6).
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Algorithm 4.7 Polytopic Robust Distributed Kalman Consensus Filter (PRDKCF) (each
sensor i)
Model: Assume the uncertain system model in (4.42)-(4.43).
Initialization: Set x̂i

0|−1, P i
0|−1 = P0 ≻ 0, Qk ≻ 0, Ri

k ≻ 0, µ > 0, ξ > 0, and L ≥ 1.
for k = 0, 1, . . . , N do

1. Obtain a measurement yi
k.

2. Compute φ using the approximation for λ̂: φ = λ̂V 2 = (1 + ξ) µV 2

3. Compute the modified system and sensing model matrices:
Φ1,k = ξV φ−1In Q̂k = Φ1,k + H0,k

(
Q−1

k + φH̄
T

k H̄k

)−1
HT

0,k

Φ2,k = ξV φ−1Ir R̂i
k = Φ2,k + Di

0,k

[
(Ri

k)−1 + φ(D̄i

k)T D̄
i

k

]−1
(Di

0,k)T

Q̄k = φ−1InV + H̄kQkH̄
T

k R̄i
k = φ−1IrV + D̄

i

kRi
k(D̄i

k)T

F̂k = F0,k −H0,kQkH̄
T

k Q̄−1
k F̄ k Ĉi

k = Ci
0,k −Di

0,kRi
k(D̄i

k)T (R̄i
k)−1C̄

i

k

Ĝk = G0,k −H0,kQkH̄
T

k Q̄−1
k Ḡk

4. Initialize the consensus states:

Ωi
k(0) = (P i

k|k−1)−1 δΩi
k(0) = (Ĉi

k)T (R̂i
k)−1Ĉi

k + (C̄i

k)T (R̄i
k)−1C̄

i

k

ωi
k(0) = (P i

k|k−1)−1x̂i
k|k−1 δωi

k(0) = (Ĉi
k)T (R̂i

k)−1yi
k

5. Consensus step:
for ℓ = 0, 1, . . . , L− 1 do

5.1. Send
{
Ωi

k(ℓ), ωi
k(ℓ), δΩi

k(ℓ), δωi
k(ℓ)

}
to all neighbors j ∈ Ni.

5.2. Receive
{
Ωj

k(ℓ), ωj
k(ℓ), δΩj

k(ℓ), δωj
k(ℓ)

}
from all neighbors j ∈ Ni.

5.3. Update the consensus states:

Ωi
k(ℓ + 1) =

S∑
j=1

πij Ωj
k(ℓ) δΩi

k(ℓ + 1) =
S∑

j=1
πij δΩj

k(ℓ)

ωi
k(ℓ + 1) =

S∑
j=1

πij ωj
k(ℓ) δωi

k(ℓ + 1) =
S∑

j=1
πij δωj

k(ℓ)

end for
6. Correction step:

6.1. Compute the posterior error weighting matrix:

P i
k|k =

[
Ωi

k(L) + ρi
k δΩi

k(L) + F̄
T

k Q̄−1
k F̄ k

]−1

6.2. Compute the filtered state estimate:

x̂i
k|k = P i

k|k

[
ωi

k(L) + ρi
k δωi

k(L)− F̄
T

k Q̄−1
k Ḡkuk

]
7. Prediction step:

7.1. Update the predicted prior error weighting matrix:

P i
k+1|k = F̂kP i

k|kF̂ T
k + Q̂k

7.2. Update the predicted prior state estimate:

x̂i
k+1|k = F̂kx̂i

k|k + Ĝkuk

end for
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Theorem 4.9. Consider the Polytopic Robust Distributed Kalman Consensus Filter in
Algorithm 4.7 and that Assumption 4.1 is satisfied. In addition, assume that the consensus
weights πij are chosen according to Definition 2.2, the number of consensus iterations
L→∞ in step 5, and that ρi

k = S in step 6. Then, the filtered and predicted prior robust
state estimates, x̂i

k|k and x̂i
k+1|k, and their respective error weighting matrices, P i

k|k and
P i

k+1|k, obtained by each sensor i ∈ S converge to the corresponding robust central state
estimates x̂c

k|k and x̂c
k+1|k, and error weighting matrices P c

k|k and P c
k+1|k obtained using the

Polytopic Robust Centralized Kalman Filter in Algorithm 4.6.

Proof. Since the undirected graph G describing the sensor network is connected and the
consensus weights πij are properly selected, we have that the associated weighted adjacency
matrix Π exhibit the properties listed in Lemma 2.9. Moreover, as the number of consensus
iterations L → ∞, Theorem 2.2 guarantees the convergence of the average consensus
algorithm. Let us then prove through induction that the PRDKCF in Algorithm 4.7
converges to the PRCKF in Algorithm 4.6.

At time step k = 0, consider that the PRCKF is initialized with x̂c
0|−1 = x̂0 and

P c
0|−1 = P0 ≻ 0, whereas all sensors i ∈ S initialize the PRDKCF with x̂i

0|−1 = x̂0 and
P i

0|−1 = P0 ≻ 0. Thus, according to Theorem 2.2, after performing the consensus step of
the PRDKCF, the information and innovation pairs of all the sensors converge as follows:

Ωi
0(L)→ 1

S

S∑
j=1

P −1
0 = P −1

0 , δΩi
0(L)→ 1

S

S∑
j=1

[
(Ĉj

0)T (R̂j
0)−1Ĉj

0 + (C̄j

0)T (R̄j
0)−1C̄

j

0

]
,

ωi
0(L)→ 1

S

S∑
j=1

P −1
0 x̂0 = P −1

0 x̂0, δωi
0(L)→ 1

S

S∑
j=1

(Ĉj
0)T (R̂j

0)−1yj
0.

We then substitute these consensus outcomes into the equations in step 6 of Algorithm 4.7,
considering that ρi

0 = S, such that

P i
0|0 →

P −1
0 + S

1
S

S∑
j=1

[
(Ĉj

0)T (R̂j
0)−1Ĉj

0 + (C̄j

0)T (R̄j
0)−1C̄

j

0

]
+ F̄

T

0 Q̄−1
0 F̄ 0

−1

=

P −1
0 +

S∑
j=1

[
(Ĉj

0)T (R̂j
0)−1Ĉj

0 + (C̄j

0)T (R̄j
0)−1C̄

j

0

]
+ F̄

T

0 Q̄−1
0 F̄ 0

−1

= P c
0|0,

x̂i
0|0 → P i

0|0

P −1
0 x̂0 + S

1
S

S∑
j=1

(Ĉj
0)T (R̂j

0)−1yj
0 − F̄

T

0 R̄−1
0 Ḡ0u0

 =

P c
0|0

P −1
0 x̂0 +

S∑
j=1

(Ĉj
0)T (R̂j

0)−1yj
0 − F̄

T

0 Q̄−1
0 Ḡ0u0

 = x̂c
0|0,

for all sensors i ∈ S. Note how the choice of scalar weight ρi
0 = S is important to

correctly compensate for the 1/S factor that appears in the outcome of the innovation pair(
δΩi

0, δωi
0

)
after the averaging process. Furthermore, the convergence above implies that,
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in step 7, P i
1|0 → P c

1|0 and x̂i
1|0 → x̂c

1|0. Therefore, for k = 0, we proved that the PRDKCF
converges to the PRCKF.

Now, let us assume that at time step k−1, we have P i
k−1|k−1 → P c

k−1|k−1, x̂i
k−1|k−1 →

x̂c
k−1|k−1, P i

k|k−1 → P c
k|k−1, and x̂i

k|k−1 → x̂c
k|k−1, ∀i ∈ S. Then, according to Theorem 2.2,

at time step k, we achieve the following consensus outcome after step 5 of the PRDKCF:

Ωi
k(L)→ 1

S

S∑
j=1

(P c
k|k−1)−1 = (P c

k|k−1)−1,

δΩi
k(L)→ 1

S

S∑
j=1

[
(Ĉj

k)T (R̂j
k)−1Ĉj

k + (C̄j

k)T (R̄j
k)−1C̄

j

k

]
,

ωi
k(L)→ 1

S

S∑
j=1

(P c
k|k−1)−1x̂c

k|k−1 = (P c
k|k−1)−1x̂c

k|k−1,

δωi
k(L)→ 1

S

S∑
j=1

(Ĉj
k)T (R̂j

k)−1yj
k.

Substituting these outcomes into the equations in step 6 of the PRDKCF, assuming that
ρi

k = S, then yields

P i
k|k →

(P c
k|k−1)−1 + S

1
S

S∑
j=1

[
(Ĉj

k)T (R̂j
k)−1Ĉj

k + (C̄j

k)T (R̄j
k)−1C̄

j

k

]
+ F̄

T

k Q̄−1
k F̄ k

−1

=

(P c
k|k−1)−1 +

S∑
j=1

[
(Ĉj

k)T (R̂j
k)−1Ĉj

k + (C̄j

k)T (R̄j
k)−1C̄

j

k

]
+ F̄

T

k Q̄−1
k F̄ k

−1

= P c
k|k,

x̂i
k|k → P i

k|k

(P c
k|k−1)−1x̂c

k|k−1 + S
1
S

S∑
j=1

(Ĉj
k)T (R̂j

k)−1yj
k − F̄

T

k Q̄−1
k Ḡkuk

 =

P c
k|k

(P c
k|k−1)−1x̂c

k|k−1 +
S∑

j=1
(Ĉj

k)T (R̂j
k)−1yj

k − F̄
T

k Q̄−1
k Ḡkuk

 = x̂c
k|k,

for all sensors i ∈ S. Then, plugging the results above into the equations in step 7 of the
PRDKCF leads to P i

k+1|k → P c
k+1|k and x̂i

k+1|k → x̂c
k+1|k. Therefore, under the established

conditions, by induction, we have that, for k = 0, 1, . . . , N , the PRDKCF in Algorithm 4.7
converges to the PRCKF in Algorithm 4.6.

Since the proposed PRDKCF is derived from the PRCKF (Algorithm 4.6), it also
depends on the µ and ξ parameters. As such, Remark 4.6 provides guidelines on how
to select their values. In conclusion, we emphasize how the combination of the HCMCI
protocol with the average consensus algorithm enabled the derivation of a polytopic robust
distributed estimator that approaches the performance of its centralized counterpart.
However, it is also important to note that this convergence is theoretical, since it requires
an infinite number of consensus iterations L, which is not possible in practice. Nonetheless,
an illustrative example will show that, for a sufficiently large and finite L, the distributed
filter closely follows the performance of the corresponding centralized filter.
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Remark 4.7. As in the Nominal Distributed Kalman Consensus Filter presented in
Algorithm 4.2, we include a corrective scalar weight ρi

k in step 6 of Algorithm 4.7. Its
purpose is to avoid the possible underweighting of the innovation pair

(
δΩi

k(L), δωi
k(L)

)
due to scaling from the average consensus procedure. As a consequence, Algorithm 4.7
actually represents a family of polytopic robust distributed filters, depending on the choice
of ρi

k. As discussed in Remark 4.2, ideally, one should have ρi
k = S to reach the centralized

performance. Since the value of S may not be available to the sensors in the network,
Remark 4.2 also provides a procedure to estimate it in a distributed fashion.

4.3.4 Stability Analysis

This section addresses the stability properties and boundedness of the estimation
error variance of the proposed polytopic robust centralized and distributed filters. We
study the steady-state behavior of Algorithm 4.6 and Algorithm 4.7, considering that the
target system and sensing model parameters are time-invariant and there is no input uk.
Nevertheless, we still assume that the polytope coefficients αk are time-varying. Thus,
consider the following discrete-time uncertain linear system:

xk+1 = (F0 + δFk)xk + (H0 + δHk)wk, (4.58a)
yi

k = (Ci
0 + δCi

k)xk + (Di
0 + δDi

k)vi
k, ∀i ∈ S, (4.58b)

for k ≥ 0, with time-varying parametric uncertainties bounded by the convex polyhedron

Vk =
{(

δFk, δHk, δCi
k, δDi

k

)
=

V∑
ν=1

αν,k

(
Fν , Hν , Ci

ν , Di
ν

)}
, (4.59)

where αk =
[
α1,k · · ·αV,k

]T
belongs to the unit simplex ΛV in (4.45), with V vertices.

Following the strategy carried out in Section 4.1.4, Section 4.2.4, as well as in
Kamal, Farrell and Roy-Chowdhury (2013), we perform the analysis under the assumptions
described in Theorem 4.9, i.e., considering that the PRDKCF converges to the PRCKF.
This way, the stability properties of the polytopic robust centralized filter can be extended
to its distributed implementation.

We start by establishing the stability conditions of the PRCKF in Algorithm 4.6.
Considering the time-invariant uncertain system model (4.58)-(4.59), the PRCKF equations
in steps 4 and 5 of Algorithm 3.3 become:

P c
k|k =

[
(P c

k|k−1)−1 + Ĉ
T
R̂

−1
Ĉ + C̄

T
R̄

−1
C̄ + F̄

T
Q̄−1F̄

]−1
, (4.60)

x̂c
k|k = P c

k|k

[
(P c

k|k−1)−1x̂c
k|k−1 + Ĉ

T
R̂

−1
yk

]
, (4.61)

P c
k+1|k = F̂P c

k|kF̂ T + Q̂, (4.62)

x̂c
k+1|k = F̂ x̂c

k|k, (4.63)
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where

yk =


y1

k
...

yS
k

 , Ĉ =


Ĉ1

...
ĈS

 , C̄ =


C̄

1

...
C̄

S

 , R̂ =


R̂1 · · · 0
... . . . ...
0 · · · R̂S

 , and R̄ =


R̄1 · · · 0
... . . . ...
0 · · · R̄S

 ,

with each Ĉi, R̂i, and R̄i, ∀i ∈ S, as well as F̂ , Q̂, and Q̄ given by the corresponding
equations in step 3 of Algorithm 4.6, assuming constant parameters. For a simpler notation,
we also define the augmented matrices

C̃ :=


Ĉ

C̄

F̄

 and R̃ :=


R̂ 0 0
0 R̄ 0
0 0 Q̄

 .

Then, we can rewrite (4.60) more compactly, as follows:

P c
k|k =

[
(P c

k|k−1)−1 + C̃
T
R̃

−1
C̃
]−1

,

which we expand by applying Lemma A.1, such that

P c
k|k = P c

k|k−1 − P c
k|k−1C̃

T(
R̃ + C̃P c

k|k−1C̃
T)−1

C̃P c
k|k−1. (4.64)

We then combine (4.64) with (4.61) and substitute the result into (4.63) to obtain the
steady-state predicted robust central state estimate

x̂c
k+1|k = F̃kx̂c

k|k−1 + F̃kP c
k|k−1Ĉ

T
R̂

−1
yk, (4.65)

in which
F̃k = F̂

(
In − P c

k|k−1C̃
T(

R̃ + C̃P c
k|k−1C̃

T)−1
C̃
)

is the polytopic robust centralized filter closed-loop matrix. Furthermore, we substitute
P c

k|k from (4.64) back into (4.62) to obtain the following expression for the predicted prior
error weighting matrix:

P c
k+1|k = F̂

(
P c

k|k−1 − P c
k|k−1C̃

T(
R̃ + C̃P c

k|k−1C̃
T)−1

C̃P c
k|k−1

)
F̂ T + Q̂. (4.66)

Theorem 4.10. Consider the linear system model (4.58) with polytopic uncertainties
(4.59) and the corresponding robust centralized filter (4.65)-(4.66). Assume that {F̂ , C̃} is
detectable and {F̂ , Q̂1/2} is controllable. Then, for any initial condition P c

0|−1 ≻ 0, ξ > 0,
and µ > 0, P c

k+1|k converges to the unique stabilizing solution P c ≻ 0 of the algebraic
Riccati equation

P c = F̂
(
P c − P cC̃

T(
R̃ + C̃P cC̃

T)−1
C̃P c

)
F̂ T + Q̂. (4.67)

The solution P c is stabilizing in the sense that the steady-state filter closed-loop matrix

F̃ = F̂
(
In − P cC̃

T(
R̃ + C̃P cC̃

T)−1
C̃
)

(4.68)

is Schur stable.
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Proof. The conditions ξ > 0 and µ > 0 imply that φ > 0, ensuring that matrices F̂ ,
C̃, R̃, and Q̂ are well-defined. From Kailath, Sayed and Hassibi (2000b), we have that
detectability of {F̂ , C̃} and controllability of {F̂ , Q̂1/2} ensure the convergence of P c

k+1|k

in (4.66) to the unique stabilizing positive definite solution P c of the algebraic Riccati
equation (4.67) that stabilizes (4.68), which is the polytopic robust centralized filter
steady-state closed-loop matrix.

Now, let us establish the conditions for the boundedness of the estimation error
variance of the proposed PRCKF. Thus, consider the uncertain linear discrete-time system
model (4.58)-(4.59). Note that we can write the polytopic uncertainties described in (4.59)
alternatively as

[
δFk δHk

]
=
[
In · · · In

] 
α1,kIn · · · 0

... . . . ...
0 · · · αV,kIn




F1 H1
... ...

FV HV

 =: M1 ᾱ1,k

[
F̄ H̄

]
, (4.69a)

[
δCi

k δDi
k

]
=
[
Ir · · · Ir

] 
α1,kIr · · · 0

... . . . ...
0 · · · αV,kIr




Ci
1 Di

1
... ...

Ci
V Di

V

 =: M2 ᾱ2,k

[
C̄

i
D̄

i
]

, ∀i ∈ S,

(4.69b)

in which, since αk =
[
α1,k · · ·αV,k

]T
belongs to the unit simplex ΛV in (3.85), we have that

∥ᾱ1,k∥ ≤ 1 and ∥ᾱ2,k∥ ≤ 1.

We can further aggregate the equations for each sensor i in (4.58b) and (4.69b)
into the compact expressions

yk = (C0 + δCk)xk + (D0 + δDk)vk,[
δCk δDk

]
= M2 (IS ⊗ ᾱ2,k)

[
C̄ D̄

]
,

(4.70)

where

yk :=


y1

k
...

yS
k

 , vk :=


v1

k
...

vS
k

 , C0 :=


C1

0
...

CS
0

 , D0 :=


D1

0 · · · 0
... . . . ...
0 · · · DS

0

 ,

M2 :=


M2 · · · 0
... . . . ...
0 · · · M2

 , C̄ :=


C̄

1

...
C̄

S

 , and D̄ :=


D̄

1 · · · 0
... . . . ...
0 · · · D̄

S

 .

(4.71)

Moreover, we assume that wk and {vk}S
i=1 are uncorrelated zero-mean Gaussian

noise processes with joint covariance matrix

Q = E


wk

vk

 [wT
k vT

k

] =
Q 0

0 R

 ≻ 0, (4.72)



150 Chapter 4 Robust Distributed Kalman Filtering

in which R = diag
(
R1, . . . , RS

)
. In addition, assume that there is no correlation between

the parametric uncertainties and the system and measurement noises. Finally, consider
the following assumptions about the uncertain system and the robust centralized filter.

Assumption 4.6. The uncertain system (4.58a)-(4.69b) is quadratically stable, according
to Definition 3.2.

Assumption 4.7. The conditions of Theorem 4.10 are satisfied, such that the polytopic
robust centralized filter steady-state closed-loop matrix F̃ is Schur stable.

Under Assumption 3.3 and Assumption 3.4, we now show that the steady-state
robust centralized filter (4.65) is also quadratically stable. To simplify the notation, we
define the following steady-state filter gain

K̃ := F̃P cĈ
T
R̂

−1
,

where F̃ is given by (4.68), in which P c is the stabilizing solution of the algebraic Riccati
equation (4.67). Hence, the steady-state polytopic robust centralized filter equation can
be rewritten as

x̂c
k+1|k = F̃x̂c

k|k−1 + K̃yk. (4.73)

Now, substituting yk from (4.70) into (4.73) gives

x̂c
k+1|k = F̃x̂c

k|k−1 + K̃(C0 + δCk)xk + K̃(D0 + δDk)vk, (4.74)

with aggregate matrices as defined in (4.71). Additionally, we define the central state
estimation error vector ec

k := xk − x̂c
k|k−1. Then, subtracting (4.74) from xk+1 in (4.58a)

yields

ec
k+1 =

[
(F0−F̃−K̃C0)+(δFk−K̃δCk)

]
xk+F̃ec

k+(H0+δHk)wk−K̃(D0+δDk)vk. (4.75)

Furthermore, we introduce the augmented system composed of the target system state xk

and the central estimation error ec
k. Then, from (4.58a), (4.69a), (4.70), and (4.75), this

augmented system is described by

ζc
k+1 = (F + δFk)ζc

k + (H + δHk)ηc
k,[

δFk δHk

]
= M ᾱk

[
F̄ H̄

]
,

(4.76)

where

ζc
k :=

xk

ec
k

 , ηc
k :=

wk

vk

 , F :=
 F0 0
F0 − F̃− K̃C F̃

 , H :=
H0 0
H0 −K̃D0

 ,

M :=
M1 0
M1 −K̃M2

 , ᾱk :=
ᾱ1,k 0

0 IS ⊗ ᾱ2,k

 , F̄ :=
F̄ 0
C̄ 0

 , H̄ :=
H̄ 0

0 D̄

 .
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Lemma 4.2. If Assumption 4.6 and Assumption 4.7 are satisfied, then the augmented
system (4.76) is quadratically stable.

Proof. Note that the augmented system matrix F is lower triangular with diagonal
elements F0 and F, which are both Schur stable, which implies that F is also Schur stable.
In addition, we have that

F̄(zI2n −F)−1M =
F̄ 0
C̄ 0

 zIn − F0 0
−(F0 − F̃− K̃C0) zIn − F̃

−1 M1 0
M1 −K̃M2


=
F̄ (zIn − F0)−1M1 0
C̄(zIn − F0)−1M1 0

 =
F̄

C̄

 (zIn − F0)−1
[
M1 0

]
.

Moreover,

F0 + M1α1,kF̄ = F0 +
[
M1 0

] ᾱ1,k 0
0 IS ⊗ ᾱ2,k

F̄

C̄

 .

Since system (4.58a)-(4.69b) is quadratically stable, according to Remark 3.10, one has∥∥∥∥∥∥
F̄

C̄

 (zIn − F0)−1
[
M1 0

]∥∥∥∥∥∥
∞

< 1,

for all admissible contractions for all admissible contractions ᾱ1,k and ᾱ2,k. As a conse-
quence,

∥∥∥F̄(zI2n −F)−1M
∥∥∥

∞
< 1 and the augmented system (4.76) is also quadratically

stable.

Next, we define the covariance matrix of the augmented system state as Pc
k :=

E
{
ζc

k(ζc
k)T

}
. Then, from (4.76), Pc

k satisfies the Lyapunov recursion

Pc
k+1 = (F + δFk)Pc

k(F + δFk)T + (H + δHk)Q(H + δHk)T , (4.77)

with Q as defined in (4.72).

Theorem 4.11. Given that Assumption 4.6 and Assumption 4.7 hold, the state estimation
error variance of the steady-state polytopic robust centralized filter (4.73) satisfies

lim
k→∞

E
{
ekeT

k

}
⪯ V22,

where V22 is the (2, 2) block entry with the smallest trace among all (2, 2) block entries of
matrices V ≻ 0 that satisfy the inequality

(F + MᾱF̄) V (F + MᾱF̄)T + (H + MᾱH̄)Q (H + MᾱH̄)T − V ⪯ 0,

for all admissible ᾱ, with ∥ᾱ∥ ≤ 1.
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Proof. According to Lemma 4.2, the augmented system (4.76) is quadratically stable, then
Definition 3.2 implies that there exists a matrix U ≻ 0 such that

(F + MᾱkF̄) U (F + MᾱkF̄)T − U ≺ 0,

for all admissible ᾱk. Based on Petersen and McFarlane (1996) and Sayed (2001), the
existence of such a matrix U ≻ 0 indicates that there exists a sufficiently large scaling
parameter ϵ > 0, such that one can find a matrix V = ϵ U satisfying

(F + MᾱkF̄) V (F + MᾱkF̄)T + (H + MᾱkH̄)Q (H + MᾱkH̄)T ⪯ V.

By subtracting the recursion for the augmented system covariance in (4.77) from the
inequality above, we obtain

(F + MᾱkF̄)(V −Pc
k)(F + MᾱkF̄)T ⪯ V −Pc

k+1,

or, equivalently,

V −Pc
k+1 = (F + MᾱkF̄)(V −Pc

k)(F + MᾱkF̄)T + Wk,

for some Wk ⪰ 0. Finally, since the augmented system is quadratically stable, as k →∞,
we have that V −Pc

k+1 ⪰ 0, or Pc
k+1 ⪯ V. The (2, 2) block entry of Pc

k corresponds to
the estimation error variance, which is therefore bounded.

Corollary 4.3. If the assumptions in Theorem 4.9 are satisfied, as well as Assumptions
4.6 and 4.7, the PRDKCF in Algorithm 4.7 converges to the PRCKF in Algorithm 4.6
and thus shares its stability and bounded estimation error variance properties, according to
Theorems 4.10 and 4.11.

4.3.5 Illustrative Example

In this section, we study the performance of the proposed Polytopic Robust
Distributed Kalman Consensus Filter with an example adapted from Xie, Soh and Souza
(1994) and Section 3.3.5. We also evaluate the centralized counterpart, PRCKF, considered
the benchmark for the distributed strategy. We further compare our results with those of
other polytopic robust distributed filtering approaches from the literature. Additionally, to
establish a baseline, we also assess the results of the nominal centralized and distributed
filters presented in Section 4.1.

Consider a linear discrete-time target-system with polytopic uncertainties, as
described in (4.42)-(4.44), with the following constant nominal parameter matrices and
uncertainties bounded to a 2-vertex polytope:

F0,k =
0 −0.5
1 1

, G0,k =
0
0

, H0,k =
−6

1

, F1,k =
 0 0
0.1 0.3

, G1,k =
0
0

, H1,k =
 0
0.1

,

(
F2,k, G2,k, H2,k

)
= −

(
F1,k, G1,k, H1,k

)
.
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No input signal uk is present and wk is a zero-mean white Gaussian noise signal with
variance Qk = 1. The initial state is x0 =

[
2 1

]T
.

A set of S = 25 sensors arranged in a random geometric undirected network, shown
in Figure 8, measure the target system. The sensing model is described as in (4.43)-(4.44),
with vi

k as zero-mean white Gaussian noise signals with variances Ri
k. Two different types

of sensors are considered. Sensors with odd number, i.e., i = 1, 3, . . . , 25, are of the first
type, with constant parameter matrices

Ci
0,k =

[
−100 9

]
, Di

0,k = 1, Ci
1,k =

[
0.1 0.3

]
, Di

1,k = 0.1, Ri
k = 1,(

Ci
2,k, Di

2,k

)
= −

(
Ci

1,k, Di
1,k

)
.

Sensors with even number, i.e., i = 2, 4, . . . , 24, are of the second type, with matrices

Ci
0,k =

[
−50 12

]
, Di

0,k = 1, Ci
1,k =

[
0.15 0.45

]
, Di

1,k = 0.3, Ri
k = 0.8,(

Ci
2,k, Di

2,k

)
= −

(
Ci

1,k, Di
1,k

)
.

Then, we apply the proposed PRDKCF (Algorithm 4.7) with the following initial-
ization data for all sensors:

x̂i
0|−1 =

[
0 0

]T
, P i

0|−1 = I2, µ = 0.01, ξ = 0.01, and L = 10,

with parameters µ and ξ selected according to the guidelines in Remark 4.6. For the
consensus iterations, we adopt the Metropolis weights shown in (2.20). Figure 12 depicts
the evolution of the actual target system state along with the estimation performed by
sensors A (Type 1) and B (Type 2), identified in Figure 8, using the proposed PRDKCF.
At each time step, the coefficients αk ∈ Λ2 (see (4.45)) are randomly selected. According
to the results, both sensors were able to successfully track the state of the target system,
despite the polytopic model uncertainties. Moreover, their estimates are similar, indicating
that they reach consensus at each time step.

We continue our analysis of the PRDKCF with some comparisons. Analogous to
Section 4.2.5, we consider two versions of the PRDKCF. In the first, RDKCF-1, the number
of sensors in the network S is known to each sensor, such that, in step 6 of Algorithm 4.7,
we choose ρi

k = S. In the the second version, PRDKCF-2, S is estimated according
to Remark 4.2. We compare the distributed filter results with those from the PRCKF
(Algorithm 4.6), taken as a benchmark. In addition, we also simulate the nominal centralized
and distributed filters, CKF (Algorithm 4.1) and DKCF (Algorithm 4.2), respectively.
Furthermore, we compare the PRDKCF with other polytopic robust distributed estimators
from the literature, namely the H∞-consensus filter by Shen, Wang and Hung (2010) and
the mean square state estimator of Souza, Coutinho and Kinnaert (2016).

The simulation consists of performing M = 1000 Monte Carlo experiments, each
with time horizon N = 100. At each time step k, we compute the mean squared estimation
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Figure 12 – Actual (solid lines) and estimated (dashed lines) target system state obtained
by sensors A and B with the proposed PRDKCF (Algorithm 4.7).
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error (MSE), averaged over all experiments and sensors in the network, as follows:

MSEk = 1
SM

S∑
i=1

M∑
e=1
∥xk − x̂i

k|k,e∥2,

which provides a reasonable approximation of the estimation error variance, as we cannot
compute it analytically due to the parametric uncertainties, as discussed in Sayed (2001).

The results are presented in Figure 13 and Table 4, which summarizes the mean
MSE and standard deviation σ(MSE) of the estimation error variances, respectively
computed as

MSE =
N∑

k=0

MSEk

N + 1 and σ2(MSE) =
N∑

k=0

(MSEk −MSE)2

N + 1 .

As expected, since the PRCKF gathers information from all the sensors in the
network, it achieves the best performance. Nevertheless, both versions of the proposed
PRDKCF present a very similar performance, exhibiting the smallest error variance among
the distributed approaches. When S is known (PRDKCF-1), we achieve a slightly smaller
error variance compared to when we estimate it (PRDKCF-2), which was also anticipated.
These filters also show the smallest standard deviation. The nominal centralized and
distributed estimators, CKF (Algorithm 4.1) and DKCF (Algorithm 4.2), obtained similar
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Figure 13 – Estimation error variance curves of the polytopic robust distributed filters.
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1 PRCKF (Algorithm 4.6) 5 DKCF (Algorithm 4.2)

2 PRDKCF-1 (Algorithm 4.7, S known) 6 Shen, Wang and Hung (2010)

3 PRDKCF-2 (Algorithm 4.7, S estimated) 7 Souza et al. (2016)

4 CKF (Algorithm 4.1)

Table 4 – Estimation performance of each polytopic robust distributed filter.

Filter MSE (dB) σ(MSE) (dB)
1 PRCKF (Algorithm 4.6) -48.75 1.6582
2 PRDKCF-1 (Algorithm 4.7, S known) -48.07 1.5331
3 PRDKCF-2 (Algorithm 4.7, S estimated) -47.65 1.5398
4 CKF (Algorithm 4.1) 3.809 11.007
5 DKCF (Algorithm 4.2) 3.836 10.902
6 Shen, Wang and Hung (2010) 31.96 2.2239
7 Souza, Coutinho and Kinnaert (2016) 33.14 2.0296

Bold numbers indicate the smallest values.
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results, with significant larger error variance and standard deviation, compared to the
previous estimators. This is explained by their lack of uncertainty compensation. The
H∞-consensus filter by Shen, Wang and Hung (2010) and the mean square state estimator
of Souza, Coutinho and Kinnaert (2016) present the highest error variances, despite
considering the polytopic model uncertainties. Moreover, both depend on the solution
of LMI-based optimization problems and are not fully distributed, since the gains of all
sensors are computed in a batch, which may be infeasible for larger networks.

We conclude our analysis with an evaluation of how the number of consensus
iterations L affects the PRDKCF performance. Figure 14 compiles a series of simulations
with several values of L, considering both scenarios of the PRDKCF. For each value of L,
we compute the mean estimation error MSE over the entire time horizon, as previously
described. The PRCKF is also shown for comparison purposes. The results show that, as
we increase the value of L, the distributed filters approach the result of the centralized
filter. This, however, requires more computation time, such that we have a performance
trade-off. Moreover, note that except for when L = 1, both versions of the PRDKCF
exhibit similar results, meaning that the impact of knowing S beforehand or estimating it
online is not very significant.

Figure 14 – Effect of the number of consensus iterations L on the PRDKCF (Algo-
rithm 4.7).
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Chapter 5
Conclusion

In this thesis, we addressed several linear discrete-time state estimation problems
under different conditions. Since these problems fundamentally consist of estimating the
state of a dynamical system based on measurements obtained from some sensing device,
we divided them into two main categories: single- and multiple-sensor state estimation.
Furthermore, within each of these categories, we considered three situations. First, we
assumed that the available target system and sensing models were perfectly known. In
the other two situations, we dealt with the more realistic scenario where these models are
subject to parametric uncertainties, which we considered to be of the norm-bounded or
polytopic kind. For each category and scenario, we proposed filtering strategies inspired
by the simplicity and efficiency of the Kalman filter (KALMAN, 1960).

We developed a core framework for the nominal single-sensor state estimation
case. We adopt a deterministic interpretation of the estimation task and formulate it as a
constrained regularized least-squares problem, as discussed in Bryson and Ho (1975). The
constraints are the equations that define the target system and sensing models. Rather than
solving the constrained problem, we used the penalty function method (LUENBERGER;
YE, 2021) to transform it into a more convenient unconstrained equivalent, whose solution
provided the so-called Nominal Kalman Filter (KF). As such, the proposed estimator
inherits the recursive and analytical nature of the standard Kalman filter, which we
presented as a simple correction-prediction algorithm.

Then, based on the works by Sayed (2001) and Ishihara, Terra and Cerri (2015),
we extended this framework to deal with the cases where the underlying target system
and sensing models are subject to norm-bounded or polytopic parametric uncertainties.
We formulate these robust estimation problems as constrained regularized least-squares
problems with uncertainties and apply the penalty function method, which conveniently
provides a parameter we can adjust to improve the estimation accuracy. Using this
methodology, we proposed the Robust Kalman Filter (RKF) and the Polytopic Robust
Kalman Filter (PRKF), presenting both as recursive correction-prediction algorithms that
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resemble the nominal version. We further established conditions for stability and bounded
estimation error variance of each filter. Finally, the performance of the proposed filters
was accessed with numerical examples, which illustrated their advantage compared to
other existing approaches found in the specialized literature. In summary, the proposed
estimators have a simple structure. They do not depend on numerical solvers to deal
with complex LMI-based optimization problems, such that they require a relatively low
computational cost and reasonable estimation quality. Therefore, they are promising
solutions for real-time applications, even with low-cost hardware setups.

The multiple-sensor state estimation solutions are the main contributions of this
work. We addressed each of the three scenarios mentioned above, considering a sensor
network context. As such, we first extended the single-sensor framework commented above
to encompass the centralized estimation problem, i.e., assuming that there is a fusion
center with access to measurements from all of the sensors in the network. As a result, we
proposed the so-called Nominal Centralized Kalman Filter (CKF), the Robust Centralized
Kalman Filter (RCKF), and the Polytopic Robust Kalman Filter (PRCKF), each extending
the capabilities of their single-sensor versions.

Our main objective, however, was to solve the distributed variant of the problem,
meaning that there is no central estimator, and the sensors work as independent units.
Nevertheless, each sensor can communicate with a limited set of neighbors and exchange
information to improve their estimation accuracy. Based on the strategy presented by
Battistelli et al. (2015), we combined the average consensus algorithm (REN; BEARD;
ATKINS, 2007) with the hybrid consensus on measurements and information (HCMCI)
protocol to derive fully distributed versions of the centralized estimators. Then, we
further proposed the Nominal Distributed Kalman Consensus Filter (DKCF), the Robust
Distributed Kalman Consensus Filter (RDKCF), and the Polytopic Robust Distributed
Kalman Consensus Filter (PRDKCF). Moreover, we showed that these distributed filters
converge to their centralized counterparts for a sufficiently large number of consensus
iterations. Since the proposed centralized and distributed estimators derive from the
single-sensor solutions, they also inherit their recursive and relatively simple structures
and are presented as correction-prediction algorithms. Furthermore, we also established
the necessary conditions for stability and bounded estimation error variance of each filter.
Finally, we evaluated the performance of the proposed centralized and distributed filters
with illustrative examples. The results showed that the proposed strategies outperformed
other approaches present in the relatively scarce related literature, which usually rely on
the solution of LMI-based optimization problems that become increasingly complex as
the network gets larger and require offline computation of the filter gains. In contrast, the
proposed filters feature a good performance versus computational burden trade-off due to
their simpler recursive and analytical structure, being suitable for online systems.
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We emphasize how the development of the aforementioned robust distributed state
estimators was carried out as an effort to reduce the gap in the literature on distributed
filtering for systems with norm-bounded and polytopic uncertainties over sensor networks.
Nonetheless, we further suggest some directions in which this work could be extended:

• Application of the proposed robust distributed filters to real-world systems.

• Extension of the proposed distributed estimators to deal with directed networks and
time-varying communication topologies.

• Addressing the robust distributed estimation problem for nonlinear systems with
norm-bounded and polytopic uncertainties.

• Taking network-induced effects such as time-delays and packet dropouts into consid-
eration.
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APPENDIX A
Matrix Analysis

This appendix contains a collection of results in matrix analysis that are used
in this work. Some familiarity with basic linear algebra concepts is assumed. All of the
definitions and results are extracted from the reference book by Horn and Johnson (2013),
where the proofs, omitted here for brevity, can be found.

A.1 Matrix Inversion Lemmas

Lemma A.1. (HORN; JOHNSON, 2013, Sherman-Morrison-Woodbury Formula)
Consider matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×m, and D ∈ Rm×n. If A, C, (A+BCD),
and C−1 + DA−1B are nonsingular, then

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1.

Lemma A.2. (HORN; JOHNSON, 2013) As a consequence of Lemma A.1, if A, C,
A + BC−1D, and (C + DA−1B) are invertible, then

(A + BC−1D)−1BC−1 = A−1B(C + DA−1B)−1.

A.2 Partitioned Matrices and Schur Complement

Lemma A.3. (HORN; JOHNSON, 2013, Schur Complement) Consider matrices
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m. Let M ∈ R(n+m)×(n+m) be the
partitioned matrix defined as

M :=
A B

C D

 .

If A is nonsingular, we define the Schur complement of A in M as

M/A := D − CA−1B.
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Similarly, if D is nonsingular, we define the Schur complement of D in M as

M/D := A−BD−1C.

Lemma A.4. (HORN; JOHNSON, 2013, Banachiewicz Inversion Formula) Con-
sider matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m. Let M ∈ R(n+m)×(n+m)

be a partitioned matrix given by

M =
A B

C D

 .

(i) Suppose A and M are nonsingluar, such that M/A is also nonsingular. Therefore,

M−1 =
A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

 .

(ii) Suppose D and M are nonsingluar, such that M/D is also nonsingular. Therefore,

M−1 =
 (M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 + D−1C(M/D)−1BD−1

 .

A.3 Positive Definite and Semidefinite Matrices

Definition A.1. (HORN; JOHNSON, 2013) A symmetric matrix A ∈ Rn×n is positive
(negative) definite, denoted as A ≻ 0 (A ≺ 0), if xT Ax > 0 (xT Ax < 0), ∀x ∈ Rn, and
xT Ax = 0 if x = 0.

Definition A.2. (HORN; JOHNSON, 2013) A symmetric matrix A ∈ Rn×n is positive
(negative) semidefinite, denoted as A ⪰ 0 (A ⪯ 0), if xT Ax ≥ 0 (xT Ax ≤ 0), ∀x ∈ Rn.

Lemma A.5. (HORN; JOHNSON, 2013) Let A ∈ Rn×n be a symmetric matrix and
B ∈ Rn×m.

(i) Suppose that A is semidefinite. Then, BT AB is also semidefinite and rank(BT AB) =
rank(AB).

(ii) Suppose that A is definite. Then, rank(BT AB) = rank(B). Therefore, BT AB is
definite if, and only if, B has full column rank, i.e., rank(B) = m.

A.4 Nonnegative Matrices

Definition A.3. (HORN; JOHNSON, 2013) A matrix A = [aij ] is said to be nonnegative
if all of its entries aij ≥ 0. Analogously, matrix A is positive if all of its entries aij > 0.
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Definition A.4. (HORN; JOHNSON, 2013) A square nonnegative matrix A is row
(column) stochastic if all of its row (column) sums are unitary. If both row and column
sums are all unitary, A is doubly stochastic.

Definition A.5. (HORN; JOHNSON, 2013) A matrix A is reducible if there exists a
permutation matrix P such that P T AP is a block upper triangular matrix. Otherwise, the
matrix is said to be irreducible.

Definition A.6. (HORN; JOHNSON, 2013) A square nonnegative matrix A is primitive
if it is irreducible and has exactly one nonzero eigenvalue of maximum absolute value.

Lemma A.6. (HORN; JOHNSON, 2013) A matrix A ∈ Rn×n is irreducible if, and only if,
the directed graph associated with it is strongly connected. Equivalently, if A is symmetric,
it is irreducible if, and only if, the associated undirected graph is connected.

Theorem A.1. (HORN; JOHNSON, 2013, Geršgorin Disk Theorem) Let A = [aij ] ∈
Rn×n and let

R′
i(A) =

n∑
j=1,i ̸=j

|aij|, i = 1, . . . , n,

denote the deleted absolute row sums of A. Then all eigenvalues of A are located in the
union of n Geršgorin disks

G(A) =
n⋃

i=1
{z ∈ C : |z − aii| ≤ R′

i(A)} .

Furthermore, if a union of k of these n disks forms a connected region that is disjoint from
all of the remaining n− k disks, then there are precisely k eigenvalues of A in this region.

Theorem A.2. (HORN; JOHNSON, 2013, Perron-Frobenius Theorem) Let A ∈ Rn×n

be a nonnegative irreducible matrix. Then,

(i) ρ(A) > 0;

(ii) ρ(A) is an algebraically simple eigenvalue of A;

(iii) There is a unique vector v ∈ Rn such that Av = ρ(A)v;

(iv) There is a unique vector w ∈ Rn such that wT A = wT ρ(A) and vT w = 1.

In the above, ρ(A) denotes the spectral radius of matrix A, given by ρ(A) = max{|λi|},
where λi are the distinct eigenvalues of A.

Lemma A.7. (HORN; JOHNSON, 2013) Let A ∈ Rn×n be a nonnegative primitive matrix
with right and left Perron vectors v and w, respectively. Then,

lim
m→∞

[
ρ(A)−1A

]m
= vwT .
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A.5 Kronecker Products

Definition A.7. (HORN; JOHNSON, 2013) The Kronecker product of matrices A ∈ Rn×m

and B ∈ Rp×q is defined as

A⊗B =


a11B · · · a1mB

... . . . ...
an1B · · · anmB

 ,

which satisfies the following properties, assuming compatible dimensions:

(i) (A⊗B)(C ⊗D) = (AC)⊗ (BD);

(ii) A⊗ (B + C) = A⊗B + A⊗ C;

(iii) (A⊗B)T = AT ⊗BT ;

(iv) (A⊗B)−1 = A−1 ⊗B−1, provided that both A and B are nonsingular.
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