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Abstract

ROCHA, K. D. T. Robust Distributed Filtering for Sensor Networks under
Parametric Uncertainties. 2022. 174p. Thesis (Doctor) - Sao Carlos School of
Engineering, University of Sao Paulo, Sao Carlos, 2022.

In the past few years, we have witnessed the rapid popularization of networked
cooperative multi-agent systems, which consistently move towards becoming ubiquitous in
our society. As one of the most well-established examples of such systems, sensor networks
have been applied to increasingly more complex systems, demanding even more robust,
efficient, and reliable technologies. Distributed state estimation is the most fundamental
task that one can accomplish with these networks. The main objective of this thesis is
to develop robust distributed filtering strategies for sensor networks applied to linear
discrete-time systems subject to model parametric uncertainties. Specifically, we deal
with two types of uncertainties: norm-bounded and polytopic. To achieve this goal, we
also address other related problems, divided into two categories. The first category of
problems refers to the single-sensor state estimation task. Within this category, we consider
the scenarios in which the underlying models are perfectly known and where they are
subject to each of the two kinds of uncertainty. We propose nominal and robust filters
for each situation. The second category concerns the networks with multiple sensors,
considering the same three scenarios. For each one, we propose both centralized and
distributed estimators. We use the average consensus algorithm to obtain the distributed
filters, which approximate their centralized counterparts. The proposed filters are based on
the celebrated Kalman filter and present a similar recursive and relatively simple structure.
We evaluate the performance of the proposed estimators with application examples, in

which we also compare them to existing strategies from the related literature.

Keywords: Sensor networks. Distributed filtering. Consensus. Uncertain systems. Kalman
filter.






Resumo

ROCHA, K. D. T. Filtragem Distribuida Robusta para Redes de Sensores
Sujeitas a Incertezas Paramétricas. 2022. 174p. Tese (Doutorado) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2022.

Nos tltimos anos, tem-se testemunhado a rapida popularizagao de sistemas multia-
gentes cooperativos em rede, que consistentemente tendem a se tornar onipresentes em
nossa sociedade. Sendo um dos exemplos mais bem estabelecidos de tais sistemas, as redes
de sensores tém sido aplicadas a sistemas cada vez mais complexos, exigindo tecnologias
cada vez mais robustas, eficientes e confidveis. A estimacgao distribuida de estado é a tarefa
mais fundamental que podemos realizar com essas redes. O principal objetivo desta tese é
desenvolver estratégias robustas de filtragem distribuida para redes de sensores aplicadas
a sistemas lineares em tempo discreto sujeitos a incertezas paramétricas. Especificamente,
consideram-se dois tipos de incertezas: limitadas em norma e politépicas. Para atingir
esse objetivo, outros problemas relacionados também sao abordados, divididos em duas
categorias. A primeira categoria de problemas refere-se a tarefa de estimativa de estado
baseada em um tunico sensor. Dentro dessa categoria, considera-se o cenario em que os
modelos sao perfeitamente conhecidos, assim como os em que eles sdo sujeitos a cada um
dos dois tipos de incerteza. Sao propostos filtros nominais e robustos para cada situacao.
A segunda categoria diz respeito as redes com multiplos sensores, considerando os mesmos
trés cenarios. Para cada um, sao propostos estimadores centralizados e distribuidos. O
algoritmo de consenso é utilizado para obter-se os filtros distribuidos, que aproximam suas
versoes centralizadas correspondentes. Os filtros propostos sdo baseados no célebre filtro
de Kalman e apresentam uma estrutura recursiva semelhante e relativamente simples. O
desempenho dos estimadores propostos ¢é avaliado por meio de exemplos de aplicacao,

sendo também comparados com estratégias existentes na literatura relacionada.

Palavras-chave: Redes de sensores. Filtragem distribuida. Consenso. Sistemas com

incertezas. Filtro de Kalman.
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CHAPTER

Introduction

Over the past few decades, networked cooperative multi-agent systems (NCMASs)
have received significant attention from researchers of a diverse spectrum of disciplines,
including engineering, computer science, physics, biology, and economics, to name a few.
Such diversity explains how NCMASs has evolved into an intrinsically multidisciplinary
field. As the name suggests, NCMASs consist of multiple dynamical agents that can work
together to achieve collective group behaviors or tasks. The agents may represent different
entities, depending on the context. For instance, they can be robots, sensors, or computer
processes. The interaction is in information exchange via some communication channel,

hence the networked denomination.

The continuous and rapid advancements in computer miniaturization, communi-
cation, sensing, and actuation technologies have enabled the popularization of NCMASSs
in a broad range of civilian and military applications. In addition, instead of using a
single complex agent to carry out a complicated task, using multiple simple agents can
significantly improve operational effectiveness, reduce costs, and increase the reliability
of the overall system. Moreover, teams of networked agents can carry out tasks that
would be impossible for a single entity to accomplish alone, like surveillance of a large
area. Some potential applications of NCMASs include satellite formation flying for space
interferometry and surveillance (BEARD; LAWTON; HADAEGH, 2001; TILLERSON;
INALHAN; HOW, 2002), formation control of unmanned aerial vehicles (UAVs) (DONG
et al., 2016), air and ground surveillance (GROCHOLSKY et al., 2006), healthcare systems
(ALEMDAR; ERSOY, 2010; SHAKSHUKI; REID, 2015), microgrid control in smart grids
(BIDRAM et al., 2013), and intelligent transportation systems (LEE; PARK, 2012; LU et
al., 2014). Another primary application of NCMASs is in sensor networks. They are present
in environment monitoring (BAI et al., 2018; OTHMAN; SHAZALI, 2012; MAINWARING
et al., 2002), target detection, classification and tracking (ARORA et al., 2004), robotics
(LI; SHEN, 2011), smart cities (ZANELLA et al., 2014), industrial cyber-physical systems
(DING et al., 2019), and several other applications.
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Figure 1 — Types of NCMASs architectures.

e p

o/ \ o
O/\O o~ e

) Centralized. (b) Decentralized. (c) Distributed.

The connection architecture among the NCMASs can be classified into three types,
as shown in Figure 1. In a centralized architecture, there is a central node/agent (in orange)
with access to all other agents (in blue). One of the main drawbacks of this architecture is
that it contains a single point of failure, i.e., if the central node is lost, the whole system is
jeopardized. It also does not scale well as the number of agents increases since the central
node needs to communicate and process information from all agents. The decentralized
architecture divides the network into smaller, locally centralized units. The local centers
(in orange) directly communicate and process data from a limited set of agents. They can
access the rest of the network by interacting with the other local centers. This strategy
is more robust than the centralized one since the failure of a single agent only affects its
local unit. It is also more scalable, as it divides the information processing among the local
centers. Finally, in the distributed architecture, there is no central node whatsoever. Every
agent is independent and can only interact with a limited set of neighbors, thus reducing
communication and processing costs. For this reason, it is the most robust, flexible, and
scalable among the three (CHEN; REN, 2019). Given the advantages of the distributed

architecture compared to the others, it is the strategy we chose to focus on in this work.

Many ideas that are now well-established tools in distributed filtering and control of
NCMASSs were inspired by nature. For instance, in flocks of birds, schools of fish, or swarms
of bees, the agents exploit local interaction mechanisms in order to achieve collective group
objectives that are essential for survival. These behaviors inspired works like the one by
Reynolds (1987), which proposed three rules: collision avoidance, velocity matching, and
flock centering, producing simulated flocking for computer graphics. Next, Vicsek et al.
(1995) proposed a simple discrete-time model of autonomous agents (called particles) that
move in a plane with the same speed but with different headings. At each time step, each
particle updates its heading to its nearest neighbors’ average direction of motion, with
some added random perturbation. Applying this simple local interaction rule eventually
leads all particles to align their headings, even when the neighborhood set of each particle
changes over time. Afterwards, Jadbabaie, Lin and Morse (2003) formally addressed the

alignment problem introduced by Vicsek et al. (1995), from a more theoretical viewpoint,
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based on graph theory and nonnegative matrices.

The alignment problem described above is a classic example of the so-called
consensus problem, a fundamental concept in distributed filtering and control of NCMASs.
In a consensus protocol, each agent in the network interacts with a limited set of neighbors
to agree on a specific quantity. The idea of consensus and its formal study originated in
management science and statistics in the 1960s (DEGROOT, 1974). However, consensus
problems also have a long history in computer science, being the basis for distributed
(LYNCH, 1996) and parallel (BERTSEKAS; TSITSIKLIS, 1989) computing. Later, the
pioneering works by Jadbabaie, Lin and Morse (2003) and Olfati-Saber and Murray (2004)
stimulated the ever-growing interest in consensus problems in the context of NCMASS,
helping to pave the way for the subsequent development of a series of works on the topic.
As aforementioned, Jadbabaie, Lin and Morse (2003) provided a theoretical treatment
for the alignment behavior observed in the discrete-time model of Vicsek et al. (1995).
On the other hand, Olfati-Saber and Murray (2004) established a general framework for
consensus in networks of continuous-time single integrator agents, including the effects of

switching communication topologies and time delays.

This thesis mainly focuses on applying sensor networks to perform consensus-based
robust distributed filtering of systems subject to parametric uncertainties. However, we
also address the robust estimation problem with a single sensor, which is the foundation of
robust distributed filtering. The following two sections introduce these types of estimation,

along with a brief literature review for each.

1.1 Robust Filtering

State estimation, also known as filtering, is paramount to many control systems
(ANDERSON; MOORE, 1979). The problem consists of estimating the state of a dynam-
ical system based on noisy measurement data. A broad range of applications employs
filtering techniques, such as robotics, computer vision, communications, power systems,
and economics, to name a few. Given its importance, state estimation has been extensively
studied over the past decades, especially after the early 1960s, when the celebrated Kalman
filter (KALMAN;, 1960) was first introduced.

Due to its simplicity and practicality, the Kalman filter has been one of the most
popular and widely used approaches since its inception. It operates by minimizing the
estimation error variance. Nevertheless, one of its well-known shortcomings is assuming
exact knowledge of both the target system and sensing models, which seldom holds in
practice. Parametric uncertainties often arise from linearization, unmodeled dynamics,
model reduction, or varying parameters, and they can appreciably degrade the estimation

performance. Despite the numerous efforts towards alleviating such effects, this is still an
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active area of research.

There are several ways to model such parametric uncertainties. This work specifically
addresses two of the possible uncertainty models: the norm-bounded and the polytopic

uncertainty types, which we discuss in the following subsections.

1.1.1 Robust Filtering for Systems with Norm-Bounded

Uncertainties

The most representative robust state estimation approaches for systems subject to
norm-bounded parametric uncertainties found in the literature are H, filtering, guaranteed

cost designs, risk-sensitive filtering, and robust regularized least-squares strategies.

The objective in H, filtering is to minimize the H,, norm of the mapping from the
disturbances to the estimation error. Some important results are reported in Xie, Souza and
Fu (1991), Geromel et al. (2000), Xie et al. (2004), and references therein. One drawback
of this approach, especially in online systems, is that it is hard to guarantee that the H
performance parameter v will satisfy the filter existence conditions at every step. In robust
guaranteed-cost approaches, the goal is to design an estimator such that the estimation
error variance has a guaranteed upper bound for all admissible uncertainties (see, for
instance, Xie, Soh and Souza (1994), Theodor and Shaked (1996), Petersen and McFarlane
(1996), Zhu, Soh and Xie (2002), and Dong and You (2006)). The procedure usually
involves Riccati equations, which depend on selecting one or more scaling parameters to
guarantee a solution’s existence at each time step. This selection, however, is often not

straightforward and has a significant impact on the estimation performance.

On the other hand, risk-sensitive filtering has been recently applied to overcome
some of the shortcomings of the previous strategies. The goal is to minimize the expected
value of an exponential of the quadratic error function, ensuring a certain degree of
robustness against model uncertainties (SPEYER; DEYST; JACOBSON, 1974). For
instance, Levy and Zorzi (2016) proposed a block-update Kalman filter with clear and
easily computed conditions for the convergence of the associated risk-sensitive Riccati
equation. Additionally, Zorzi (2017) presented a robust Kalman filter whose gain is updated
based on a time-varying risk-sensitive parameter, which characterizes a tolerance upon the
divergence between the actual (uncertain) and nominal system models, guaranteeing a

well-defined filter at each iteration.

The fourth approach consists of formulating the estimation problem as a robust
regularized least-squares problem (SAYED; NASCIMENTO, 1999). The aim is to minimize
the worst-possible regularized residual norm over the set of admissible uncertainties. In
general, the resulting filters are recursive and resemble the classic Kalman filter, which is

convenient for online applications. Sayed (2001) was the first work to employ this approach
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in robust filtering. It introduces the so-called bounded data uncertainties (BDU) filter,
which considers that the system is subject to norm-bounded parametric uncertainties.
However, Xu and Mannor (2009) point out that considering the worst-case effect of
uncertainties in least-squares designs may lead to over-conservative filters. They propose
an estimator that combines the Kalman and BDU filters to counteract this issue. Ishihara,
Terra and Cerri (2015) presented a robust filter in a symmetric matrix arrangement. Their
design does not depend on any parameter tuning and assumes that all parameter matrices of
the target system and sensing models have uncertainties. However, it involves the inversion
of a large matrix block at each time step. More recently, Abolhasani and Rahmani (2018)
extended the BDU filter to deal with both norm-bounded and stochastic uncertainties in
all parameter matrices. The filter results from the solution of an optimization problem
subject to a linear matrix inequality (LMI), which minimizes the estimation error variance
at each iteration. Nonetheless, LMI-based strategies often require excessive computational

effort, which might be prohibitive for real-time systems.

Motivated by this discussion, we propose a robust Kalman filter for uncertain linear
discrete-time systems in this thesis. Unlike most works, we assume that all matrices of the
target system and sensing models are subject to norm-bounded parametric uncertainties.
This way, it is also possible to handle systems with uncertain noise variance matrices, as
shown in Dong and You (2006).

We adopt a purely deterministic interpretation of the robust estimation problem,
as discussed in Bryson and Ho (1975) and Sayed (2001), and formulate a constrained
regularized least-squares estimation problem with norm-bounded uncertainties. We further
apply the penalty function method (LUENBERGER; YE, 2021) to transform it into a
more convenient unconstrained problem. The solution to this problem ultimately yields the
proposed robust filter, which we present in a recursive correction-prediction Kalman-like

structure. As such, we avoid using numerical solvers to derive the analytical filter equations.

The robust Kalman filter presented in this thesis was introduced in paper number 2,

shown in Section 1.3.

1.1.2 Robust Filtering for Systems with Polytopic Uncertainties

In the polytopic uncertainty model, we consider that the system parameters
arbitrarily vary within a convex polyhedron centered at the nominal parameters (CHANG;
PARK; TANG, 2015).

The last two decades have witnessed the rise of several robust filtering techniques for
systems subject to polytopic uncertainties. The pioneering work by Geromel et al. (2000)
presents both Hy and H,, filters that are robust to polytopic uncertainties in discrete-time

systems. The proposed estimators are based on the quadratic stability concept, which
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uses a single Lyapunov matrix to evaluate the estimation error norm over the entire
uncertainty domain. However, the quadratic stability assumption is rather conservative for
time-invariant systems. Geromel, Oliveira and Bernussou (2002) addressed this drawback,
proposing a new stability condition based on parameter-dependent Lyapunov matrices.
The authors also provide a method to synthesize a robust H, filter, obtained as the result

of a linear problem constrained by LMIs.

There has been a continuous effort to improve performance and reduce conserva-
tiveness of robust Hy and H, filters. A common strategy is to introduce additional slack
variables into the underlying LMIs, as reported in Shaked, Xie and Soh (2001), Xie et
al. (2004), Duan et al. (2006), Zhang, Xia and Shi (2009), and Chang, Park and Tang
(2015). While providing extra dimensions to the optimization problem solution space, this
approach also increases the computational burden required to solve the more complex LMIs.
Moreover, optimal filters usually demand fine-tuning of project parameters. Mixed Ho/H
strategies are proposed, e.g., in Palhares and Peres (2001) and Gao et al. (2005). The goal
is to minimize an upper bound of the Hy norm of the estimation error whilst guaranteeing
a prescribed H, attenuation level. Additionally, there is the set-membership approach
(YANG; LI, 2011), which involves a recursive algorithm for calculating an ellipsoid that
always contains the true system state. More recently, the Finsler lemma has been used
to improve the performance of estimators for systems with state-multiplicative noise and
polytopic uncertainties, for instance, in Gershon and Shaked (2015), Morais et al. (2017),
and Gershon and Shaked (2020).

A common aspect among the strategies discussed above is their dependence on
solving optimization problems subject to LMIs. Usually, each vertex of the uncertainty
polytope provides one inequality constraint. Hence, the problem complexity increases with
the number of vertices. Moreover, introducing extra free parameters, which often rely on
additional optimization or manual tuning, increases the overall complexity. Nevertheless,
LMI-based robust filters have consistently been considered an effective and valuable state
estimation strategy. However, the numerical solvers involved in their solution often require

computational resources that may not be available in some applications.

With these points in mind, we propose a robust filter for linear discrete-time systems
subject to polytopic uncertainties. We also formulate the robust estimation problem from
a deterministic viewpoint (BRYSON; HO, 1975), as a min-max optimization problem
subject to linear equality constraints obtained from each polytope vertex. The proposed
polytopic robust filter has a recursive correction-prediction structure that resembles the
classic Kalman filter. Its main advantage compared to the aforementioned results is that
it does not depend on the solution of LMI-based optimization problems, avoiding the use

of computationally expensive numerical solvers.

The polytopic robust Kalman filter is also presented in paper 3, shown in Section 1.3.
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1.2 Robust Distributed Filtering

One of the major applications of NCMASSs is in distributed filtering over sensor
networks and has thus been an important research field over the past few decades. These
networks are composed of interconnected nodes with sensing, computing, and communica-
tion capabilities. In a distributed filtering setup, each sensor observes a target dynamical
system and shares information with a limited set of neighboring sensors to collectively
obtain the best estimate of the system state. The cooperation between sensors allows for
improved estimation accuracy, flexibility, and reliability of the overall system. Furthermore,
unlike centralized architectures, a single sensor’s failure does not compromise the entire

system.

The average consensus protocol is among the most successful strategies used in
distributed filtering. Olfati-Saber (2005) is a pioneering work in this sense, combining
consensus and the Kalman filter (KALMAN, 1960) to propose a distributed Kalman
filter (DKF). The idea was to reproduce the result of a global centralized Kalman filter.
However, rather than having access to all sensor nodes at once, it uses a distributed
architecture where the sensors can only access their neighbors. Each sensor carries out
so-called micro-Kalman filter iterations, similar to a Kalman filter in its information
form. However, it uses consensus filters (OLFATI-SABER; SHAMMA, 2005) to fuse the
local measurements and innovation matrices (inverse of the measurement variance matrix)
among the sensor neighborhood. The literature now refers to this technique as consensus
on measurements (CM). A limitation of the DKF is that it assumes all sensors have

identical models, meaning that the target system has to be observable by every sensor.

Olfati-Saber (2007) further extended the DKF to accommodate heterogeneous
sensing models. The new filter is called the Kalman consensus filter (KCF). It also
introduces the consensus on estimates (CE) approach, in which the sensor nodes share
their prior state estimates, significantly increasing estimation accuracy. The KCF is
presented in both continuous-time and discrete-time versions. Later, Olfati-Saber (2009)
showed that the discrete-time KCF is a suboptimal solution to the distributed Kalman
filtering problem. It further proposed an optimal solution, which was shown to not be
scalable for large networks, as it requires the computation of cross-covariance matrices
between every pair of sensor nodes, a prohibitive process in terms of communication and
computational efforts. Nevertheless, the author proposed a feasible alternative to the
optimal filter by approximating the optimal consensus gain, assumed to be a constant
scale of the prior error covariance matrix. Using a Lyapunov-based stability analysis, the
author showed that this suboptimal KCF is stable.

Deshmukh, Kwon and Hwang (2017) proposed a different optimal KCF where both
the Kalman and consensus gains are derived as the solution to an optimization problem in

which the total network estimation error is minimized. However, it suffers from the same
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scalability problem of the simpler optimal KCF of Olfati-Saber (2009), requiring even
higher communication and computational burdens in exchange for minor performance

improvement.

Another consensus-based approach for distributed filtering was proposed in Battis-
telli and Chisci (2014), later referred to as the consensus on information (CI) approach.
The strategy consists of performing consensus on the information pairs, composed of
the posterior state estimates and information matrices (inverse of the error covariance
matrix) of the sensor nodes. A similar approach was reported in Kamal, Farrell and
Roy-Chowdhury (2013), which introduced the information-weighted consensus filter and
presented its application in a distributed camera network. The set of cameras performs a
target-tracking task, such that the filter should compensate for the fact that the target

may not be visible to all cameras.

Finally, in Battistelli et al. (2015), the authors propose the hybrid consensus
on measurements and information (HCMCI) approach, which combines the CM and
CI strategies mentioned above, leveraging their complementary features. Based on this
approach, they design a hybrid consensus filter applicable to linear and nonlinear systems.
For a comprehensive review of distributed filtering over sensor networks using consensus-
based strategies and alternatives such as diffusion-based and gossip-based approaches,
check the compilations in He et al. (2020) and Modalavalasa et al. (2021).

Note that many works on distributed filtering in the literature are based on the
Kalman filter. As such, they inherit the pitfall of requiring exact knowledge of the target
system and sensing models. In practice, these models are often subject to parametric
uncertainties, which can jeopardize the estimation performance. Therefore, dealing with
these uncertainties in distributed filtering has stirred attention from researchers and is the
primary motivation of this thesis. Analogous to the single-sensor robust estimation men-
tioned earlier, we also address two types of parametric uncertainties in robust distributed
filtering: norm-bounded and polytopic uncertainties, which we discuss in the following

subsections.

1.2.1 Robust Distributed Filtering for Systems with

Norm-Bounded Uncertainties

Different from the large body of research dedicated to the single-sensor robust
estimation problem for systems subject to norm-bounded uncertainties, as summarized
in Section 1.1.1, this problem has not been as well-explored in the context of distributed

estimation over sensor networks.

Most works concerning robust distributed filtering adopt a stochastic treatment

of uncertainties. For instance, Ding et al. (2012) and Wang et al. (2018) proposed H
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distributed filters for systems with stochastic uncertainties. The former also deals with
stochastic nonlinearities, and the latter further considers successive missing measurements.
Feng, Wang and Zeng (2013), Tian, Sun and Li (2016), and Ding et al. (2017) presented
recursive Kalman-like distributed filters. The first two additionally address auto- and cross-
correlated noises, whereas the third assumes uniform quantization effects and compensates
for deception attacks. Rastgar and Rahmani (2018) extended the work of Deshmukh, Kwon
and Hwang (2017) to systems with stochastic uncertainties, proposing an optimal consensus-
based distributed filter. Nonetheless, it relies on computing cross-covariance matrices
between sensors to achieve optimality, which renders a computationally and communication-
intensive filter. Later, in Rastgar and Rahmani (2020), the authors circumvented this issue

and proposed a distributed estimator based on the HCMCI approach.

On the other hand, Shen, Wang and Hung (2010), Dong, Ding and Ren (2014),
Hedayati and Rahmani (2020), and Han et al. (2021) proposed H.-consensus filters to
handle norm-bounded uncertainties. The first three also deal with the missing measurements
problem. The work by Hedayati and Rahmani (2020) further considers state time delays.
However, they rely on the solution of complex LMIs and compute the filter gains all at
once, requiring knowledge of the whole network. Zhang, He and Zhou (2018) proposed a
robust recursive distributed filter for sensor networks with parameter and network topology
uncertainties without assuming any particular structure. At each time step, it minimizes
the trace of the estimation error covariance. As in the previous estimators, it also computes
the filter gains altogether. Hence, the works above are not fully distributed strategies since
they require network-wide information. In contrast, Duan et al. (2020) and Rocha and
Terra (2020) proposed fully distributed robust recursive filters. While the former only
considers norm-bounded uncertainties in the target system model, the latter also treats

uncertainties in the sensing models. Moreover, both employ a single consensus iteration.

Considering the low number of works on the subject, we propose a robust fully
distributed consensus-based filter for sensor networks estimating systems subject to norm-
bounded parametric uncertainties. To derive this filter, we first propose a robust centralized
Kalman filter, which generalizes the robust Kalman filter mentioned in Section 1.1.1 to
the multiple sensor case. In this setup, a fusion center gathers the measurements from all
the sensors. Then, through the HCMCI protocol, we arrive at the distributed formulation,
which approximates the centralized estimator’s behavior but considers only the local

interactions between each sensor and its neighborhood.

A preliminary version of this distributed filter which employs a single iteration of
the CI protocol was first presented in paper number 1, listed in Section 1.3, whereas paper

number 4 features the final version of the robust distributed filter.
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1.2.2 Robust Distributed Filtering for Systems with Polytopic

Uncertainties

The literature on robust distributed estimation for systems with polytopic uncer-
tainties is even more scarce than the norm-bounded uncertainty type. Shen, Wang and
Hung (2010) and Souza, Coutinho and Kinnaert (2016) are among the few works that
tackle this problem. The former proposed an H,-consensus filter and also considered
the effects of missing measurements. The latter presented distributed filters with a more
general structure, whose matrices are designed to minimize the mean squared estimation
error. Two strategies are proposed: one based on the observability Gramian and the other
based on the controllability Gramian. A common drawback of the aforementioned solutions
is that they require knowledge of the whole network structure when computing the filter
gains, which reduces their flexibility. Moreover, they depend on the solution of LMI-based
optimization problems, whose complexity increases with the number of sensors in the
network and the number of vertices of the uncertainty polytopes, which may be prohibitive

for real-time systems.

To help fill the gap regarding this specific type of problem, in this thesis, we propose
a robust and fully distributed consensus-based filter for estimating the state of systems
subject to polytopic uncertainties using sensor networks. Similar to the norm-bounded
uncertainty case discussed in Section 1.2.1, we first propose a centralized filter, extending the
polytopic robust Kalman filter mentioned in Section 1.1.2 to the multiple-sensor scenario.
Then, we also employ the HCMCI protocol to derive a distributed implementation of the

centralized estimator, aiming to approximate its performance.

Paper number 5, shown in Section 1.3, also presents the polytopic robust distributed

filter proposed here.
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1.4 Document Structure

This thesis is organized into five chapters and an appendix, described as follows:

Chapter 1: Introduces the networked cooperative multi-agent systems, including the
sensor networks, the central subject of this work. Moreover, it explains the different
robust and distributed filtering problems to be addressed, featuring brief reviews of

the related works in the literature.

Chapter 2: Presents preliminary concepts that are fundamental to the development
of this work, namely, the penalty function method, least-squares problems, notions

of graph theory, and the average consensus algorithm.

Chapter 3: Addresses the state estimation problem in the single-sensor scenario,
explaining the deterministic approach to derive nominal and robust filters as the
outcome of solving least-squares problems. Furthermore, it presents the two proposed

robust Kalman filters for systems with norm-bounded and polytopic uncertainties.

Chapter 4: Extends the results in Chapter 3 for applications using sensor networks.
It presents the robust centralized and consensus-based distributed versions of the
respective filters proposed in the previous chapter, considering the two distinct types

of parametric uncertainties: norm-bounded and polytopic.
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o Chapter 5: Presents the concluding remarks of this work and suggests possible

directions to extend the proposed results further.

o Appendix A: Provides a collection of matrix analysis results used throughout this

document.
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CHAPTER

Preliminary Concepts

This chapter introduces preliminary concepts fundamental to this work’s develop-
ment. The proposed robust and distributed filters result from the solution of optimization
problems subject to linear equality constraints. When dealing with these problems, using
the penalty function method is a standard approach. It approximates the constrained
problem with a sequence of unconstrained problems, which are more convenient to solve.
The approximation includes the constraint equations into the objective function multiplied

by a parameter that penalizes violations of the constraints.

In addition, the classic least-squares problem, as well as its weighted and reg-
ularized variants, are reviewed. We also present the regularized least-squares problem
with uncertainties and an adapted version that sits at the foundation of the estimation

algorithms proposed in this thesis.

A graph is a standard instrument to model the intercommunication among sensors
in a network. Therefore, this chapter also presents some basic graph theory notions and
results used in this work. We conclude the chapter with an introduction to the average

consensus algorithm, a paramount technique in distributed estimation.

2.1 Penalty Function Method

This section presents the penalty function method, a technique used to solve
optimization problems subject to linear equality constraints. The following results are
extracted from Luenberger and Ye (2021).

Consider the constrained optimization problem
min f(2)
z

s.t. h(z) =0,

(2.1)

where z € R, f : R" — R is a continuous objective function, and A : R® — R is a linear

equality constraint. The penalty function method consists of replacing the constrained
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problem (2.1) by an unconstrained problem of the form

lein Q(Z7N) = f(Z> + MP(Z)a (2'2)

in which ¢(z, pt) is a new objective function with a constant penalty parameter p > 0 and
penalty function P(z) = h(z)Th(z). Observe that the penalty parameter is associated with
the constraint term h(z) in a way that the penalty function P(z) is penalized when the
constraint is violated, i.e., if A(z) # 0. This way, u determines how close the solution

to (2.2) is to the solution of the original problem (2.1).

In general, we apply the penalty function method as an iterative process. At each
step k > 0, the penalty parameter j is fixed and the optimal solution zj, of problem (2.2) is
then obtained. At each iteration, py is updated, such that an ascending sequence {uy }725
is generated. As pp — +o0o, the penalty in function P(z) increases and, in the limit,
P(z) — 0. Consequently, h(z) — 0 and the unconstrained problem becomes equivalent to
the constrained problem. Algorithm 2.1 summarizes the procedure for the penalty function
method.

Algorithm 2.1 Penalty function method
Initialization: Set a desired precision € > 0 and py > 0
for k=0,1,... do
Define the auxiliary objective function q(z, ux) = f(2) + e P(2)
Obtain z, = arg min q(z, px)
if pupP(z;) < € then
Stop and return the solution z
else
Mk < k41 > M
k< k+1
end if

end for

The following results concern the convergence of the penalty function method. The

detailed proofs can be found in Luenberger and Ye (2021).

Lemma 2.1. (LUENBERGER; YE, 2021) Consider an ascending sequence of penalty pa-
rameters { iy } 125 and the corresponding sequence of functions {q(z, px) }225, with q(z, ps,) =
f(2) + upP(2). The following properties hold:

(%) q(zk; pix) < q(2y1, pag1)s
(%) P(z) > P(2k+1);

(7i5) f(z) < f(zh41).

Lemma 2.2. (LUENBERGER; YE, 2021) Let z* be a solution to problem (2.1). Then,
for each k,

F(Z") = aze, ) = f(2k)-



2.2 Least-Squares Problems 43

Definition 2.1. A point z is a limit point of sequence {z} if there ezists a subsequence
of {zx} that converges to z. Equivalently, z is a limit point of {z} if there exists a subset

K C Z, such that {z}rex converges to z.

The next theorem establishes the global convergence of the penalty function method.
More precisely, it states that the limit point of any sequence of solutions to unconstrained
problem (2.2) corresponds to the solution to the original constrained problem (2.1). The

result follows from the two previous lemmas.

Theorem 2.1. (LUENBERGER; YE, 2021) Let {z} be a sequence generated by the penalty

function method. Then, any limit point of this sequence is a solution to problem (2.1).

2.2 Least-Squares Problems

This section reviews the classic least-squares problem and some variations: the
weighted least-squares, the regularized least-squares, and the regularized least-squares
with uncertainties. Further details about the classic problems and their solutions can be
found, for instance, in Kailath, Sayed and Hassibi (2000a).

2.2.1 Least-Squares Problem
Consider the quadratic optimization problem
min J(z), (2.3)
with objective function J : R™ — R given by
J(z) = ||Az = b|* = (Az — b)T (Az — b), (2.4)
in which z € R" is an unknown vector and A € R™*" and b € R™ are known.

Lemma 2.3. A vector z* is a solution to problem (2.3)-(2.4) if, and only if, it satisfies
the normal equation
AT Az = ATD. (2.5)

The resulting minimum value of the objective function is then given by
J(27) = [|AZ" = bl]* = [|b]|* — [lA="||".

If A has full column rank n, then AT A is nonsingular and there is a unique z* satisfying
(2.5) given by
2 = (A7A) A",

Furthermore, the resulting minimum value of the objective function is

J(z") = Az = b|)* = b7 (L, — A(ATA) A7),
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2.2.2 Weighted Least-Squares Problem
Consider the optimization problem
min J(z), (2.6)
with objective function J : R — R given by
J(z) = | Az — b3 = (Az — b)TW(Az —b), (2.7)

where z € R™ is an unknown vector, W € R™*™ is a known symmetric positive definite
weighting matriz, and A € R™™ and b € R™ are also known. Notice that this is a

generalization of the previous least-squares problem, for which W = I,,,.

Lemma 2.4. A vector z* is a solution to problem (2.6)-(2.7) if, and only if, it satisfies

the normal equation
ATWAZ* = ATWb. (2.8)

The minimum value of the objective function is thus given by
J(z*) = |[[Az" — b||3, = bTWb — bTWAZ*.

If A has full column rank n, then ATWA is nonsingular and there is a unique z* satisfying
(2.8) given by
= (ATwa) AW,

Furthermore, the minimum value of the objective function is

J(z) = Az = bl = b7 (W — WA(ATWA) " ATW)b.

2.2.3 Regularized Least-Squares Problem
Consider the optimization problem defined by
min J(2), (2.9)
with objective function J : R" — R given by
J(z) = ||z]|3 + ||Az — b||3y = 27 Qz + (Az — b)TW(Az — b), (2.10)

where z € R" is an unknown vector, Q € R"*” and W € R"™*™ are known symmetric
weighting matrices, with Q > 0 and W > 0, and A € R™*" and b € R™ are also known.
Unlike the weighted least-squares problem, this function has an additional reqularization

term.
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Lemma 2.5. The unique optimal solution z* to problem (2.9)-(2.10) is given by
= (Q+ATWA) AT Wb (2.11)
and the minimum value of the objective function is

(=) =" (W= WA(Q + ATWA) ATW)b = b (W + AQ1AT) T,

Note that, in Lemma 2.5, the uniqueness of the solution is guaranteed by requiring
that Q > 0. However, as we shall see in Section 3.1.2, we are rather interested in the
case where Q > 0 and W > 0, such that an additional condition is needed to ensure the
uniqueness of the solution. Therefore, in the following lemma, we provide such conditions

when dealing with this alternative problem.
9, 0

Qs
and Qs = 0, and W = 0. Define J5 := [O ]2}, where the identity matriz I has the same

Lemma 2.6. Consider problem (2.9)-(2.10) with Q = [ > 0, in which Q; = 0

J
dimensions as Qq. If the block [Z] has full column rank n, the optimal solution z* given
in (2.11) is unique.

Proof. The uniqueness of the optimal solution z* in (2.11) is a consequence of the invert-
ibility of the term (Q + ATW.A). Let us rewrite this term as

Q2 0 32
9710y + 9500y + ATWA = 7713, + [17 A7) [o w] H :

in which we define J; := [Il O} and Jy = {0 IQ}, where I, and I, are identity matrices
with the same dimensions as Q; and Q,, respectively. From Lemma A.5 (item (i)), since

Q; = 0, the first term is positive semidefinite. The central block diagonal matrix in the
J
last term is positive definite, thus, according to Lemma A.5 (item (ii)), if the block ;

has full column rank, the last term is also positive definite, and so is the full expression.

In consequence, we ensure its invertibility and the uniqueness of the optimal solution. [J

2.2.4 Regularized Least-Squares Problem with Uncertainties

Consider now a regularized least-squares problem with parametric uncertainties
defined by
minmax J(z,0A, 6b), (2.12)
z " 5A,0h

with objective function given by
J(2,04,0) = [[2[3 + (A + 6A)z — (b + dD)|[5
=270z 4 [(A+6A)z — (b+3b)] WA +54)z — b+ db)],  (213)
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in which z € R" is an unknown vector, Q € R"*” and W € R™*™ are known symmetric
weighting matrices, with Q = 0 and W > 0. A € R™*™ and b € R™ are known and subject

to parametric uncertainties A € R™*™ and db € R™, modeled as
64 6b| = MA[E, By, (2.14)

where M # 0, E4 and Ej} are known matrices with appropriate dimensions, and A is an
arbitrary contraction matrix, such that ||Al| < 1. Notice that the objective function should

be minimized under the maximum influence of the parametric uncertainties.

The unique optimal solution to problem (2.12)-(2.14) is shown next. It was proposed

in Sayed and Nascimento (1999), where the detailed proof can be found.

Lemma 2.7. (SAYED; NASCIMENTO, 1999) Problem (2.12)-(2.14) admits a unique

solution z* given by
x O o 1\ " AT N DA
o= (Q+ATWA)  (ATWb + AESE,), (2.15)
where Q and W are modified weighting matrices defined as
Q:=Q+ AETEy,
W =W+ WM (A — MWL) MW,

and \ is a nonnegative scalar parameter obtained as the solution to the optimization

problem

\ = in T 2.1
A=arg min (), (2.16)

with objective function I'(X) given by
L(A) = [2WI[G + A Eaz(X) = Ey[* + [A2(X) = blloq). (2.17)
in which
Q(\) == Q + AETE,
W) =W+ WM (A — MTWM) MTW,
(V) = (20 + ATWNA) T (ATW(Ab + AELE,).
Remark 2.1. (SAYED, 2001) In Lemma 2.7, if A > ||MTWM]|| and W is positive definite,

the term ()\I — MTWM> also becomes positive definite. In this case, the pseudoinverse

operations in W and W(A) can thus be replaced by normal matriz inverse operations.

Remark 2.2. (SAYED, 2001) Instead of explicitly solving the auxiliary problem (2.16)-
(2.17) in Lemma 2.7, we can reasonably approximate the optimal A parameter as A=
(L+&) [|MTWM]|, for some & > 0. This comes from the observation that the function T'())

tends to reach amplitudes close to its minimum for values of X that are generally close to
its lower bound ||MTWM]||, as reported in Sayed and Chen (2002).
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Similar to the nominal regularized least-squares problem (Section 2.2.3), by re-
quiring that Q > 0, we guarantee the uniqueness of the solution presented in Lemma 2.7.
Nevertheless, as we will see in Section 3.2.2 and Section 3.3.2, we are interested in the
problem where Q > 0 and W > 0. Thus, to ensure the uniqueness of the solution in
(2.15), we need an additional condition on the problem parameters, as the following lemma

explains.

Q 0

Lemma 2.8. Consider problem (2.12)-(2.14) with Q = [
2

} = 0, in which Qy = 0

and Qy = 0, and W = 0. Define Iy :== [O _[2:|, where the identity matrixz Iy has the same
I

dimensions as Qs. If the block | A | has full column rank n, the optimal solution z* given
Ey

in (2.15) is unique.

Proof. The uniqueness of the optimal solution z* in (2.15) is a consequence of the invert-
ibility of the term (Q + ATWA). Let us rewrite this term as

Qg 0

Iy + 97 QTs + ATWA + AES Eq = 97019, + 37 ATEY) 0

o o
>

I

0 Al,

0 I| |Eq

in which we define J; := {]1 O} and Jy == {0 ]Q}, where I; and I, are identity matrices

with the same dimensions as Q; and Q,, respectively. From Lemma A.5 (item (i)), since

Q; > 0, the first term is positive semidefinite. As mentioned in Remark 2.1, given that

W = 0 and A > |[MTWM]|| > 0, we have that W > 0. Hence, the central block diagonal

matrix in the last term is positive definite. According to Lemma A.5 (item (ii)), if the
I

block | A | has full column rank, the last term is also positive definite, and so is the full
Eq

expression. In consequence, we ensure its invertibility and the uniqueness of the optimal

solution. ]

2.3 Notions of Graph Theory

Graphs can naturally represent the structure of information exchange among agents
in a multi-agent system. For this reason, this section introduces basic notions of graph
theory that are essential to model the sensor networks considered in this work. The
concepts are borrowed from the tutorial presented in Ren, Beard and Atkins (2007). For a
more in-depth study on graph theory, see Diestel (2017) and Godsil and Royle (2001).
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2.3.1 Basic Definitions

A graph is a pair G = (S,E), in which S = {vy,...,vg} is the nonempty finite
verter or node set and E C S x S is the edge set. The elements of E are denoted (v;, v;),

meaning in this case that nodes v; and v; are adjacent, or neighbors.

In a directed graph (or digraph), the edge (v;,v;) indicates that node v;, called
the child, receives information from node v;, called the parent, but not necessarily vice
versa. Moreover, v; is an (in-)neighbor of v;. The neighborhood of a node v; is the set
N; = {v; | (vj,v;) € E}. The in-degree of v;, denoted |N;|, is the cardinality of its neigh-
borhood, i.e., the number of elements in N;. In contrast, in undirected graphs, the edges
are bidirectional, such that (v;,v;) € E = (v;,v;) € E, Vi, j, and edges can be treated as

unordered pairs.

We can assign weights to the edges of a graph, yielding the so-called weighted
graphs. For example, we assign weight a;; to the edge (v;,v;). Note the order of the indices

here. For weighted undirected graphs, we have that a;; = a;;, Vi, j.

A directed path is a sequence of nodes vy, vy, ..., v, such that (vg,vk1) € E, for
kE=0,1,...,7 — 1. Node v; is connected to node v; if there is a directed path between
them. A directed graph is strongly connected if there is a directed path between every pair
of distinct nodes. Analogously, undirected graphs are said to be connected in this case.
The qualifier “strongly” is omitted since if there is a directed path from v; to v;, there is

also one from v; to v; in undirected graphs.

2.3.2 Algebraic Graph Theory

The structure and properties of a graph can be studied by analyzing the properties
of certain matrices that can be associated with it. In this section, consider a weighted

graph G = (S, E) with node set S = {vy,...,vs} and edge weights a;;.

The graph can be represented by an adjacency matriz A = [a;;], in which a;; > 0
if (vj,v;) € E and a;; = 0 otherwise. Recall that, for undirected graphs, a;; = aj;, Vi, j,
therefore, the adjacency matrix is symmetrical in this case. Moreover, its eigenvalues are
all real. If weights are not relevant, simply set a;; = 1 whenever (v;,v;) € E. A graph is
said to be balanced if Zle a;; = Z]S:l aji, Vi. This implies that all undirected graphs are

balanced.

Another important matrix that can characterize a graph is the Laplacian matriz
L = [{;;], defined as

S
Z Qij, 1f2:]7

ij — § J=Li#j

—Qyy, if 4 7£ j

14
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There is an equivalent definition of the Laplacian matrix, given by £ = D — A. Here,
D = [d;;] is the weighted in-degree matriz, where d;; = 0 if i # j and d;; = Zleﬁi# aij,
1=1,...,95,and A is the adjacency matrix. Note that, for undirected graphs, the Laplacian

matrix is symmetric, thus all of its eigenvalues are real.

2.4 Average Consensus

A consensus algorithm (or protocol) is an interaction rule that defines how infor-
mation should be exchanged among agents in a network. We say that the agents reach
a consensus when they agree on a certain numerical entity of interest (a scalar, vector,
or matrix) that depends on the states of all agents (OLFATI-SABER; FAX; MURRAY,
2007). By design, consensus algorithms are distributed and rely only on the information
exchange between each agent and its limited set of neighbors, i.e., no fusion center is
required (REN; BEARD; ATKINS, 2007).

In particular, the average consensus is an algorithm to compute the arithmetic
mean of a set of numerical entities. Consider a network described by a connected undirected
graph G with S nodes. Each node i € S := {1,2,...,S5} can exchange data with a limited
set N; of neighbors at discrete instants of time. Suppose that each node is initialized
with a state a;(0). At each step ¢, the nodes update their state using data from their
neighborhood. As ¢ — oo, the goal is to make the state a;(¢) of all nodes converge to the
average value of their initial states. Through Algorithm 2.2, adapted from Ren, Beard and

Atkins (2007), we can achieve average consensus in a distributed fashion.

Algorithm 2.2 Average consensus (each node i € S) (REN; BEARD; ATKINS, 2007)
Initialization: Set initial consensus state «;(0).
for /=0,1,...,L—1do
1. Send the current state «;(¢) to all neighbors j € N;.
2. Receive the current state «;(¢) from all neighbors j € N;.
3. Update the consensus state

S
a;(+1) = Z:m-jaj(é)

end for

Definition 2.2. In step 3 of Algorithm 2.2, m;;, Vi,j € S, are the so-called consensus

weights, for which we assume the following characteristics:
(7:) 7T7;j>07 ZfZ:j,
(’I:Z) Tij > O, ij (= Ni;'

(iit) m; =0, otherwise;
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(iv) Y5 m;=1,Vi€S.

Moreover, we define the weighted adjacency matrix II == [m;;], which describes the network

communication topology.

The following lemma outlines some properties of the weighted adjacency matrix 11

defined above.

Lemma 2.9. The weighted adjacency matriz 11 (Definition 2.2) that describes the undi-
rected connected graph G has the following properties:

(i) 11 is a nonnegative doubly stochastic matriz;
(ii) 11 is an irreducible matriz;
(iii) All eigenvalues of T1 are real and p(I1) = 1;
(iv) p(I1) =1 is an algebraically simple eigenvalue of I1;

(v) 11 is a primitive matriz.
Proof. Let us address each of one the properties:

(i) This property holds by the way we construct II. Since m;; > 0, II is nonnegative
(see Definition A.3) and, given that the underlying graph G is undirected, m;; = 7j;,
Vi,j € S, then II is symmetric. Moreover, as Z]S:l mi; = 1, Vi € §, every row and

column sum of II is unitary, therefore, it is doubly stochastic (see Definition A.4).

(ii) The second property follows directly from Lemma A.6, as the underlying graph G is

undirected and connected.

(iii) The eigenvalues of II are all real because it is a real symmetric matrix. The unitary
spectral radius property follows from the Gersgorin Disk theorem (Theorem A.1)
and the fact that it is doubly stochastic.

(iv) This property holds according to the Perron-Frobenius theorem (Theorem A.2), since

IT is an irreducible matrix and p(II) = 1.

(v) Finally, since II is irreducible and has a single nonzero eigenvalue of maximum
modulus, the last property follows directly from the definition of a primitive matrix
(Definition A.6). O

The next theorem establishes the main result about the convergence of Algorithm 2.2

and how it achieves average consensus.
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Theorem 2.2. Consider a network described by a connected undirected graph G with
S nodes and associated weighted adjacency matriz 11 having the properties outlined in
Lemma 2.9. If each node i € S performs Algorithm 2.2 with an infinite number of consensus
iterations, i.e., L — 00, the states of all nodes converge asymptotically to the average value

of their initial states, i.e.,

L—oo

1.8
lim (L) = 5 > ai(0), Vi€s, (2.18)
i=1
for any set of initial states.

Proof. Given the properties of the weighted adjacency matrix Il in Lemma 2.9, from its
irreducibility and the fact that p(II) = 1, the Perron-Frobenius theorem (Theorem A.2)
states that there exist unique vectors v € R¥ and w € R® such that ITv = v and w’1l = w”.
Moreover, vTw = 1. Since II is doubly stochastic, v = 1g, which implies that w = (1/S5)1g,
where 15 is a column vector of S ones. Then, as II is primitive, Lemma A.7 indicates that

1
lim TT¢ = vw™ = §1S1§. (2.19)

L— 00

To conclude, note that the collective dynamics of the network under Algorithm 2.2 can be
written as a(f) = IT‘a(0), where () is a column vector which stacks the states a;(¢) of
all nodes. Therefore, substituting I1 by the result in (2.19), we obtain (2.18). O

Xiao, Boyd and Lall (2005) propose a possible choice of consensus weights 7;; that

satisfy the necessary conditions discussed above, the so-called Metropolis weights:

1
ifi i %N,
1 + max{N;, N;}’ ifi7j Ve
T = 1— Z Tij s if i = j, (220)
JEN;
0, otherwise,

where N; and N; are the number of neighbors of nodes i and j, respectively.
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CHAPTER

Robust Kalman Filtering

This chapter addresses the problem of estimating the state of a dynamical system
based on measurements obtained by a single sensor. It is divided into three sections. In
the first section, we consider that the underlying target system and sensing models are
nominal, i.e., perfectly known. However, exact models are seldom available in practice
due to factors such as unmodeled dynamics, linearization, model reduction, and varying
parameters. Therefore, in the second and third sections, we respectively assume that
these models are subject to norm-bounded and polytopic parametric uncertainties. In each
section, we propose a filtering strategy inspired by the celebrated Kalman filter (KALMAN;
1960), taking advantage of its efficiency and simplicity whilst overcoming one of its main

weaknesses by compensating for the model uncertainties.

To develop the nominal and robust filters, we adopt a deterministic viewpoint
(BRYSON; HO, 1975) and propose estimation problems constrained by each situation’s
specific target system and sensing models. Then, we develop a similar framework to solve
them and obtain the filter expressions. The procedure fundamentally consists of applying
the penalty function method (Section 2.1) to rewrite the estimation problems in the same
form as one of the classic least-squares problems discussed in Section 2.2, depending on

the presence and type of model uncertainties.

3.1 Nominal Kalman Filtering

In this section, we revisit the classic Kalman Filter (KALMAN, 1960), referring
to it as the Nominal Kalman Filter (KF), to emphasize that all the parameter matrices
that define the linear discrete-time target system and sensing models are perfectly known.
Nevertheless, we assume a slightly more general model than usually found in the related
works. The framework we develop here will serve as the foundation and reference to derive

all the filters proposed in this work.

We formulate the nominal estimation problem from a deterministic viewpoint as a



54 Chapter 8 Robust Kalman Filtering

constrained regularized least-squares problem (Section 2.2.3), which we transform into
an unconstrained equivalent by applying the penalty function method (Section 2.1). The
solution to this modified problem then provides the recursive expressions of the Nominal
Kalman Filter. We conclude the section with a stability analysis of the proposed estimator,

assuming a time-invariant model.

3.1.1 Problem Formulation
3.1.1.1 System Model

Consider the following discrete-time state-space description of a linear dynamical

system:
T = Fpap + Gruy + Hywy,, (3.1)
yr = Crrg + Dy,
for k=0,1,..., N, with state vector x; € R", input vector u, € R™, system noise vector

wy € RP, measurement vector y, € R", and measurement noise vector v, € R?. Fj, € R"*",
G € R H, € R™P, Cy € R™" and D, € R"™? are known nominal parameter

matrices.

In a stochastic setting, it is usually assumed that zy, wg, and v, are mutually

independent zero-mean Gaussian random variables with respective variances
E{xoxOT} =P~ 0, E{wkwlT} = Qo = 0, and E{UkUZT} = R0i = 0,

where 0, is the Kronecker delta function, such that oy = 1 if £ = [, and dy; = 0 otherwise.
Nonetheless, as we shall see, the strategy we adopt to derive the filter does not require

that these variables have any particular distribution.

3.1.1.2 Nominal Estimation Problem

Since the system state sequence {xy} is not perfectly observed, the problem consists
of obtaining an estimate Zj of x; leveraging all the information available up to time instant
k., denoted

Yi={v, - Ukt .-, U} (3.2)
In this context, we define two types of state estimates:
a) Iy denotes the filtered (or posterior) estimate of x, given Yy;
b) Zpi1, denotes the predicted (or predicted prior) estimate of 41, given Y.

As discussed in Bryson and Ho (1975), stochastic estimation problems also admit
a deterministic interpretation and can be formulated as least-squares problems. To avoid
confusion, here we adopt the variables Iy, Zp.1, Wk, and 0 as substitutes of the random

variables xy, Tri1, wg, and vg in the stochastic model (3.1).
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In the deterministic context, the estimation problem consists of obtaining Z, Zxy1,
Wy, and U, that best fit the model
1 = Fp@y + Grug + Hpy,
(3.3)
Yr = Ciplp + Dily,
where w, and 0, are interpreted as fitting errors, weighted by matrices @), = 0 and
Ry, = 0, respectively. In addition, we define the approximation errors ey, = &y — 2y, and

Ckt1lk = Try1 — Tre1k, Tespectively weighted by matrices Py = 0 and Pyyqp = 0.

The goal is to formulate an optimization problem whose optimal solution (%}, Z}, 1,
Wy, 0y) satisfy model (3.3), given the available observation set Y in (3.2). We can then
relate this solution to the best estimates of the original random variables xy, xgi1, Wy,

and v, according to the following definitions:

A oAk A oAk A e Ak A ok
Tklk = Xy, Titr1)k = Tpyy1, Wik = Wy, and Vklk = Uy-

To fulfill this objective, based on Kailath, Sayed and Hassibi (2000a) and Sayed
(2001), assuming that at each time step k, an a priori state estimate Zy;_1, a measurement
Yk, and the input u, are available, we formulate a constrained optimization problem with
a one-step quadratic objective function, as follows:

;nin (T, Wk, 1) = || 2% — @k\k—1|\fmk—”171 + wakH?;l + H@kﬂégu
Wy, O

Tpr1 = Fpy + Grug + Hpy, (3.4)

subject to {
Ur = CrZy, + Dily,

for K = 0,1,..., N. The solution to this problem recursively provides the filtered and

predicted state estimates 2y, and 2,41, respectively. Note that, from a stochastic view-

point, matrices Q) and Ry represent the variances of the random variables wy and vy.

Nevertheless, in this more general deterministic setting, they are understood as weighting

matrices. We refer to problem (3.4) as a regularized least-squares estimation problem, which

we discuss in the next section.

3.1.2 Regularized Least-Squares Estimation Problem

Consider the general problem of obtaining an estimate z of an unknown vector x

based on measurements y, related to x according to the linear system
y = Az + Buw, (3.5)

where w is a noise vector, also unknown, A and B are known matrices, and y is a known
measurement vector. Furthermore, assume that an a priori estimate x of x is available as

well.
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From a deterministic viewpoint, we formulate the so-called regularized least-squares
estimation problem as
. _ =2 2
min - J(z,w) = ||z = zff7 + [lwlg,

(3.6)
subject to y = Az + Buw,

where P = 0 and @Q > 0 are given weighting matrices respectively associated with the a

priori estimation error x — x and the model fitting error w.

The first step we take to solve the constrained problem (3.6) is to transform it
into a more convenient unconstrained problem. Since the linear constraint (3.5) is quite
general, it cannot be inserted into the objective function by direct substitution. Therefore,
we apply the penalty function method presented in Section 2.1. The constraint is thus
included into the objective function as a quadratic term multiplied by a penalty parameter
1 > 0. Violating the problem constraint will thus be penalized by this parameter. Hence,
for a fixed p > 0, we rewrite problem (3.6) as

min J*(z,w) (37)

with a new objective function

T

r—x

e +([A B]

w

PO T — _ !
0 Q ]—(y—Ax)) ,u](o). (3.8)

w

JH(x,w) = {

w

Notice that problem (3.7)-(3.8) has the form of a regularized least-squares problem
(Section 2.2.3), considering the following mappings between (2.10) and (3.8):

. A< [AB], bey—Az, and Wepl. (3.9)

Therefore, to find a solution to problem (3.7)-(3.8), we use the results presented in
Section 2.2.3. From the solution, we then extract the estimate Z# of x, conditioned by the

penalty parameter u, as the next lemma shows.

Lemma 3.1. Consider problem (3.7)-(3.8), in which P = 0, Q = 0, and A has full column

rank. The estimate " of x, conditioned by the penalty parameter p > 0, is given by
= (P+A"(u ' 1+ BQ'B") A) (Pi+ AT(u ' 1+BQBY) ). (3.10)

Proof. As previously mentioned, problem (3.7)-(3.8) is a regularized least-squares problem,
considering the mappings in (3.9). Since P = 0, @ = 0, and g > 0, we have that Q > 0
and W = 0. Therefore, we can use Lemma 2.6 to find the solution. Additionally, the block

0 I
[A B] should have full column rank, which is satisfied, since A is required to have full
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column rank. Thus, substituting the mappings (3.9) into the unique solution (2.11) yields

_ ~1
i —z| |P+pATA  uA'B pAT (y - Ay?:)
i || pBTA  Q+uBTB| |uBT(y- Az)|’
Summing [ﬁ] to both sides then gives
_ -1 —
| | P+pATA  pATB Pz + uATy
A uBTA  Q+ uBTB uBTy .

The equation above represents a system of simultaneous equations. Hence, one can write

the following set of equations:

<I5 + /LATA>§;“ + pAT Bt = Pz 4+ pATy, (3.11)

uBT AzH + (Q + /LBTB)LD“ = nBTy. (3.12)
Isolating @* in (3.12), we have

0" = (Q+uB"B) B (y — Ad").
Substituting @* back into (3.11) yields
[15 AT (ul - uB(Q + uBTB)_lBTu>A] o
Pi+ A"(ul — uB(Q + uB"B) 'BTu)y.  (3.13)

From Lemma A.1, we have that (,u[ — uB(Q + uBTB)ilBTu) = (/flf + BQ‘IBT)A.

Then, substituting this term in (3.13) and isolating ##, we obtain the estimate shown in
(3.10). 0

Recall from Section 2.1 that according to the penalty function method, when
the penalty parameter y — 400, we have that problems (3.6) and (3.7)-(3.8) become
equivalent. In this case, the solution to the unconstrained problem yields the optimal

estimate Z, no longer conditioned by .

Corollary 3.1. Consider the estimate " obtained in Lemma 3.1 as part of the solution to
problem (3.7)-(3.8). If A has full column rank, B has full row rank, and we let p — +o0,

then the optimal estimate T of x is given by
= (P+AT(BQBY) 'A) (P2 + AT(BQ'BT) ). (3.14)

Proof. By letting ;1 — +00 in (3.10), we have that ! — 0, such that the term (,u*II +
-1 -1
BQilBT) becomes (BQ*IBT) and we obtain the optimal estimate # in (3.14). In

addition, as explained in Lemma A.5 (item (ii)), given that B has full row rank, we ensure
invertibility of the term (BQ‘IBT), assuming that Q > 0. O
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Finally, the next lemma shows that if we adopt a stochastic viewpoint of the
estimation problem discussed here, we can further derive a variance matrix to associate

with the estimation error x — 7.

Lemma 3.2. Consider that in the linear system (3.5), the noise w and the prior estimation
error x—x are mutually independent zero-mean Gaussian variables with respective variances
_ -1 _—
E{wa} =Q ! and E{(x —x)(x — :Z‘)T} = Pl = (PTP) PT. The variance matriz of
the estimation error x — Z, for & as in (3.14), is given by
1

B{(z &)@ —2)"} = (P+A"(BQ'B") 'A) . (3.15)

Proof. First, define P == (P—i— AT (BQ”BT)_IA>_1. Then, substituting y from (3.5) into
(3.14) yields

7= P[Pi« + AT<BQ‘1BT)_1(A:13 + Bw)} .

By adding PPz to both sides of the equation above and performing some algebraic

operations, we obtain the estimation error

P

T — I

P(z—z) - AT(BQIBT)le} |
Then, we compute the estimation error variance matrix, as follows:
E{(z-#)(z - )T} = p[pE{(x BB} P4
AT (BQ—lBT)—IBE{wa}BT(BQ_lBT)—lA]P

Since E{(m —I)(x — f)T} = Pt = (PTf_))_lPT, with P = P, and E{wa} = Q7 the

equation above becomes
E{(z-#)(z-2)"}=P(P+ AT(BQ‘IBT)_IA)P = pp'p =P,
which corresponds to the result shown in (3.15). [

Remark 3.1. In a deterministic context, the estimation error variance matrix found in

Lemma 3.2 can be interpreted as a weighting matrix on the estimation error x — .

3.1.3 Nominal Kalman Filter

We are now ready to use the results presented in Section 3.1.2 and ultimately
obtain the Nominal Kalman Filter. As mentioned earlier, the deterministic estimation

problem (3.4) is a special case of a regularized least-squares estimation problem, according
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to the following mappings between (3.4) and (3.6):

A A ~ -1 -1
_ — 0 0
v A.’Bk ’ Tk|k—1 Cwe Ak ’ P k|k—1 ’ Q Qk "

Tht1 0 Vi 0 0 Rk‘

e F, —1, H. O
Y Rtk ., A+ F , and B« F .
Yk Cr Dy,
(3.16)

Note that, since Pk_l,i_l >~ 0, we have that P > 0. Also, Q' = 0 and R;' = 0, such
that () > 0. Therefore, by using the results in Corollary 3.1 and Lemma 3.2, we obtain
the optimal filtered and predicted state estimates, Ty, and Zyiq1x, along with their

corresponding error weighting matrices Py, and Py

Theorem 3.1. Consider the reqularized least-squares estimation problem (3.4) with Hy, and
Dy, full row rank and given initial conditions Zo—1, Po—-1 = Py = 0, Qx = 0, and Ry, >~ 0.
For each k =0,1,..., N, its solution recursively provides the filtered and predicted state
estimates of system (3.1), g and Tpi1pk, as well as their corresponding error weighting

matrices, Py and Py, according to the procedure outlined in Algorithm 3.1.

Algorithm 3.1 Nominal Kalman Filter (KF)
Model: Assume the system model in (3.1).
Initialization: Set Zo_1, Po—1 = Fp > 0, Qr > 0, and Ry, > 0.
for k=0,1,...,N do
1. Obtain a measurement .
2. Compute the auxiliary matrices:

Qr = H.Q HF Ry, = DR, DF

3. Correction step:
3.1. Compute the posterior error weighting matrix:

~ -1
3.2. Compute the filtered state estimate:
Bxi = P (Pt 1 &1 + CF By

4. Prediction step:
4.1. Update the predicted prior error weighting matrix:

Pepape = FePorF + Qs
4.2. Update the predicted prior state estimate:
Tryre = FrZpp + Grug

end for
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Proof. Since problem (3.4) is a regularized least-squares estimation problem, one can apply
the result in Corollary 3.1 to obtain the optimal system state estimates 2y, and 2.
Thus, substituting the mappings (3.16) into the optimal solution (3.14) gives

-1

i‘;ﬂk Pki“ﬁlil + Fg@;le + C,?REIC]C —Fg@;l
a1k —-Q;'Fy, Q'
Pyp_yip—r + CLR yk — F Qi G

)

A1
Q. Grug

in which we define the auxiliary matrices @k = HkaH,? and ]%k = DkRkDf, whose
positive definiteness is guaranteed according to Lemma A.5 (item (ii)), since Qy > 0,
Ry > 0, and H; and D, have full row rank.

The equation above also represents a system of simultaneous equations. Therefore,

we can write it as the following set of equations:
(Phy + FL Qg Fi+ CE R C) e — FY Qe =
Pyp s Er—t + CF R 'y — FL Q' Grug, (3.17)
— Q' Frdnp + Qp "Ergan = Qp ' G (3.18)
Isolating @41 in (3.18), we have
Trrap = Fulpp + Grug,

which corresponds to the update equation of the predicted prior state estimate in step 4.2

of Algorithm 3.1. Then, substituting #;; back into (3.17) and isolating Ty, yields
A —_— A— _1 p— A A_
Lklk = (Pk\li—l + CI?RI{ 1Ck> (Pk|li—lxk|k*1 + CI?P% 1yk)a

which corresponds to the equation for computing the filtered state estimate in step 3.2 of
Algorithm 3.1.

Now, to obtain the error weighting matrices associated with Zy, and Zj 4, we
apply Lemma 3.2, assuming a deterministic context, as mentioned in Remark 3.1. Thus,
substituting the mappings (3.16) into (3.15) gives'

Pk|k *

~ ~ ~ -1 -1
P,;,i_l%—F,ZQElFmLCZ R'Cy, —FETQ,;l _ M, M,
—Qi'Fy Qi MI M,

M—l

* Pk+1\k

where we define the partitioned matrix M. To find its inverse, we use the Banachiewicz
inversion formula (Lemma A.4, item (ii)). According to Lemma A.3, the Schur complement
of Mz in M is

(M/M3) = My — MMz M = Pty + CL R, G

The elements marked with x are byproducts with no particular meaning in our context.

1
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The posterior error weighting matrix in step 3.1 of Algorithm 3.1 is then obtained as
follows:

Pur = /M) ™ = (Pl + CLR'CL)
Finally, we obtain the predicted prior error weighting matrix

Pryae = M50+ MM (/M) MM = F P FE + Qi

as shown in step 4.1 of Algorithm 3.1. O

Notice that when Gy =0, H, = I,,, and Dy = I, Algorithm 3.1 collapses to the
standard Kalman filter. In this case, if one chooses the noise vectors weighting matrices Q)
and Ry as the noise variance matrices, then the posterior and predicted prior estimation
error weighting matrices Py, and Py, can be interpreted as error variance matrices.
Hence, although a deterministic viewpoint was used to derive the filter equations, there is
an equivalence with the stochastic viewpoint. Nevertheless, the former can handle more
generic problems, since no assumptions on the distributions of w; and v, are necessary.
Furthermore, we emphasize how the use of the penalty function approach enabled the

inclusion of matrices Hy and Dy in the more general linear discrete-time target system
model (3.1).

3.1.4 Stability Analysis

In this section, we conclude the discussion on nominal Kalman filtering by examining
the steady-state behavior of the estimator described in Algorithm 3.1 when the system
model parameters are constant and there is no input ug. Thus, consider the following

discrete-time state-space description of a linear system:

Tpy1 = Fap + Huwy, (3.19)
yr = Cxy + Doy,

for £ > 0. We seek to establish conditions for the stability of the steady-state filter.

Let us consider the system model (3.19). Thus, the KF equations in steps 3 and 4
of Algorithm 3.1 become:

Py = (Pl + CTR™C) ", (3.20)
Ty = Pk|k(P;;|;i,1i’k|k—1 + CTﬁ’flyk), (3.21)
Poyik = FPyuFT +Q, (3.22)

The = Flpp, (3.23)

where @ — HQH” and R = DRDT. Applying the matrix inversion lemma (Lemma A.1),

we expand expression (3.20), as follows:

~ -1
Py = Prji—t — Pupr CT (R + C Py CT) CPyps. (3.24)



62 Chapter 8 Robust Kalman Filtering

Then, combining (3.24) with (3.21) and substituting in (3.23) yields the steady-state

predicted state estimate
Zerip = Frdpp—1 + B Pys1CT Ry, (3.25)
where
7 T(H 7\ !
F = F(I, = PuyprC" (R + CPygsCT)C)

is the filter closed-loop matrix. Moreover, substituting Py, from (3.24) into (3.22), we

obtain the following expression for the predicted prior error weighting matrix:

~ —1 ~
Popipp = F(Pugpor = Pop—aCT (R + CPypaCT) CPpa ) FT +Q. (3.26)

The following theorem establishes a result concerning the convergence of the filter

to a stable steady-state filter.

Theorem 3.2. Consider the linear system model (3.19) and the corresponding filter
(3.25)-(3.26). Assume that {F,C} is detectable and {F,Q"2} is controllable. Then, for
any initial condition Po_y = 0, Pyyqx converges to the unique stabilizing solution P > 0

of the algebraic Riccati equation
P=F(P-PC"(R+CPC") 'CP)F" +Q. (3.27)
The solution P is stabilizing in the sense that the steady-state filter closed-loop matrix
F=F(1,- PC"(R+CPC") ' C) (3.28)
is Schur stable.
Proof. As shown in Kailath, Sayed and Hassibi (2000b), detectability of {F,C} and
controllability of {F,Q'/?} ensure the convergence of Piyape in (3.26) to the unique

stabilizing positive definite solution P of the algebraic Riccati equation (3.27) that stabilizes
(3.28), which is the filter steady-state closed-loop matrix. ]

3.2 Robust Kalman Filtering for Systems with

Norm-Bounded Uncertainties

In this section, we present a robust version of the Nominal Kalman Filter introduced
in Section 3.1. We address the special case where the underlying target system and sensing

models are subject to norm-bounded parametric uncertainties.

We extend the framework used in Section 3.1 to derive a robust filter. Analogously,
we formulate the robust estimation problem as a deterministic constrained regularized least-

squares problem with uncertainties (Section 2.2.4). We then apply the penalty function
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method (Section 2.1) to transform it into a more convenient unconstrained problem, whose
solution ultimately provides the recursive expressions of the Robust Kalman Filter (RKF).
The estimator is presented as correction-prediction algorithm, similar to the Nominal
Kalman Filter. We further study the stability properties of the proposed estimator and

conclude the section with an illustrative example.

3.2.1 Problem Formulation
3.2.1.1 System Model

Consider the following discrete-time state-space description of a linear system with

uncertainties:
Tpy1 = (B + 0F )z, + (Gi + 0Gy)ug + (Hy + 0 Hy)wy, (3.29)
yr = (Crk + 6Cy)xk + (Dy + 0Dy ) v,
for k=0,1,..., N, with state vector x; € R", input vector u; € R™, system noise vector

wi € RP, measurement vector y, € R", and measurement noise vector v, € R?. Fj, € R"*",
G € R H, € R™P, (O, € R™™, and D, € R"™? are known nominal parameter
matrices, whereas §F), € R™*" §G, € R"™™ §H;, € R"*P §C, € R™" and 6D, € R

are norm-bounded parametric uncertainties modeled as

{5Fk 0G}, (5Hk} = M 1Ay [EFk Egq, EHJ Al <1,

3.30
{(50}6 5Dk:} == MQJ.{;AQ’]C [ECk EDJ 5 ||A2,k|| S 17 ( )

where M € R and My € R™*2 are known nonzero matrices, Ep, € R"*" Fq €
Rixm By € RYP) Ee, € R2*™ and Ep, € R?*7 are also known, and A, € Rs*"
and Ay j € R%2%2 are arbitrary contraction matrices. Perturbations of the form (3.30) are
useful when modeling tolerance specifications on the physical parameters of a system and
are thus common in robust filtering and control (SAYED, 2001).

In a stochastic interpretation, we usually assume that xg, wy, and v, are mutually

independent zero-mean Gaussian random variables with respective variances
E{xoxOT} =Py >0, E{wkwlT} = Qo = 0, and E{vkvlT} = R > 0,

where 0y, is the Kronecker delta function, such that dy; = 1 if £k = [, and dy; = 0 otherwise.
Nevertheless, the strategy we adopt to derive the robust filter does not require that these

variables have any particular distribution.

3.2.1.2 Robust Estimation Problem

The goal is to design a robust state estimator for the uncertain system (3.29)-(3.30).

As the system state sequence {x} is not perfectly observed, the problem consists of using
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all the information available up to time instant k, Y = {vo, ..., Yk, Uo, - - . , U}, to obtain
a so-called filtered state estimate Zy;, of xy, as well as a predicted estimate 21, of zp41,
despite the presence of model uncertainties oy = {0F}, 0Gy, dHy, 6Cy, 0Dy }.

Following the procedure described in Section 3.1.1.2 for the Nominal Kalman Filter,
we adopt a deterministic viewpoint (BRYSON; HO, 1975). Moreover, we introduce the
variables 2y, Zp11, Wy, and 9y as substitutes for the random variables xy, z1, wy, and vy
in the stochastic model (3.29). Then, based on Sayed (2001) and Ishihara, Terra and Cerri
(2015), assuming that at each time step k, an a priori state estimate Zj;—1, a measurement
Y, and the input u; are available, we formulate a min-max constrained optimization
problem in which a one-step quadratic objective function should be minimized under the

maximum influence of the model parametric uncertainties ¢y, i.e.,

_min max S (2, D, 0) = |26 = ep-alpor Dl 0+ 1065,
Ti, Tt1, Ok klk—1 k k
e 3.31)
subject to A A
Yk = (Crp + 0Ck) 2 + (Dy + 0 Dy) 0y,
for k =0,1,..., N and uncertainties ¢ as defined in (3.30). Here, 10, and 0y are fitting

errors weighted respectively by Q. = 0 and Ry > 0, and Py,—; > 0 weights the a priori
estimation error zp — Zxx—1. Note that, from a stochastic viewpoint, matrices (), and
Ry, represent the variances of the random variables wy and v,. Nevertheless, in this more

general deterministic framework, they are treated as weighting matrices.

The solution to this problem recursively provides the filtered and predicted robust
state estimates 2y, and Zyp41. We refer to problem (3.31) as a regularized least-squares

estimation problem with norm-bounded uncertainties, which is the topic of the next section.

3.2.2 Regularized Least-Squares Estimation Problem with

Norm-Bounded Uncertainties

Consider the general problem of obtaining an estimate Z of an unknown vector x

based on measurements y, related to x according to the uncertain linear system
(y+dy) = (A+5A)x + (B + IB)w, (3.32)

where w is a noise vector, also unknown, A and B are known matrices, and y is a known
measurement vector. The parametric uncertainties dy,dA, and B are norm-bounded,

being modeled as
6y 64 6B = MA[E, E4 Ep|, [A] <1, (3.33)

in which M is a known nonzero matrix, E,, F4, and Ep are also known, and A is an
arbitrary contraction matrix. Furthermore, assume that an a priori estimate x of x is

available as well.
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From a deterministic viewpoint, we formulate the so-called regularized least-squares
estimation problem with norm-bounded uncertainty as

: _ =12 2
min max - J(z,w) = [lz — 2] + vl

subject to  (y +dy) = (A+JA)x + (B + IB)w,

(3.34)

where P > 0 and Q > 0 are given weighting matrices respectively associated with the a
priori estimation error x — x and the model fitting error w. The objective function should

thus be minimized under the maximum influence of the parametric uncertainties.

Similar to the procedure carried out in Section 3.1.2 for the regularized least-
squares estimation problem, we first transform the constrained problem (3.34) into an
unconstrained problem. The linear constraint (3.32) has a general form and cannot be
directly inserted into the objective function by substitution. Therefore, we apply the
penalty function method presented in Section 2.1, whereby the constraint is included in
the objective function as a quadratic term multiplied by a penalty parameter p > 0, which

penalizes constraint violations. Hence, for a fixed p > 0, we rewrite problem (3.34) as

min _max J*(x,w,dy,0A,0B), (3.35)

T, w Sy, 5A,0B
T —
w
B T

a x] — [(y = AZ) + (9y — 5A7)| } ul{e}. (3.36)

with a new objective function

T
P 0
0@

JH(z,w,0y,0A,0B) = e +
w

{([A B] + [54 58] )

Problem (3.35)-(3.36) has the form of a regularized least-squares problem with

w

uncertainties (Section 2.2.4), considering the following mappings between (2.13) and (3.36):

Z 4 [x—m]’ Q «

w

PO
0@
0A + [6A 6B, and 6b+ oy — 6Az.

, A<—[AB}, b+ y— Az, W< ul,
(3.37)

Moreover, the correspondence with the norm-bounded parametric uncertainty model in
(2.14) is given by
04 8b] = MA (B, B, A <0,

where
MM, A« A, By |Ey Ep|, and By, « E, — Euf. (3.38)

Therefore, to find a solution to problem (3.35)-(3.36), we use the results in Sec-
tion 2.2.4. From the solution, we then extract the estimate z* of x, conditioned by the

penalty parameter u, as shown in the next lemma.
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Lemma 3.3. Consider problem (3.35)-(3.36) with norm-bounded parametric uncertainties

_ A
given by (3.33), in which P =0, Q > 0, and g has full column rank. The estimate *
A

of x, conditioned by the penalty parameter p > 0, is given by
= (P+ A"QT A+ ESQ'E.) (P2 +ATQ 7'+ ESQT'E,),  (339)

in which we define the auxiliary entities

=l + uM (M — pM"M) M = (p' 1 = A MM
Q=\N'"T+EQ'EL, Q=90"+ B(Q + XE}B“EB)”BT, (3.40)
A=A-BQ'ERQ'Es, §=y~-BQ 'E;Q'E,

where \ is a nonnegative scalar parameter obtained from the auxiliary optimization problem

N = i () 3.41
arg min (A), (3.41)

with objective function T'(X) given by
L) = 2WNlg + Al Eaz(A) = By|* + [Az(A) = bllg). (3.42)
in which

B(N) = pul + M (N — uM™M) " M,
2(A) = (Q+ ATONA + AEJE,) (AT®(\)b + AELE),

considering the definitions in (3.37) and (3.38).

Proof. As we mentioned previously, problem (3.35)-(3.36) is a regularized least-squares
problem with uncertainties, considering the mappings in (3.37) and (3.38). Since P > 0,

@ > 0, and p > 0, we have that Q = 0 and W > 0. Therefore, we can use Lemma 2.8 to
0 I

find the solution. Additionally, the block | A B | should have full column rank, which
E, Ep

A
is satisfied by the requirement of having full column rank. Thus, substituting the
A

mappings (3.37) and (3.38) into the unique solution (2.15) yields

-z
i

P+ AT®A+ AEYE, AT®B+ \ELEj
BT®A+ A\ELE, Q-+ BT®B+ \ELEg

ATO(y — AZ) + AEL(E, — E7)

BT®(y — AZ) + AEL(E, — EsZ)

Y
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where we define ® = pul + uM (5\1 — uMTM)ilMT,u. Adding [g] to both sides of the

equation above then gives

Tk
wH

This equation also represents a system of simultaneous equations. Hence, we can write it

—1 _ A
Pz + AT®y + AELE,

BT®y + AELE,

P+ AT®A+ AEYE, AT®B+ AELEjg
BT®A+AELE, Q+ B"®B+ AELE;

as the following set of equations:

(P+AT®A+ AELE4)i" + (A"®B + AE} Ep )i = PT + A"®y + AELE,, (3.43)

(BT®A+ AELEA)i" + (Q + BT®B + AELEp )i = BT @y + AELE,. (3.44)
Isolating @" in (3.44), we have

i = (Q+ B'®B + AELE)  (B"®y + AELE, — (B'®A + AELEL)#").

Substituting @* back into (3.43) then yields
{P + ATOA + NETE, —
(A"®B + AELEp)(Q + B'®B + AELE,)  (B'®A+ S\EgEAﬂ =

Pit+ ATy + AELE, — (AT0B + AEGEp) (Q + BB + AELE,) (B @y + AELE,)
(3.45)

Expanding the left-hand side of (3.45), we obtain
{15 + AT(® — @B(Q + AEFE, + BT®B) BT®)A -
AT®B(Q + AEREy + B'®B) 'AELEs — AELEs(Q + AESEs + B®B) BToA+

AEYE, — AESEs(Q + AELEs + B'9B) ELEAA| a7, (3.46)

Applying Lemma A.1, we can simplify the second term of (3.46), as follows:
A"(@ — ®B(Q + AELEs + B"®B) ' B'®)A =
AT(@7 + B(Q+ AELEs) 'B") A= ATQA. (3.47)

Q
Now, we simplify the third term of (3.46) by applying Lemma A.2 twice:
AT®B(Q + AELEs + B"®B) 'AELE, =
AT(@7' + B(Q+ AELEs) 'B") 'BQTEL(3 I+ EsQ'EL) Ea=
o Q
ATQ'BQ'ELQ'E,. (3.48)
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Applying the same procedure above for the fourth term of (3.46) yields

AELEs(Q + AESEp + B"®B) ' B"®A = ELQ'ExQ'BTQ A,

(3.49)

Next, we use Lemma A.1 and Lemma A.2 to expand the last two terms of (3.46), as

follows:
AELE, ~ AESEs(Q + AELEs + B'9B) ELEAA =

AELE, — AELE3|(Q + AELEs)  —

-1

(Q+AEFES) BT(07' + B(Q+ AELEs) B") 'B(Q + AELE,) }EEEAS\ _

~

Q
EY (A~ ABp(Q + AESER)  ERN)Ea+
EL (A + EpQ L) EpQ ' BTQ T BQUER(A ' + EyQ'EL) B =

Q Q
A —1 — —~ _
EY(A' + EpQ'EL) Ea+ EZQ'EsQ'B"Q7'BQTELQ T Ey =
Q

EYQ'Es+ EXQ 'EzQ 'BTQ'BQ'ELQ'E,.

Then, substituting (3.47), (3.48), (3.49), and (3.50) back into (3.46) leads to

{P + EQT Ea+ ATQ (A— BQTUERQ T Ex ) -

A
RO ByQ BT (A QT BRQ )| = [Py QB+
A
(410G B BT )Q A = (P4 AT QR 2

AT
Similarly, we expand the right-hand side of (3.45) to obtain

P+ A"($ — ®B(Q + AELEy + B'6B)  B'®)y -

(3.50)

(3.51)

AT®B(Q + AEREy + B'®B) 'AELE, - AELEs(Q + AESEs + B"®B) B oy +

AELE, ~ \ENEs(Q + AELEs + B'®B) ELE, A
We first simplify the second term of (3.52) using Lemma A.1:

A"(® — ®B(Q + AELEs + B"9B) ' B'®)y =
AT(&7' + B(Q +AEREs) BT) y=ATQ .

Q

(3.52)

(3.53)
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Then, we apply Lemma A.2 twice to simplify the third term of (3.52):

AT®B(Q + AEREy + B'®B) 'AELE, =
AT(@7' + B(Q+ AELEs) 'B") 'BQTEL(A '+ EsQ'EL) E, =

) Q

ATQ'BQ'ELQ'E,. (3.54)

The same procedure is used to simplify the fourth term of (3.52), such that

~ ~ —1 — ~

AELEs(Q+ AELER + B'®B)  B"®y = E{Q ' EsQ'B"Qy. (3.55)
Now, we expand the last two terms of (3.52) using Lemma A.1 and Lemma A.2:

AEYE, — AEYEy(Q + AELE + B'®B) ELE,A =
- -1

(Q+AELES) -

(Q+ AELES) 'BY(@7' + B(Q + AESEs) 'B") 'B(Q+ AELEs)

\EYE, — AEYEjp

ELEN =

~

Q
EL (Al ~ ABs(Q + AEREs)  ESN)E, +
B (A + EpQ L) EpQ ' BTQ T BQER(A T + EpQ'EL) B, =

Q Q
B (A + EpQ L) B, + E5Q T EsQ ' B'Q ' BQ T ELQE, =
Q
EYQ7'E, + EXQ'EpQ'BTQ'BQ'ELQ'E,. (3.56)

Hence, substituting (3.53), (3.54), (3.55), and (3.56) back into (3.52) gives

Pz + EYQ'E, + (AT - ELQ ' EsQ ' BT )Q 'y —

AT
(A" - EQ'EsQ'B" )Q'BQT'ELQ'E, = Pz + EAQ'E, +
AT
ATO! ( y— BQ’lE};Q’lEy) — P2+ ATQ 'y + ELQ'E,. (3.57)

(]
Lastly, we substitute the left- and right-hand sides of (3.45) respectively by (3.51) and
(3.57) and isolate Z* to obtain the estimate in (3.39).

Furthermore, we follow the procedure described in Lemma 2.7 to obtain the auxiliary
parameter \, i.e., by solving the optimization problem (3.41)-(3.42). Note that, according
to Remark 2.1, as we search for A > pu||M?M]|| in problem (3.41)-(3.42) and p > 0, the

invertibility of ® is ensured. [l
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At this point, it is important to analyze how the penalty parameter p influences the
solution presented in Lemma 3.3. As explained in Section 2.1, when applying the penalty
function method with u — oo, the solution to the unconstrained problem (3.35)-(3.36)
approaches the optimal solution to the original constrained problem (3.34) and we say
that they are equivalent. Nevertheless, note that, in the process of obtaining a solution z*
to (3.35)-(3.36), we are faced with the auxiliary minimization problem (3.41)-(3.42), in
which an optimal parameter X is sought. Since A > 1 || MTM]||, if one lets p1 — 0o, we have
that A — oo and ®(\) — co. As a consequence, the second and third terms in I'(\) will
be excessively penalized compared to the first term, leading to an unbalanced objective

function.

Therefore, in this robust estimation context, unlike the suggestion in Ishihara, Terra
and Cerri (2015), the penalty parameter p should rather be understood as a robustness
measure of the estimator, taking finite values instead of approaching infinity. In this sense,
when the system model is subject to significant uncertainty, smaller values of p will increase
the robustness, which translates into better estimation performance. On the other hand,
when we have more confidence in the system model, larger values of u can be used. In
the limit, when there are no uncertainties, the model is exact, meaning that one can let

W — 0.

Furthermore, some works, such as Xu and Mannor (2009) and Liu and Zhou (2017),
point out that robust least-squares estimators obtained by considering the worst-case
influence of the model uncertainties may be over-conservative, which in turn leads to poor
estimation performance. Tuning the penalty parameter p is therefore a possible approach

to counteract this effect.

Remark 3.2. The solution outlined in Lemma 3.3 depends on the solution of the op-
timization problem (3.41)-(3.42) to compute the X parameter. A constrained line search
method can be used to obtain a solution, however, this requires additional computation

time. Nevertheless, as Remark 2.2 points out, a practical and reasonable approximation

for X is to select A = (1+ &) p||MT M|, for some & > 0.

To conclude this section, we propose a result equivalent to Lemma 3.2 and associate
a weighting matrix P to the estimation error z — #*. Since the underlying model considered
in the regularized least-squares estimation problem is subject to parametric uncertainties,
unlike the nominal case (Section 3.1.2), we cannot refer to this weighting matrix as an
error variance matrix, which, in fact, we cannot compute analytically (SAYED, 2001).
Therefore, we rely on the deterministic understanding of the problem and associate the

following error weighting matrix, considering the estimate z* in (3.39):

A

P=(P+ATQ A+ ELQ'EL) . (3.58)
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3.2.3 Robust Kalman Filter

At this point, we are ready to apply the results in Section 3.2.2 and obtain the
Robust Kalman Filter. Recall that the deterministic estimation problem (3.31) is a special
case of a regularized least-squares estimation problem with norm-bounded uncertainties,

considering the following mappings between (3.31) and (3.34):

0 e 0 _[Pg 0 0
PR L D D e IR L B P L e P @ e
P 0 o 0 0 0 R;
e £, —1I, Hy 0
Y ki P , B+ | F :
Rz Cy 0 Dy
—6G 5F, 0 SHy 0
Sy Rk sA U and dB«— |0F .
5Cy 0 5Dy,
(3.59)

Moreover, consider the following mappings between the uncertainty models (3.30) and
(3.33):

M 0 A 0
A | Mk | 1k 7
M g, 0 Agyg
(3.60)
—-F Er 0 FE 0
E, « G Uk , e | , and FEp ¢+ M
Ec, O Ep,

Since P,;l,ifl > 0, we have that P > 0. In addition, Q' = 0 and R, * = 0, such that Q > 0.
Therefore, by using the results in Lemma 3.3 and in equation (3.58), we obtain the filtered
and predicted robust state estimates, 2y and 2y, along with their corresponding error

weighting matrices Py, and Pyiq.

Theorem 3.3. Consider the reqularized least-squares estimation problem with norm-
bounded uncertainties (3.31) with given initial conditions &o_1, Po—1 = Py = 0, Q) > 0,
Ry > 0, and fized parameters p > 0 and & > 0. For each k = 0,1,..., N, its solution
recursively provides the filtered and predicted robust state estimates of system (3.29)-(3.30),
Ty and Tyqapk, as well as their corresponding error weighting matrices, Py and Py,

according to the procedure outlined in Algorithm 3.2.

Proof. Problem (3.31) is a regularized least-squares estimation problem with norm-bounded
uncertainties, hence we can apply the result in Lemma 3.3 to obtain the robust system
state estimates @y, and Zy1)5. Thus, we first substitute the mappings (3.59) and (3.60)

into (3.40) to compute the modified system and sensing model matrices

(=L — 3 Myl 0
0 (L = A Moy MEy)

drp 0

o = L
0 Py

Y
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Algorithm 3.2 Robust Kalman Filter (RKF)

Model: Assume the uncertain system model in (3.29)-(3.30).
Initialization: Set oy, Po—1 = Fo = 0, Qx = 0, By = 0, >0, and § > 0.
for k=0,1,...,N do
1. Obtain a measurement .
2. Compute A, using the approximation:

M= (1+ &) |diag (MI My, ME M) |

3. Compute the modified system and sensing model matrices:

A~ ~ ~ -1
®up = p Ly — A My M, Q= Put+Hy(Qr' +MEf, By, ) HY!
A ~~ ~ 71
Oy = p ', — Ny My MY, Ry, = ®y 4Dy, (R,;1+)\kE}SkEDk) DI
Qr =\, 'Ly, + B, QLEY, Ry =\.'I,, + Ep,RyED,
F, = F, — HyQrEf, Q1 EF, Ci = Cy — DyRyE}, R;"Ec,

Gr, = Gy — HyQrE}, Q; ' Eg,

4. Correction step:
4.1. Compute the posterior error weighting matrix:

SN _ ~ —1
Py = (P,;l,i_l + CLR O + BL Ry o, + EEkQ;IEFk)
4.2. Compute the filtered robust state estimate:
Ty = Pk|k(Pk_‘]i_1§3k\k—1 + CF Ry, — EgkREIEGkUk)

5. Prediction step:
5.1. Update the predicted prior error weighting matrix:

Pejae = ﬁkPk|kﬁkT + Qs
5.2. Update the predicted prior robust state estimate:

Trgre = Felppr + Grug,

end for
5 NIy, + By, QuEY, 0 _|@r 0
0 Ny, + Ep, RyEL || 0 Ry|’
~ -1 ~
O @1,k+Hk(QEI+)\kEEkEHk) H;; 0 _|@ O
- S AED Ep ) DIl |0 Ryl
0 (I)Q’k—i-Dk Rk +)\kEDkEDk Dk k
A | P HeQuBR Qi Ep —Lu| _ By~
Cy— DyRyEL Ry'Ee, 0 | |G 0|
(G, — HiQuEL Qi 'E —G
o [0 mE G ) _ [ 500
L Yk Yk
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Moreover, to compute the e parameter, we consider the practical approximation discussed
in Remark 3.2, such that

Me = (14 &) | diag (M) M, 4, MI M )

!

for some & > 0. Now, we substitute the mappings (3.59) and (3.60), as well as the modified
matrices (3.61) into the solution (3.39) to obtain

- ~ ~ ~ ~ ~ ~ _ _ ~ ~ _1
[ B ] [Pyt + FPQy B+ CT R, Oy + B Qi Br, + L Ry Ec, —F Qﬁ] .

Trre] | —Q1 ' Fy Q'
Plg_|li—1‘f:k|k—1 + é,fﬁglyk — (ﬁg@};l@k + EngEIEGk)uk (3 62)
I Q' Grux

Note that (3.62) also represents a system of simultaneous equations. Therefore, we can

write it as the following set of equations:

(Plc_\li—l + B Q' B+ CI R G + Ef Qy'Ep, + Eé;R,;lEck)i"m — FIQp e =

Popsiwner + CL R e — (FL QR G + EF,Qi g, Jus, (3.63)
— Qi ' Frape + Qi Ersae = Qi G (3.64)

Isolating Zjqx in (3.64) yields
P = Fedugp + Grug, (3.65)

which is the update equation of the predicted prior robust state estimate in step 5.2 of

Algorithm 3.2. Then, substituting @1, back into (3.63) and isolating @, gives
AT A 1A _ ~ -1
i =(Pgp_y + CL Ry C + EL Ry Eo, + EFLQg En, ) %
(Pk_\li—l‘%’ﬂk—l +CF Ry 'ye — EngEIEGkUk)a
which corresponds to the equation for computing the filtered robust state estimate in step
4.2 of Algorithm 3.2.

Now, to obtain the error weighting matrices associated with Zy, and Zyqx, we
use equation (3.58), assuming a deterministic context. Thus, substituting the mappings
(3.59) and (3.60), and the modified matrices (3.61) into (3.58) yields?

Pk\k: * _

o Pk+1|k

r Ay A ~ PNEISN ~ — — Ay A -1 -1

P+ B QU B+ CE R Cot B Qi B+ EL By Bey, —FUQ | M My

i —Qi Fy Q' MF My |’
M1

2 The elements marked with * are byproducts with no particular meaning in our context.
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where we define the partitioned matrix M. To find its inverse, we use the Banachiewicz
inversion formula (Lemma A.4, item (ii)). According to Lemma A.3, the Schur complement

of M3 in M is
(M/M3) = My — MM ' M3 = Py, + CF R, 'Cr + E Ry Eq, + EF, Q' El,.

The posterior error weighting matrix in step 4.1 of Algorithm 3.2 is then obtained as

follows:
Py = (M/Ms) " = (Pl + CT R\ Gy + EL Ry Ec, + E5.Qy ' Er,) -
Finally, we obtain the predicted prior error weighting matrix
Pyae = Mg+ M5 MG (VM) ' VoM ' = FLPorF + Q,
as shown in step 5.1 of Algorithm 3.2. ]

Notice that in Algorithm 3.2, we consider that the penalty parameter ;1 assumes a
finite value, which, based on the discussion in Section 3.2.2, we can tune to increase the
filter performance in terms of smaller estimation error. The filter also depends on the &
parameter, used to approximate 5\k, as Remark 3.2 states. In most cases, choosing a small

value for £ within the interval (0, 1) generally leads to adequate results.

Remark 3.3. The expressions for the Robust Kalman Filter outlined in Algorithm 3.2
resemble those of the Nominal Kalman Filter, as shown in Algorithm 3.1. In fact, if there
are no uncertainties, i.e., My, Msy, Er,, Eq,, En,, Ec,, and Ep, are all zero, and
we let y — oo, we have that Q = H,QwHT, Ry = D R,DY, F, = Fy, Gy = Gy, and
Cr = Cy. This way, the expressions in steps 4 and 5 of Algorithm 5.2 collapse to the
expressions in steps 3 and 4 of Algorithm 3.1. For this reason, we say that the proposed

estimator is a robust Kalman filter.

To conclude this section, we emphasize the importance of using the penalty function
method when deriving the proposed robust filter. This strategy allowed for uniformly
considering parametric uncertainties in all system matrices, as well as provided a parameter
1 that can be conveniently used to adjust the filter estimation performance when necessary.
Furthermore, much like the standard Kalman filter, the robust filter recursive expressions

outlined in Algorithm 3.2 can be easily implemented in online applications.

3.2.4 Stability Analysis

In this section, we investigate the stability properties of the proposed Robust
Kalman Filter, as well as the boundedness of its estimation error variance. Based on

the procedure described in Section 3.1.4 and Sayed (2001), we examine the steady-state
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behavior of Algorithm 3.2 when the system model parameters are constant and there is
no input u;. Nonetheless, we still assume that the contraction matrices Ay and Ay
are time-varying. Thus, consider the following discrete-time state-space description of an

uncertain linear system:

(3.66)
Y = (C + 5Ck)$k + (D + 5Dk)vk,
for £ > 0, with time-varying norm-bounded parametric uncertainties
[6Fk 5Hk} =M A [EF EH} v ALl <1,
(3.67)

(6Cy 6Dy) = Mol [Ec Ep|, [kl <1.

Let us first study the stability of the RKF in Algorithm 3.2. Considering the
uncertain system model (3.66)-(3.67), the robust filter equations in steps 4 and 5 of
Algorithm 3.2 become:

Pyp = (Pgi_y + C"R'C + EER™ Ec + Eﬁ@*lEF)’l, (3.68)
Ty = Pk|k(Pk_|1i_1£kz|kfl + éTﬁ_lyk)y (3.69)

Pk = FPyF" + Q, (3.70)

Tpyrp = kaum (3.71)

where the modified system and sensing model parameter matrices are given by the
corresponding equations listed in step 3 of Algorithm 3.2, considering constant parameters.
The constant \ parameter is analogously computed as in step 2. To simplify the analysis,

we further define the augmented matrices

c RO O
C = Eq-| and R=1|0 R 0],
Ep 00Q

such that Py in (3.68) can be written in a more compact way, as
P = (Pl + CTR7C) .
Applying Lemma A.1 to expand this expression, we obtain
Py = Pt — PaprC7 (R + C Pyt C7) Ol (3.72)

Now, combining (3.72) with (3.69) and substituting in (3.71) yields the steady-state

predicted robust state estimate

Trae = ﬁk£'k|k—1 + ﬁkpk|k—léT§71yk7 (3.73)
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where
~ ~ ~ ~ - . 1 ~
F = F(I = Puyp1C" (R + CPg 1 CT)C)
is the filter closed-loop matrix. Moreover, substituting Py, from (3.72) into (3.70), we

obtain the expression for the predicted prior error weighting matrix:

~ ~ ~ ~ ~ -1 ~ ~ ~
Popipp = F(Pupor = Pop—aC" (R + CPypsCT) CPypn ) FT +Q. (374

The next theorem establishes a result concerning the convergence of the proposed
robust filter to a stable steady-state filter.

Theorem 3.4. Consider the linear system model (3.66) with norm-bounded uncertainties
(3.67) and the corresponding robust filter (3.73)-(3.74). Assume that {F,C} is detectable
and {ﬁ’, @1/2} is controllable. Then, for any initial condition Po—y >0, £ >0, and p > 0,

Py converges to the unique stabilizing solution P = 0 of the algebraic Riccati equation

~ e~ o =1 ~ ~ ~

P=F(P-PC"(R+CPC") CP)F"+Q. (3.75)

The solution P is stabilizing in the sense that the steady-state filter closed-loop matrix

~ . ~ ~ e —1 ~

F=F(I, - PC"(R+CPC") C) (3.76)
is Schur stable.
Proof. The conditions & > 0 and p > 0 imply that A > 0, ensuring that matrices F,C, R,
and Q are well-defined. According to Kailath, Sayed and Hassibi (2000b), detectability of
{F,C} and controllability of {F,Q"/?} ensure the convergence of Py, in (3.74) to the

unique stabilizing positive definite solution P of the algebraic Riccati equation (3.75) that
stabilizes (3.76), which is the robust filter steady-state closed-loop matrix. O

We now investigate the robust filter estimation error variance. Again, consider the
uncertain linear discrete-time system model (3.66)-(3.67). Moreover, assume that wy and

vk are uncorrelated zero-mean Gaussian noise processes with joint covariance matrix

a3 e )= [7

>~ 0. (3.77)
0 R
Additionally, assume that there is no correlation between the parametric uncertainties and

the system and measurement noises.

Definition 3.1. (XI/E; SOH; SOUZA, 1994) The uncertain system (3.66)-(3.67) is said

to be quadratically stable if there exists a symmetric positive definite matriz U such that
(F + MlALkEF)TU(F + MlAl,kEF) -U=<0

for all admissible contractions Ay .
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Remark 3.4. (PETERSEN; MCFARLANE, 1996) Conversely, the uncertain system
(3.66)-(3.67) is quadratically stable if, and only if

1. F is Schur stable, i.e., all its eigenvalues lie inside the open unit disk;

2. The discrete-time Ho, normal bound HEF(an — F)_lMlH < 12 is satisfied.

In order to show that the proposed robust filter presents a bounded steady-state
estimation error variance, we make the following assumptions about the uncertain system
and the filter itself.

Assumption 3.1. The uncertain system (3.66)-(3.67) is quadratically stable, according to
Definition 3.1.

Assumption 3.2. The conditions outlined in Theorem 3.4 are satisfied, such that the

robust filter steady-state closed-loop matriz F is Schur stable.

Under Assumption 3.1 and Assumption 3.2, we can show that the steady-state
robust filter (3.73) is also quadratically stable. For a more compact notation, we define

the so-called steady-state filter gain
K=F PCA’T}A%_l,

where F is given by (3.76), with P being the stabilizing solution of the algebraic Riccati

equation (3.75). This way, the steady-state robust filter equation can be rewritten as
Terap = Fippor + Ky (3.78)
Now, substituting y; from (3.66) into (3.78) yields
Zhpae = Finp1 + K(C + 6Cy)zy, + K (D + 5Dy, vy, (3.79)

In addition, we introduce the state estimation error vector e, = w3, — Zy—1. Then,

subtracting (3.79) from x4 in (3.66) gives
eri1 = [(F —F—KC)+ (6F, — f(é(]k)} z,+ Fep+ (H+0H)wp — K (D + 6Dy )vy,. (3.80)

Consider now an augmented system composed of the target system state x; and the
estimation error ej. Therefore, from (3.66), (3.67), and (3.80), this augmented system is
described by

Chorr = (F + 0F) G + (€ + 656, )i,

{5% 5%16} =M Ay, {Eb; Eye} ; (8.81)

3 I - |loo denotes the maximum singular value of its argument for values of z on the unit disk.
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where
F 0 H 0
Ck = ok ) Nk = o 3 F = ~ =~ ~1 = =~ )
e e F-F-KCF H —KD
M 0 A 0 Er 0O Eqg O
J”/ = 1 . , Ak‘ = Lk , Eg, = F , g = H .
My, —KM, 0 Aoy Ec 0 0 Ep

Lemma 3.4. Given that Assumption 3.1 and Assumption 3.2 are satisfied, the augmented

system (3.81) is quadratically stable.

Proof. Observe that the augmented system matrix & is lower triangular with diagonal
elements F and F, which are both Schur stable. Therefore, F is also Schur stable. Moreover,

we have that

(Er 0 2I, — F 0
Ec 0| |—(F—F—-KC) zI,— F
(Ep(zI, — F)~'M; 0| [Ep

Ec(ZIn — F)_lMl 0 Ec

Ez(zlp, — F) 'l = Y
1 — 2

M, 0]

(2L, — F)™" [M, 0]

In addition, note that

Arp 0
0 Agy

Ep

F+ MAy xEp = F + [M; 0] ol
C

Since system (3.66)-(3.67) is quadratically stable, according to Remark 3.4, we have

for all admissible contractions A; ; and Aj ;. Therefore,

Ep

iy (21, — F)™" [Ml 0}

<1,

o0

Es (2l —F) M| < 1and
the augmented system (3.81) is also quadratically stable. [

We now define the covariance matrix of the augmented system state as 9, =
E{Ck{,?}. Then, it follows from (3.81) that % satisfies the Lyapunov recursion

g)k—&-l = (97 + 59‘%)@“9‘7 + (Sg:k)T + (3‘6 + 63(619)9/(% + 53‘6/§)T, (382)

where Q is defined in (3.77). The next theorem provides a result on the boundedness of

the steady-state estimation error variance of the proposed robust filter.

Theorem 3.5. Under Assumption 5.1 and Assumption 3.2, the state estimation error
variance of the steady-state robust filter (3.78) satisfies

lim E{eke;‘f} j WQQ,

k—o0
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where Voo is the (2,2) block entry with the smallest trace among all (2,2) block entries of
matrices "V > 0 that satisfy the inequality

(F + MAEz) Y (F + MAEs)" + (S + MAEy) D (€ + MAEy)" =V <0,
for all admissible contraction matrices A, with ||Al < 1.

Proof. From Lemma 3.4, the augmented system (3.81) is quadratically stable, therefore,

according to Definition 3.1, there exists a matrix %% > 0 such that
(g + MAkEg)% (97 +ﬂAkE¢)T —a < 0,

for any admissible contraction matrix A;. Based on the arguments developed in Petersen
and McFarlane (1996) and Sayed (2001), the existence of matrix U > 0 above guarantees
the existence of a sufficiently large scaling parameter ¢ > 0, such that we can find a matrix
W = €9 that satisfies

(F + MALES) Y (F + MAEF)" + (S0 + MALEy) Q (H€ + MALEy)" <V.

Thus, subtracting the recursion for the augmented system covariance (3.82) from the

inequality above yields
(F + MAES)(V — P ) (F + MALEF)T =V — Py,
or, equivalently,
YV — Py = (F + MAE)(V — P ) (F + MALEZ)T + W,

for some "W = 0. Finally, since the augmented system is quadratically stable, as k — oo,
we have that ¥V — %1 = 0, or P, 1 < V. The (2,2) block entry of %} corresponds to the

estimation error variance, which is thus bounded. O

3.2.5 [Illustrative Example

In this section, we assess the performance of the proposed Robust Kalman Filter
with a numerical example. We further compare our results with other existing robust

filtering strategies from the literature, as well as with the Nominal Kalman filter.

Consider a discrete-time linear system with norm-bounded uncertainties, as de-
scribed in (3.29)-(3.30) with the following constant parameter matrices (adapted from Xie,
Soh and Souza (1994)):

0 —0.5 0 G
Y G = Y H =

] . My =10, Ep = FEc, =[001003|, Eg, =0, En, =Ep, =00l

F, =

. Cp=[-100 10], Dy=1,

0

M, . —
1,k 10
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No input signal uy is present and the system and measurement noises, wy and vy, are
mutually independent zero-mean white Gaussian signals with variances QQ, = 1 and Ry = 1,

respectively. The initial state is x¢y = [2 1}

Then, we apply Algorithm 3.2 with the following initialization data:
R T
Tol-1 = [O O} s P0|_1 = IQ, m = 1, and g =0.1.

Figure 2 shows the evolution of the actual system state along with the estimation performed
by the proposed Robust Kalman Filter. At each time step, A;; and Ay are real numbers
randomly chosen from a uniform distribution with interval [—1,1]. The results show that
the proposed RKF can successfully track the state of the target system, despite the
norm-bounded parametric uncertainties, present in all matrices of the target system and

sensing models.

Figure 2 — Actual (solid lines) and estimated (dashed lines) target system state obtained
with the proposed RKF (Algorithm 3.2).
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We further evaluate the proposed RKF by comparing its performance with that
of some other existing robust filtering strategies. Namely, the optimal robust filter of
Ishihara, Terra and Cerri (2015), the robust regularized bounded data uncertainties filter
of Sayed (2001), the robust guaranteed cost filter proposed in Dong and You (2006), the
robust risk-sensitive Kalman filter presented in Zorzi (2017), and the LMI-based robust
Kalman filter of Abolhasani and Rahmani (2018). All filters also assume uncertainties in
all parameter matrices, except for the one by Sayed (2001), which only takes into account
the uncertainties in the target system model. Furthermore, we also compare the RKF with

the Nominal Kalman Filter outlined in Algorithm 3.1.
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The simulation consists of performing M = 5000 Monte Carlo experiments, each
with time horizon N = 1000. At each time step k, we compute the mean squared estimation

error (MSE), averaged over all experiments, as follows:

1 M
MSEk = M Z ka — .@k‘k,e”Z.
e=1

Since one cannot analytically compute the actual estimation error variance due to the
model uncertainties, we use this ensemble average as a reasonable approximation, as

suggested in Sayed (2001).

The results are depicted in Figure 3 and summarized in Table 1, which reports the
estimation performance of each simulated filter by listing the mean MSE and standard
deviation o(MSE) of their error variances, respectively computed as
N MSE, Y. (MSE;, — MSE)?

d 2(MSE) =
ZNt1 o (MSE) kZ::O N+1 )

MSE =

as well as the average time each iteration takes to be executed, Atii,. The simulation was
performed on a 2.3 GHz i7-12700H CPU with 32 GB of RAM using MATLAB R2022b,
the YALMIP toolbox (LOFBERG, 2004), and the SeDuMi solver (STURM, 1999).

Figure 3 — Estimation error variance curves of the robust filters.

(1) RKF (Algorithm 3.2) (4) Abolhasani and Rahmani (2018)
(2) Ishihara, Terra and Cerri (2015) (5) Zorzi (2017)
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Table 1 — Estimation performance of each robust filter.

Filter MSE (dB) o(MSE) (dB) At (ms)
(D) RKF (Algorithm 3.2) 10.79 0.5694 0.0325
(2) Tshihara, Terra and Cerri (2015) 16.70 0.7245 0.0512
(3) Sayed (2001) 22.93 2.2207 0.0099
(4) Abolhasani and Rahmani (2018) 24.34 1.5437 68.729
(B) Zorzi (2017) 31.40 0.6517 0.5289
6) Dong and You (2006) 36.03 0.8235 0.0096
KF (Algorithm 3.1) 37.38 6.8568 0.0085

Bold numbers indicate the smallest values.

The proposed RKF outperforms all the other robust filtering strategies in terms of
error variance. The KF, however, was not able to estimate the system state, presenting an
exponentially increasing error variance. Hence, it is not shown in Figure 3. This emphasizes
how the parametric uncertainties can severely degrade its performance. Comparing the
RKF with the robust filter in Ishihara, Terra and Cerri (2015) corroborates how choosing
a smaller value of the penalty parameter p instead of letting 4 — oo can increase the
estimation performance. Moreover, using the algebraic expressions in Algorithm 3.2 rather
than inverting a large matrix block also reduces execution time. The other robust filtering
strategies exhibit significantly larger error variances compared to the RKF. Naturally, the
KF has the largest mean error variance, as it assumes a nominal system model. The RKF
also presents the smallest standard deviation. In terms of execution time, as expected, the
KF takes the least time due to its simplicity. The RKF requires slightly more time than the
filters by Dong and You (2006) and Sayed and Nascimento (1999), which is compensated
by its superior estimation quality. In contrast, the robust LMI-based filter (ABOLHASANTI;
RAHMANTI, 2018) demands significantly more time than the other strategies, since it
depends on the solution of an LMI at each time step, which might be problematic in online
applications. The risk-sensitive filter (ZORZI, 2017) also requires a relatively large amount
of time for each iteration, mainly due to the computation of the risk-sensitive parameter.
Overall, the proposed RKF features a satisfactory estimation performance at a reasonable

computational cost, being therefore suitable for real-time applications.

Additionally, we take a closer look at how the two parameters of the proposed
RKF, namely the penalty parameter p and the approximation parameter &, influence the
filter performance. Figure 4 compiles the results of a series of simulations with several
combinations of the RKF parameters. For each combination, we compute the mean
estimation error variance MSE, as previously described. As pointed out in Section 3.2.3, we
obtain better results when ¢ € (0,1). Furthermore, within this range, smaller values of y
lead to smaller mean error variances. Above this range, the filter performance significantly

degrades.
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Figure 4 — Effect of the RKF parameters p and £ on the mean error variance MSE.
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3.3 Robust Kalman Filtering for Systems with

Polytopic Uncertainties

In this section, we propose another robust version of the Nominal Kalman Filter
introduced in Section 3.1. This time, we address the case where the underlying system
is subject to polytopic parametric uncertainties. In this specific model description, we
consider that the system parameters arbitrarily vary within a convex polyhedron centered
at the nominal parameters (CHANG; PARK; TANG, 2015).

We follow a similar procedure as the one outlined in Section 3.2 to propose a
robust filter for linear discrete-time systems subject to polytopic uncertainties. From a
deterministic viewpoint, we formulate the robust estimation problem as a constrained
regularized least-squares estimation problem with uncertainties (Section 2.2.4). The linear
equality constraints correspond to each vertex of the uncertainty polytope. We also use the
penalty function method (Section 2.1) to transform this problem into an unconstrained
equivalent, whose solution provides the recursive expressions of the Polytopic Robust
Kalman Filter (PRKF). Like the previous estimators, we present the PRKF as a correction-
prediction algorithm. Additionally, we analyze the stability properties of the proposed

filter and conclude the section with an illustrative example.

3.3.1 Problem Formulation
3.3.1.1 System Model

Consider the following discrete-time state-space description of an uncertain linear
system:
xk-{-l = (Fo,k —+ (SFk)I‘k + (Go,k ‘f‘ 5Gk)uk + (H()Jg + 5Hk)wk,

(3.83)
yr = (Cox + 6Ck)xr + (Do + I D) vy,
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for k=0,1,..., N, where z;, € R" is a state vector, up € R™ is an input vector, w;, € RP
is the system noise, y; € R" is a measurement vector, and v € R? the measurement noise.
For € R Gop € R™™, Hyj € RVP, Cpy, € R, and Dy, € R™? are known nominal
parameter matrices, whereas 0F, € R™*" 060G, € R™™, 0H) € R™P §C, € R™" and
0Dy € R™7 are unknown uncertainties bounded to a convex polyhedral domain described

by V' vertices,

Vv
V= {(m, 0Gr, 0Hy, 6Ck, 5D) = > aws(Fun, Guks Hup Cogs Dy,k)}, (3.84)

v=1

where F,, € R™" G, €e R H,, € RV? C,, € R and D, € R"™9 are known,
T
and ay = [alﬁk e Oév,k} belongs to the unit simplex

v=1

Vv
Ay = {aeRV Py a, =1, a,,zo}. (3.85)

When a stochastic interpretation is adopted, we usually assume that xg, wy, and vy

are mutually independent zero-mean Gaussian random variables with respective variances
E{xoxg} =Py =0, E{wkwlT} = Qrow = 0, and E{vkvlT} = R.01 = 0,

where 0, is the Kronecker delta function, such that 0, = 1 if & = [, and d;; = 0 otherwise.
However, the strategy we develop to derive the polytopic robust filter does not require

that these variables have any particular distribution.

3.3.1.2 Robust Estimation Problem

The goal is to design a robust state estimator for the uncertain system (3.83)-
(3.84). Since the system state sequence {zj} is not readily available nor is perfectly
observed, the problem consists of using all the information available up to time instant k,
Y. = {vo,---, Yk Uo,...,ur}, to obtain a so-called filtered state estimate &y of zy, as
well as a predicted estimate £411x of zx11, despite the presence of the polytopic model
uncertainties 8y == {0Fy, 0Gx, 0Hg, 6Cy, 6Dy }.

Following the procedure described in Section 3.1.1.2 for the Nominal Kalman Filter,
we adopt a deterministic viewpoint (BRYSON; HO, 1975). As such, we introduce the
variables Ty, Tr.1, Wi, and Uy as substitutes for the corresponding random variables xy,
T41, Wk, and vy, in the stochastic model (3.83). Then, based on Sayed (2001) and Ishihara,
Terra and Cerri (2015), assuming that at each time step k, an a priori state estimate @y)p_1,
a measurement v, and the input uy are available, we formulate a min-max constrained
optimization problem in which a one-step quadratic objective function should be minimized
under the maximum influence of the polytopic parametric uncertainties 9y, i.e.,

min max Ji (&, Op, ) = || Tk — m"ﬁ*”%@ + ||wk||§2;1 + |\@k||;;1, (3.86)

Tp, Tpt1, Ok
Wk, Vi
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subject to the set of constraints

I, Fop+ o1 VFEL Gox + o1 VG Hyj + o 1 VHy
Tpy1 = : Ty + : ug, + : Wy,
L, Fox+aviVFyy Gox +aviVGyg Hoy + ayiV Hyy
(3.87a)
I, Cor + a1 VO Doy + aq VD
gk = : T + : Ok, (3.87b)
I, Cox + aviVCvy Doy + aviV Dy,

for k=0,1,..., N, where @ and 0, are fitting errors weighted respectively by @ > 0
and Ry, = 0, and Py = 0 weights the a priori estimation error xj, — Zj;—1. Recall that,
from a stochastic viewpoint, matrices @), and Ry represent the variances of the random
variables wj, and vg. Nonetheless, in this more general deterministic setting, they are rather

understood as weighting matrices.

Remark 3.5. The constraints (3.87) of problem (3.86) are derived from (3.83)-(3.84) by
individually considering each vertex of the polytope. The equivalence between them can be
easily shown by summing all the correspondent state and measurement equations in (3.87),

as follows:

v v v
Tpy1 = <F0,k +3 O@,kﬂ,k) Ty + <G0,k +3 au,kGu,k> Uy + (Ho,k +3 Oéu,kHu,k> W,

v=1 v=1 v=1

v 1%
Yk = <Co,k + Z Oéu,kCu,k> Ty + (Do,k + Z Oéu,kDu,k> (s

v=1 v=1

which correspond to the same equations in (3.83)-(3.84), considering the deterministic

variables.

To simplify the notation, we rewrite the constraints in (3.87) in the more compact

form
1,21 = (Fop+ 0Fy) i, + (Gop + 6Gr)u, + (Hoy + 0 H )y, (3.88)
Iy, = (Cox + 6C) Tk + (Do + 6 Dy)0y,
in which we define
I, =1y®1, Fop=1y®F Gor=1y Gy Hy, =1y ® Hyy, (3.89)

I.=1,®1,, Cyp=1y®Cyy, and Dgj =1y ® Doy,

T
where 1, = {1 1} € RV and ® denotes the Kronecker product. Moreover, the
uncertainties are given by

T (3.90)
[5Ck 5Dk} = &Q,kv {Ck Dk} )
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where
a1y 0 Fip, Gk Hy
al,k = ) Fk - ) ék - ) E[k = )
0 ayil, Fyy Gk Hyy,
(3.91)
OszIT 0 Cl,k: Dl,k
Qo) = , ék = , and Dk =
0 - ayil, Cvk Dy,

The solution to problem (3.86)-(3.87) recursively provides the filtered and predicted
robust state estimates 2y, and Zjx41, which compose the Polytopic Robust Kalman Filter.
In addition, we refer to this problem as a reqularized least-squares estimation problem with

polytopic uncertainties, whose details we discuss in the next section.

3.3.2 Regularized Least-Squares Estimation Problem with

Polytopic Uncertainties

Consider the general problem of obtaining an estimate  of an unknown vector x

based on measurements vy, related to x according to the uncertain linear system
(yo + 0y) = (Ag + 0A)z + (By + dB)w, (3.92)

where w is a noise vector, also unknown, Ay and By are known matrices, and 1, is a
known measurement vector. The parametric uncertainties dy, dA, and B are unknown

but bounded to a convex polyhedral domain described by V' vertices,

V= {(5y 0A, 0B) = zvj (4, Ay, B,,)}, (3.93)

v=1

T
in which y,, A,, and B, are known and « = [al e av} belongs to the unit simplex
v
Ay = aERV:Zayzl,al,ZO ) (3.94)
v=1

Moreover, assume that an a priori estimate z of x is available as well.

Adopting a deterministic viewpoint, we formulate the regularized least-squares

estimation problem with polytopic uncertainty as

. o =2 2
min max J(z,w) = |lo - 25 + [wlo, (3.95)

subject to the set of constraints
Yo + a1V Ao+ a1 VA By + o VB
: = : T+ : w. (3.96)
Yo +avVyy Ao+ ayV Ay By + ayV By
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In the objective function of problem (3.95), P >= 0 and Q > 0 are given weighting matrices
respectively associated with the a priori estimation error x — x and the model fitting error
w. Therefore, we minimize the objective function under the maximum influence of the

parametric polytopic uncertainties.

Remark 3.6. We derive the constraints (3.96) of problem (3.95) from (3.92)-(3.93) by
individually considering each vertex of the polytope. The equivalence between them can be
shown by pre-multiplying both sides of (3.96) by [I [} =11 ® I, such that

\% \%4 \4
Yo + Z Yy = <AO + Z aVAV> T+ (BO + Z aI/BV> w

v=1 v=1 v=1

which corresponds to the same equation in (3.92)-(3.93).

To use a simpler notation, we rewrite the constraints in (3.96) in a more compact
form, as follows:

Yo+ 0y =(Ag+dA)z + (By+ dB)w, (3.97)
where we define
Yo = ]-V X Yo, AO = ]-V X Ao, and BO = ]-V X Bo, (398)

and the uncertainties are given by

0y 6A 6B|=aV|j A B|, (3.99)
in which
ol 0 Y1 Ay B,
a=|: . |, g=1|:|, A=/|:], and B=| : |. (3.100)
0 ayl Yy Ay By

The first step to solve the constrained problem (3.95)-(3.96) is transforming it into
a more convenient unconstrained problem. Since the linear constraints in (3.96) cannot be
inserted into the objective function by direct substitution, we rely on the penalty function
method presented in Section 2.1. This way, we include the redefined constraints (3.97)
in the objective function as a quadratic term multiplied by a penalty parameter u > 0,
which penalizes constraint violations. Therefore, for a fixed p > 0, we rewrite problem
(3.95)-(3.96) as

: p
min 6y%1%’>%BJ (x,w,dy, 6A, 6B), (3.101)

with a new objective function

JH(z,w, 0y, 0A, B) =

{( [Ag Bo| + (A 5B}>

T

] — [(yo — AoT) + (dy — JAE)}} ,u[{ o }, (3.102)

xr —

w
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considering the definitions in (3.97) through (3.100). Moreover, note that since o =
T
{al av} belongs to the unit simplex Ay in (3.94), we have that ||&| <1 in (3.99).

Problem (3.101)-(3.102) thus has the form of a regularized least-squares problem
with uncertainties (Section 2.2.4), considering the following mappings between (2.13) and

(3.102):
Z 4 [x_j] , Q<+«

0A « [6A 6B|, and 6b+« dy — SAZT.

PO
. A« [Ay B|, beyo— Az, W pl,

(3.103)

In addition, the correspondence between the parametric uncertainty model in (2.14) and

the polytopic uncertainty model in (3.99) is given by
04 8b] = MA B, B, (1Al <0,
where

M1, A«ael, Ei«V[A B|, and B« V(§- Az). (3.104)

Hence, to solve problem (3.101)-(3.102), we use the results in Section 2.2.4. From
the solution, we then extract the estimate #* of z, which is conditioned by the penalty

parameter u, as we shown in the following lemma.

Lemma 3.5. Consider problem (3.101)-(3.102) with polytopic parametric uncertainties
_ A
given by (3.99), in which P = 0, @Q > 0, and AO has full column rank. The estimate T#

of x, conditioned by the penalty parameter p > 0, is given by
i = (P+ATQ'A+ ATQ—%)_l (Pz+ATQ7 '+ A'Q7'g), (3.105)

in which we define the auziliary entities

q)i:X/LV(S\—/L)ilL Y= AV2,

— _ _ ~ _7 -1
Q=¢'I+BQ'B", Q=0"+By(Q+¢B B) B]. (3.106)
A=A — BOQ_IBTQ_lll U= — BOQ_IBTQ_IZI

where \ is a nonnegative scalar parameter obtained from the auxiliary optimization problem
A == argmin T(}), (3.107)
A>p
with objective function T'(X) given by

L(A) = [l + Al Eaz(X) — El|* + [|A2(A) = bl (3.108)
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in which
W) = Au(A—p) T
(V) = (Q+ ATWONA + AEFEL) (A"W\b + AESEy).

considering the definitions in (3.103) and (3.104).

Proof. Problem (3.101)-(3.102) is a special case of a regularized least-squares problem

with uncertainties, considering the mappings in (3.103) and (3.104). Moreover, as P > 0,

@ > 0, and p > 0, we have that Q > 0 and W > 0, such that we can use Lemma 2.8 to
0 I

find the solution. It is further required that the block | A, B,| should have full column

A B

A
rank, which is satisfied by conditioning AO to have full column rank. Therefore, by

substituting the mappings (3.103) and (3.104) into the unique solution (2.15), we obtain

BT®A,+¢B'A Q-+ BI®B,+¢B' A
AT®(yo — AoT) + 0A (§ — fif)]

_ 7 — —_7 — —1
P+ AT®A + A" A ATOBy+ oA B } .

BY®(yo — AoT) + B’ (§ — A%)

in which we define ® := \ V(j\ — ,u)ill and ¢ == AV2. Then, summing

i] to both sides

of the equation above yields

H
WM

Note that the equation above represents a system of simultaneous equations, such that we

-1

BI®Ay+¢B'A Q-+ BIoB,+ B B

Pz + ATOyy + pA' g
Bloy, +¢B'g |

can write it as the following set equations:

(P+AT@A) + g A" A)2# + (AT0B, + pA' B’ = Pz + ATdyy + pA' g, (3.109)

(BY®Ay +¢B" A)i" + (Q + BI @By + ¢B' B)i" = Bl ¥y, + ¢B' §. (3.110)
Then, isolating w* in (3.110) gives

0" = (Q+ BI®B, + pB'B) (Bl oy + pB"§ — (Bl 2 A, + 0B A)i").

Substituting @* back into (3.109) thus yields
{p +ATDA, + AT A~
(4708, + 9 A"B)(Q + BI®Bo+ ¢B'B) (Bl + wB' )| " =

_ _ _r _ 7o\ —1 _
P+ Al Oy, + A §— (AT®B, + A" B)(Q + BI®By + ¢B B) (Bl y, + ¢B )
(3.111)
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Now, we expand the left-hand side of (3.111) and obtain

[P + A7 (@ — @B (Q + wB' B+ B{@BO)”BOT@)AO -
T _ -1 —7 = T = _po_ -1
AT®By(Q+ ¢B'B + BI®B,) ¢B'A— A B(Q+¢B' B+ BIoB,) BI®A+
_T —

—T - —T = _7 -1
pA'A—A'B(Q+¢B' B+ B]oB,) B' Ag|i". (3.112)

We can simplify the second term of (3.112) by applying Lemma A.1, as follows:

AL (@ - @By(Q+¢B B+ B{OB,)  BI®)A, =
AT(@ +Bo(Q+ 9B B) 'BY) Ay= ATQ7'Ap. (3.113)

Q

Then, we simplify the third term of (3.112) using Lemma A.2 twice:

AT®By(Q + BB + B{9B,) wB'A =
AT(e7 + Bo(Q+¢B"B) 'B]) BB (¢ 1+ BQB") A=
5

ATQ'B,Q'B Q'A. (3.114)
Applying the same procedure above for the fourth term of (3.112) gives
= T & T —Lor _ ATA-1Bn-1RTAH-1

»A B(Q+¢B B+ Bj®B)) Bj®A;=A Q'BQ'BIQ A, (3.115)

Now, we expand the last two terms of (3.112) using both Lemma A.1 and Lemma A.2, as

follows:

pA"A - oA"B(Q+¢B' B+ Bl9B,) B Ap=

2
A'(pI - ¢B(Q+¢B"B) 'B'p)A+
A'(¢ 1+ BQ'B") BQBIQBQ B (¢ 1+ BQ'B") A=

_ —1 — o _ ~ _
Q'B") A+ A'Q'BQ'BIQ ' BQ'B

o <

AT(goflf +

' 'O BQ'BIQ'BQ'B' Q1A (3.116)

B O

A QA+
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Then we substitute (3.113), (3.114), (3.115), and (3.116) back into (3.112) to obtain

P+ ATQUAT AT (M- B 'BTQTA) -
A
A'Q'BQ'BIQ (A - BQ'B'Q'A)
A
(A7 - ATQléQlBOT)@%} = (P+ATQ' A+ ATQ*A) i, (3.117)

AT

— T =

Pt = [P+A 1A+

O

In a similar fashion, we expand the right-hand side of (3.111), as follows:
Pi+ AL (® — 8By(Q + ¢B' B + BI®B,)  BI®)y, -
AT®By(Q+ B B + BI®By) wB'§ -~ pA"B(Q+¢B B+ BI®B,) Bl dy+
0A'§—pA"B(Q+oB'B+BloB,) B'je. (3.118)
First, we apply Lemma A.1 to simplify the second term of (3.118):
AT(® — ®By(Q + ¢B"B + BI®B,) ' BI®)yo =
AT(@ +Bo(Q+ 9B B) B ) yo=ATQ 'y (3.119)

Q

Next, we simplify the third term of (3.118) using Lemma A.2 twice:

AT®B(Q+¢B' B+ B] @Bo)_lsoBTﬂ =

A5 (87 + Bo(Q+ ¢B"B) B ) BB (¢ 1+ BQ'B") g =
0 Q
ATQ'B,Q'B" Q3. (3.120)

The same procedure is used to simplify the fourth term of (3.118), such that
pA"B(Q+¢B B+ BI®B)) Bldy,= A'QBQ'BIQ 'y (3.121)
Then, we apply Lemma A.1 and Lemma A.2 to expand the last two terms of (3.118):
0A'§— pA"B(Q+¢B B+ B®B,) B'gp=
@ATQ — @ATB [(Q + @BTB>_1 —

(Q+¢B"B) "Bl (&' +By(Q+¢B'B) 'B") By(Q+¢B'B)

Q
AT(M —eB(Q+ goBTB)_IBT«p)ﬁ +

- _ _7\ -1 = ~ _ _ _p\—1
A'(¢'1+BQ'B") 'BQBIQ'B.Q'B (¢ 1+ BQ'B") § =
G G
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el _ = 157\ "1_ ' =15 — A 1l A-1-
A (¢ 1+BQ'B ) §+AQ'BQ'BIQ BB Q 'y =
Q
_T_

A'Q g+ A'Q'BQIBIQ ' BQ ' B Q1. (3.122)

Thus, substituting (3.119), (3.120), (3.121), and (3.122) back into (3.118) yields

= _ =T =_1_ T = 175 ~— A
Pr+ A Q 'g+ (A - A Q'BQ B )Q 'yo -

AT
(AT~ A" BB )0 B0 B Qg = Prt A Qg+
AT
ATQ (o= BQ'B' Q') = Pz + ATQ7 '+ A'Q7'g. (3.123)

9
Finally, we substitute the left- and right-hand sides of (3.111) respectively by (3.117) and
(3.123) and isolate Z* to obtain the estimate in (3.105).

Moreover, the procedure described in Lemma 2.7 is followed to obtain the parameter
), i.e., by solving the auxiliary optimization problem (3.107)-(3.108). Notice that, since we
search for A > p > 0 in problem (3.107)-(3.108), according to Remark 2.1, the invertibility

of ® is ensured. O

Remark 3.7. The solution in Lemma 3.5 depends on the optimal parameter :\, which
results from solving the optimization problem (3.107)-(3.108). While a constrained line
search method can be used to obtain a solution, this requires additional computation time.
Therefore, we rather adopt the practical approximation A= (L+&) p, for some & >0, as

explained in Remark 2.2.

Remark 3.8. As discussed in the end of Section 3.2.2, in a robust estimation context, the
penalty parameter i can be understood as a robustness measure of the estimator. In this
sense, when the system model is subject to significant uncertainties, smaller values of
increase the estimator robustness. Conversely, for mild uncertainties, larger values of

can be used.

To conclude the section, we further associate a weighting matrix P to the estimation
error  — 2. Recall that, since the underlying model contains parametric polytopic
uncertainties, we cannot refer to this weighting matrix as an error variance matrix, as we
cannot compute it analytically. Hence, based on the result in Lemma 3.2 and relying on

the deterministic view of the robust estimation problem, we associate the weighting matrix

A

P=(P+ATQ'A+ ATQA) (3.124)

to the estimation error x — &, considering the estimate & in (3.105).
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3.3.3 Polytopic Robust Kalman Filter

In this section, we apply the results in Section 3.3.2 to obtain the so-called Polytopic
Robust Kalman Filter. As aforementioned, the deterministic estimation problem (3.86)-

(3.87) is a special case of a regularized least-squares estimation problem with polytopic

uncertainties, considering the following mappings between (3.86)-(3.88) and (3.95)-(3.97):
Pl 0 Q' 0

klk—1 7 Q i k .

0 0 0 R

Ty _ Thjk—1 W,
T4 | . T ;w4 |
Th+1 0 Vg,

—Go,kuk] A o [Fo,k _In] B {Ho,k 0
’ 0 3 0 ’

. P+

Y

Yoy <
’ Ly, Cox 0 Doy]
5 oF SH
sy |00k sa (0T 0N sB e |OHE O
0 8C, 0 0 &D,

(3.125)
Moreover, consider the following mappings between the uncertainty models (3.90) and
(3.99):

_ [@uc 0]
a — ,

_ H, 0
_ ,and B« [ " |, (3.126)
0 (8 5N™ 0 Dk

—Guu . A« I?k 0
0 C, 0

Notice that Pk_l,i_l > 0, thus P > 0. In addition, Q' = 0and R;' = 0, such that Q > 0.
Therefore, by using the results in Lemma 3.5 and in equation (3.124), we obtain the filtered
and predicted robust state estimates, 2y, and 2%, as well as their corresponding error

weighting matrices Py, and Py

Theorem 3.6. Consider the reqularized least-squares estimation problem with polytopic
uncertainties (3.86)-(3.87) with given initial conditions To—1, Po—1 = Py = 0, Qr > 0,
Ry > 0, and fized parameters p > 0 and & > 0. For each k = 0,1,..., N, its solution
recursively provides the filtered and predicted robust state estimates of system (3.83)-(3.84),
Ty and Tyqqpk, as well as their corresponding error weighting matrices, Py, and Py,

according to the procedure outlined in Algorithm 3.35.

Proof. Since problem (3.86)-(3.87) is a regularized least-squares estimation problem with
polytopic uncertainties, we can leverage the result in Lemma 3.5 to obtain the robust
system state estimates 2y, and %y, Therefore, recalling the definitions in (3.89) and
(3.91) we first substitute the mappings (3.125) and (3.126) into (3.106) to compute the

modified system and sensing model matrices

~

p=AV?=(1+&uV?,

AuV(A-p) 'L, 0 o€V, 0
0 )\[LV()\ — ,u)_lfr 0 <p(§V)_1[T

ot 0
0 &,°

)
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Algorithm 3.3 Polytopic Robust Kalman Filter (PRKF)
Model: Assume the uncertain system model in (3.83)-(3.84).
Initialization: Set oy, Po—1 = Fo = 0, Qx = 0, By = 0, >0, and § > 0.
for k=0,1,...,N do
1. Obtain a measurement .
2. Compute ¢ using the approximation for A

p=AV2=(1+&puV?

3. Compute the modified target system and sensing model matrices:

_ - 1 =T
By =V, Qr = ®1+Ho(Q'+oH Hy)  H),
-1 5 -1, TP\ T
Do =V 1, Ry, = @2+ Do (Rk +oD), Dk) Do i
_ - _ _ 7 _ ~ _ _
Qr=¢ 'Ly + H,Q.H, Ry = ¢ 'L,y + DRy D,
Fy, = For, — HoxQrH, Q; ' Fy, Cy = Co — Do xR D, R C,

Gr = Gop — HO,kaI_{Zlelék

4. Correction step:
4.1. Compute the posterior error weighting matrix:

_ AT 51 A o _p o~ =\l
4.2. Compute the filtered robust state estimate:
A -1 4 AT H—1 L -1~
Tk = Pk|k(Pk|k,1£Uk|k—1 +Cp B,y — F Ry, Gkuk)

5. Prediction step:
5.1. Update the predicted prior error weighting matrix:

P = B PunEF 4 Q4
5.2. Update the predicted prior robust state estimate:

Trre = FrZpp + Grug

end for
— _T —
Q _ gp_lI”V + H,QH, 0 . Qr O
0 olv + DyR,D, 0 Ryl
_ -1 .
A (I)1+Ho,k<le+90Hka> Hg), 0 |@k 0
Q= -1 AT AN o | T R |’
0 ®y+ Dok (Ry'+¢D, Dy) DE, 0 Ry
3 L ~
i- For — HopQrH, Q' Fr, —1, . F, —I,
_Co,k — Do,kRkDZRlzlék 0 C. O ’
- o R
—(Gor — H H Q. 'G -G
G = ( 0.k 0@ H | Q) k)uk _ KUk | (3.127)
i Yk Yk
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Notice that we consider Remark 3.7 to approximate the parameter A= (14 ¢&)p, for
some £ > 0. Now, we substitute the mappings (3.125) and (3.126), as well as the modified
matrices (3.127) into the solution (3.105), which yields

R M A 1S L AT 1A —T ~_1 7 =T 5_1 4 ~rA_117 !
{mk ] Pyt + FTQ B+ CTR, G+ FLQ Fy + C Ry —FkTlel y

Tpak] | —Qy ' Fx Qi
o R PO PUNPUINN -
Pklkl;_ll‘kwgfl + Cng 1yk — (FIZQK‘ 1Gk + Fk Qk‘ 1Gk)Uk
RS . (3.128)
L Qr Gruy

Note that (3.128) also represents a system of simultaneous equations, such that we can

write it as the following set of equations:

_ STA-175 | AT B—1A =T =1 ST 51/~ \ 4 ST A—1 4
(Pahy + FLQp Fi+ CLR'Cr + FL Q. Fro+ C Ry C)itngr — B Qp Mgy =

-1 4 AT S5 ST ALA —T = 1 =
P ydmpr + LRy — (FF Q' Gi + FL Q' G Jus, (3.129)
- @Elﬁki’mk + @Eli’kmk = @Elékuk- (3.130)

Isolating &j11% in (3.64) then gives
Prae = Frdu + Grug, (3.131)

which is the update equation of the predicted prior robust state estimate in step 5.2 of
Algorithm 3.3. Then, we substitute Z41, back into (3.129) and isolate @, to obtain

. _ ATS-1A AT 51 A _7 o -1
ip =(Pgi_y + CLR ' Cr+ C B\ Cr+ FLQ Fy) - x
_ A~ NT S— =T =_1 =
(Pk|]§,1xk|k—1 + Ol Ry — FLQ, 1Gkuk)a
which is the equation for computing the filtered robust state estimate in step 4.2 of
Algorithm 3.3.

Lastly, assuming a deterministic context, we use equation (3.58) to obtain the
error weighting matrices associated with Zy, and Zj4qp,. Thus, substituting the mappings
(3.125) and (3.126), and the modified matrices (3.127) into (3.124) gives!

Pk|k * _

% Prpa

T P P PN _T - — =T = _1 = ~a 7L -1
Pk|li—1+F£Qk1Fk+OngICk+Fkale+CkRklck —Fk;Tle My My

i ~Q; ' Fy Q;'! ME M|

M-1
where we define the partitioned matrix M. To find its inverse, we use the Banachiewicz

inversion formula (Lemma A .4, item (ii)). According to Lemma A.3, the Schur complement

of M3 in M is

_ _ AT D514 =T = 1~ =T ~_1 5
(M/Mg) = My = MMy " M5 = Py + CL R Cr+ Cp Ry 'C + Fr Q' Fy.

The elements marked with * are byproducts with no particular meaning in our context.

4
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Thus, the posterior error weighting matrix in step 4.1 of Algorithm 3.3 is obtained as

follows:
Pue = (M/My) ™ = (P}, + CIR;'Co+ CL B\ Cr + FLQy ' Fy)
ke = (M/ M) —( w1+ Ce B, Cp + C By Cy + FrL@Qy k) :
Finally, we obtain the predicted prior error weighting matrix
Pryie = M3+ MM (/M) MM = P EE + Qi

as shown in step 5.1 of Algorithm 3.3. ]

As in the Robust Kalman Filter for systems subject to norm-bounded uncertainties
(Section 3.2.3), here we consider that the penalty parameter p assumes a finite value,
which we can tune to adjust the filter estimation performance, as explained in Remark 3.8.
Due to the approximation of the A parameter, the Polytopic Robust Kalman Filter also

depends on the & parameter, which is usually chosen as a value within the interval (0, 1).

Remark 3.9. The expressions for the Polytopic Robust Kalman Filter in Algorithm 3.3
resemble those of the Nominal Kalman Filter outlined in Algorithm 3.1. In fact, if there
are no uncertainties, i.e., Fy, Gy, Hy, C, and Dy, are all zero, and we let j — 0o, we
have that Qy = HopQHY . Ry = Doy BxDE,., Fi. = Fo, Gy = Gy, and Cy = Coy. This
way, the expressions in steps 4 and 5 of Algorithm 3.3 collapse to the same expressions in
steps 3 and 4 of Algorithm 5.1.

To conclude this section, we reiterate the importance of the penalty function method
in the development of the proposed robust filter. This strategy enabled us to consider
polytopic uncertainties in all parameter matrices of the target system and sensing models,
as well as to collectively weight all the vertices with a single parameter. Moreover, the
penalty parameter can be carefully adjusted to improve the filter estimation performance,
according to the level of uncertainty. Finally, the PRKF is a recursive estimator and does
not depend on the solution of LMIs or the use of numerical solvers, which is a valuable

computational advantage in online applications.

3.3.4 Stability Analysis

This section addresses the stability properties and estimation error variance bound-
edness of the proposed Polytopic Robust Kalman Filter. Following a procedure similar
to the one shown in Section 3.2.4, we study the steady-state behavior of Algorithm 3.3,
considering that the system model parameters are time-invariant and there is no input wy.
Nevertheless, we maintain the assumption that the polytope coefficients oy, are time-varying.

Thus, consider the following discrete-time uncertain linear system:

Ty = (Fo + 0Fy)z, + (Ho + 6 Hy)wy,

(3.132)
yr = (Co + 6Ck)xy, + (Do + 6 Dy ) vy,
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for £ > 0, with time-varying parametric uncertainties bounded by the convex polyhedron

Vi = {(m 0Hy, 6Cy, 6Dy) = Zvj vk (Fy, Hy, Co, D,)}, (3.133)

v=1

T
where ay, = [al,k . 'Oév,k} belongs to the unit simplex Ay in (3.85), with V' vertices.

First, let us investigate the stability conditions of the PRKF in Algorithm 3.3. Con-
sidering the uncertain system model (3.132)-(3.133), the polytopic robust filter equations
in steps 4 and 5 of Algorithm 3.3 become:

Pup= Pyl + C"R'C+C'RIC+F'Q7'F) ", (3.134)
T = Pk|k(P,§|,i,1S?k|k_1 + CA’Tﬁ’*lyk), (3.135)

P = FPyFT +Q, (3.136)

Epeae = Fayp, (3.137)

in which the modified model parameter matrices are given by the corresponding equations
listed in step 3 of Algorithm 3.3, assuming constant parameters. To simplify the analysis,

we also define the augmented matrices

R
C = and R:== |0
0

QY
S o

Lo o

Then, we can rewrite Py, in (3.134) in a more compact way, as follows:
o~ _ —1 ~ ~ -~ N —1 ~
Py = (P,;;_l - CTR—l(J) = Py — Pk|k_1(JT(R - CPk|k_1(JT) CPyi-1, (3.138)

where we applied Lemma A.1 to further expand the expression. Now, combining (3.138)
with (3.135) and substituting back into (3.137), we obtain the steady-state predicted

robust state estimate
Zerak = Byt + FiPup 1 CT R Yy, (3.139)

where

Fy = F(I, — Py C" (R + CPynC7)'C)

is the filter closed-loop matrix. Then, we substitute Py, from (3.138) into (3.136) to obtain

the expression for the predicted prior error weighting matrix:

~ ~ ~ ~ —r\ —1 ~ ~ ~
Piapp = F(Pugpo1 = PoprC" (R + C P s C") CPopn ) FT + Q. (3.140)

In the following theorem, we establish a result about the conditions for convergence

of the proposed robust filter to a stable steady-state filter.
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Theorem 3.7. Consider the linear system model (3.132) with polytopic uncertainties
(3.133) and the corresponding robust filter (3.139)-(3.140). Assume that {F,C} is de-
tectable and {ﬁ, @1/2} is controllable. Then, for any initial condition Fy_, = 0, £ > 0,
and 1 > 0, Py, converges to the unique stabilizing solution P = 0 of the algebraic
Riccati equation

~ e~ o e —1 ~ ~ ~

P=F(P—PC"(R+CPC") CP)F"+Q. (3.141)

The solution P is stabilizing in the sense that the steady-state filter closed-loop matrix

~ ~ ~ ~ ~ ~ -1 ~

F=F(I, - PC"(R+CPC") C) (3.142)

1s Schur stable.

Proof. The conditions £ > 0 and p > 0 imply that ¢ > 0, such that matrices F,C, R,
and @ are well-defined. Moreover, from Kailath, Sayed and Hassibi (2000b), we have
that detectability of {F,C} and controllability of {F, Q'/?} guarantee the convergence of
Ppiapr in (3.140) to the unique stabilizing solution P > 0 of the algebraic Riccati equation
(3.141) that stabilizes (3.142), which is the polytopic robust filter steady-state closed-loop

matrix. ]

Now, let us establish the conditions for the boundedness of the estimation error
variance of the proposed robust filter. Again, consider the uncertain linear discrete-time
system model (3.132)-(3.133). Note that we can write the polytopic uncertainties described
in (3.133) alternatively as

arpl, - 0 ][R H
6P, om] = [0, - L]| ¢ . Do | =May |[F H|,
0 - avil,| |Fv Hy
o 3 (3.143)
Oél,k]r 0 Cy Dy
6Ck 6D = [L - L] | ¢ o i || i 1| = Mas|C D,
0 - ayily] |[Cv Dy,

T
in which, since aj = {041,1@ . 'awk} belongs to the unit simplex Ay in (3.85), we have
that ||ay k]| <1 and ||@a| < 1. Moreover, we assume that wy and v, are uncorrelated

zero-mean Gaussian noise processes with joint covariance matrix

e{Eo o) [

> 0. (3.144)
0 R
In addition, assume that there is no correlation between the parametric uncertainties and

the system and measurement noises.

Recall Definition 3.1 of quadratic stability for systems with norm-bounded un-
certainties. In the following, we make an adaptation of this definition, considering the

alternative representation of the polytopic uncertainties in (3.143).
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Definition 3.2. The uncertain system (3.132)-(3.143) is quadratically stable if there

exists a symmetric positive definite matrix U such that
— —\T — —
(F() + Mlal,kF> U(Fo + MlaLkF) -U=<0
for all admissible &y .

Remark 3.10. Similar to Remark 3.4, we can also conversely say that the uncertain
system (3.132)-(3.143) is quadratically stable if, and only if

1. Fy is Schur stable;

2. The discrete-time H, normal bound Hﬁ'(z’[n — FQ)’lMlH < 1° is satisfied.

Now, we make the following assumptions about the uncertain system and the

robust filter to show that it presents a bounded steady-state estimation error variance.

Assumption 3.3. The uncertain system (3.132)-(3.143) is quadratically stable, according
to Definition 3.2.

Assumption 3.4. The conditions of Theorem 3.7 are satisfied, meaning that the polytopic

robust filter steady-state closed-loop matriz F' is Schur stable.

First, we show that if Assumption 3.3 and Assumption 3.4 are satisfied, the steady-
state polytopic robust filter (3.139) is also quadratically stable. To simplify the notation,

we define the steady-state filter gain, as follows:
K = ﬁP(ij{_l,

where F' is given by (3.142) and P is the stabilizing solution of the algebraic Riccati
equation (3.141). Thus, the steady-state robust filter equation becomes

JA}k+1|k = ﬁ@k|k—1 + f(yk. (3145)
Now, we substitute y; from (3.132) into (3.145), such that
Zrpap = Fipp1 + K(Co + 6Cy)ay + K (Do + 6 Dy)uy.. (3.146)

In addition, we define the state estimation error vector ej, := xy — Zyx—1. Then, subtracting
(3.146) from x,q in (3.132) yields

€ry1 = [(Fo—ﬁ—f?oo)+(5Fk—f?50k)]:ck+ﬁeﬁ<H0+5Hk)wk—f?(Do+5Dk)vk. (3.147)

> |- |loo denotes the maximum singular value of its argument for values of z on the unit disk.
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We also introduce an augmented system comprised of the system state x;, and the estimation

error ex. Hence, from (3.132), (3.143), and (3.147), this augmented system is given by

Cho1 = (F + 0F) G + (€ + 656, )i,

_ (3.148)
05, 626, = M &y |F ],
where
F 0 H 0
Go= " me= | F = O =0
€L Vg FO—F—KC(] F HO —KD()

9

M 0 X 0 F 0 ~ |H 0
M = b , Q= FLk B _ N (A _|.
M1 —KMQ 0 alk C 0 0 D
Lemma 3.6. If Assumption 3.3 and Assumption 3.4 are satisfied, then the augmented
system (3.148) is quadratically stable.

Proof. The augmented system matrix & is lower triangular with diagonal elements Fy and
F , which are both Schur stable. Hence, & is also Schur stable. In addition, we have that

Z]n—FO 0
—<F0 - ﬁ - f(co) ZIn - ﬁ’

(F(2I, — Fy)~'M, 0 F
(2 0)_ C o= A L= Fo) My 0]
_C(Z[n — Fo) lMl 0 C

F (2l — F) M = 8 M O]

M, —KM,

Q

Also, note that

_ ay, 0| |F
Fy+ Mau,F = Fy+ [M; 0] [ s } H
2.k

Given that system (3.132)-(3.143) is quadratically stable, according to Remark 3.10, we

have

H [g] (sI, — Fo) ' [py 0]| <1,

o0

F (el —F) | <1
and the augmented system (3.148) is also quadratically stable. O

for all admissible contractions & and & . In consequence,

Now, define the covariance matrix of the augmented system state as %, = E{Ckg?}.

Then, it follows from (3.148) that %} satisfies the Lyapunov recursion
Pri1 = (F +0F0)Pu(F + 6F)" + (H + 656,)2 (S + 5:46,)" (3.149)

with @ as defined in (3.144). In the following theorem, we provide a result on the
boundedness of the steady-state estimation error variance of the proposed polytopic robust
filter.
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Theorem 3.8. Consider that Assumption 3.3 and Assumption 3.4 are satisfied. Then, the

state estimation error variance of the steady-state polytopic robust filter (3.145) satisfies
. T
klggo E{ekek} = Yo,

where Voo is the (2,2) block entry with the smallest trace among all (2,2) block entries of
matrices "V = 0 that satisfy the inequality

(F + MaF)V (F + MaF)T + (H€ + MaHC)  (H + MaH)T —V <0,

for all admissible &, with ||&| < 1.

Proof. From Lemma 3.6, we have that the augmented system (3.148) is quadratically
stable, then, according to Definition 3.2, there exists a matrix %% > 0 such that

(F + MapTF)U(F + MapTF)T —U <0,

for any admissible &y. Based on Petersen and McFarlane (1996) and Sayed (2001), the
existence of such a matrix % > 0 guarantees the existence of a sufficiently large scaling

parameter € > 0, such that one can find a matrix ¥ = €9 that satisfies
(F + M, F)V (F + MaTF)T + (S0 + MaH6) D (H6 + MaH0)T <.
Subtracting the recursion for the augmented system covariance (3.149) from the above
inequality then gives
(F + M. TV — P)F + MaF)' <V — Py,
or, equivalently,
YV — P = (F + M F)(V —Po)(F + M, F)T + Wy,

for some "W, > 0. To conclude, since the augmented system is quadratically stable, as
k — oo, we have that ¥ — %1 = 0, or 21 <. The (2, 2) block entry of %, corresponds

to the estimation error variance, which is therefore bounded. O

3.3.5 Illustrative Example

In this section, we evaluate the performance of the proposed Polytopic Robust
Kalman Filter with a numerical example. We also compare the results with other existing

polytopic robust filter from the literature, as well as with the Nominal Kalman filter.

Consider a discrete-time linear system with polytopic uncertainties, as described in
(3.83)-(3.84), with the following constant nominal parameter matrices (adapted from Xie,
Soh and Souza (1994)):

. Cop=[~100 10], Dox=1
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and uncertainties bounded by a 2-vertex polytope given by

0 0 0 0
= C Gie= ||, Hy=
b [O.l 0.3] L o] L [0.1

(Fg,k, Gok, Hog, Cop, Dg,k) = —(F1,k, Gig, Hig, Cip, Dl,k)-

, Cip=[0103], Dip=01,

There is no input signal u; and the system and measurement noises, wy and v, are mutually
independent zero-mean white Gaussian signals with variances QQx = 1 and Ry = 1. The

. . . . T
initial state is xq = {2 1} .

Then, we apply the PRKF (Algorithm 3.3) with the following initialization data:
R T
o1 =100, Rii=IL, p=1, and £=0.0L

Figure 5 depicts the evolution of the true target system state along with the estimation
performed by the PRKF. At each time step, the coefficients oy, € Ay (see (3.85)) are
randomly selected. The results show that, despite the presence of polytopic uncertainties in
both the target system and sensing models, the proposed PRKF can successfully estimate

the state of the system.

Figure 5 — Actual (solid lines) and estimated (dashed lines) target system state obtained
with the proposed PRKF (Algorithm 3.3).
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We further evaluate the proposed PRKF by comparing its performance with some
other existing polytopic robust filtering strategies. Namely, the robust H, filters proposed
by Chang, Park and Tang (2015), Gershon and Shaked (2015), Morais et al. (2017), and
Gershon and Shaked (2020), as well as the Hy filter from Gershon and Shaked (2020). We
also consider the Nominal Kalman filter (Algorithm 3.1) as a baseline. Like the proposed
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PRKF, all of the robust filters in consideration also assume polytopic uncertainties in
all parameter matrices. However, unlike the PRKF, they assume time-invariant polytope

vertices.

The simulation consists of performing M = 5000 Monte Carlo experiments, each
with time horizon N = 1000. At each time step k, we compute the mean squared estimation

error (MSE), averaged over all experiments, as follows:
ISEL = 7 5~ ot~ el
= o T — T ell »

Vi 2 k= Tilk,

which, as commented in Sayed (2001) and in Section 3.2.5, is a reasonable approximation
of the estimation error variance, as it cannot be analytically computed due to the model

uncertainties.

The simulation results are presented in Figure 6 and are also summarized in
Table 2, which shows the mean MSE and standard deviation o(MSE) of the estimation

error variances, respectively computed as

MSEy
N +1

N (MSE; — MSE)?
o2 (MSE) = Y (MSE, .
= N+1

and

- N
MSE =
k=0

Figure 6 — Estimation error variance curves of the polytopic robust filters.

(1) PRKF (Algorithm 3.3) (4) H. (GERSHON; SHAKED, 2020)
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(3) Hoo (MORAIS et al., 2017) 6) Hoo (GERSHON; SHAKED, 2015)
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Table 2 — Estimation performance of each polytopic robust filter.

Filter MSE (dB) o(MSE) (dB) Atcomp (ms)
(1) PRKF (Algorithm 3.3) 9.705 0.3154 0.8914
(2 H. (CHANG; PARK; TANG, 2015)  18.04 0.4615 106.28
3) H. (MORAIS et al., 2017) 23.68 0.5307 78.591
(4) H. (GERSHON; SHAKED, 2020) 24.47 0.7211 68.729
() H, (GERSHON; SHAKED, 2020) 25.57 0.6152 168.99
6) H. (GERSHON; SHAKED, 2015) 31.23 1.1380 66.360
KF (Algorithm 3.1) 34.17 6.8900 0.4201

Bold numbers indicate the smallest values.

Since all of the simulated robust Hs and H, filters have a similar structure, with
constant design matrices computed offline, we measured the time each one demands to
obtain these matrices, which result from the solution of LMI-based optimization problems.
For comparison purposes, we also measure the time needed to compute the constant parts
of the PRKF and KF, as the example system model parameter matrices are time-invariant.
The results are shown in the column Atcoy,, in Table 2. The simulation was performed on
a 2.3 GHz i7-12700H CPU with 32 GB of RAM using MATLAB R2022b, the YALMIP
toolbox (LOFBERG, 2004), and the SeDuMi solver (STURM, 1999).

The simulation results in Figure 6 and Table 2 indicate that the proposed PRKF
outperforms all the other robust filtering strategies in terms of error variance. The
Nominal Kalman Filter, however, was unable to estimate the system state, presenting an
exponentially increasing error variance. For this reason, it is not shown in Figure 6. This
corroborates the fact that parametric uncertainties can indeed significantly degrade its
performance. The Hy and H, filters exhibit considerably larger error variances compared
to the PRKF. For instance, the robust H, filter of Chang, Park and Tang (2015) presents
a mean error variance twice as large as that of the PRKF. The H, filters of Morais et al.
(2017) and Gershon and Shaked (2020) show similar results, closely followed by the H,
filter of Gershon and Shaked (2020). The H, filter in Gershon and Shaked (2015) exhibits
the largest error variance among the estimators. In terms of standard deviation, all of the

robust filters present similar results, with the PRKF being the smallest among them.

Naturally, the Nominal Kalman Filter requires the least amount of computation
time to obtain its results, but it is closely followed by the PRKF, as Table 2 shows. On the
other hand, the other robust filtering approaches depend on the solution of optimization
problems subject to LMIs, usually one for each vertex of the polytope, which requires
more computational effort. This explains their significantly larger computation times.
Therefore, the recursive and analytic expressions of the PRKF yield a satisfactory trade-off
between estimation performance and computational cost, being thus suitable for online

applications.
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To conclude the evaluation, we further study how the two parameters of the
PRKF, namely the penalty parameter p and the approximation parameter &, influence
the filter performance. Figure 7 compiles the results of a series of simulations with several
combinations of these parameters. For each combination, we compute the mean estimation
error variance MSE, as previously described. As commented in Section 3.3.3, choosing
0 < & < 1 generally yields better results. In addition, within this range, we found that
smaller values of u lead to smaller mean error variances. Above this range, the filter

performance experiences some degradation.

Figure 7 — Effect of the PRKF parameters px and ¢ on the mean error variance MSE.
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CHAPTER

Robust Distributed Kalman Filtering

In this chapter, we discuss the distributed filtering problem for discrete-time linear
systems in the context of sensor networks. As in the previous chapter, we also divide it into
three sections. In the first section, we assume exact knowledge of the underlying target
system and sensor models. This simpler setting will lay the foundation to the other two
sections, in which we address the cases where the models are subject to norm-bounded and
polytopic parametric uncertainties. As we previously pointed out, these uncertainties are
usually unavoidable in practical systems, arising due to factors like unmodeled dynamics,
linearization, model reduction, and varying parameters. Moreover, they can appreciably

degrade the estimation performance if not taken into consideration.

Sensor networks are composed of nodes that have sensing, computing, and commu-
nication capabilities. In the distributed filtering context, these sensors observe a target
system and exchange information to estimate the target system state. In general, the
use of multiple sensors can significantly improve the estimation accuracy. Furthermore, it
provides more flexibility and reliability to the overall system. Many distributed filtering
strategies in the literature are based on the combination of the Kalman filter (KALMAN;,
1960) with the average consensus protocol (Section 2.4). We also take advantage of this
successful combination in this chapter, overcoming one of the main shortcomings of the

Kalman filter by compensating for model parametric uncertainties with robust estimators.

In each of the upcoming sections, we obtain centralized and distributed versions
of the filters proposed in the previous chapter. First, we formulate the corresponding
centralized estimation problems, assuming access to all sensors in the network at once. These
centralized estimation problems are also built from a deterministic point of view (BRYSON;
HO, 1975), as regularized least-squares estimation problems, thoroughly discussed in
Chapter 3. Then, we employ the hybrid consensus on measurement and information
(HCMCI) approach (BATTISTELLI et al., 2015) to derive distributed implementations
of the corresponding centralized estimators. With enough consensus iterations, these

distributed filters become reasonable approximations of their centralized counterparts.
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4.1 Nominal Distributed Kalman Filtering

In this section, we extend the Nominal Kalman Filter introduced in Section 3.1 to
the multiple sensor case. As the nominal denomination suggests, we assume perfect target
system and sensing models. Before dealing with the distributed estimation problem, we first
tackle the centralized scenario, in which a fusion center has access to measurements from
all sensors in the network. Following the framework developed in Section 3.1, we formulate
the centralized estimation problem in a deterministic manner, as a regularized least-
squares estimation problem (Section 3.1.2), whose solution yields the so-called Nominal
Centralized Kalman Filter (CKF). Then, by taking advantage of the HCMCI protocol
(BATTISTELLI et al., 2015), we derive a distributed variant of the CKF, called Nominal
Distributed Kalman Consensus Filter (DKCF). We show that, for a large enough number of
consensus steps, the DKCF approaches the behavior of the CKF. Since the centralized and
distributed filters are based on the Nominal Kalman Filter, we present both as recursive
correction-prediction algorithms. The section concludes with a stability analysis of both

proposed estimators, assuming a time-invariant model.

4.1.1 Problem Formulation

4.1.1.1 System Model

Consider a sensor network featuring S sensors. The communication among them is
represented by the undirected graph G = (S, E), with node set S = {1,2,..., S} and edge
set E C S x S. The neighborhood of a sensor i is denoted by N; = {5 € S| (¢,5) € E} and

has cardinality NN; (see Section 2.3 for an introduction on graph theory).

Assumption 4.1. The undirected graph G has a fived topology and is connected, i.e.,

there is a path between every pair of nodes.

Consider the following discrete-time state-space description of a linear target

dynamical system:

Tir1 = Frrp + Gruy + Hywy, (4.1)

which is observed by the set of S sensors S = {1,2,..., S}, each described by the model
yi = Ciap + Divl, Vi €S, (4.2)

for k =0,1,..., N, with state vector z; € R", input vector u; € R™, and system noise
vector wy € RP. For each sensor i € S, yi € R" is the measurement vector and v}, € R? is
the measurement noise. F € R™" Gy € R™™ H, € R™? C} € R™" and D} € R™Y

are known nominal parameter matrices.
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In a stochastic setting, we usually assume that xg, wy, and {vi}s , are mutually

independent zero-mean Gaussian random variables with respective variances
E{xoxOT} =Py =0, E{wkwlT} = Qo = 0, and E{v,@(vl])T} = kal&-j = 0,

where 04, is the Kronecker delta function, such that d,, = 1 if @ = b, and d,, = 0 otherwise.
Nonetheless, as we shall see, the strategy we adopt does not require that these variables

have any particular distribution.

4.1.1.2 Nominal Centralized Estimation Problem

Before addressing the distributed estimation problem, we first design a centralized
state estimator for the system (4.1)-(4.2). In a centralized setup, we assume that the
measurements obtained from all sensors in the network are available to a central estimator.
As the system state sequence {xy} is not perfectly observed, the goal is thus to leverage

all the information available up to time instant k,

Yk = {{yé};gzla SR {ylig}leaum e 7uk}7

to compute a so-called filtered state estimate 27, of xx, as well as a predicted estimate

e . oo . L
Ly of Zk11. Here, we use the superscript ¢ to indicate the centralized entities.

We follow the procedure reported in Section 3.1.1.2 for the Nominal Kalman Filter,
where a deterministic interpretation is assumed to the stochastic estimation problem.
In this context, we introduce the variables 2, &1, W, and {08}, as substitutes for
the random variables xy, Txy1, Wy, and {vi}s | in the stochastic model (4.1)-(4.2). Then,
assuming that at each time step k, an a priori state estimate :i“z‘ w_1, @ set of measurements
{yi}2_,, and the input u; are available, we formulate the constrained optimization problem

with a one-step quadratic objective function, as follows:

. PN TP e 2 NP A 112
,oin Jo(@n, Wk, On) = (|20 = Tpallipe, -+ 1OR[G0 + 19kl
Wk, Ok
| Frr = Fuie + Grug + Hyaiy, (4.3)
subject to A
Yr = Cr2y, + Dy,
for k=0,1,..., N, where we define the aggregated vectors and matrices
Yi 0 Ch Dl - 0 RL... 0
Y= [, 0= |,C=| |, Dp=1]: . " ,andRp:=|: "~
3/12? @’f C’,f 0 D,f 0 R,f
(4.4)

Note that, @, and {0f}7, are fitting errors weighted respectively by Q, = 0 and R = 0,
Vi €S, and Py, > 0 weights the a priori estimation error xy — 2}, ;. From a stochastic

viewpoint, matrices Q; and R: represent the variances of the random variables w;, and
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{vi}2 . However, in this deterministic setting, they are rather understood as general

weighting matrices.

Problem (4.3) is the special case of a regularized least-squares estimation problem,
as described in Section 3.1.2. Its solution recursively provides the filtered and predicted

. e e .
central state estimates Zj, and &, ., respectively.

4.1.1.3 Nominal Distributed Estimation Problem

In the distributed estimation case, there is no central estimator, such that each
sensor in the network should estimate the state of the target system using only its own
data and information gathered from its neighbors. Hence, the goal of each sensor node
1 € S is to obtain the best estimates :f;};‘k of x;, and 'Z%ii-‘rllk of x.1, referred to as filtered

and predicted state estimates, in a distributed rather than centralized fashion.

To achieve this objective, we can leverage the distributed feature of the average
consensus algorithm (Algorithm 2.2) to approximate the results of a centralized estimator.
Similar strategies are applied, e.g., in Kamal, Farrell and Roy-Chowdhury (2013) and
Battistelli et al. (2015).

4.1.2 Nominal Centralized Kalman Filter

In this section, we present the solution to problem (4.3) and ultimately propose the
Nominal Centralized Kalman Filter (CKF). As aforementioned, problem (4.3) is a special
case of the regularized least-squares estimation problem (Section 3.1.2). Thus, consider

the following mappings between (4.3) and (3.6):

A AcC A c —1 —1
v Aflfk R L ’lifk7 P (Prjp-1) 07 0« Qr 0_1’
Tkt 0 Dy, 0 0 0 R,
e b -1, H, 0
Y Uk , F , and B <« F ,

(4.5)

with the bold aggregated vectors and matrices as defined in (4.4). Note that since
(Pgr_1)~" = 0, we have that P > 0. Also, Q;' = 0 and R.' = 0, such that Q > 0.
Therefore, we can use the results in Corollary 3.1 and Lemma 3.2 to obtain the optimal fil-
tered and predicted central state estimates, i:zl p and e along with their corresponding

error weighting matrices Py, and Py, as stated in the following theorem.

Theorem 4.1. Consider the reqularized least-squares centralized estimation problem (4.3)
with Hy, and Dy, full row rank and given initial conditions Zo-1, Fojo1 = Lo =0, Qx> 0,
and Ry, = 0, Vi € S. For each k =0,1,..., N, its solution recursively provides the filtered
and predicted central state estimates of system (4.1)-(4.2), &5, and 25y, as well as their
respective error weighting matrices, Py, and Py ., according to the procedure described
in Algorithm 4.1.



4.1 Nominal Distributed Kalman Filtering 111

Algorithm 4.1 Nominal Centralized Kalman Filter (CKF)
Model: Assume the system model in (4.1)-(4.2).
Initialization: Set 2§ |, P5_; = Py = 0, Qx = 0, and R} =0, Vi € S.
for k=0,1,...,N do
1. Obtain measurements y;, from all sensors i € S.
2. Compute the auxiliary matrices, for all 7 € S:

Qr = H,QrH EZ = D, Ri.(Dy)"

3. Correction step:
3.1. Compute the posterior error weighting matrix:

S

(Pik-1) ™' + Z(C;i)T(ﬁ?;)lCi]

i=1

c
Pk\k_

3.2. Compute the filtered central state estimate:

AC c
Lrlk = Pk|k

5
(P1§|k—1)_1fk\k—1 + Z(C/Zc)T(RZ)_IyZ}
i=1
4. Prediction step:
4.1. Update the predicted prior error weighting matrix:
Pgiae = FePop By + Qn
4.2. Update the predicted prior central state estimate:

AcC . AcC
xk+1|k = kak|k + Gkuk
end for

Proof. As previously mentioned, problem (4.3) is a regularized least-squares estimation
problem. Then, we apply the result in Corollary 3.1 to obtain the central state estimates
2y, and &3, This is achieved by substituting the mappings (4.5) into the solution (3.14).
The algebraic details are quite similar to the steps described in the proof of Theorem 3.1
and are thus omitted here for brevity. The main difference is the presence of the summation
terms present in step 3 of Algorithm 4.1, which appear due to the aggregate vectors and
matrices defined in (4.4), which account for all the sensors in the network. Given their
block column and diagonal structures, we have that

S S

CIR, € =Y (CT(R)'CL and LR, Y = > (CLT(RY k.

=1 =1
where R, = diag (fi}g, . ,}A%f), with each Ri as defined in step 2 of Algorithm 4.1.
Analogously, we use Lemma 3.2 to obtain the corresponding estimation error weighting
matrices P,§| p and P 1k @S also shown in the proof of Theorem 3.1. To conclude, note
that, by requiring Hj, and D, to have full row rank, we ensure that Q, = 0 and R} = 0,
Vi € S. O



112 Chapter 4 Robust Distributed Kalman Filtering

4.1.3 Nominal Distributed Kalman Consensus Filter

As we mentioned earlier, the CKF is our benchmark for a distributed formulation.
In this section, we address the problem proposed in Section 4.1.1.3 and show how the
average consensus strategy can be employed to derive a distributed approximation of the
CKF presented in Algorithm 4.1.

We assume that each sensor i € S is initialized with the same prior state estimate
§:6|_1 and prior error weighting matrix Pg\—1 > 0. Then, by communicating with its
neighbors 5 € N;, each sensor ¢ € S can receive their specific data and use it to improve
its estimation performance. By adopting the hybrid consensus on measurements and
information (HCMCI) approach proposed in Battistelli et al. (2015) each sensor is able to
attain an approximation of the filtered and predicted prior central state estimates in a
distributed fashion.

The proposed Nominal Distributed Kalman Consensus Filter (DKCF) is thus
shown in Algorithm 4.2. The HCMCI strategy consists of simultaneously performing the
average consensus protocol (Algorithm 2.2) for each sensor’s so-called prior information
and innovations pairs, denoted (Q}C, w,’c) and (692, 5w,i>, respectively. This is done in
steps 4 and 5 of Algorithm 4.2. In step 5.3, the consensus weights 7;; should satisfy the
conditions established in Definition 2.2, such that the consensus states of each node 7 € S
are updated with a convex combination of the corresponding states within its inclusive
neighborhood. One possible choice for these weights is the Metropolis weights (XIAO;
BOYD; LALL, 2005), shown in (2.20), and is the one we will adopt here. Then, based on
the outcome of the consensus step and on step 3 of the CKF (Algorithm 4.1), we perform
the correction stage shown in step 6 of Algorithm 4.2. Note that we introduce a corrective
scalar weight pi to compensate for the scaling effect of the average consensus process
(more details on this later). Finally, the prediction stage in step 7 of Algorithm 4.2 is the
same as step 4 of the centralized filter (Algorithm 4.1).

The following theorem shows that, considering enough consensus iterations, the

proposed distributed filter approaches the same result as the centralized estimator.

Theorem 4.2. Consider the Nominal Distributed Kalman Consensus Filter in Algo-
rithm 4.2 and that Assumption 4.1 is satisfied. Assume that the consensus weights m;; are
chosen according to Definition 2.2, the number of consensus iterations L — oo in step 5,
and that pt, = S in step 6. Then, the filtered and predicted prior state estimates, :i‘fc‘k and
T, and their respective error weighting matrices, Py and Py, oblained by each
sensor 1 € S converge to the corresponding central state estimates Iy, and Tj_,,, and
error weighting matrices Py, and Py computed via the Nominal Centralized Kalman
Filter in Algorithm 4.1.
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Algorithm 4.2 Nominal Distributed Kalman Consensus Filter (DKCF) (each sensor )
Model: Assume the system model in (4.1)-(4.2).
Initialization: Set #f_,, Py, = Po = 0, Q¢ = 0, R} = 0, and L > 1.
for k=0,1,...,N do
1. Obtain a measurement yj..
2. Compute the auxiliary matrices:

Qr = H,QLHF R, = Dy R} (D;)"
4. Initialize the consensus states:
0 (0) = (Pip_1)™" 025,(0) = (CL)" (R,
wi(0) = (Pljp_1) Ehps wi.(0) = (CLT(R}) i

5. Consensus step:
for /=0,1,...,L —1do
5.1. Send {Q4(0), wi(£), 5Q4(6), dwi(6)} to all neighbors j € N;.
5.2. Receive {Q(€), wl((), 6((), 6w (€)} from all neighbors j € N;.

5.3. Update the consensus states:
QL(l+1) Z’/TZ]Q] S (L4 1) ZWZJ(SQJ )

L0+ 1) Zﬂwwk Swi (0 +1) ZWU Swl(0)

end for

6. Correction step:
6.1. Compute the posterior error weighting matrix:

-1

Pl = [Q4(L) + p 0%(L)]
6.2. Compute the filtered state estimate:
Fhp = Pl [wh(L) + p}, 0wi(L)]

7. Prediction step:
7.1. Update the predicted prior error weighting matrix:

Pli—&-llk = kalikaT + Qk
7.2. Update the predicted prior state estimate:
Phrap = Pl + Grug

end for
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Proof. Given that the undirected graph G describing the sensor network is connected and
that the consensus weights m;; are properly selected, for instance, the Metropolis weights
are chosen, as previously discussed, the associated weighted adjacency matrix II has the
properties listed in Lemma 2.9. Since we assume that the number of consensus iterations
L — o0, the convergence of the average consensus algorithm is guaranteed according to
Theorem 2.2. Let us then prove that the DKCF described in Algorithm 4.2 approaches
the CKF in Algorithm 4.1 through induction.

Assume that the CKF is initialized with igl_l = Zo and POC|_1 = Py > 0, whereas all
sensors i € S initialize a DKCF with &f_, = &9 and Fj_; = Py = 0. According to (2.18),
as L — oo, after the consensus step 5 of the DKCF, the information and innovation pairs

of all sensors converge in the following manner:

S .
Q(L) 1213 Pyt 0Q(L) — lz 5)1CY,
St S;=1
13 13 SN
wy(L) — g ZPO = P4, Swy(L) — S > (C} (R 1.

<
Il
=
-

]:

Then, substituting these consensus outcomes into the equations in step 6 and considering

that the corrective scalar weight pi = S, we get

-1

1
Py — | Py +SSZ (COTR)T'C| = [P+ Y (CHT(RY)TICI| = Py,
j=1
S . o~ .
-T0|0 - P0|0 Pyt + SS Z C] R]) = Fojo Py 2o + Z(CS)T(Rg))_ly(J) = &g,
j=1 j=1

for all sensors i € S. Note here the importance of the scalar weight p§, which compensates
for the 1/S factor that appears in the outcome of the innovation pair ((5@6, (5w6) due
to the averaging process. The convergence above thus implies that in step 7, we have
Pj, — Pfy and 2y — 25 Therefore, for k = 0, the results of the DKCF do converge to
those of the CKF.

Now, assume that at time step £ — 1, we have that P]ﬁ—l\k—l — Pyt i};_l‘k_l —
Ty _qk—1> P = Pg—r, and & — L5, Vi € S. Then, at time step k, we achieve

the following outcome after performing step 5 of the DKCF:

; 13 . . 158 .
(L) g Z(Pk|k )= (Pk\kq) g o8, (L) — g Z 10117
j=1 J=1
13 . 18 . .
wi(L) — g > (Pip—) 851 = (Pipo) " e, dwi(L) — 3 >.(C .

—

]:

<.
Il
-
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Thus, substituting these outcomes into the equations in step 6 of the DKCF, considering
pi =S, yields
-1 -1

o C
- Pk|k’

(Pi—1) ™ +2_(CH (1)

Jj=1

%
Pk|k —

B 18
(Pipr) "5 S (CDT(R) '

=1

~

at i ¢ y\—la L& N1, ]
Tre = P | (Pijp—1) 1$k\k_1+sg Y (COT(R)) lyi] =
j=1

~

S . .
(Plg|k—1)_1‘%2\k—1 + > (CD)( i)_l?/i] = T

j=1

C
Py

for all sensors ¢ € S. Plugging the results above into the equations in step 7 of the DKCF
gives us that P} e — Py and o +1k — Lipqr- Hence, given the aforementioned
conditions, by induction, we have that for k = 0,1,..., N, the DKCF in Algorithm 4.2
converges to the CKF in Algorithm 4.1. O

The result in Theorem 4.2 shows how powerful the average consensus protocol is
when applied to the context of distributed estimation over sensor networks. However, it is
a theoretical outcome since, in practice, only a finite number of consensus iterations L is
possible. Nevertheless, for a sufficiently large L, the performance of the distributed and

centralized approaches can still be quite similar.

Remark 4.1. In step 6 of Algorithm 4.2, we multiply the consensus outcome of the
innovation pair (5QZ(L), 5w,§(L)) by a corrective scalar weight pi,. The reason for this is to
avoid the underweighting of the innovation pair due to scaling from the average consensus
procedure. This actually turns Algorithm 4.2 into a family of distributed filters, depending
on the choice of this weight.

Remark 4.2. As Theorem 4.2 states, to correctly approximate the centralized estimator,
ideally one should have pi, = S. However, the total number of sensors S is usually not
available to each sensor in the network. Nonetheless, according to Garin and Schenato
(2010), we can also use average consensus to compute S in a distributed fashion, as follows.
Initialize the consensus state of the sensors as ay(0) = 1 and o;(0) = 0,7 =2,...,5.
FEach sensor then performs Algorithm 2.2, such that o;(L) — 1/S. Therefore, we can use
pv =1/ca;(L), if a;(L) > 0, or pi. = 1 otherwise. Note that this consensus procedure can be

performed along with steps 4 and 5 in Algorithm 4.2.

4.1.4 Stability Analysis

This section discusses the stability properties of both the proposed Nominal Cen-
tralized Kalman Filter and the Nominal Distributed Kalman Consensus Filter. To this

end, we examine the steady-state behavior of Algorithm 4.1 and Algorithm 4.2 when the
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target system and sensing model parameters are constant and there is no input w;. Thus,
for k > 0, equations (4.1)-(4.2) take the form

v, = C'z + D'vy,, Vi €S.

Based on the strategy adopted in Kamal, Farrell and Roy-Chowdhury (2013), we
conduct our analysis under the assumptions described in Theorem 4.2. This way, we can
assume that the DKCF converges to the CKF. This, in turn, allows us to extend the
stability properties of the centralized filter to its distributed counterpart.

Therefore, let us first study the stability of the CKF described in Algorithm 4.1.
Consider the time-invariant system model (4.6). Thus, the CKF equations in steps 3 and
4 of Algorithm 4.1 become:

Pl = (P ™ + GTﬁ_le]_l, (4.7)
B = Pl (P ) 8501+ €TR Y, ], (4.8)
P = FP/§|kFT +Q, (4.9)
Tiqape = FEg, (4.10)
where
Yi c! R 0
Y= |:|,C=]: |, R= , B'= D'R(D)T, and O = HQH".

u % 0 .. RS

Then, we expand expression (4.7) using the matrix inversion lemma (Lemma A.1), as

follows:

~ —1
Pl = Piyy — Py 1€ (R + €Pf,_,€7) €ePgy . (4.11)

Combining (4.11) with (4.8) and substituting in (4.10) yields the steady-state predicted

state estimate

Ac T AcC T pcC B!
B = Frdipos + FuF CTR Yy, (4.12)

in which

Fi = F(L, - PG, €7 (R+ €pg,_,e7) 'e)

is the centralized filter closed-loop matrix. In addition, substituting Py, from (4.11) into

(4.9), we obtain the expression for the predicted prior error weighting matrix:

~ —1 ~
Pt = F(Piy — Py € (R+epg,€7) epg )FT+Q.  (4.13)



4.2 Robust Distributed Kalman Filtering for Systems with Norm-Bounded Uncertainties — 117

Theorem 4.3. Consider the linear system model (4.6) and the corresponding centralized
filter (4.12)-(4.13). Assume that {F,@} is detectable and {F,Q"/?} is controllable. Then,
for any initial condition Py, > 0, P{ q, converges to the unique stabilizing solution
P¢ = 0 of the algebraic Riccati equation
P = F(P°— PCT(R+ €P€T) eP)F" + Q. (4.14)

The solution P¢ is stabilizing in the sense that the steady-state filter closed-loop matrix

. ~ -1

F=F(I, - Pe’(R+ere’) e) (4.15)

is Schur stable.

Proof. From Kailath, Sayed and Hassibi (2000b), detectability of {F, €} and controllability

C

of {F, QY 2} ensure the convergence of P¢, ;. in (4.13) to the unique stabilizing positive

+1|
definite solution P¢ of the algebraic Riccati equation (4.14) that stabilizes (4.15), which is
the centralized filter steady-state closed-loop matrix. O]

Corollary 4.1. Given that the assumptions in Theorem 4.2 hold, the DKCF in Algo-
rithm 4.2 converges to the CKF in Algorithm 4.1 and thus shares its stability properties,

according to Theorem 4.35.

4.2 Robust Distributed Kalman Filtering for

Systems with Norm-Bounded Uncertainties

In this section, we present robust versions of the nominal centralized and distributed
Kalman filters developed in Section 4.1. We specifically address the case in which both
the underlying target system and sensing models are subject to norm-bounded parametric

uncertainties.

Based on the procedure reported in Section 4.1, we start by dealing with the
scenario in which measurements from all sensors in the network are available to a central
estimator. This centralized estimation problem is formulated as a regularized least-squares
estimation problem with norm-bounded uncertainties (Section 3.2.2) and its solution
provides the Robust Centralized Kalman Filter (RCKF). Then, similar to the nominal case
in the previous section, we leverage the HCMCI protocol (BATTISTELLI et al., 2015) to
implement the RCKF in a distributed fashion, leading to the Robust Distributed Kalman
Consensus Filter (RDKCF), which approaches the RCKF if enough consensus iterations are
carried out. Both the RCKF and RDKCF are presented as recursive correction-prediction
algorithms, which resemble the single-sensor Robust Kalman Filter (Algorithm 3.2).
Furthermore, we evaluate the stability properties of both estimators and conclude the

section with an illustrative example.
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4.2.1 Problem Formulation

4.2.1.1 System Model

Consider a sensor network composed of .S sensors. The communication among them
is represented by the undirected graph G = (S, E), with node set S = {1,2,...,S} and
edge set E C S x S. The neighborhood of a sensor ¢ is denoted by N; = {j € S| (i,j) € E}

and has cardinality N; (see Section 2.3 for an introduction on graph theory).

Assumption 4.2. The undirected graph G has a fixed topology and is connected, i.e.,

there is a path between every pair of nodes.

Consider the following discrete-time state-space description of a linear target system

subject to uncertainties:
Trp1 = (Fi + 0Fy )2y + (Gr + Gy )ug + (Hy, + 0 Hy )wy, (4.16)

which is observed by the set of S sensors S = {1,2,..., S}, each described by the uncertain

model
Ui = (Ci + 6C )i + (Dj + 0D} vy, Vi €S, (4.17)

for k=0,1,..., N, with state vector x; € R", input vector u, € R™, and system noise
vector wy, € RP. For each sensor i € S, yi € R" is the measurement vector and v, € R? is
the measurement noise. Fy, € R™" G}, € R™™ H, € R™P Ci € R™", and Di € R™¢
are known nominal parameter matrices, whereas 0 Fj, € R"*", §G € R™™™, §H; € R"*P,

6CY € R™" and 6D} € R"™*? are norm-bounded parametric uncertainties modeled as

[5Fk 0Gy, 5Hk} = My Ay [EFk Eg, EH;J ALl <1,

4.18
6C; 6DY] = M AL [BE, Bh ] IALI <1 (413

where M, ;, € R"™* and MQ’k € R™52 are known nonzero matrices, Ep, € R"*" FEq, €
RA*™ Ey, € RVP EL € R?*™ and B}, € R"?*? are also known, and Ay € R and
A}, € R®2*™ are arbitrary contraction matrices. Perturbations of this form are useful
when modeling tolerance specifications on the physical parameters of a system and are
common in robust filtering and control (SAYED, 2001).

In a stochastic setting, it is usually assumed that xq, wy, and {vi}?, are mutually

independent zero-mean Gaussian random variables with respective variances
E{xOxOT} =Py >0, E{wkwlT} = Qrdr > 0, and E{U,@(vf)T} = R}6uij = 0,

where 04 is the Kronecker delta function, such that 6, = 1 if @ = b, and 0, = 0
otherwise. However, we adopt a strategy which does not require that these variables have

any particular distribution.
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4.2.1.2 Robust Centralized Estimation Problem

As aforementioned, prior to tackling the robust distributed estimation problem,
we first derive a centralized estimator for system (4.16)-(4.17). In the centralized case, we
assume that a central estimator has access to all measurements obtained by the sensors in
the network. Since the target system state sequence {z} is not perfectly observed, nor is
readily available, the goal is thus to use all the information available up to time instant k,
Y, = {{yé}le, S 78 AN VT ,uk}, to compute a so-called filtered robust central
state estimate Zj, of xy, as well as a predicted robust central estimate Zf ), of zj1,
despite the presence of the model uncertainties §; = {5Fk, §Gy, SHy, {6C}2_,, {6 DL le}.

Note that we use the superscript ¢ to indicate the centralized entities.

We build upon the procedure described in Section 4.1.1.2 for the Nominal Central-
ized Kalman Filter, in which we adopt a deterministic interpretation of the centralized
estimation problem (BRYSON; HO, 1975). Moreover, we introduce the variables &y, 1,
Wy, and {01}, as substitutes for the random variables z, T511, wy, and {vi}7 | in the
stochastic model (4.16)-(4.17). Then, based on Sayed (2001) and Ishihara, Terra and Cerri
(2015), assuming that at each time step k, an a priori state estimate a?z“gfl, a set of
measurements {yi }7_;, and the input uy, are available, we formulate a min-max constrained
optimization problem in which a one-step quadratic objective function should be minimized

under the maximum influence of the parametric uncertainties J;, defined in (4.18), i.e.,

- S AN 4 ~c 2 A2 A 12
poin max Jy(Te, Wk, Ox) = 12k — B allipe,-r + 10llG o + 19kl
. 4.19
| {j:m = (Fi + 0F) + (Gh + 0Gu)us + (Hy + 5H, )iy, (4.19)
subject to
Y. = (€. + 6C)2p + (Dy + 6Dy )i,
for k=0,1,..., N, in which we define the aggregated vectors and matrices
yl ol cl Dl ... 0 Rl ... 0
yk: 7,6]47: 7€k:: 7®k: 792'/{3_ 9
Ui iy cy 0 - D¢ 0 - Ry
(4.20)
and, based on (4.18), we also define the aggregated sensing uncertainty model
0€), 6Dy] =Mooy [Ee, Ep,|, [lAsk] <1, (4.21)
where
6C}H] §DL - 0 M, - 0
0C, = 1| + |, Dp=| + . |, Mop=1|] *+ . |,
6CY 0 --- D7 0 .- My
k] k 2.k (4.92)
Aé,k o 0 Eék Ezl)k o 0
AQ,k = : ’ Eek = 3 and Eﬂk = :

0 Agk Egk 0 Egk
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Notice that in (4.19), @y and {0¢}7, are fitting errors weighted respectively by
Qr = 0 and R; = 0, Vi € S, whereas Pk‘f‘k_l > 0 weights the a priori estimation error
T — jg‘ x_1- In a stochastic interpretation, matrices () and Rj, represent the variances of
the random variables wy, and {vi}7_,. However, in this deterministic framework, they are

treated as general weighting matrices.

Problem (4.19) is a special case of a regularized least-squares estimation problem
with norm-bounded uncertainties, as discussed in Section 3.2.2. Its solution recursively

yields the filtered and predicted robust central state estimates 2, and &7, 4, respectively.

4.2.1.3 Robust Distributed Estimation Problem

Regarding the robust distributed estimation case, there is no central estimator,
such that the goal of each sensor in the network is to estimate the state of the target
system using only its own information and data gathered from its neighbors. Hence, each
sensor node ¢ € S should obtain the best estimates @};‘ x of i and :i‘}C ik of xyy1, referred
to as filtered and predicted robust state estimates, in a distributed rather than centralized

fashion.

To attain this goal, we leverage the distributed characteristic of the average
consensus algorithm (Algorithm 2.2) to approximate the results of a centralized estimator,
as we did in Section 4.1. This strategy has also been applied, for instance, in Kamal,
Farrell and Roy-Chowdhury (2013) and Battistelli et al. (2015).

4.2.2 Robust Centralized Kalman Filter

This section presents the Robust Centralized Kalman Filter (RCKF), obtained
as the outcome of the solution to problem (4.19). As previously mentioned, problem
(4.19) has the form of a regularized least-squares estimation problem with norm-bounded

uncertainties, as discussed in Section 3.2.2. Therefore, consider the following mappings
between (4.19) and (3.34):

A A 3 A Pc —1 —1
o | L e [T we [T P e (i) O,Q<— @ 0_1 :
Tkt1 0 () 0 0 0 :Rk
_ F. -1, H
Y Gy , A+ § , B+ £ 0 ,
Y C. 0 0 D,
-0 OF 0H
5y — GkUk , A k 0 s and 0B « F v )
0C. 0 0D,

(4.23)
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with the bold aggregated vectors and matrices as defined in (4.20). Moreover, consider the

following mappings between the uncertainty models (4.18)-(4.21) and (3.33):

M 0 A 0
M 1.k . A« Lk ,
My, 0 Agy
(4.24)
—F Er 0O FE 0
E, + G Uk . By Fi , and Ep <+ Hr ,
Ee, 0 Ep,

with the uncertainty aggregated vectors and matrices as defined in (4.22).

Since (Pgj,_;)~" > 0, we have that P = 0. In addition, Q;' = 0 and R; " > 0, such
that @ > 0. Therefore, by using the results in Lemma 3.3 and in equation (3.58), we can
obtain the filtered and predicted robust central state estimates, Tiolk and £, +1)» along with

their respective error weighting matrices Py, and Py, as the following theorem states.

Theorem 4.4. Consider the reqularized least-squares centralized estimation problem with
norm-bounded uncertainties (4.19) with given initial conditions fg‘_l, P(ﬁ—1 =F >0,
Qr > 0, R, =0, Vi €S, and fized parameters 1 > 0 and § > 0. For each k =0,1,..., N,
its solution recursively provides the filtered and predicted robust central state estimates
of system (4.16)-(4.17), 27, and 2y, along with their corresponding error weighting

matrices, P, and Py, ., according to the procedure outlined in Algorithm 4.3.

Proof. Problem (4.19) is a regularized least-squares estimation problem with norm-bounded
uncertainties, hence one can apply the result in Lemma 3.3 to obtain the robust central
state estimates 2f, and 2j ;. Then, we substitute the mappings (4.23) and (4.24) into
(3.40) to compute the modified system and sensing model matrices and then into the
solution (3.39). The algebraic procedure closely follows the one described in the proof of
Theorem 3.3 and we thus omit it for brevity. The main difference is in the summation
terms present in step 4 of Algorithm 4.3, which appear due to the aggregate vectors and
matrices defined in (4.20) and (4.22), which account for all the sensors in the network.

Given their block column and diagonal structures, we have that

CIR, '@+ LR, e, = (GO () G+ (B )" (R ).
i=1

~T ~—1 S ~. )

Cr Ry Ui = E(Ci)T(RZ)‘lyz,
where € := col (C’,ﬁ, . ,é’,f), Ee, = col (Eék, . Egk), R, = diag (fm’}g, e Ef), and
R, = diag (R}C, . ,Rf), with each Ci, R, and Ri as defined in step 3 of Algorithm 4.3.
Similarly, we use (3.58) to obtain the corresponding estimation error weighting matrices
Py, and Py, as also shown in the proof of Theorem 3.3. Moreover, note that to compute

the \; parameter, we consider the practical approximation discussed in Remark 3.2. [
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Algorithm 4.3 Robust Centralized Kalman Filter (RCKF)
Model: Assume the uncertain system model in (4.16)-(4.17).
Initialization: Set 2§ |, P, = Po = 0, Qx = 0, R} = 0, Vi € S, > 0, and £ > 0.
for k=0,1,...,N do
1. Obtain measurements y;, from all sensors i € S.

2. Compute A using the approximation:
M= (148 p |diag (MM g, MM )|

3. Compute the modified system and sensing model matrices, for all i € S:

. ~ “ —1

Orp=p Ly = N MMy, Qe =0y + Hy(Qp' + MER, B, ) HY

‘ - S=1p7i i i i i[(pin-1 o % (i i 17y

b = M - Ak1M2,k( 2,k)T k= Pop T+ Dk[(Rk) L+ )‘k'(EDk)TEDk] (Dp)"
Qr =N\ 'I, + By, QLEY, Ry = \;'I, + B} Ry(Ep )"
Fy = F, — HiQuBp, Qi En,  C=Cy — DyRy(Ep,)" (Ry) ™ Eg,
Gr = Gy — HiQE}, Qi E,

4. Correction step:

4.1. Compute the posterior error weighting matrix:

g -1

(Piun) ™+ D [(CHT(RY ' Ch + (BE)T (RY) B, | + B Q' Br,

=1

c __
klk =

4.2. Compute the filtered robust central state estimate:

~AC c
Tilk = Pk\k

S
(Pg|k71)_1j2|k71 + Z(CDT(R@_I% - Elj«:lezlEGkUk
=1

5. Prediction step:
5.1. Update the predicted prior error weighting matrix:

P = FkPIakaT + Q
5.2. Update the predicted prior robust central state estimate:
T = FeZyy, + Grug

end for

Remark 4.3. Analogous to the RKF in Algorithm 3.2, the RCKF proposed in Algorithm 4.3
also depends on the penalty parameter u and the approrimation parameter £. As also
discussed in Section 3.2.3, one can tune p based on the severity of uncertainties. For
significant perturbations, smaller values of pu are recommended, otherwise, it can be increased
for mild uncertainties. Regarding the & parameter, choosing values within the (0, 1) interval

generally yields satisfactory results.
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4.2.3 Robust Distributed Kalman Consensus Filter

In this section, we address the distributed estimation problem described in Sec-
tion 4.2.1.3. As established earlier, we use the average consensus algorithm (Section 2.4) to
derive a fully distributed approximation of the Robust Centralized Kalman Filter presented

in Algorithm 4.3, which serves as our benchmark.

We assume that each sensor ¢ € S is initialized with the same prior state estimate
%|—1 and prior error weighting matrix P8|_1 > 0. By adopting the hybrid consensus
on measurements and information (HCMCI) approach (BATTISTELLI et al., 2015),
each sensor ¢ € S exchanges information with its neighbors j € N; to ultimately obtain
approximations of the filtered and predicted prior robust central state estimates in a
distributed fashion.

In order to approximate the RCKF in Algorithm 4.3, note that the sensors first
need to compute the M parameter, which depends on My, composed of all matrices
Mj,, Vi € S. However, each sensor only has access to its own matrix and the matrices
of its neighbors. Nevertheless, given the block diagonal structure of My, one can apply
a variant of the average consensus algorithm to compute A, in a distributed manner, as

shown in Algorithm 4.4.

Algorithm 4.4 Distributed computation of \j, (each node i € S)
Initialization: Set the initial consensus state

Ni(0) = (1+€) o | diag (MM, (M) M3 |

for /=0,1,...,L—1do
1. Send the current \i(¢) to all neighbors j € N;.
2. Receive the current X (¢) from all neighbors j € N;.
3. Update the consensus state

A A

SE(04+1) = max {A@(@), Ai(ﬁ)}, Vi e N,

end for

A

Output: \i(L) = A,

Algorithm 4.5 displays the proposed Robust Distributed Kalman Consensus Filter
(RDKCF). Following the HCMCI protocol, in steps 4 and 5, we simultaneously perform
the average consensus algorithm (Algorithm 2.2) for each sensor’s prior information and
innovation pairs, denoted ( : w,@) and (59};, 5w,i), respectively. Notice that, in step 5.3,
the consensus weights ;; should satisfy the conditions listed in Definition 2.2, such that the
consensus states of each node 7 are updated with a convex combination of the corresponding
states within its inclusive neighborhood. The Metropolis weights (XIAO; BOYD; LALL,
2005), shown in (2.20), satisfy these conditions and are thus adopted here. Considering
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Algorithm 4.5 Robust Distributed Kalman Consensus Filter (RDKCF) (each sensor )

Model: Assume the uncertain system model in (4.16)-(4.17).
Initialization: Set §36|717 P3|—1 =P =0,Qr =0, R =0, u>0,6>0,and L > 1.
for k=0,1,...,N do
1. Obtain a measurement ;..

2. Compute A, using Algorithm 4.4.
3. Compute the modified system and sensing model matrices:

A _~ ~ 71
Brpo=p L= A MM Q= O+ He(Q' + ME, Bn,)  HY
‘ - S—1 7 i i i i[(piy=1 . X (fi i 17 i
(I)Z2,k = U 1[r - >‘k 1M2,k(M2,k)T Rk = (I)Q,k + Dk {(Rk) ! + )\k(EDk)TEDJ (Dk)T
Qr = A, 'I, + En,QuE, Ry = N\'L, + Ep Ri(E}, )"
Fy = Fy — HiQuER Q' Er, G = Cj = DiRy(Ep,)" (R;,) ' B,
Gr =Gk — HkaEIEkQﬁlEGk

4. Initialize the consensus states:
.(0) = (Pejp—r) ™ 09(0) = (Cj,
wi(0) = (Phjp—1) ™ Thyp-s 0w (0) = (C)" (
5. Consensus step:
for /=0,1,...,L—1do
5.1. Send {Q}f(ﬁ), wi (), 6Q(¢), 5w,i(€)} to all neighbors j € N;.
5.2. Receive {ch(ﬂ), wl(0), 6Q(0), 5wi(€)} from all neighbors 5 € N;.

5.3. Update the consensus states:

QL(l+1) = Z%QJ S0+ 1) = ijmﬂ

Z Tij Wi (€ Swi(l+1) = Z Tij 0w (£)
=1 j=1

end for
6. Correction step:
6.1. Compute the posterior error weighting matrix:

Pl = [U(L) + pf 6QU(L) + BL Q' Er]
6.2. Compute the filtered state estimate:
ﬁqk = Pli\k [WIZ(L) + pj, Owi (L) — E}QQEIEG,CM]
7. Prediction step:
7.1. Update the predicted prior error weighting matrix:
Pli-&-l\k = ﬁkplimﬁkT + Qr
7.2. Update the predicted prior state estimate:

A1l =~ A7 -~
$k+1|k = Fkxk‘k + GkUk
end for
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the outcome of the consensus step and based on step 4 of the RCKF (Algorithm 4.3),
we perform the correction stage outlined in step 6 of Algorithm 4.5. Note that, as in the
nominal distributed case (Algorithm 4.2), we also introduce the corrective scalar weight
pt. to compensate for the possible underweighting of the innovation pair ((592, (5w,i) due
to the average consensus process. Then, we conclude the algorithm with the prediction
stage in step 7, which corresponds to step 4 of the RCKF (Algorithm 4.3).

The next theorem shows that for a large number of consensus iterations, the

proposed robust distributed filter attains the same result as its centralized counterpart.

Theorem 4.5. Consider the Robust Distributed Kalman Consensus Filter in Algorithm 4.5
and that Assumption 4.1 is satisfied. Assume that the consensus weights m;; are chosen
according to Definition 2.2, the number of consensus iterations L — oo in step &, and that

= S in step 6. Then, the filtered and predicted prior robust state estimates, i:}'dk and
T, and their respective error weighting matrices, Py and Py, oblained by each
sensor © € S converge to the corresponding robust central state estimates &y, and Ty,
and error weighting matrices Py and B¢, computed via the Robust Centralized Kalman
Filter in Algorithm 4.35.

Proof. Since the undirected graph G describing the sensor network is connected and the
consensus weights 7;; are properly selected, the associated weighted adjacency matrix II
has the properties listed in Lemma 2.9. Assuming that the number of consensus iterations

L — oo, the convergence of the average consensus algorithm is guaranteed (Theorem 2.2).

Through induction, we now prove that the RDKCF detailed in Algorithm 4.5
converges to the RCKF in Algorithm 4.3. At time step k£ = 0, assume that the RCKF
is initialized with :%8‘_1 = T and Poc‘_l = P, > 0, whereas all sensors i € S initialize the
RDKCF with :%Bl_l = 2o and Pé‘_l = Py > 0. Then, Theorem 2.2 indicates that after the
consensus step 5 of the RDKCF, the information and innovation pairs of all the sensors

converge in the following way:

1 . 1 S~ , L
(L) = g B =Rt 0(L) = g X ()T (RY)TICE + ()T (RY) T B,
7j=1 7=1
1S 1x i 1SAJ'TA]71]
L) = 5> By lio =Py, dwy(L) = 5 D (CO) (R 'y
S = S =

Then, substituting these consensus outcomes into the equations in step 6 and considering
that the corrective scalar weight pi = S, we obtain

11

. B 13~ _ _
Bo = |Fot 552 [(COF (R 'CE + (BL,)T(RY) T EL,| + ERQy'Er| =
j=1 |
g 1-1
Pe' + 32 [(COT(RY)T'C + (BL)"(R) 'EL| + ER Qo' Bry | = P,
Jj=1 ]
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L 18 i _
Pitao + S (G (R)™vh — EF, Ry Eayu

Jj=1

i i
Zop — Fojo

S
Py'eg+ > (CHT(RY) v — EF,Qq ' Ecyuo
j=1

C
P0|0

__ AcC
= Zojos

for all sensors i € S. Notice how the choice of scalar weight pjy = S correctly compensates
for the 1/S factor that appears in the outcome of the innovation pair (5(26, 5w6> due
to the averaging process. The convergence above implies that in step 7, Pf|0 — Pf|0 and
T390 — &9)o. Hence, for k = 0, we have that the RDKCF indeed converges to the RCKF.

Now, let us assume that at time step k—1, one has P}y, — P¢ oy oy, 3y g —
2% a1y Pigo1 = Pijp_1> and &}y, — @5, Vi € S. Then, based on Theorem 2.2, at
time step k, we achieve the following consensus outcome after performing step 5 of the
RDKCF:

. 15 - . B
Q(L) — g Z(Pkc\k—1> = (Pije-1) Y
j=1
. 18 i i , _
682, (L) — EZ[( DT (ROl + (EL)T (R EL, |,
j=1
7 1 > c —1xc c —1xc
wi(L) — EZ(Pk\k—l) Thlk—1 = (Pk;|k;—1) Tklk—15
j=1
i 1 5 ~ANT  DIN—=1,]
5Wk(L)—>§Z( ) (1) i

<.
Il
—_

Thus, substituting these outcomes back into the equations in step 6 of the RDKCF,

considering pt = S, yields

-1

; . 1 St i i A , _ _

Pir = | (Prje—1) L+ Sg > {( DRI+ (Eé,C)T(R?c) 1chk] + EngklEFk =
L J=1
- S 71
(Pg) ™ + 3 [(COT (R Gl + (B2, (R 'EL] + R Qy Br | = Pl
L j=1

N i c —1z 13 ANT ( pIN—1,,J T N1

Tgle — Pk\k (Pk|k—1) L1t Sg Z( W) (Ry) "y — EFka Eg,u,| =

j=1
1 g T(DiN-1,7 T A-1
Pl | (Pipe—) ™ 2 pmr + D2_(COT (R ™ wh — B, Qr Egyur| = Ty,
j=1

for all sensors ¢ € S. Finally, plugging the results above back into the equations in step 7
of the RDKCF gives us that P/,,, — Pg,; and 2}, — &}, Hence, under the
aforementioned conditions, by induction, we have that for £k = 0,1,..., N, the RDKCF in
Algorithm 4.5 converges to the RCKF in Algorithm 4.3. [
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The robust distributed filter proposed in Algorithm 4.5 depends on the parameters
1 and &. Remark 4.3 presents some guidelines on how to tune them based on the level of
parametric uncertainties. As commented in the nominal distributed case, we reiterate how
the HCMCI protocol combined with the average consensus algorithm allowed us to design
a robust estimator that, despite being distributed, is able to approach the performance of
a centralized estimator. Of course, true convergence cannot be achieved in practice, as
only a finite number of consensus iterations L is possible. Nonetheless, we show with an
illustrative example that with a sufficiently large L it is still possible to closely approximate

the performance of the centralized filter using a distributed setup.

Remark 4.4. As in the Nominal Distributed Kalman Consensus Filter presented in
Algorithm 4.2, we also introduce a corrective scalar weight pi in step 6 of Algorithm 4.5 to
avoid the possible underweighting of the innovation pair (5QZ(L), (5w,i(L)> due to scaling
from the average consensus procedure. This turns Algorithm 4.5 into a family of robust
distributed filters, depending on the choice of pi.. As explained in Remark 4.2, ideally, we
should have pi, = S to correctly approzimate the centralized performance. The remark also

provides a distributed procedure to compute S in case it is not available to the sensors.

4.2.4 Stability Analysis

In this section, we discuss the stability properties of both the proposed Robust
Centralized Kalman Filter and the Robust Distributed Kalman Consensus Filter, as
well as the boundedness of their estimation error variance. To this end, we examine the
steady-state behavior of Algorithm 4.3 and Algorithm 4.5 when the target system and
sensing model parameters are constant and there is no input ux. Nonetheless, we still
assume that the contraction matrices Ay and A;,k are time-varying, Vi € S. Thus, for
k > 0, equations (4.16)-(4.17) take the form

Tht1 = (F + 5Fk)$k + (H + 5Hk)wk,

: , : , o (4.25)
Y, = (C"+0Cy )z + (D' + 0Dy vy, Vi€ES,
with time-varying norm-bounded parametric uncertainties
{5Fk 5Hk] = MiAy [EF EH} ;AL <1,
(4.26)

[0k oD;] = ML, [EG EBp). ALl <1, Vies.

Based on the strategy adopted in Kamal, Farrell and Roy-Chowdhury (2013) and
in Section 4.1.4, we conduct our analysis under the assumptions described in Theorem 4.5,
i.e., assuming that the RDKCF converges to the RCKF. This allows us to extend the

stability properties of the robust centralized filter to its distributed counterpart.

Let us first study the stability of the robust centralized filter presented in Al-
gorithm 4.3. Consider the time-invariant system model (4.25)-(4.26). Then, the RCKF
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equations in steps 4 and 5 of Algorithm 4.3 become:

AT ~—1~ — — —1
‘o= [(Piu) '+ @ R @+ BLR 'Ee+ EFQT'Er| (4.27)
Ac c c —1ac ST 51
Ty = Pk\k{<Pk|k71) Tie—1 T € R 347 (4.28)
P = ﬁpif|kﬁT +Q, (4.29)
B = Fag (4.30)
where
n: oL EL R ... 0 R ... 0
Y=|:|.C=|: |, Be=|:|,R=|: - |, andR=|: - :|,
ys Cs ES 0 - R° 0 --- R"

with each CA’i, }A%i, and R, Vi € S, as well as F , @, and Q given by the corresponding
equations listed in step 3 of Algorithm 4.3, considering constant parameters. The constant
A parameter is analogously computed as in step 2. To simplify the notation, we further

define the augmented matrices

such that one can rewrite Py, in (4.27) in a more compact way, as
. e g mTa—lx1-1
P = [(Pk:\k—l) '+C R ('3} :
Then, we apply Lemma A.1 to expand this expression and obtain
c c c ol (& @ pPc oI\ 15 pe
Pgy = Pgr—1 — P © (R + CP;1 € ) CP—1 (4.31)

Combining (4.31) with (4.28) and substituting back into (4.30) gives us the steady-state

predicted robust central state estimate
Ac T AC T c Al a1
xk‘-i-l‘k :?kka_l—{—f}'kpkw_le R yk, (432)

in which
Fo=F(L,— Pg,,@ (R+€pg,_,€") ')

is the robust centralized filter closed-loop matrix. Moreover, substituting Py, from (4.31)

into (4.29) yields the expression for the predicted prior error weighting matrix:

C ' c c ~T /=~ > e ~T\ —1~ c ~ ~
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Theorem 4.6. Consider the linear system model (4.25) with norm-bounded uncertainties
(4.25) and the corresponding robust centralized filter (4.32)-(4.33). Assume that {F, €} is
detectable and {F,Q'/?} is controllable. Then, for any initial condition 51~ 0,§>0,
and p > 0, P,§+1|k converges to the unique stabilizing solution P¢ = 0 of the algebraic

Riccati equation
P =F(P—P€ (R+EPe€) €P)F" +Q. (4.34)

The solution P¢ is stabilizing in the sense that the steady-state filter closed-loop matrix

~ ~ ~ ~ ~ ~ 1~

F=F(1, - P€ (R+epe’) ) (4.35)
is Schur stable.
Proof. The conditions £ > 0 and p > 0 imply that A > 0, ensuring that matrices F, é, R,
and Q are well-defined. According to Kailath, Sayed and Hassibi (2000b), detectability of
{F, @} and controllability of {F,Q'/?} ensure the convergence of P¢ s i (4.33) to the

unique stabilizing positive definite solution P¢ of the algebraic Riccati equation (4.34) that
stabilizes (4.35), which is the robust centralized filter steady-state closed-loop matrix. [

We now investigate the conditions for the boundedness of the estimation error
variance of the RCKF. Again, consider the uncertain linear discrete-time system model
(4.25)-(4.26). In addition, assume that wy, and {v;};_, are mutually uncorrelated zero-mean

Gaussian noise processes with joint covariance matrix

(e[

in which v, = col (v,i, e ,v,f) and R = diag (Rl, e ,RS). Moreover, assume that there

is no correlation between the parametric uncertainties and the system and measurement

-0, (4.36)

noises. Finally, consider the following assumptions about the uncertain system and the

robust centralized filter.

Assumption 4.3. The uncertain system (4.25)-(4.26) is quadratically stable, according to
Definition 35.1.

Assumption 4.4. The conditions of Theorem /4.6 are satisfied, such that the robust

centralized filter steady-state closed-loop matrix F is Schur stable.

Now, we show that under Assumption 3.1 and Assumption 3.2, the steady-state
robust centralized filter (4.32) is also quadratically stable. To simplify the notation, we
also define the following steady-state filter gain

~T ~—1

K :=FP€C R,
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with F given by (4.35), in which P¢ is the stabilizing solution of the algebraic Riccati
equation (4.34). Then, the steady-state robust centralized filter equation can be rewritten
as

‘@z-&-l\k - gﬁ“im—l + :kldk: (4.37)

where Y, = col (9}, ..., 47 ). Now, substituting each v from (4.25) into (4.37) yields
k k k
B = Fif e, + K€+ 8C)z + K(D + §Dy)vy, (4.38)

in which the aggregate matrices €, §Cx, D, and §D,, are defined in (4.20), (4.21), and
(4.22). Furthermore, we introduce the central state estimation error vector ef = gy — 25, ;.
Then, we subtract (4.38) from x,; in (4.25) to obtain

€hir = [(F—F —KE€)+ (6F, — KCy)|wy+ Fef + (H + 6 Hy)wp — K(D+ 0Dy vy, (4.39)

Consider now the augmented system composed of the target system state xp and the
central estimation error ef,. Thus, from (4.25), (4.26), and (4.39), this augmented system

is described by
Cop1 = (F + 0F )G + (I + S0 )y

(4.40)
6%, 676.] = M AL [Es By,
where
F 0 H 0
SR W I el R 2 e B I
ey, vy, F-F-X¢JF H —-XD
M A Er 0O Ey 0
Moo= ~O AL = | 0 C Es=| "7, Ep=|" ,
M; —KM, 0 Ay Ec 0 0 Ep

in which the aggregate matrix definitions can be found in (4.20), (4.21), and (4.22).

Lemma 4.1. Given that Assumption /.3 and Assumption 4.4 hold, the augmented system
(4.40) is quadratically stable.

Proof. Since the augmented system matrix & is lower triangular with diagonal elements
F and &, which are both Schur stable, we have that % is also Schur stable. Moreover,
note that

(Er 0
Es (2L —F) 't = | "

Be 0 |—(F-F-%K€) 2L, -F| |M; —KM,
| Ep(z1, — F)~'M; 0

Ee(zI, — F)™'M; 0

-1
2I, — F 0 ]

M, 0]

Ep
E¢

(21, — F)™" [M; 0].

In addition, one has

Ay 0
0 Ay

Ep

F+ MA Ep=F+ [Ml 0] [ B
C
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Since system (4.25)-(4.26) is quadratically stable, according to Remark 3.4, we have

for all admissible contractions A, ; and Ay . Therefore,

Er

B (21, — F)~! [M1 0}

<1,

o0

Es (2l —F) M| < 1and
the augmented system (4.40) is also quadratically stable. O

Now, let us define the covariance matrix of the augmented system state as ¢ :=
E{Cg(fﬁ)T}. Then, it follows from (4.40) that 22¢ satisfies the Lyapunov recursion
P = (F +0F)PLTF + 6F)" + (S + 856,)2 (H + 646,)", (4.41)
where Q is defined in (4.36).

Theorem 4.7. Given that Assumption 4.3 and Assumption 4.4 hold, the state estimation

error variance of the steady-state robust centralized filter (4.37) satisfies
lim Bleg(ef)” } < Yoo,

where Voo is the (2,2) block entry with the smallest trace among all (2,2) block entries of
matrices "V = 0 that satisfy the inequality

(F + MAEz) YV (F + MAE3)" + (H + MAEy) D (H + MAEy)" —¥ <0,
for all admissible contraction matrices A, with ||A| < 1.
Proof. Lemma 4.1 indicates that the augmented system (4.40) is quadratically stable.
Thus, from Definition 3.1, there exists a matrix % = 0 such that

for any admissible contraction matrix Ay. As discussed in Petersen and McFarlane (1996)
and Sayed (2001), the existence of matrix U > 0 guarantees the existence of a sufficiently

large scaling parameter ¢ > 0, such that one can find a matrix ¥ = €U satisfying
(F + MALES)Y (F + MALE5)" + (H + MALEy) D (H + MAE)" <.

Subtracting the recursion for the augmented system covariance (4.41) from the inequality

above thus yields
(F + MALES) (Y — PNF + MALES)T 2V — P54,
or, equivalently,
V- =(F +MAES)(YV —P)NF + MALEZ)" + W,

for some "W, = 0. To conclude, since the augmented system is quadratically stable, as
k— oo,V =20 >0, or 2., <¥. The (2,2) block entry of % corresponds to the

estimation error variance, which is thus bounded. O
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Corollary 4.2. Given that the assumptions in Theorem 4.5 hold, as well as Assumptions
4.8 and 4.4, the RDKCF in Algorithm 4.5 converges to the RCKF in Algorithm 4.3 and
thus shares its stability and bounded estimation error variance properties, according to
Theorems 4.6 and 4.7.

4.2.5 Illustrative Example

In this section, we assess the performance of the proposed RDKCF with an example
adapted from Xie, Soh and Souza (1994) and Section 3.2.5. In addition, we also evaluate
the RCKF, considered a benchmark for the distributed strategy. Furthermore, we compare
our results with other existing robust distributed filtering strategies from the literature.
For completeness, to establish a baseline, we further test the nominal centralized and
distributed filters developed in Section 4.1.

Consider a linear discrete-time target-system with norm-bounded uncertainties, as

described in (4.16)-(4.18) with the following constant parameter matrices:

0 —0.5 0 —6

F = . Gp=1 |, Hy=
0

M, . =
o

There is no input signal u; and wy, is a zero-mean white Gaussian noise signal with variance
T
Q@ = 1. The initial state is z¢ = {2 1} .

)

. Ep =[0.01 0.03, Eg, =0, Epg, =001

A set of S = 25 sensors arranged in a random geometric undirected network, shown
in Figure 8, measure the target system. The sensing model is described as in (4.17)-(4.18),
with v? as zero-mean white Gaussian noise signals with variances R. Two distinct types
of sensors are considered. Sensors with odd number, i.e., 1 = 1,3,...,25, are of the first

type, having constant parameter matrices
Cp=[-100 9], Dy=1, Mj, =10, E}, =[0.010.03, Ej =001, R,=1.
Sensors with even number, i.e., ¢ = 2,4,...,24, are of the second type, with matrices

Ci=[-50 12|, Dy=1, Mj,=15 E; =[0.01 003, Ej, =002, R,=08.

Then, we apply the proposed RDKCF in Algorithm 4.5 with the following initial-
ization data for all sensors:

. T .
Ba=[00], Riy=L p=001, =001, and L= 10,

where p and £ are chosen according to the guidelines in Remark 4.3. In addition, for the

consensus iterations, we adopt the Metropolis weights shown in (2.20).



4.2 Robust Distributed Kalman Filtering for Systems with Norm-Bounded Uncertainties — 133

Figure 8 — Sensor network with 25 nodes and 81 edges.

Figure 9 shows the evolution of the actual target system state along with the
estimation performed by sensors A (Type 1) and B (Type 2), identified in Figure 8, using
the proposed RDKCF'. At each time step, Ay and Ay, are real numbers randomly selected
from a uniform distribution with interval [—1, 1]. The results show that both sensors were
able to successfully track the state of the target system, irrespective of the norm-bounded
parametric uncertainties. Moreover, their estimates are practically indistinguishable, which

indicates that they reach consensus at each time step.

In order to further evaluate the proposed RDKCF, we carry out some comparisons.
Moreover, we consider two distinct scenarios. In the first one, named RDKCF-1, we assume
that the total number S of sensors in the network is available to every node, such that
in step 6 of Algorithm 4.5, we choose p} = S. In the second, RDKCF-2, the number S
is estimated using the strategy in Remark 4.4. Then, we compare the results with those
obtained with the robust centralized benchmark RCKF (Algorithm 4.3). To establish
a baseline, we also apply the nominal centralized and distributed filters presented in
Section 4.1, respectively CKF (Algorithm 4.1) and DKCF (Algorithm 4.2). In addition,
we also compare the RDKCF with other robust distributed estimators from the literature,
namely the recursive filters proposed in Rocha and Terra (2020) and Duan et al. (2020),
as well as the H,-consensus filter presented by Shen, Wang and Hung (2010).

The simulation consists of performing M = 1000 Monte Carlo experiments, each
with time horizon N = 100. At each time step k, we compute the mean squared estimation
error (MSE), averaged over all experiments and sensors in the network, as follows:

2

)

1 S M )
MSEk = SiM ZZ ||Ik — i";ﬂk,e

i=1e=1
which provides an approximation of the estimation error variance since, due to the

parametric uncertainties, we cannot compute its actual value, as discussed in Sayed (2001).
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Figure 9 — Actual (solid lines) and estimated (dashed lines) target system state obtained
by sensors A and B with the proposed RDKCF (Algorithm 4.5).

Sensor A (Type 1) Sensor B (Type 2)
20 I I 20 I I
10 - - 10
&'\
5 0 0
~10 - —10
~20 | | | | 20
0 10 20 30 40 50 0
Qo\
&
_20 | | | | _20 | | | |
0 10 20 30 40 50 0 10 20 30 40 50
Time Step k Time Step k

The results are presented in Figure 10 and Table 3, which summarizes the mean

MSE and standard deviation o(MSE) of the estimation error variances, calculated as

N MSE N (MSE, — MSE)?

E= 2(MSE) =
> ;)NH and 0" (MSE) k; N+1

Since the RCKF has access to all sensors at once, it naturally presents the best pos-
sible performance, thus being considered a benchmark. Among the distributed approaches,
the RDKCF' exhibits the smallest estimation error. As expected, the RDKCF-1 (S is
known) presents a slightly better performance compared to the RDKCF-2 (S is estimated).
Moreover, they closely follow the RCKF, fulfilling their goal. Next, we have the robust
distributed filters proposed by Rocha and Terra (2020) and Duan et al. (2020), which
present a similar performance. The former considers uncertainties in all parameter matrices
and performs a single consensus on information step, whereas the latter only assumes
uncertainties in matrix £} and does not use the consensus protocol. Then, we have the
nominal centralized and distributed nominal estimators, CKF (Algorithm 4.1) and DKCF
(Algorithm 4.2). They achieve similar results, but with significantly larger error variance,
compared to the previous estimators, which was expected, as they do not compensate for
model uncertainties. Finally, the robust H.-consensus filter by Shen, Wang and Hung
(2010) obtained the highest error variance. It assumes uncertainties in matrices Fj, and

C! and depends on the solution of an optimization problem subject to complex LMIs.
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Figure 10 — Estimation error variance curves of the robust distributed filters.
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Moreover, it is not fully distributed, as the gains are collectively computed, which may not
scale well as the number of sensors increases. In terms of standard deviation, notice that
both versions of the RDKCF exhibit smaller values compared to the RCKF. The nominal

approaches present the largest deviations, again, due to the uncompensated uncertainties.

Furthermore, we investigate how the number of consensus iterations L affects
the RDKCF performance. Figure 11 compiles a series of simulations with several values
of L, considering both scenarios of the RDKCF. For each value, we compute the mean
estimation error MSE over the whole time horizon, as previously described. The RCKF
is also presented for comparison purposes. Note that, as the value of L increases, the
distributed filters indeed approach the result of the centralized filter. This, however, requires
more computation time, indicating a performance trade-off. In addition, the results show
that the impact of knowing S beforehand or estimating it online is not significant, as both

versions of the RDKCF present very similar results.
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Table 3 — Estimation performance of each robust distributed filter.

Filter MSE (dB) o(MSE) (dB)
(1) RCKF (Algorithm 4.3) -55.78 0.9655
(2) RDKCF-1 (Algorithm 4.5, S known) -53.37 0.9461
(3) RDKCF-2 (Algorithm 4.5, S estimated) — -53.34 0.9558
(@ Rocha and Terra (2020) -30.55 1.6681
(5) Duan et al. (2020) -30.38 1.7212
6) CKF (Algorithm 4.1) 7.399 11.055
(7)) DKCF (Algorithm 4.2) 7.497 10.849
Shen, Wang and Hung (2010) 32.62 2.2911

Bold numbers indicate the smallest values.

Figure 11 — Effect of the number of consensus iterations L on the RDKCF (Algorithm 4.5).
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4.3 Robust Distributed Kalman Filtering for

Systems with Polytopic Uncertainties

In this section, we propose a second kind of robust alternatives to the nominal

centralized and distributed Kalman filters presented in Section 4.1. We address the case

where the underlying target system and sensing models are subject to polytopic parametric

uncertainties, i.e., the parameters arbitrarily vary within a convex polyhedron centered at
the nominal parameters (CHANG; PARK; TANG, 2015).

We follow a similar strategy as the one adopted in the previous norm-bounded

case (Section 4.2). As such, we start by addressing the centralized estimation problem,

assuming availability of measurements from all sensors in the network to a fusion center.

Using a deterministic interpretation, we formulate this centralized estimation problem as

a regularized least-squares estimation problem with polytopic uncertainties (Section 3.3.2).
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From its solution, we extract the Polytopic Robust Centralized Kalman Filter (PRCKF),
which is then modified to tackle the robust distributed estimation problem. This is achieved
through the HCMCI protocol (BATTISTELLI et al., 2015), yielding the Polytopic Robust
Distributed Kalman Consensus Filter (PRDKCF). With sufficiently many consensus steps,
both filters achieve similar results. As in the previous sections, we present the robust
centralized and distributed estimators as recursive correction-prediction algorithms, which,
in this case, resemble the Polytopic Robust Kalman Filter (Algorithm 3.3). Additionally,
we study the stability properties of both filters and conclude the section with an illustrative

example.

4.3.1 Problem Formulation
4.3.1.1 System Model

Consider a sensor network featuring S sensors. The communication among them is
represented by the undirected graph G = (S, E), with node set S = {1,2,..., S} and edge
set E C S x S. The neighborhood of a sensor i is denoted by N; = {j € S| (i,75) € E} and

has cardinality V; (see Section 2.3 for an introduction on graph theory).

Assumption 4.5. The undirected graph G has a fized topology and is connected, i.e.,

there is a path between every pair of nodes.

Consider the following discrete-time state-space description of a linear target system

subject to uncertainties:

Tpp1 = (Fog + 0F;)xk + (Gog + 0Gr)uy + (Ho g + 6 Hy)wy, (4.42)
which is observed by the set of S sensors S = {1,2,..., S}, each described by the uncertain
model

Y, = (Cop, + 6CL)ap + (Df ;. + 6Dy vy, Vi €, (4.43)
for k = 0,1,...,N, where z;, € R" is a state vector, v, € R™ is an input vector, and

wy, € RP is the system noise. For each sensor i € S, yi € R” is the measurement vector and
vj, € R? is the measurement noise. F, € R™", Goy € R™™ Hy) € R™P, C’é’k e R
and Dé,k € R"*? are known nominal parameter matrices, whereas 0}, € R™*" )G, € R™*™,
dHy, € R™P §Ch € R™™, and §Di € R™ 7 are unknown uncertainties bounded to a convex

polyhedral domain described by V' vertices,
1%
V= {(m 0Gy, 6Hy, 6C}, 0D}) =" as(Fu, Gu, Hox, Cly, k)} (4.44)
v=1

where F,, € R, G, € R™™, H,) € R”?, O}, € R™" and D}, € R™? are known,

T
and qy, = [al’k e av’k} belongs to the unit simplex

v=1

1%
Ay = {QERV : Zozyzl, onZO}. (4.45)
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In a stochastic setting, we usually assume that xq, wy, and {vi}?, are mutually

independent zero-mean Gaussian random variables with respective variances
E{xgon} =P >0, E{wkwlT} = Qrdr >~ 0, and E{v}c(vf)T} = R} 0ud;; = 0,

where 4, is the Kronecker delta function, such that d,, = 1 if a = b, and d,, = 0 otherwise.
Nonetheless, the strategy we develop here does not require that these variables have any

particular distribution.

4.3.1.2 Robust Centralized Estimation Problem

Before addressing the robust distributed estimation problem, we first design a
centralized estimator for system (4.42)-(4.43). In the centralized problem, there is a central
estimator with access to measurements obtained by all the sensors in the network. As
the target system state sequence {x;} is not perfectly observed, the goal is to use all
the information available up to time instant k, Y = {{yé}le, S £7 8 A VT ,uk},
to compute a so-called filtered robust central state estimate Tk of z, as well as a
predicted robust central estimate Zf, 1k of x11, despite the presence of the polytopic
model uncertainties 8 = {5Fk,(5Gk,5Hk, {6Ci}s |, {0Di le}. Here, the superscript ¢

indicates the centralized entities.

Following the procedure reported in 4.1.1.2 for the Nominal Centralized Kalman
Filter, we adopt a deterministic interpretation of the centralized estimation problem
(BRYSON; HO, 1975). Then, to avoid confusion, we introduce the variables Zj, Zjy1,
Wy, and {0i}7_, as substitutes for the random variables z, 7441, wg, and {vi}7 | in the
stochastic model (4.42)-(4.43). Based on Sayed (2001) and Ishihara, Terra and Cerri (2015),
assuming that at each time step k, an a priori state estimate @Z| x_1, & set of measurements
{yi}2 |, and the input u; are available, we formulate a min-max constrained optimization
problem in which a one-step quadratic objective function should be minimized under the

maximum influence of the polytopic parametric uncertainties dy, i.e.,

. N TP SN 2 A2 A2
o max Jy(Te, D, Ox) = 12k — Thpallieg, -r + Il +10kllz (4.46)
W, Ok,

subject to the set of constraints

I, _Fo,k + a1,V Gor +a1 VG Hop +oq VH g
Tpp1 = : Ty + : Uy + : W,
I, | Fox + avieV EFvg Gox + aviVGyp Hoy + aviVHyy
(4.472)
-[T’ _Cé,k + aLkVOik Dé,k + OszVDi’k
Sy = : B+ : o, Vi€S, (4.47b)
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for k=0,1,..., N, in which we define 9, := col (v,ﬁ, . ,U,f) and R;, = diag (R,lc, . ,R,f).
In the objective function, @y, and {9} }7 | are fitting errors weighted respectively by Q = 0
and R} » 0, Vi € S, and Py—1 > 0 weights the a priori estimation error zy — 2, _;.
Recall that, from a stochastic viewpoint, matrices () and Rj, represent the variances of
the random variables wy, and {vt}7 ;. Nonetheless, in this general deterministic framework,

they are rather understood as weighting matrices.

Remark 4.5. We derive the constraints (4.47) of problem (4.46) from (4.42), (4.43), and
(4.44) by individually considering each vertex of the polytope. The equivalence between
them can be easily shown by summing all the correspondent target system and sensing

model equations in (4.47), as follows:

v v v
Tpy1 = <F0,k: +> au,kFu,k;> Ty + (GO,k +> au,kGu,k> uy + <H07k +> Oéu,kHu,k> W,

v=1 v=1 v=1
. . V . . V . .
y,@ = < (Z),k + Z ozl,,kC’,ik) Tr + (D(l),k + Z Oél,’lel,,k> f)}’c, Vi € S,
v=1 v=1
which correspond to the same equations in (4.42), (4.43), and (4.44), considering the

deterministic variables.

To simplify the notation, we rewrite the constraints in (4.47) in the following more
compact form:
Iniﬁ'kJrl = (FU,k -+ (SFk)i’k —+ (GO,k —+ (SGk)Uk -+ (HO,k -+ (SHIC)'UAJ]C, (448&)
Ly, = (Cy, + 6C})iy, + (D, + 8D})os, Vi€S, (4.48D)
in which we define
I, =1y ®1,, For=1yR@Fy Gor=1y®Gor Hy, =1y ® Hyy, (4.19)
I,=1y®1, Ci,=1,8Ci,, and Dj, =1y ® Di,, '

T
where 1y = {1 1} € RV and ® denotes the Kronecker product. Moreover, the

uncertainties in (4.48) are given by

0F, 6G, 6H,| = &,V [Fy G, Hy, (4.50a)
6CL 6D} =@ V[C, D], Vies, (4.50b)
where
o ply -+ 0 Fi g Gk Hy
Qg = , Fp=1| 1|, Gp= , Hy = ,

0 Oév,k[n FV,k Gv Hy,

(4.51)
Oél,k]r 0 fk Dzlk
Qo = : , C, = , and D, =
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We can further aggregate the equations for each sensor ¢ in (4.48b) into a single

expression, as follows:
Y = (Cop + 0C) Ty + (Do + 0Dy) 0y, (4.52)
in which we define the aggregated vectors and matrices
1y} il ch, Dl - 0
Yi = Sl =], Cp=| ¢ |, and Dopi=| .t o, (4.53)
Iryif @lf Cos,k U Dg,k
considering the definitions in (4.49). Similarly, we aggregate the sensing uncertainty models

in (4.50b) into the single expression

€, 0D = (Is @ @) V [€, Dy (4.54)
with
5C} §D. ... 0 C, D, 0
6C,:=| 1 |, 6Dp=1] : . i |,C:=|:]|,and Dp=|: . ],
5C3 0 --- 6D} lof 0 .- D
(4.55)

according to the definitions in (4.51).

Problem (4.46)-(4.47) has the form of a regularized least-squares estimation problem
with polytopic uncertainties, as presented in Section 3.3.2. Therefore, by solving it, we

obtain the filtered and predicted robust central state estimates 2}, and Tkt respectively.

4.3.1.3 Robust Distributed Estimation Problem

In the distributed estimation setting, the goal of each sensor node i € S is to obtain
the best estimates f}:ﬂ . of 7y and 2% ik of x4 1, referred to as filtered and predicted robust

state estimates, irrespective of the polytopic uncertainties.

Moreover, these estimates should be computed in a distributed rather than cen-
tralized fashion. Therefore, each sensor node only has access to its own data and to
information provided by its neighbors. We achieve this objective by taking advantage
of the distributed characteristic of the average consensus protocol (Algorithm 2.2) to
approximate the results of a robust centralized estimator. This strategy is similar to the one
we applied in Section 4.1 and Section 4.2, as well as in Kamal, Farrell and Roy-Chowdhury
(2013) and Battistelli et al. (2015).

4.3.2 Polytopic Robust Centralized Kalman Filter

In this section, we present the Polytopic Robust Centralized Kalman Filter
(PRCKF), obtained as part of the solution to problem (4.46)-(4.47). As aforementioned,



4.8 Robust Distributed Kalman Filtering for Systems with Polytopic Uncertainties 141

problem (4.46)-(4.47) is a special case of regularized least-squares problem with polytopic
uncertainties (Section 3.3.2). This can be verified by mapping the objective function in
(4.46) with (3.95), and the compact aggregated constraints (4.48a)-(4.52) with (3.97), as

follows:
e Ai"i e Thik—1 Cwe Uk P (Pfr-1)"" 0 0w Q' 04 ,
85, By 0 0 0 R
-G F -1, H 0
Yo 0,kUk ’ Ay 0,k . By« 0,k 7
Y Cor O 0 Dok
- F H
sy | T0CK] s [OFROL g sp e |9HE O
0 0C, 0 0 0D,

(4.56)
in which the definitions in (4.49) and (4.53) are taken into consideration. In addition,

consider the following mappings between the compact aggregated uncertainty models

(4.50a)-(4.54) and (3.99):
, Y ~Gru , A 1_71k 0 . and B« Hy _0 . (4.57)

_ |:C_¥1,I<: 0
o —
where the definitions in (4.51) and (4.55) are considered.

0 Is®agg

Given that (Pg, ;)" = 0, one has P = 0. Also, Q;' = 0 and R, = 0 imply
that @@ > 0. Hence, we use the results in Lemma 3.5 and in equation (3.124) to obtain
the filtered and predicted robust central state estimates, izl , and 2§ 1k B8 well as their

respective error weighting matrices Py, and Pf ,, as stated in the following theorem.

Theorem 4.8. Consider the reqularized least-squares centralized estimation problem with
polytopic uncertainties (4.46)-(4.47) with given initial conditions &5 _,, P5_, = Py = 0,
Qr >0, R, =0, Vi €S, and fized parameters p > 0 and £ > 0. For each k =0,1,..., N,
its solution recursively provides the filtered and predicted robust central state estimates of
system (4.42)-(4.43), Tiy and Zy .y, along with their respective error weighting matrices,

Py and Pg ., according to the procedure described in Algorithm 4.0.

Proof. Since problem (4.46)-(4.47) is a regularized least-squares estimation problem with
polytopic uncertainties, we can use the result in Lemma 3.5 to obtain the robust central
state estimates #7, and 27, ;. Thus, we substitute the mappings (4.56) and (4.57) into
(3.106) to compute the modified target system and sensing model matrices. Next, we plug
the mappings into the solution (3.105). The algebraic procedure is similar to the one
described in the proof of Theorem 3.6 and we thus omit it for brevity. The main difference
is the presence of the summation terms in step 4 of Algorithm 4.6, which appear due to

the aggregate vectors and matrices defined in (4.53) and (4.55), which account for all the
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Algorithm 4.6 Polytopic Robust Centralized Kalman Filter (PRCKF)
Model: Assume the uncertain system model in (4.42)-(4.43).
Initialization: Set 2§ |, P, = Po = 0, Qx = 0, R} = 0, Vi € S, > 0, and £ > 0.
for k=0,1,...,N do
1. Obtain measurements yj, from all sensors i € S.

2. Compute ¢ using the approximation for :
p=AV=(1+uV?

3. Compute the modified target system and sensing model matrices, for all 7 € S:

_ ~ B 7 — -1
Py =&V, Qr = @1+ Hop (le +pH, Hk) Hg:k
~. . . — —;1—1 i
By = EV L, Ry = ®o + Df),k{(RZ)_l + @(Dk)TDk} (Dos)"
_ _ _ _ T _ B —g =i
Qr =y 'Ly + H,Q.H, R, = ¢ 'Ly + DR, (Dy)"

7 7! A—1 Ai i i piP pi \—1
Fy = FO,k - HO,kaHk leFk Ck = Co,k; - Do,kRk(Dk)T(Rk) 1Ck
~ _T = _ —_

Gr = Goy — HorQuH, Q; 'Gy,

4. Correction step:
4.1. Compute the posterior error weighting matrix:

S ~ . ~ . ~ . —1 — . —1 — — — !
(Pin) ™ + 2 [(C)T () '+ (C) (R ICL] + Ff@ile]

i=1

c __
Par =

4.2. Compute the filtered robust central state estimate:

~C
Lk = Pk|k

i w5l A—1A
(Pj—1) $k|k 1“‘2 " yk_Fkaleuk]

5. Prediction step:
5.1. Update the predicted prior error weighting matrix:

Pfa, = FuPap By + Qi
5.2. Update the predicted prior robust central state estimate:
Tiqap = Fiudyy, + Grug

end for

sensors in the network. Given their block column and diagonal structures, we have that

5
lp e L el AT ( Pi -1 A ST (i \—1 A
€. R, Cr+C R, €= {(Ck)T(Rk) 'O+ (G (Ry,) 1047
i=1
Tl 5 AT [ Di\—1, i
Ci Ry Y :Z(Ck) (B) ™ Y
i=1

where y, = col (y,i,...,y,f), G, = col (é,%,,é’,f), G, = col (C’,lc,...,é’k
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diag (E,{:, o ,é,f), and R;, = diag (R}c, - R;j), with each Ci, Ri, and Ri as defined in
step 3 of Algorithm 4.6. Analogously, we use (3.124) to obtain the corresponding estimation
error weighting matrices Py, and P¢ ., as also shown in the proof of Theorem 3.6. To
conclude, note that to compute the \ parameter, we consider the practical approximation

explained in Remark 3.7. O

Remark 4.6. The proposed Polytopic Robust Centralized Kalman Filter (Algorithm 4.6)
depends on the penalty and approximation parameters p and &, respectively. They influence
the PRCKF performance in a similar way to what is observed in the PRKF (Algorithm 3.3).
Therefore, as discussed in Section 3.3.3, we tune p based on the level of model uncertainties.
The more severe the perturbations, the smaller the value of . As for the approximation

parameter &, it is recommended to select a small value within the (0, 1) interval.

4.3.3 Polytopic Robust Distributed Kalman Concensus Filter

This section tackles the distributed estimation problem proposed in Section 4.3.1.3.
As previously mentioned, in order to solve it, we leverage the average consensus algorithm
(Section 2.4) to develop a distributed implementation that can approximate the Polytopic
Robust Centralized Kalman Filter presented in Algorithm 4.6, which is considered a

benchmark.

In the distributed estimation context, we assume that each sensor i € S is initialized
with the same prior state estimate i’é|-1 and prior error weighting matrix P§|_l = 0.
We adopt the hybrid consensus on measurements and information (HCMCI) approach
(BATTISTELLI et al., 2015), such that each sensor i € S exchanges information with its
neighbors 7 € N; to ultimately obtain an approximation of the filtered and predicted prior

robust central state estimates in a distributed fashion.

We propose the so-called Polytopic Robust Distributed Kalman Consensus Filter
(PRDKCF) shown in Algorithm 4.7. In accordance with the HCMCI protocol, in steps
4 and 5, we simultaneously perform the average consensus algorithm (Algorithm 2.2) to
each sensor’s prior information and innovation pairs, denoted (Q}c, wi) and (69};, (50.1}‘;),
respectively. Moreover, in step 5.3, the consensus weights m;; should satisfy the conditions
outlined in Definition 2.2, such that the consensus states of each node 7 are updated with
a convex combination of the corresponding states within its inclusive neighborhood. Here,
we adopt the Metropolis weights (XIAO; BOYD; LALL, 2005), shown in (2.20), for which
these conditions hold. Then, based on step 4 of the PRCKF (Algorithm 4.6), we use the
outcome of the consensus step in the correction stage shown in step 6 of Algorithm 4.7.
Analogous to the nominal distributed case (Algorithm 4.2), we include the corrective scalar
pi. to compensate for the possible underweighting of the innovation pair (5&2};, 5(,0};) due
to the average consensus process. Concluding the algorithm, in step 7, we perform the
prediction step, which is based on step 5 of the PRCKF (Algorithm 4.6).
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Algorithm 4.7 Polytopic Robust Distributed Kalman Consensus Filter (PRDKCF) (each
sensor 1)
Model: Assume the uncertain system model in (4.42)-(4.43).
Initialization: Set 2 ,, Py, = Po = 0, Qx =0, R, = 0, £ >0,& >0, and L > 1.
for k=0,1,...,N do
1. Obtain a measurement ;..
2. Compute ¢ using the approximation for A: ¢ = AV2 = (1 + &) pV?
3. Compute the modified system and sensing model matrices:

) A L mTE !
Py =&V, Qr = @1+ Hop (le +pH, Hk) Hg:k

~. . . _ —;7—1 i
By = EV L, Ry = Po + Doy {(RZ)_I + ‘P(Dk)TDk} (Dos)"
_ _ _ _ T _ _ _ =i
Qr =y 'Ly + H,Q.H, R, = ¢ 'Ly + DR, (Dy)"

Fi = Fo, — HoQuH Qi 'Fy - Gl = Ciy — D} Ru(D))T(RY) ™' C
G = Goy — HoQrH,, Q' Gy
4. Initialize the consensus states:
05.(0) = (Pyp—1) ™ 02(0) = (C)" (B,
w,i(O) (Pk|k 1) xk|k 1 5“1@(0) = ( ;)T(RZ)_lyi
5. Consensus step:
for /=0,1,...,L—1do
5.1. Send {Q}C(ﬁ), wi(0), 00 (0), 5w}i(€)} to all neighbors j € N;.
5.2. Receive {Qi(f), BAGRIVATN 5wi(€)} from all neighbors j € N;.

5.3. Update the consensus states:

Qi(t+1) = ZWWQJ S+ 1) = ZW”MZJ

L+ 1) = wawk Swi(+1) = ZTFU Swl(0)

end for
6. Correction step:
6.1. Compute the posterior error weighting matrix:

i i i sOyi =T A 14 171
Par = [Qk(L> + P 00, (L) + F, leFk]
6.2. Compute the filtered state estimate:
i i [, iP5 L A—1
Tpp = Pk|k[wk(L) + pp 0wy (L) — Fp. Qy leuk}

7. Prediction step:
7.1. Update the predicted prior error weighting matrix:

Pli+1\k = FkPIiUchT + Q
7.2. Update the predicted prior state estimate:

A1 _ ~ A1 =~
Thyrp = Frlyyy, + Grug
end for
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Theorem 4.9. Consider the Polytopic Robust Distributed Kalman Consensus Filter in
Algorithm 4.7 and that Assumption J.1 is satisfied. In addition, assume that the consensus
weights m;; are chosen according to Definition 2.2, the number of consensus iterations
L — oo in step 5, and that pi, = S in step 6. Then, the filtered and predicted prior robust
state estimates, ﬁclk and £2+1|k, and their respective error weighting matrices, P,i“c and
Py i1, obtained by each sensor i € S converge to the corresponding robust central state
estimates Ty, and Ty, and error weighting matrices Py and Py, oblained using the
Polytopic Robust Centralized Kalman Filter in Algorithm 4.6.

Proof. Since the undirected graph G describing the sensor network is connected and the
consensus weights 7;; are properly selected, we have that the associated weighted adjacency
matrix II exhibit the properties listed in Lemma 2.9. Moreover, as the number of consensus
iterations L — oo, Theorem 2.2 guarantees the convergence of the average consensus
algorithm. Let us then prove through induction that the PRDKCF in Algorithm 4.7
converges to the PRCKF in Algorithm 4.6.

At time step k = 0, consider that the PRCKF is initialized with :%8‘_1 = T and
POC|_1 = Py = 0, whereas all sensors ¢ € S initialize the PRDKCF with if)‘_l = Zp and
Pg|71 = Fy > 0. Thus, according to Theorem 2.2, after performing the consensus step of

the PRDKCF, the information and innovation pairs of all the sensors converge as follows:

‘ 15 ‘ 1 PO _ . .
(L) = gD Bt =Rt (L) = o X (G (R + (Co)T (RY) Gy
j=1 j=1
. 15 , 15 . N
wh(L) = g Yo Fy'do = Py'do, dwp(L) = = D (G (R) ™43
j=1 j=1

We then substitute these consensus outcomes into the equations in step 6 of Algorithm 4.7,

considering that pj, = S, such that

. - . o o I
o = |Fot 52 (G (B 'CE + (Co)T (R " Co + FoQy ' Fo| =
Jj=1 ]
s 1-1
_ A Siv—1 A = S N1 A —T = | = .
Pet + 32 [(COT(RY) TG+ (Co) () Co| + FyQy ' Fo| = Py,
=1 ]
, LS i 5 _
Zojg — Fojo [ Fo " Zo + SE Y (GO (Ry) " 'yp — Fo Ry ' Gouo | =
j=1
S o~ o~ . _T — .
5|0 Po_li"o + Z( S)T(Rg))_ly(]) - F, QElGOUO = Zﬁ(cnm
j=1
for all sensors i € S. Note how the choice of scalar weight pj, = S is important to

correctly compensate for the 1/S factor that appears in the outcome of the innovation pair

((596, 5wé) after the averaging process. Furthermore, the convergence above implies that,
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in step 7, P, — Pfjy and &, — 25,y Therefore, for k = 0, we proved that the PRDKCF
converges to the PRCKF.

Now, let us assume that at time step k—1, we have Py, | — Py 1, #f_y —
T k-1, P,ilk_l — Ppj_q, and :%Z‘k_l — Zf_1, Vi € S. Then, according to Theorem 2.2,

at time step k, we achieve the following consensus outcome after step 5 of the PRDKCF:

7 1 5 c — c -
Qk(L)_)E ( k\k—l) b= k|k—1) g
j=1
, 15 -~ o -
O (L) = < > [(CHT(BY™'CL+ (CYT(RY'CY,
j=1
7 1 c —1ac c —1ac
wi(L) — EZ(PWC 1) lxk|k71 = (Pk|k71) 19%\16717
=1
i 1& AINT (pIN—1,,7
5Wk(L)—>§Z( 7w (B) " v
j=1

Substituting these outcomes into the equations in step 6 of the PRDKCF, assuming that
pi. = S, then yields

g -1
Pl — (P )™+ 5< 3 (@) (B)71CL+ (G (R)7Cl) + FLo; F] -

-1

[ S o~ . o~ - —_ . —_ —_ — —
(Per—) ™ + 2 [(CDT(B)T'CL+ (CT (R ™' C] + FZQ,;le] = Py,

i =1
; 1 5 SINT [ D 1
T = Pae | (Prip—1) ™ e 1+S§ Y (CON (R — FrQr ' Grug | =
j=1
P | (Prg—1) ™ e + Y (CONRY ' — FrQr ' Grug | = Lk
7=1

for all sensors ¢ € S. Then, plugging the results above into the equations in step 7 of the
PRDKCEF leads to Py, — Pg, and &}, — &%), Therefore, under the established
conditions, by induction, we have that, for k =0,1,..., N, the PRDKCF in Algorithm 4.7
converges to the PRCKF in Algorithm 4.6. [

Since the proposed PRDKCF is derived from the PRCKF (Algorithm 4.6), it also
depends on the p and & parameters. As such, Remark 4.6 provides guidelines on how
to select their values. In conclusion, we emphasize how the combination of the HCMCI
protocol with the average consensus algorithm enabled the derivation of a polytopic robust
distributed estimator that approaches the performance of its centralized counterpart.
However, it is also important to note that this convergence is theoretical, since it requires
an infinite number of consensus iterations L, which is not possible in practice. Nonetheless,
an illustrative example will show that, for a sufficiently large and finite L, the distributed

filter closely follows the performance of the corresponding centralized filter.
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Remark 4.7. As in the Nominal Distributed Kalman Consensus Filter presented in
Algorithm 4.2, we include a corrective scalar weight p. in step 6 of Algorithm 4.7. Its
purpose is to avoid the possible underweighting of the innovation pair (5QZ(L), 5w,i(L))
due to scaling from the average consensus procedure. As a consequence, Algorithm /.7
actually represents a family of polytopic robust distributed filters, depending on the choice
of pi.. As discussed in Remark 4.2, ideally, one should have pi, = S to reach the centralized
performance. Since the value of S may not be available to the sensors in the network,

Remark 4.2 also provides a procedure to estimate it in a distributed fashion.

4.3.4 Stability Analysis

This section addresses the stability properties and boundedness of the estimation
error variance of the proposed polytopic robust centralized and distributed filters. We
study the steady-state behavior of Algorithm 4.6 and Algorithm 4.7, considering that the
target system and sensing model parameters are time-invariant and there is no input uy.
Nevertheless, we still assume that the polytope coefficients «y are time-varying. Thus,

consider the following discrete-time uncertain linear system:

Ty = (Fo + 0Fy)xy, + (Ho + 6 Hy)wy, (4.58a)
yp = (C{ + 0Ch)xy + (Dj + 0D} )vj,, Vi €S, (4.58D)

for k > 0, with time-varying parametric uncertainties bounded by the convex polyhedron
Vi = {<5Fk, OHy, 0Cy, 5D/Z> = ZCVV,IC(FV, H, C, Di)}, (4.59)
v=1

T
where ay, = [Oém . 'Oév,k} belongs to the unit simplex Ay in (4.45), with V' vertices.

Following the strategy carried out in Section 4.1.4, Section 4.2.4, as well as in
Kamal, Farrell and Roy-Chowdhury (2013), we perform the analysis under the assumptions
described in Theorem 4.9, i.e., considering that the PRDKCF converges to the PRCKF'.
This way, the stability properties of the polytopic robust centralized filter can be extended

to its distributed implementation.

We start by establishing the stability conditions of the PRCKF in Algorithm 4.6.
Considering the time-invariant uncertain system model (4.58)-(4.59), the PRCKF equations
in steps 4 and 5 of Algorithm 3.3 become:

AT ~—1n =T = _1= T = —7—1

Fiw =[P ) +@ R @@ RCH FQUF] (4.60)
e . . . AT~ 1

Tpp = Pk|k[(Pk|k—1) 1$k\k—1 +C R yk], (4.61)

P = ﬁpﬁ\kﬁT +Q, (4.62)

Z%Ii+1|k = Fiﬁima (4.63)
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where
YL o c' R ... 0 R' - 0
ye=| . C=|:], €= |, R=]: . |, andR=|: . i,
ys s c’ 0 ... RS 0 ... RS

with each CA’i, }A%i, and R, Vi € S, as well as F , @, and Q given by the corresponding
equations in step 3 of Algorithm 4.6, assuming constant parameters. For a simpler notation,

we also define the augmented matrices

C =

R
and R:= |0
0

ESINCINE)
o o

O o o

Then, we can rewrite (4.60) more compactly, as follows:
P = [(Plg\k—l)il + éTﬁ_lé}_l,
which we expand by applying Lemma A.1, such that
iy = Pipy — P @ (R+ €PG,,€ ) CPy, . (4.64)

We then combine (4.64) with (4.61) and substitute the result into (4.63) to obtain the

steady-state predicted robust central state estimate
Ac T AC T c Pl a1
T = Frlipor T FulPp1C R yy, (4.65)
in which
T n c ol (4 @ pc o\ 15
Fr=F (I, — P _,€ (R+€P_,€ ) €)
is the polytopic robust centralized filter closed-loop matrix. Furthermore, we substitute

Py, from (4.64) back into (4.62) to obtain the following expression for the predicted prior

error weighting matrix:
c i ( pc c ol (D E pc o\ 1o pe n 2
P = F<Pk|k—1 — P, € (R + CF;;_.C ) epk\k—1>FT + Q. (4.66)

Theorem 4.10. Consider the linear system model (4.58) with polytopic uncertainties
(4.59) and the corresponding robust centralized filter (4.65)-(4.66). Assume that {F, €} is
detectable and {15, @1/2} is controllable. Then, for any initial condition Fj-1 >0, £>0,
and p > 0, P, converges to the unique stabilizing solution P° > 0 of the algebraic

Riccati equation
Pe=F(pe— P€ (Rt €P€ ) 'eP) " + Q. (4.67)
The solution P€ is stabilizing in the sense that the steady-state filter closed-loop matrix
F=F(1,- P€ (R+ere’) @) (4.68)

is Schur stable.



4.8 Robust Distributed Kalman Filtering for Systems with Polytopic Uncertainties 149

Proof. The conditions £ > 0 and p > 0 imply that ¢ > 0, ensuring that matrices F ,
é, j{, and @ are well-defined. From Kailath, Sayed and Hassibi (2000b), we have that
detectability of {F, €} and controllability of {F,Q'/2} ensure the convergence of P¢ 1k
in (4.66) to the unique stabilizing positive definite solution P¢ of the algebraic Riccati
equation (4.67) that stabilizes (4.68), which is the polytopic robust centralized filter

steady-state closed-loop matrix. O]

Now, let us establish the conditions for the boundedness of the estimation error
variance of the proposed PRCKF'. Thus, consider the uncertain linear discrete-time system
model (4.58)-(4.59). Note that we can write the polytopic uncertainties described in (4.59)

alternatively as

arply -+ 0 ] Fy Hy
6F, 0H | =1, - L] | + . | =Maw[F ], (4.69)
0 - avel.] | Hy
arel, - 0 ][ci Di
{5Cli 5Dd = [Ir Ir:| S : L = Maagy {(_71 DZ} , Vi €S,
0 - ayel _C’{'/ D%/_

(4.69b)
T
in which, since oy, = {al,k e Oév,k} belongs to the unit simplex Ay in (3.85), we have that
o k]| <1 and ||@2 <1

We can further aggregate the equations for each sensor i in (4.58b) and (4.69b)

into the compact expressions

Y = (eo + 6€k)93k + (@0 + 5‘Dk)vk,

- o (4.70)
[6€;, 6Dy] =M. (Is @ Gny) [€ D,
where
Yh UL Co Dy 0
Y, = ) Vi = ) 80 - ) ®0 - )
Vi v Cy 0 - D
1 _ (4.71)
M, 0 C D 0
My =] : R I C=|: , and D = .o
0 --- M, c’ 0o ... D°

Moreover, we assume that wy and {v,}7_, are uncorrelated zero-mean Gaussian

noise processes with joint covariance matrix

o-a{fra}- [

=0, (4.72)
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in which R = diag (Rl, ..., R® ) In addition, assume that there is no correlation between
the parametric uncertainties and the system and measurement noises. Finally, consider

the following assumptions about the uncertain system and the robust centralized filter.

Assumption 4.6. The uncertain system (4.58a)-(4.69b) is quadratically stable, according
to Definition 3.2.

Assumption 4.7. The conditions of Theorem 4.10 are satisfied, such that the polytopic

robust centralized filter steady-state closed-loop matriz F is Schur stable.

Under Assumption 3.3 and Assumption 3.4, we now show that the steady-state
robust centralized filter (4.65) is also quadratically stable. To simplify the notation, we
define the following steady-state filter gain

K = g’PCéTﬂAlil,

where F is given by (4.68), in which P¢ is the stabilizing solution of the algebraic Riccati
equation (4.67). Hence, the steady-state polytopic robust centralized filter equation can
be rewritten as

B, = Fife, + Ky, (4.73)

Now, substituting y, from (4.70) into (4.73) gives
B = Fafp s + K(Co + 6€C)zy + K (Do + 6Dy vy, (4.74)

with aggregate matrices as defined in (4.71). Additionally, we define the central state
estimation error vector ef = xj, — 2%, _,. Then, subtracting (4.74) from x4 in (4.58a)

yields
€h i1 = |(Fo—F—KCo)+(0Fx—KOCy) | wp+Fef + (Ho+ Hy)wy—K(Do+Dy)vy. (4.75)

Furthermore, we introduce the augmented system composed of the target system state xy
and the central estimation error ef,. Then, from (4.58a), (4.69a), (4.70), and (4.75), this

augmented system is described by

Copr = (F + 0F) (G + (€ + 076,

o (4.76)
65, 646, = M & [F 7|,
where
I 0 H, 0

SR N I Il I A B o A
62 (U F() - F-KCF H() —fK@o

f M0 ay, 0 = |FO0 -, |H 0
M KM, T 0 Is® @y “léol” T oD
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Lemma 4.2. If Assumption 4.6 and Assumption 4.7 are satisfied, then the augmented
system (4.76) is quadratically stable.

Proof. Note that the augmented system matrix & is lower triangular with diagonal
elements Fy and F, which are both Schur stable, which implies that & is also Schur stable.

In addition, we have that

_ F o I, — F, 0o | |M 0
F(2Lpy —F)" 'l = |- “in 00 . b
_(‘3 0 —(FO—?—KCO) ZIn—S: M1 _JCMQ
(F(zI, — Fy)"'M, 0] [F
_ PG 0>_1 ! _| (21, — Fpy)™! [Ml o}.
_C(an—F()) M1 0 (&
Moreover,
_ Qg 0 F
Fo+ Moy . F = Fy+ |M; 0 ’ .
0 100 g 0 [ 1 }[0 Io®ans| | @

Since system (4.58a)-(4.69b) is quadratically stable, according to Remark 3.10, one has

' [g] (21, — Fo) ™ [M; 0]

<1,

[e.9]

for all admissible contractions for all admissible contractions & and & . As a conse-
F (21, — 9)’1M‘ < 1 and the augmented system (4.76) is also quadratically
stable. O

quence,

Next, we define the covariance matrix of the augmented system state as P} =
E {Cg((’,‘;)T} Then, from (4.76), 2¢ satisfies the Lyapunov recursion

f = (F +8F)PETF +0F)" + (H + 856,)2 (S + 656,)7, (4.77)
with @ as defined in (4.72).

Theorem 4.11. Given that Assumption 4.6 and Assumption 4.7 hold, the state estimation

error variance of the steady-state polytopic robust centralized filter (4.73) satisfies

lim E{ekez} j “1/22,

k—o0

where Voo is the (2,2) block entry with the smallest trace among all (2,2) block entries of
matrices "V = 0 that satisfy the inequality

(F + ME&F)V (F + MEF)" + (H€ + ME&HC) D (H6 + MaF)" —V <0,

for all admissible &, with ||&| < 1.
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Proof. According to Lemma 4.2, the augmented system (4.76) is quadratically stable, then
Definition 3.2 implies that there exists a matrix 9 > 0 such that

(F + MapTF)U(F + MapTF)T —U <0,

for all admissible . Based on Petersen and McFarlane (1996) and Sayed (2001), the
existence of such a matrix U > 0 indicates that there exists a sufficiently large scaling

parameter € > 0, such that one can find a matrix ¥ = €U satisfying
(F + MaF )V (F + M F)" + (H + MELT) D (H + MapHe)" <Y

By subtracting the recursion for the augmented system covariance in (4.77) from the

inequality above, we obtain
(F + MaF)(V = POF + MauF )" 2V = PE
or, equivalently,
VP = (F + MTF )V — PONTF + MaTF )" + W,

for some "W}, = 0. Finally, since the augmented system is quadratically stable, as k — oo,
we have that ¥ —2¢, , = 0, or 2 ; = ¥. The (2,2) block entry of 2 corresponds to

the estimation error variance, which is therefore bounded. O

Corollary 4.3. If the assumptions in Theorem 4.9 are satisfied, as well as Assumptions
4.6 and 4.7, the PRDKCF in Algorithm 4.7 converges to the PRCKF in Algorithm 4.6
and thus shares its stability and bounded estimation error variance properties, according to
Theorems 4.10 and 4.11.

4.3.5 Illustrative Example

In this section, we study the performance of the proposed Polytopic Robust
Distributed Kalman Consensus Filter with an example adapted from Xie, Soh and Souza
(1994) and Section 3.3.5. We also evaluate the centralized counterpart, PRCKF, considered
the benchmark for the distributed strategy. We further compare our results with those of
other polytopic robust distributed filtering approaches from the literature. Additionally, to
establish a baseline, we also assess the results of the nominal centralized and distributed

filters presented in Section 4.1.

Consider a linear discrete-time target-system with polytopic uncertainties, as

described in (4.42)-(4.44), with the following constant nominal parameter matrices and
uncertainties bounded to a 2-vertex polytope:

0 6 0 0 0 0
) H = ’ Fip = ) G = ) Hyy = )
0] Ok [ 1] R0 0.3] bk H b {0.1]

(Fom, Gag, Hox) = —(Fik, Gug, Hik):

B [0 —0.5
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No input signal wuy is present and wy is a zero-mean white Gaussian noise signal with

T
variance () = 1. The initial state is zg = [2 1} .

A set of S = 25 sensors arranged in a random geometric undirected network, shown
in Figure 8, measure the target system. The sensing model is described as in (4.43)-(4.44),
with v} as zero-mean white Gaussian noise signals with variances Rj. Two different types
of sensors are considered. Sensors with odd number, i.e., i = 1,3,...,25, are of the first

type, with constant parameter matrices
(i),k = [—100 9} ; (Z)k =1, }k = {0,1 ()'3] , ik =0.1, P—1,
( ;’W ;,k> = _< {Jm i,k)
Sensors with even number, i.e., 7 = 2,4,...,24, are of the second type, with matrices
io=[-50 12], Diy=1, Ci,=[015045], Dj, =03 Ri=08

i i\ (i i
2.k Yok) = Lk Y1k

Then, we apply the proposed PRDKCF (Algorithm 4.7) with the following initial-

ization data for all sensors:
. T .
B =100, Riy=L p=001, =001, and L= 10,

with parameters p and £ selected according to the guidelines in Remark 4.6. For the
consensus iterations, we adopt the Metropolis weights shown in (2.20). Figure 12 depicts
the evolution of the actual target system state along with the estimation performed by
sensors A (Type 1) and B (Type 2), identified in Figure 8, using the proposed PRDKCF.
At each time step, the coefficients oy, € Ay (see (4.45)) are randomly selected. According
to the results, both sensors were able to successfully track the state of the target system,
despite the polytopic model uncertainties. Moreover, their estimates are similar, indicating

that they reach consensus at each time step.

We continue our analysis of the PRDKCF with some comparisons. Analogous to
Section 4.2.5, we consider two versions of the PRDKCF. In the first, RDKCF-1, the number
of sensors in the network S is known to each sensor, such that, in step 6 of Algorithm 4.7,
we choose pi, = S. In the the second version, PRDKCF-2, S is estimated according
to Remark 4.2. We compare the distributed filter results with those from the PRCKF
(Algorithm 4.6), taken as a benchmark. In addition, we also simulate the nominal centralized
and distributed filters, CKF (Algorithm 4.1) and DKCF (Algorithm 4.2), respectively.
Furthermore, we compare the PRDKCF with other polytopic robust distributed estimators
from the literature, namely the H..-consensus filter by Shen, Wang and Hung (2010) and

the mean square state estimator of Souza, Coutinho and Kinnaert (2016).

The simulation consists of performing M = 1000 Monte Carlo experiments, each

with time horizon N = 100. At each time step k, we compute the mean squared estimation
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Figure 12 — Actual (solid lines) and estimated (dashed lines) target system state obtained
by sensors A and B with the proposed PRDKCF (Algorithm 4.7).

Sensor A (Type 1) Sensor B (Type 2)
20 I I 20 I I
10 [ 1o10f .
&'\
iy 0r 0l
—10| 1 —10} |
_20 | | | | _20 | | | |
0 10 20 30 40 50 0 10 20 30 40 50
Qh
g
—-20 | | | | —20 | | | |
0 10 20 30 40 50 0 10 20 30 40 50
Time Step k Time Step k

error (MSE), averaged over all experiments and sensors in the network, as follows:

MSEL = b3 S e —
k_SM Tk — Tiikell >

i=1e=1

which provides a reasonable approximation of the estimation error variance, as we cannot

compute it analytically due to the parametric uncertainties, as discussed in Sayed (2001).

The results are presented in Figure 13 and Table 4, which summarizes the mean
MSE and standard deviation o(MSE) of the estimation error variances, respectively

computed as

MSE;, ) & (MSEy, — MSE)?
Nl and o*(MSE) =) N1

o N
MSE = 3~
k=0 k=0

As expected, since the PRCKEF gathers information from all the sensors in the
network, it achieves the best performance. Nevertheless, both versions of the proposed
PRDKCF present a very similar performance, exhibiting the smallest error variance among
the distributed approaches. When S is known (PRDKCF-1), we achieve a slightly smaller
error variance compared to when we estimate it (PRDKCF-2), which was also anticipated.
These filters also show the smallest standard deviation. The nominal centralized and
distributed estimators, CKF (Algorithm 4.1) and DKCF (Algorithm 4.2), obtained similar
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Figure 13 — Estimation error variance curves of the polytopic robust distributed filters.
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Table 4 — Estimation performance of each polytopic robust distributed filter.

Filter MSE (dB) o(MSE) (dB)
(1) PRCKF (Algorithm 4.6) -48.75 1.6582
(2) PRDKCF-1 (Algorithm 4.7, S known) -48.07 1.5331
(3) PRDKCF-2 (Algorithm 4.7, S estimated) -47.65 1.5398
@ CKF (Algorithm 4.1) 3.809 11.007
(5) DKCF (Algorithm 4.2) 3.836 10.902
6) Shen, Wang and Hung (2010) 31.96 2.2239
(7) Souza, Coutinho and Kinnaert (2016) 33.14 2.0296

Bold numbers indicate the smallest values.
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results, with significant larger error variance and standard deviation, compared to the
previous estimators. This is explained by their lack of uncertainty compensation. The
Hoo-consensus filter by Shen, Wang and Hung (2010) and the mean square state estimator
of Souza, Coutinho and Kinnaert (2016) present the highest error variances, despite
considering the polytopic model uncertainties. Moreover, both depend on the solution
of LMI-based optimization problems and are not fully distributed, since the gains of all

sensors are computed in a batch, which may be infeasible for larger networks.

We conclude our analysis with an evaluation of how the number of consensus
iterations L affects the PRDKCF performance. Figure 14 compiles a series of simulations
with several values of L, considering both scenarios of the PRDKCF. For each value of L,
we compute the mean estimation error MSE over the entire time horizon, as previously
described. The PRCKEF is also shown for comparison purposes. The results show that, as
we increase the value of L, the distributed filters approach the result of the centralized
filter. This, however, requires more computation time, such that we have a performance
trade-off. Moreover, note that except for when L = 1, both versions of the PRDKCF
exhibit similar results, meaning that the impact of knowing S beforehand or estimating it

online is not very significant.

Figure 14 — Effect of the number of consensus iterations L on the PRDKCF (Algo-

rithm 4.7).
T I I I I
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Conclusion

In this thesis, we addressed several linear discrete-time state estimation problems
under different conditions. Since these problems fundamentally consist of estimating the
state of a dynamical system based on measurements obtained from some sensing device,
we divided them into two main categories: single- and multiple-sensor state estimation.
Furthermore, within each of these categories, we considered three situations. First, we
assumed that the available target system and sensing models were perfectly known. In
the other two situations, we dealt with the more realistic scenario where these models are
subject to parametric uncertainties, which we considered to be of the norm-bounded or
polytopic kind. For each category and scenario, we proposed filtering strategies inspired
by the simplicity and efficiency of the Kalman filter (KALMAN, 1960).

We developed a core framework for the nominal single-sensor state estimation
case. We adopt a deterministic interpretation of the estimation task and formulate it as a
constrained regularized least-squares problem, as discussed in Bryson and Ho (1975). The
constraints are the equations that define the target system and sensing models. Rather than
solving the constrained problem, we used the penalty function method (LUENBERGER;
YE, 2021) to transform it into a more convenient unconstrained equivalent, whose solution
provided the so-called Nominal Kalman Filter (KF). As such, the proposed estimator
inherits the recursive and analytical nature of the standard Kalman filter, which we

presented as a simple correction-prediction algorithm.

Then, based on the works by Sayed (2001) and Ishihara, Terra and Cerri (2015),
we extended this framework to deal with the cases where the underlying target system
and sensing models are subject to norm-bounded or polytopic parametric uncertainties.
We formulate these robust estimation problems as constrained regularized least-squares
problems with uncertainties and apply the penalty function method, which conveniently
provides a parameter we can adjust to improve the estimation accuracy. Using this
methodology, we proposed the Robust Kalman Filter (RKF) and the Polytopic Robust

Kalman Filter (PRKF), presenting both as recursive correction-prediction algorithms that
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resemble the nominal version. We further established conditions for stability and bounded
estimation error variance of each filter. Finally, the performance of the proposed filters
was accessed with numerical examples, which illustrated their advantage compared to
other existing approaches found in the specialized literature. In summary, the proposed
estimators have a simple structure. They do not depend on numerical solvers to deal
with complex LMI-based optimization problems, such that they require a relatively low
computational cost and reasonable estimation quality. Therefore, they are promising

solutions for real-time applications, even with low-cost hardware setups.

The multiple-sensor state estimation solutions are the main contributions of this
work. We addressed each of the three scenarios mentioned above, considering a sensor
network context. As such, we first extended the single-sensor framework commented above
to encompass the centralized estimation problem, i.e., assuming that there is a fusion
center with access to measurements from all of the sensors in the network. As a result, we
proposed the so-called Nominal Centralized Kalman Filter (CKF), the Robust Centralized
Kalman Filter (RCKF), and the Polytopic Robust Kalman Filter (PRCKF'), each extending

the capabilities of their single-sensor versions.

Our main objective, however, was to solve the distributed variant of the problem,
meaning that there is no central estimator, and the sensors work as independent units.
Nevertheless, each sensor can communicate with a limited set of neighbors and exchange
information to improve their estimation accuracy. Based on the strategy presented by
Battistelli et al. (2015), we combined the average consensus algorithm (REN; BEARD;
ATKINS, 2007) with the hybrid consensus on measurements and information (HCMCI)
protocol to derive fully distributed versions of the centralized estimators. Then, we
further proposed the Nominal Distributed Kalman Consensus Filter (DKCF'), the Robust
Distributed Kalman Consensus Filter (RDKCF), and the Polytopic Robust Distributed
Kalman Consensus Filter (PRDKCF). Moreover, we showed that these distributed filters
converge to their centralized counterparts for a sufficiently large number of consensus
iterations. Since the proposed centralized and distributed estimators derive from the
single-sensor solutions, they also inherit their recursive and relatively simple structures
and are presented as correction-prediction algorithms. Furthermore, we also established
the necessary conditions for stability and bounded estimation error variance of each filter.
Finally, we evaluated the performance of the proposed centralized and distributed filters
with illustrative examples. The results showed that the proposed strategies outperformed
other approaches present in the relatively scarce related literature, which usually rely on
the solution of LMI-based optimization problems that become increasingly complex as
the network gets larger and require offline computation of the filter gains. In contrast, the
proposed filters feature a good performance versus computational burden trade-off due to

their simpler recursive and analytical structure, being suitable for online systems.
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We emphasize how the development of the aforementioned robust distributed state
estimators was carried out as an effort to reduce the gap in the literature on distributed
filtering for systems with norm-bounded and polytopic uncertainties over sensor networks.

Nonetheless, we further suggest some directions in which this work could be extended:

» Application of the proposed robust distributed filters to real-world systems.

o Extension of the proposed distributed estimators to deal with directed networks and

time-varying communication topologies.

o Addressing the robust distributed estimation problem for nonlinear systems with

norm-bounded and polytopic uncertainties.

o Taking network-induced effects such as time-delays and packet dropouts into consid-

eration.
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APPENDIX

Matrix Analysis

This appendix contains a collection of results in matrix analysis that are used
in this work. Some familiarity with basic linear algebra concepts is assumed. All of the
definitions and results are extracted from the reference book by Horn and Johnson (2013),

where the proofs, omitted here for brevity, can be found.

A.1 Matrix Inversion Lemmas

Lemma A.1. (HORN; JOHNSON, 2013, Sherman-Morrison- Woodbury Formula)
Consider matrices A € R, B e R C € R™™ and D € R™". If A, C, (A+BCD),
and C~' + DA™'B are nonsingular, then

(A+ BOD) ' =A"1 - A'B(C' + DA™'B)"'DA™.

Lemma A.2. (HORN; JOHNSON, 2013) As a consequence of Lemma A.1, if A, C,
A+ BC™'D, and (C + DA™'B) are invertible, then

(A+ BC™'D)"'BC~' = A'B(C + DA™'B)™".

A.2 Partitioned Matrices and Schur Complement

Lemma A.3. (HORN; JOHNSON, 2013, Schur Complement) Consider matrices
A€ R™ B e RY™ C e R™, and D € R™™. Let M € RO+™x(+m) pe the
partitioned matriz defined as

A B
C D

If A is nonsingular, we define the Schur complement of A in M as

M/A:=D—CA™'B.
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Similarly, if D is nonsingular, we define the Schur complement of D in M as
M/D:=A—BD'C.

Lemma A.4. (HORN; JOHNSON, 2013, Banachiewicz Inversion Formula) Con-
sider matrices A € RV, B € R™™ C € R™", and D € R™*™. Let M € R(ntm)x(ntm)
be a partitioned matrixz given by

A B
C D

(i) Suppose A and M are nonsingluar, such that M/A is also nonsingular. Therefore,

A=l ATUB(M/A)T\CA™Y —ALB(M/A)!
—(M/A)7ICA™ (M/A)™

M=

(ii) Suppose D and M are nonsingluar, such that M/D is also nonsingular. Therefore,

Y= (M/D)~ —(M/D)"'BD™
—D-'C(M/D)~* D='+ D-'C(M/D)"'BD"!

A.3 Positive Definite and Semidefinite Matrices

Definition A.1. (HORN; JOHNSON, 2013) A symmetric matriz A € R™*™ is positive
(negative) definite, denoted as A = 0 (A <0), if t7 Az > 0 (zT Az < 0), Vo € R", and
2TAx =0 if v = 0.

Definition A.2. (HORN; JOHNSON, 2013) A symmetric matriz A € R™*™ is positive
(negative) semidefinite, denoted as A =0 (A <0), if 2T Az >0 (27 Az <0), Vo € R"™.

Lemma A.5. (HORN; JOHNSON, 2013) Let A € R™™ be a symmetric matriz and
B e R™™,

(i) Suppose that A is semidefinite. Then, BT AB is also semidefinite and rank(BT AB) =
rank(AB).

(ii) Suppose that A is definite. Then, rank(BT AB) = rank(B). Therefore, BT AB is
definite if, and only if, B has full column rank, i.e., rank(B) = m.

A.4 Nonnegative Matrices

Definition A.3. (HORN; JOHNSON, 2013) A matriz A = [a;;] is said to be nonnegative

if all of its entries a;; > 0. Analogously, matriz A is positive if all of its entries a;; > 0.
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Definition A.4. (HORN; JOHNSON, 2013) A square nonnegative matriz A is row
(column) stochastic if all of its row (column) sums are unitary. If both row and column

sums are all unitary, A is doubly stochastic.

Definition A.5. (HORN; JOHNSON, 2013) A matriz A is reducible if there exists a
permutation matriz P such that PT AP is a block upper triangular matriz. Otherwise, the

matriz is said to be irreducible.

Definition A.6. (HORN; JOHNSON, 2013) A square nonnegative matriz A is primitive

if it is irreducible and has exactly one nonzero eigenvalue of maximum absolute value.

Lemma A.6. (HORN; JOHNSON, 2013) A matriz A € R™ ™ is irreducible if, and only if,
the directed graph associated with it is strongly connected. Equivalently, if A is symmetric,

it is irreducible if, and only if, the associated undirected graph is connected.

Theorem A.1. (HORN; JOHNSON, 2013, Gersgorin Disk Theorem) Let A = [a;;] €
R™ ™ and let

n

R;(A): Z |aij|, izl,...,n,

=L
denote the deleted absolute row sums of A. Then all eigenvalues of A are located in the

union of n Gersgorin disks
G(A) =J{z€C: |z —au <Rj(A)}.
i=1
Furthermore, if a union of k of these n disks forms a connected region that is disjoint from

all of the remaining n — k disks, then there are precisely k eigenvalues of A in this region.

Theorem A.2. (HORN; JOHNSON, 2013, Perron-Frobenius Theorem) Let A € R™*"

be a nonnegative irreducible matrixz. Then,

(i) p(A) >0,
(ii) p(A) is an algebraically simple eigenvalue of A;
(iii) There is a unique vector v € R"™ such that Av = p(A)v;

(iv) There is a unique vector w € R"™ such that wT A = wTp(A) and vTw = 1.

In the above, p(A) denotes the spectral radius of matriz A, given by p(A) = max{|\;|},

where \; are the distinct eigenvalues of A.

Lemma A.7. (HORN; JOHNSON, 2013) Let A € R™"™ be a nonnegative primitive matriz

with right and left Perron vectors v and w, respectively. Then,

lim {p(A)_lA]m = vw’.

m—r0o0
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A.5 Kronecker Products

Definition A.7. (HORN; JOHNSON, 2013) The Kronecker product of matrices A € R"*™
and B € RP*Y is defined as

(IHB cee almB
amB - apnB

which satisfies the following properties, assuming compatible dimensions:

(i) (A® B)(C® D)= (AC)® (BD);
(ii)) A9 (B+C)=A®@B+A®C;
(iii) (A® B)T = AT @ BT;

(iv) (A® B)™' = A~' @ B™!, provided that both A and B are nonsingular.
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