• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.18.2020.tde-16072021-172236
Document
Auteur
Nom complet
Afonso Celso Turcato
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2020
Directeur
Jury
Flauzino, Rogério Andrade (Président)
Brandão, Dennis
Cunha, Marcio José da
Kienitz, Karl Heinz
Pantoni, Rodrigo Palucci
 
Titre en portugais
Desenvolvimento de método para detecção de intrusão em redes PROFINET baseado em técnicas de Aprendizado de Máquina
Mots-clés en portugais
Aprendizado de Máquina
Inteligência Artificial
PROFINET
Redes de automação
Segurança em redes
Sistemas de Detecção de Intrusão
Resumé en portugais
O aumento na quantidade de informações importantes que percorrem as redes de computadores faz com que a segurança seja fundamental para garantir a integridade, a confidencialidade e a disponibilidade dos dados trafegados. No ambiente industrial isso não é diferente. Em busca desse aumento da segurança, são utilizados dispositivos como Firewalls e Sistemas de Detecção de Intrusão (SDI). Hoje em dia, algoritmos de Aprendizado de Máquina (AM) da área de Inteligência Artificial (IA) estão sendo aplicados para a melhoria de desempenho desses dispositivos. Este trabalho propõe investigar, desenvolver, implementar e validar um método para detectar intrusão em redes PROFINET com uso de técnicas de Aprendizado de Máquina. O método utilizado está fundamentado na análise das características de comunicação do protocolo PROFINET e na identificação e classificação de padrões, sendo esta, uma das principais aplicações de classificadores inteligentes como as Redes Neurais Artificiais (RNA), as Máquinas de Vetores Suporte (SVM). As intrusões são identificadas por meio da análise do tráfego da rede em sua fase de operação utilizando-se classificadores unários e binários. Ao todo, 114 estruturas de classificação unárias e 196 estruturas de classificação binárias foram avaliadas com dados de 10 cenários distintos de tráfego de rede PROFINET. Os SDI propostos apresentaram Taxa de Detecção média de 98,1% e Taxa de Alarmes Falsos média de 0,4% utilizando-se classificadores unários e Taxa de Detecção de 100% e Taxa de Alarmes Falsos de 0% utilizando-se classificadores binários.
 
Titre en anglais
Development of a method for intrusion detection in PROFINET networks based on Machine Learning techniques
Mots-clés en anglais
Artificial Intelligence
Automation Networks
Intrusion Detection Systems
Machine Learning
PROFINET
Security Network
Resumé en anglais
The increase in the amount of important information that travels through computer networks makes security essential to guarantee the integrity, confidentiality, and availability of the data being transferred. In the industrial environment, this is no different. In research of this increased security, devices such as Firewalls and Intrusion Detection Systems (IDS) are used. Nowadays, Machine Learning (ML) algorithms, from the Artificial Intelligence (AI) area, are being applied to improve the performance of these devices. This work proposes to investigate, develop, implement, and validate a method to detect intrusion in PROFINET networks using Machine Learning techniques. The method used is based in the analysis of the communication characteristics of the PROFINET protocol and the identification and classification of patterns, which is one of the main applications of intelligent classifiers such as Artificial Neural Networks (ANN), Support Vector Machines (SVM). Intrusions are identified through the analysis of network traffic in the operation phase using unary and binary classifiers. In total, 114 unary classification structures and 196 binary classification structures were evaluated using data from 10 different PROFINET network traffic scenarios. The proposed IDS had average Detection Rate of 98.1% and average False Alarm Rate of 0.4% using unary classifiers and a Detection Rate of 100% and a False Alarm Rate of 0% using binary classifiers.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-08-10
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs.
CeTI-SC/STI
© 2001-2024. Bibliothèque Numérique de Thèses et Mémoires de l'USP.