Tese de Doutorado
DOI
https://doi.org/10.11606/T.18.2019.tde-10092019-104345
Documento
Autor
Nome completo
André Luís Dias
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2019
Orientador
Banca examinadora
Brandão, Dennis (Presidente)
Cunha, Marcio José da
Nicoletti, Rodrigo
Sabe, Jose Guilherme
Silva, Ivan Nunes da
Título em português
Diagnóstico de anomalias em aplicações de acionamento de motores elétricos a partir de dados de processo de rede PROFINET e aprendizagem de máquinas
Palavras-chave em português
Condition Monitoring
Real Time Ethernet
Acionamentos de Motores Elétricos
Aprendizagem de Máquinas
Sistemas Dinâmicos
Resumo em português
Este trabalho propõe investigar, desenvolver e validar uma metodologia de projeto para sistemas de diagnóstico para detecção de falhas e anomalias em aplicações de acionamento de motores elétricos, comumente utilizados na indústria de manufatura. A metodologia proposta é baseada na coleta e interpretação de dados de processo de redes PROFINET, perfil PROFIdrive, e ferramentas de aprendizagem de máquinas. Técnicas de extração e redução de atributos são aplicadas nos dados de processo coletados. Estes atributos são utilizados em algoritmos para reconhecimento de padrões, os algoritmos investigados são o k-Nearest Neighbor, Redes Neurais Artificiais, Support Vector Machines, e adicionalmente uma adaptação da metodologia é feita utilizando um algoritmo para detecção de novidades. A avaliação da metodologia considerou quatro cenários para estudos de caso, para falhas comuns em aplicações de máquinas rotativas. Os resultados alcançados demonstram a eficácia da metodologia, que foi capaz de detectar as falhas e anomalias investigadas de maneira satisfatória, similares a trabalhos correlatos, com o diferencial de não exigirem sensores adicionais dedicados na coleta de dados. Desta maneira, o trabalho contribui para área de redes de comunicação industrial, mais especificamente o protocolo PROFINET, diagnósticos de anomalias em máquinas acionadas por motores elétricos, e ferramentas de aprendizagem de máquinas.
Título em inglês
Diagnostics of anomalies in motion control applications based on process data of PROFINET networks and machine learning tools
Palavras-chave em inglês
Condition Monitoring
Dynamic Systems
Machine Learning
Motion Control Applications
Real Time Ethernet
Resumo em inglês
This work proposes to investigate, develop and validate a methodology to design diagnostic systems to detect faults and anomalies in motion control applications, commonly used in manufacturing industry. The proposed methodology is based on collection and interpretation of process data from PROFINET networks, PROFIdrive profile, and machine learning tools. Feature extraction and selection techniques are applied to the collected process data. These features are used in algorithms for pattern recognition problems. Investigated algorithms are k-Nearest Neighbor, Artificial Neural Networks, Support Vector Machines and in addition, an adaptation of the methodology is held for novelty detection. Four scenarios were considered as case of studies for methodology evaluation, based on common faults in rotating machine applications. The results proved the methodology effectiveness for diagnostic system design, which were able to detect satisfactorily the investigated faults and anomalies, similar to related work, with the differential of not requiring additional dedicated sensors for data collection. In this way, the work contributes to the area of industrial communication networks, more specifically in PROFINET protocol, diagnostic systems for fault detection in motion control applications, and machine learning tools.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-09-19