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RESUMO

RIBEIRO, R. R. M. Método de Quantização para Redes Bayesianas e
Aprendizagem Estrutural de Redes Bayesianas. 2023. 161p. Tese
(Doutorado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2023.

Redes Bayesianas (BNs) são modelos versáteis para capturar relações complexas e são
amplamente aplicados em diversos campos. Este estudo concentra-se em BNs com var-
iáveis discretas. A qualidade do modelamento depende do volume adequado de dados,
especialmente para construir tabelas de probabilidade condicional (CPTs). A quantidade
de dados necessários varia com o Grafo Direcionado Acíclico (DAG) escolhido para a BN.

A aprendizagem estrutural da BN envolve um problema NP-difícil com um espaço de
busca DAG superexponencial. Esta tese propõe investigar a otimização multiobjetivo na
aprendizagem estrutural de BN (BNSL) para equilibrar critérios conflitantes. A abordagem
utiliza conjuntos de Pareto e Algoritmos Genéticos (GAs) multiobjetivo.

Para realizar a BNSL, desenvolveu-se um GA multiobjetivo adaptativo paralelo com ajuste
automático de parâmetros, denominado Algoritmo Genético Adaptativo com Tamanho de
População Variável (AGAVaPS). Esse algoritmo proposto é extensivamente testado em
diversas aplicações e em BNSL, mostrando-se superior a HillClimbing e Tabu Search em
algumas métricas utilizadas.

O estudo também explora o impacto da quantização de dados no espaço de busca de BNSL.
Introduz ainda um método de quantização chamado Quantização Baseada em Limite
de CPT (CLBQ) que equilibra qualidade do modelo, fidelidade aos dados e pontuação
da estrutura. A eficácia desse método é testada, demonstrando sua capacidade de ser
usado na BNSL baseada em busca e pontuação. CLBQ obtém bons resultados, escolhendo
quantizações com um bom erro médio quadrático e modelando bem as distribuições das
variáveis. Além disso, CLBQ é adequado para uso em BNSL.

Palavras-chave: Redes Bayesianas. Aprendizagem estrutural. Quantização. Algoritmos
evolutivos.





ABSTRACT

RIBEIRO, R. R. M. Bayesian Network Quantization Method and Structural
Learning. 2023. 161p. Thesis (Doctor) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2023.

Bayesian Networks (BNs) are versatile models for capturing complex relationships, widely
applied in diverse fields. This study focuses on discrete variable BNs. Modeling quality
depends on adequate data volume, especially for constructing conditional probability tables
(CPTs). The quantity of required data varies with the chosen BN Directed Acyclic Graph
(DAG).

Structural learning of the BN involves an NP-hard problem with a super-exponential
DAG search space. This thesis proposes investigating multi-objective optimization in BN
structural learning (BNSL) to balance conflicting criteria. The approach utilizes Pareto
sets and multi-objective Genetic Algorithms (GAs).

To perform BNSL, a parallel GA with automatic parameter adjustment is developed, called
Adaptive Genetic Algorithm with Varying Population Size (AGAVaPS). This proposed
algorithm is thoroughly tested on different applications and BNSL. AGAVaPS is found to
be a good algorithm to be used in BNSL, performing better than HillClimbing and Tabu
Search for some of the metrics measured.

The study also explores the impact of data quantization on the BNSL search space. It also
introduces a quantization method called CPT Limit-Based Quantization (CLBQ) that
balances model quality, data fidelity, and structure score. The effectiveness of this method
is tested and its capability of being used in search and score BNSL is investigated. CLBQ
is found to be a good quantization algorithm, choosing quantization that has a good mean
squared error and modeling well the variables’ distributions. Also, CLBQ is suitable to be
used on BNSL.

Keywords: Bayesian network. Structural learning. Quantization. Evolutionary algorithm.
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1 INTRODUCTION

Bayesian Network (BN) is a probabilistic graphical model capable of modeling
complex and nonlinear relationships (FANG et al., 2023; JACKSON-BLAKE et al., 2022).
BNs are used for modeling and reasoning and have been applied in various fields, such
as assisted reproductive technology (TIAN et al., 2023), network traffic prediction (SH-
IOMOTO; OTOSHI; MURATA, 2023), risk assessment (XU et al., 2023) and water quality
(BERTONE; ROUSSO; KUFEJI, 2023). The BN model is composed of two parts, a
directed acyclic graph (DAG) which indicates probabilistic dependencies between variables
represented by nodes, and the associated parameters that capture these probabilistic depen-
dencies (HAO et al., 2021; LUO; ZHAO; DU, 2019; KOLLER; FRIEDMAN, 2009). When
working with continuous variables the associated parameters are conditional probability
distributions (CPDs) and when working with discrete variables the associated parameters
are conditional probability tables (CPTs) (KOLLER; FRIEDMAN, 2009).

There are several challenges on the application of BNs that can impact their
effectiveness. These challenges can be broadly categorized into issues related to model
development, data requirements, and computational demands.

• Model Development Challenges

1. Model Structure: Defining the structure of a BN, including its nodes and edges,
requires a deep understanding of the domain and the relationships between
variables. The BN structural learning (BNSL), meaning learning the edges of
a BN given a dataset, is very difficult (NP-hard problem) (VASIMUDDIN;
CHOCKALINGAM; ALURU, 2018) because the DAGs search space increases
super-exponentially as the number of variables increases (GROSS et al., 2019;
ROBINSON, 1977).

2. Discretization of Continuous Variables: BNs often require continuous variables
to be discretized into a discrete set of states, which can lead to a loss of
information and potentially affect the computational efficiency, accuracy, and
interpretability of the BN model (CHEN; WHEELER; KOCHENDERFER,
2015).

• Data-Related Challenges

1. Data Requirements: Accurate modeling with BNs requires large amounts of data
to learn the conditional probability distributions of the network (WILSON et
al., 2022; JACKSON-BLAKE et al., 2022). The lack of data can lead to missing
or ill-informed probabilities on the CPTs. This deteriorates the model quality
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and performance (RU et al., 2023; MAYFIELD et al., 2017). The quantity of
data needed to model well a system is dependent on the BN DAG used because
the CPT dimensions are tied to the quantization of the variable and its parents
(ROHMER, 2020).

• Computational Challenges

1. Computational Demands: The computational effort associated to BNs grows
exponentially with the number of states of its variables (ZWIRGLMAIER;
STRAUB, 2016). This can make the use of BNs impractical for very large or
complex networks.

In summary, while BNs offer a powerful framework for probabilistic modeling and
decision-making under uncertainty, addressing these challenges requires advancements in
methodologies, better data management strategies, and efforts to simplify the use and
interpretation of BNs for end-users. This thesis will approach the problem of the BNSL,
including the discretization of variables and data requirements that affect it.

1.1 General Concepts and Initial Definitions

Bayesian Networks (BNs) are powerful tools for modeling uncertainty and making
predictions across various fields, including reproductive technology (TIAN et al., 2023),
network traffic prediction (SHIOMOTO; OTOSHI; MURATA, 2023), risk assessment (XU
et al., 2023) and water quality (BERTONE; ROUSSO; KUFEJI, 2023).

The BN model is composed of two parts: a directed acyclic graph (DAG), which
indicates probabilistic dependencies between variables represented by nodes, and the
associated parameters that capture these probabilistic dependencies (HAO et al., 2021;
LUO; ZHAO; DU, 2019; KOLLER; FRIEDMAN, 2009). When working with continuous
variables, the associated parameters are conditional probability distributions (CPDs), and
when working with discrete variables, the associated parameters are conditional probability
tables (CPTs) (KOLLER; FRIEDMAN, 2009).

Examples of BNs with discrete variables can be seen in Figure 1. On it, the variables
are indicated by the nodes with their names, the edges indicate the dependencies between
the variables, and the tables show the CPTs. Variables without parents have a CPT with
only one row stating their possible states and probabilities. Nodes with parents have CPTs
with one row for each parent’s state combination. So in Figure 1a, “Sprinkler” has a CPT
with two rows, as its parent “Rain” only has two possible combinations. Meanwhile, “Grass
Wet” has four rows since there are four possible combinations of its parent states. The
number of states of the variable gives the number of columns.
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Figure 1 – Examples of BNs with discrete variables, showing the DAG (structure) and the
CPTs. Variables are indicated by the nodes with their names, the dependencies
between the variables are indicated by the edges and the CPTs are shown by
the tables.

(a) With 3 variables with 2 states each. T stands for true and F for false.

(b) With 2 variables with 3 states and 1 variable with 2 states. N stands for no, L for low, H for
high, T for true and F for false.

Source: Adapted from Lokrantz, Gustavsson and Jirstrand (2018)

To understand how BNs work, it’s important to review some graph theory. A
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directed graph is represented by a pair (V, E), where V is a finite set of elements called
nodes and E is a set of edges (ordered pairs of different elements of V ), such that if
(X, Y ) ∈ E, it is said that there is an edge from X to Y and that they are incident to the
edge. Nodes that are connected by an edge are adjacent to each other. Considering a set
of nodes [X1, X2, . . . , Xk], with k ≥ 2, and (Xi−1, Xi) ∈ E for 2 ≤ i ≤ k, then the set of
edges connecting the k nodes is called a path from X1 to Xk. The interior nodes of this
path are, X2, . . . , Xk−1 and a subpath from Xi to Xj is the path [Xi, Xi+1, . . . , Xj] where
1 ≤ i < j ≤ k. A directed acyclic graph (DAG) is a directed graph G, which does not have
a path from a node to itself (directed cycle). Given a DAG G = (V, E) and nodes X and
Y in V , Y is a parent of X if (Y, X) ∈ E and X is a decedent of Y . An example of this
DAG notation can be seen in Figure 2, on it the variables and edges are indicated and the
notation used is exemplified. In this example DAG, X2 and X3 are parents of X4, and X3

is a decent of X1.

Figure 2 – Example of a directed acyclic graph and its mathematical notation. The DAG
G = (V, E) is composed of a set of nodes (variables) V = [X1, X2, X3, X4] and
a set of edges E = [(X1, X2), (X1, X3), (X2, X4), (X3, X4)]. The nodes and the
edges are shown and identified in the figure. An example of a path from X1 to
X4 is [X1, X2, X4].

Source: Author

Being P the joint probability distribution of the random variables in a set V and a
DAG G = (V, E), then P equals the product of its conditional probability distributions of
all nodes given values of their parents in G (eq. 1.1), when these conditional distributions
exist and (G, P ) satisfies the Markov condition. The Markov condition states that every
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node in a BN is conditionally independent of its non-descendants, given its parents. A BN
is called a (G, P ) that satisfies the Markov condition. When using discrete variables, the
Markov condition is always satisfied.

When (G, P ) satisfies the Markov condition, P is equal to the product of its
conditional distributions of all nodes given values of their parents when these conditional
distributions exist. This factorization allows its joint probability density function to be
written as a product of the individual density functions, conditional on their parent
variables (KOLLER; FRIEDMAN, 2009):

P (x) =
∏

Xi∈V

P
(
xXi

∣∣∣xPaG(Xi)
)

(1.1)

where PaG(Xi) is the set of parents of Xi. For the case of Figure 1a, an example of
calculation of the joint probability distribution would be

P (GrassWet, Sprinkler, Rain) = P (GrassWet|Sprinkler, Rain)P (Sprinkler|Rain)P (Rain) (1.2)

that means that the probability of the case where GrassWet = T , Sprinkler = F and
Rain = T is given by

P (GrassWet = T, Sprinkler = F, Rain = T ) =P (GrassWet = T |Sprinkler = F, Rain = T )
P (Sprinkler = F |Rain = T )P (Rain = T )

=(0.8)(0.99)(0.2) = 0.1584
(1.3)

Additionally, it is possible to check the probability of having a specific value in
only some of the variables, such as

P (Sprinkler = T ) =P (Sprinkler = T |Rain = T )P (Rain = T )
+P (Sprinkler = T |Rain = F )P (Rain = F )
=(0.01)(0.2) + (0.4)(0.8) = 0.002 + 0.32 = 0.322

(1.4)

An important thing to guarantee quality of prediction is having good statistic
estimates on the CPTs, that truly model the variables’ distributions. A good amount of
data is needed to achieve this, as the most used estimator used to construct the CPTs
from data is a frequentist approach (WILSON et al., 2022; JACKSON-BLAKE et al.,
2022). The lack of data can lead to missing or ill-informed probabilities on the CPTs.
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This deteriorates the model quality and performance (RU et al., 2023; MAYFIELD et
al., 2017). As it can be seen in Figure 1, the quantity of data needed to model a system
well is dependent on the BN DAG used because the CPT dimensions are tied to the
quantization of the variable and its parents (ROHMER, 2020). The size of a variables’
CPT (L) given a DAG G = (V, E), a variable Xi ∈ V and a set of k parents of this
variable Pa(Xi) = [P1, . . . , Pk] can be described by the following equation

L = qXi

k∏
i=1

qPi
(1.5)

where qX represents the quantization of the variables X with X ∈ V (ROHMER, 2020).
In this case, the quantization refers to the number of states a variable can assume. In the
examples of Figure 1, it can be seen that the CPT size for “Grass Wet” changes from
L = 2 · 2 · 2 = 8 to L = 3 · 2 · 3 = 18 based on the increase of quantization of variables
“Grass Wet” and “Rain” (meaning the increase of the number of the states that these
variables can assume). Thus, it can be seen that the data volume needed, the quantization
used for each variable and the DAG are intertwined. An additional example of this can be
seen in Figure 3, where a BN structure is shown and the CPT size for the variable X6

is calculated for different quantization values of each variable. For this type of structure,
where one variable has many parents, a small increase in one variable’s quantization can
have a big impact on the CPT size. Additionally, a small increase in the quantization of
all variables greatly increases the CPT size.
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Figure 3 – Example of BN with the CPT size for the variable X6 considering different
quantization of the variables (number of states each variable can assume). The
CPT was calculated using Equation 1.5.

Source: Author

In addition to the issue of modelling quality and CPT size, the choice of quantization
of the variables affects the computational efficiency, accuracy, and interpretability of the
resulting BN model (CHEN; WHEELER; KOCHENDERFER, 2015). The problem of
data quantization causes this.

When discretizing data, the first step is to sample the continuous signal (xc(t)).
This can be mathematically represented by

xs(t) =
∞∑

n=−∞
xc(nT )δ(t − nT ) (1.6)

where δ(t) is the unit impulse, T is the sample period and n is the sample index. The
sampled data can also be represented by x[n]. After the sampling, the samples are quantized,
which means they are rounded to the nearest quantisation value. This process is represented
by

x̂[n] = Q(x[n]) (1.7)

where Q is the quantization function that reduces the precision of the samples to a fixed
number of states. The difference between the real sample x[n] and the quantized sample
x̂[n] is called the quantization error, and is defined as
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e[n] = x̂[n] − x[n] (1.8)

An example of the continuous, sampled and quantized signals can be seen in Figure
4. On it, a continuous signal, a sampled signal and a quantized signal are shown. Also, the
graphical meaning of the quantization error is indicated for one of the samples.

Figure 4 – Example of a continuous signal, a sampled signal from it and a quantized signal.
The error value is also indicated for one of the sample points.
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An issue with the sampling process is that the sampling frequency must obey the
Nyquist condition not to incur a misrepresentation of the signal and aliasing. The Nyquist
condition is

ΩS > ΩN (1.9)

where ΩS is the sampling frequency, ΩN is the maximum frequency of a signal xc(t) with
limited bandwidth, such that

Xc(jΩ) = 0 for |Ω| > ΩN (1.10)
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where Xc(jΩ) is the Fourier transformation of xc(t), thus being a frequency analysis of
xc(t).

The problem of not respecting the Nyquist condition for sampling is exemplified in
Figure 5. On it two different sample frequencies that do not respect the Nyquist condition
are used to sample a sine function. In 5a the resulting sampled signal is a sine function of
a different frequency. Meanwhile, in 5b the resulting sampled signal does not reflect the
original signal at all.

Figure 5 – Example of the problem of not following the Nyquist condition for sampling. In
both plots, the sampling frequency is under the value defined by the Nyquist
condition. In (a) this results in a sine signal of different frequency, meanwhile
in (b) the original signal is not recognizable considering its sample.
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Alternatively, the quantization process can be seen as an addition of noise when
the equation above is manipulated

x̂[n] = x[n] + e[n] (1.11)

this shows that when the variable is quantized in a few states (small quantization value), it
would be equivalent to adding a high noise value to your original data. This, in return, can
result in poor data modeling and the original data not being recognizable (OPPENHEIM;
SCHAFER; BUCK, 1999) and presenting different dependencies than originally. An
example of this alteration of dependencies resulting from quantization error is shown after
the BIC score is presented further down in the text.

With the quantization influence, the issue of learning a BN from data can be
further approached. Learning BN from data can be divided into two steps: learning the
structure (DAG) and learning the parameters (CPTs). The BN structural learning (BNSL)
is a very challenging problem (NP-hard) (VASIMUDDIN; CHOCKALINGAM; ALURU,
2018) because the structure’s search space increases super-exponentially as the number of
variables increases (GROSS et al., 2019; ROBINSON, 1977). An example of this super-
exponential increase of the search space as the number of variables increases can be seen
in Table 1; these numbers were calculated using the following recurrence
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Table 1 – Number of DAGs (structures) for a given number of variables.

Number of variables Number of DAGs
3 2,50e+01
4 5,43e+02
5 2,93e+04
6 3,78e+06
7 1,14e+09
8 7,84e+11
9 1,21e+15
10 4,18e+18
11 3,16e+22
12 5,22e+26
13 1,87e+31
14 1,44e+36
15 2,38e+41
16 8,38e+46
17 6,27e+52
18 9,94e+58
19 3,33e+65
20 2,34e+72
21 3,47e+79
22 1,08e+87
23 6,97e+94
24 9,44e+102
25 2,66e+111

Source: Author

H(n) =
n∑

k=1
(−1)k+1

(
n

k

)
2k(n−k)H(n − k) (1.12)

where H(n) is the number of DAGs for a n number of variables and
(

n
k

)
is the binomial

coefficient defined as

(
n

k

)
= n!

k!(n − k)! (1.13)

As can be seen, the search space can get so huge that even searching one million DAGs
would not be a significant search.

There are three main approaches to performing BNSL: constraint-based methods
(CB), score-based methods (SB), and hybrid methods that combine the two previous
approaches (CONSTANTINOU et al., 2021; CONTALDI; VAFAEE; NELSON, 2019;
NEAPOLITAN, 2003). CB methods apply conditional independence (CI) tests to the
data to determine the BN structure. Meanwhile, SB methods, also called search and
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score methods, use structure scores and search algorithms to search through the DAGs
search space while evaluating the fitness of the DAGs to the data (CONTALDI; VAFAEE;
NELSON, 2019; NEAPOLITAN, 2003).

For SB methods that are scoring functions based on different principles, such as
entropy and information, minimum description length, or Bayesian approaches. The scoring
problem can be expressed by

G∗ = arg max
G∈Gn

g(G : D) (1.14)

where D = [u1, . . . , uN ] is a complete training data set of instances of Un, G∗ is the best
DAG considering the scoring function g(G : D), g(G : D) measures the degree of fitness of
a DAG G to the dataset D and Gn is the set of all DAGs defined on Un.

Some scores are decomposable, which means their value for a structure can be
expressed as a sum of values from each node and its parents in the logarithmic space:

g(G : D) =
∑

Xi∈Un

g(Xi, PaG(Xi) : D)

g(Xi, PaG(Xi) : D) = g(Xi, PaG(Xi) : ND
Xi,P aG(Xi))

(1.15)

where ND
Xi,P aG(Xi) are the sufficient statistic1 of the set of variables [Xi] ∪ PaG(Xi) in D,

meaning the number of instances in D corresponding to each possible configuration of
[Xi] ∪ PaG(Xi). A scoring function can be score-equivalent by assigning the same value to
all DAGs representing the same essential graph.

The notation used for the following discussion and formulations on scoring functions
is as follows: n is the number of variables; ri is the number of states of the variable Xi;
qi is the number of possible configurations of the parent set PaG(Xi) of Xi, where
qi = ∏

Xj∈P aG(Xi) rj; wij, j = 1, . . . , qi represents a configuration of PaG(Xi); Nijk is the
number of instances in the data set D where the variables Xi take the value xik and the
set of variables PaG(Xi) take the value wij ; Nij is the number of instances in the data set
where the variables in PaG(Xi) take their configuration wij, where Nij = ∑ri

k=1 Nijk; Nik

is the number of instances in the data set where the variable takes its value xik, where
Nik = ∑qi

j=1 Nijk; N is the total number of instances in D. An example of all these values
can be seen in Figure 6.

1 In statistics, a statistic is a function of a set of data. A sufficient statistic contains all the
information about the statistical model that the original data does. This means that adding
additional information will not improve the model.
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Figure 6 – Example of the BN notation used on the BN structural scores formulation. The
variable used for the example was X3. n is the number of variables; ri is the
number of states of the variable Xi; qi is the number of possible configurations
of the parent set PaG(Xi) of Xi, where qi = ∏

Xj∈P aG(Xi) rj; wij, j = 1, . . . , qi

represents a configuration of PaG(Xi); Nijk is the number of instances in the
data set D where the variables Xi take the value xik and the set of variables
PaG(Xi) take the value wij ; Nij is the number of instances in the data set where
the variables in PaG(Xi) take their configuration wij, where Nij = ∑ri

k=1 Nijk;
Nik is the number of instances in the data set where the variable takes its value
xik, where Nik = ∑qi

j=1 Nijk; N is the total number of instances in D.

Source: Author

For Bayesian scoring functions the best network is the one that maximizes the
posterior probability p(G|D), since p(D) is the same for all structures it is only needed to
compute p(G, D). One such score is the score K2 (COOPER; HERSKOVITS, 1992) which
uses the assumptions of lack of missing values, multinomiality, parameter modularity,
parameter independence and uniformity of the prior distribution of the parameters given
the DAG. K2 is expressed by:

gK2(G : D) = log(p(G)) +
n∑

i=1

 qi∑
j=1

[
log

(
(ri − 1)!

(Nij + ri − 1)!

)
+

ri∑
k=1

log(Nijk!)
] (1.16)

where p(G) is the prior probability of the DAG G; n is the number of variables; ri is the
number of states of the variable Xi; qi is the number of possible configurations of the parent
set PaG(Xi) of Xi, where qi = ∏

Xj∈P aG(Xi) rj ; wij , j = 1, . . . , qi represents a configuration
of PaG(Xi); Nijk is the number of instances in the data set D where the variables Xi
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takes the value xik and the set of variables PaG(Xi) take the value wij ; Nij is the number
of instances in the data set where the variables in PaG(Xi) take their configuration wij,
where Nij = ∑ri

k=1 Nijk; Nik is the number of instances in the data set where the variable
takes its value xik, where Nik = ∑qi

j=1 Nijk; N is the total number of instances in D. An
example of these values can be seen in Figure 6.

The Bayesian Dirichlet (BD) score (HECKERMAN; GEIGER; CHICKERING,
1995) was proposed as a generalization of K2 defined by the equation

gBD(G : D) = log(p(G)) +
n∑

i=1

 qi∑
j=1

[
log

(
Γ(ηij)

Γ(Nij + ηij)

)
+

ri∑
k=1

log
(

Γ(Nijk + ηijk)
Γ(ηijk)

)]
(1.17)

where Γ(·) is the function Gamma

Γ(c) =
∞∫

0

e−uuc−1du (1.18)

and ηijk are the hyper-parameters for the Dirichlet prior distributions of the parameters
given a network structure. It must be noted that if all hyper-parameters are one (ηijk = 1)
the score becomes the score K2. Also, n is the number of variables; ri is the number of
states of the variable Xi; qi is the number of possible configurations of the parent set
PaG(Xi) of Xi, where qi = ∏

Xj∈P aG(Xi) rj; wij, j = 1, . . . , qi represents a configuration
of PaG(Xi); Nijk is the number of instances in the data set D where the variables Xi

takes the value xik and the set of variables PaG(Xi) take the value wij ; Nij is the number
of instances in the data set where the variables in PaG(Xi) take their configuration wij,
where Nij = ∑ri

k=1 Nijk; Nik is the number of instances in the data set where the variable
takes its value xik, where Nik = ∑qi

j=1 Nijk; N is the total number of instances in D.

Determining the hyper-parameters ηijk is a difficult task, however if the assumption
of likelihood equivalence is used the hyper-parameters can be determined by

ηijk = η × p(xik, wij|G0) (1.19)

where p(·|G0) is the probability distribution associated with a prior BN G0 and η is a
parameter symbolizing the equivalent sample size. When the prior network assigns a
uniform probability to each configuration of [Xi] ∪ PaG(Xi), p(xik, wij|G0) = 1

riqi
, the

BDeu score is defined, expressed by the equation

gBDeu(G : D) = log(p(G)) +
n∑

i=1

 qi∑
j=1

log
 Γ( η

qi
)

Γ(Nij + η
qi

)

+
ri∑

k=1
log

Γ(Nijk + η
riqi

)
Γ( η

riqi
)


(1.20)
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where Γ(·) is the function Gamma (Equation 1.18); η is the equivalent sample size and a
parameter of the BDeu score; n is the number of variables; ri is the number of states of the
variable Xi; qi is the number of possible configurations of the parent set PaG(Xi) of Xi,
where qi = ∏

Xj∈P aG(Xi) rj ; wij , j = 1, . . . , qi represents a configuration of PaG(Xi); Nijk is
the number of instances in the data set D where the variables Xi takes the value xik and
the set of variables PaG(Xi) take the value wij ; Nij is the number of instances in the data
set where the variables in PaG(Xi) take their configuration wij, where Nij = ∑ri

k=1 Nijk;
Nik is the number of instances in the data set where the variable takes its value xik,
where Nik = ∑qi

j=1 Nijk; N is the total number of instances in D. For both scores, p(G) is
normally assumed to be a uniform distribution, thus it becomes a constant and can be
removed.

On the scores based on information theory, there are scores based on the minimum
description length (MDL) principle and Schwarz information criterion (SCHWARZ, 1978).
These scores try to minimize the sum of the description length of the model and the
description length of the data given the model. The description length of a BN, also called
network complexity, is given by

C(G) =
n∑

i=1
(ri − 1)qi (1.21)

and the description of the data given the model is calculated using the negative of the
log-likelihood, calculated as follows

LLD =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
(

Nijk

Nij

)
(1.22)

where n is the number of variables; ri is the number of states of the variable Xi; qi

is the number of possible configurations of the parent set PaG(Xi) of Xi, where qi =∏
Xj∈P aG(Xi) rj ; wij , j = 1, . . . , qi represents a configuration of PaG(Xi); Nijk is the number

of instances in the data set D where the variables Xi takes the value xik and the set
of variables PaG(Xi) take the value wij; Nij is the number of instances in the data set
where the variables in PaG(Xi) take their configuration wij, where Nij = ∑ri

k=1 Nijk; Nik

is the number of instances in the data set where the variable takes its value xik, where
Nik = ∑qi

j=1 Nijk; N is the total number of instances in D.

The scores based on MDL are then defined as g(G : D) = LLD − C(G)f(N), where
f(N) is a non-negative penalization function. Two main scores use this format: the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC). AIC uses
f(N) = 1 and BIC uses f(N) = 1

2 log(N), their complete formulation, are shown bellow
(CAMPOS, 2006). It is important to note that the BIC score is based on the Schwarz
information criterion, which coincides with the MDL score. Another interesting thing to
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note is that for the likelihood LLD the best structure is always a complete graph including
all possible arcs, that is why the penalization function is very important for these scores.

gAIC(G : D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
(

Nijk

Nij

)
−

n∑
i=1

(ri − 1)qi (1.23)

gBIC(G : D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
(

Nijk

Nij

)
− 1

2 log(N)
n∑

i=1
(ri − 1)qi (1.24)

On Equations 1.23 and 1.24, n is the number of variables; ri is the number of
states of the variable Xi; qi is the number of possible configurations of the parent set
PaG(Xi) of Xi, where qi = ∏

Xj∈P aG(Xi) rj; wij, j = 1, . . . , qi represents a configuration
of PaG(Xi); Nijk is the number of instances in the data set D where the variables Xi

takes the value xik and the set of variables PaG(Xi) take the value wij ; Nij is the number
of instances in the data set where the variables in PaG(Xi) take their configuration wij,
where Nij = ∑ri

k=1 Nijk; Nik is the number of instances in the data set where the variable
takes its value xik, where Nik = ∑qi

j=1 Nijk; N is the total number of instances in D.

Now that the BIC score has been presented and explained, the miss identification
of a dependency resulting from the quantization error can be exemplified. Given a dataset
D from two samples of normal distributions called ‘A’ and ‘B’. ‘A’ is a sample of a normal
distribution with µ = 1, σ = 0.1 and 1000 samples. ‘B’ is a sample of a normal distribution
with µ = 2, σ = 0.2 and 1000 samples. Two different values of quantization were used
to calculate the BIC score of a BN with no edges (BN Empty) and a BN with an edge
between ‘A’ and ‘B’ (BN edge). The quantization values and the score values can be seen
in Table 2. From it, it can be seen that for a smaller quantization (smaller number of
states that each variable can assume) the dependency between ‘A’ and ‘B’ is found, while
for a higher quantization, the two variables are recognized as being independent.

Table 2 – Quantization (number of states that each variable can assume) and BIC score
values for the miss identification of a dependency resulting from the quantization
error test.

Quantization BIC Score BN Empty BIC Score BN Edge
‘A’: 100 and ‘B’: 100 -8893.07 -33134.35

‘A’: 2 and ‘B’: 2 -1380.23 -1379.72
Source: Author

Now approaching the process of learning CPT from data, consider that θijk =
P (Xi = k|Pa(Xi) = j) is the k-th probability value of the CPT, where i = 1, . . . , n;
j = 1, . . . , qi and k = 1, . . . , ri. These probabilities can be evaluated from the frequencies
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of the data when there is enough data. One such method is the maximum likelihood
estimation method (MLE).

On the MLE, given a dataset D with Nij samples where Pa(Xi) is in the state j

and Nijk sampled for Xi in the state k with Pa(Xi) in j state. MLE tries to maximize the
log-likelihood function l(·) of θ given a dataset D, which can be expressed as

l(θ|D) = log(P (D|θ)) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log(θijk) (1.25)

The estimator obtained this way is

θ̂ijk = Nijk

Nij

(1.26)

This method fails to correctly estimate the probabilities when there is not enough
data for some variables’ state configurations (Nij ≈ 0). This data scarcity problem is
worsened when the number of nodes increases, since as it was already seen, the number of
conditional probabilities increases by multiples of the number of states of the parents of a
variable (Equation 1.5).

The parameter learning process is complicated when there are missing values. Pop-
ular algorithms of parameter learning with missing values are Expectation-Maximization
and Gibbs sampling, however, both depend on the assumption that the values are missing
at random, which may not always be true in practice.

1.2 Proposal

Considering the challenge of BNSL and the academic interest in BNSL, this thesis
proposes an investigation of the use of multi-objective optimization in BNSL. The use
of multi-objective optimization is interesting because it enables the balance between
criteria represented by scores that are possibly conflicting (LV et al., 2019). When solving
multi-objective problems, we seek solutions that possess a compromise between different
criteria (FENG; YANG; HUANG, 2017), since it is hard or impossible to find a solution
that satisfies all the objectives at the same time (CUI et al., 2017).

The multi-objective optimization is done using the concept of a Pareto set, which is
a set that contains all the solutions that are not dominated between themselves considering
all the solutions found on the search (LI et al., 2019). Given two solutions X1 and X2,
X1 is said to dominate X2 when X1 has a performance at least equal to X2 for all the
objectives, and X1 has a better performance than X2 for at least one of the objectives
(LI et al., 2019).
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There are many ways of dealing with a multi-objective problem. One method used
to solve a multi-objective problem is metaheuristic algorithms, more specifically multi-
objective metaheuristic algorithms, because of their population-based nature metaheuristic
algorithms are capable of creating a Pareto set that approximates the Pareto front (ZHOU
et al., 2011). Moreover, metaheuristic algorithms are also very used because of their
capability of finding solutions in large and complex search spaces (DUDEK; JANIGA;
WOJNAROWSKI, 2021). There are many bio-inspired metaheuristic algorithms, such as
Artificial Bee Colony (ABC) (ZHOU et al., 2021), Particle Swarm Optimization (PSO)
(XIA et al., 2020; KENNEDY; EBERHART, 1995), and Genetic Algorithm (GA) (HANH
et al., 2019). Despite having a wide variety of algorithms, GA is the most used to solve
optimization problems occupying 56% of applications on papers between 1988 and 2017
(DUDEK; JANIGA; WOJNAROWSKI, 2021).

In problems that have huge search spaces, such as BNSL, metaheuristic algorithms
can have a problem of performance deteriorating as the dimension of the search space
increases (UMBARKAR; JOSHI; HONG, 2014). To deal with high complexity prob-
lems, metaheuristic algorithms must have robust mechanisms for population diversity
preservation (WANG; SOBEY, 2020). This search space size can also result in a higher
execution time. To optimize the execution time, parallel metaheuristic algorithms can be
used (TSOULOS; TZALLAS; TSALIKAKIS, 2016). Naturally, parallelization generates
a communication cost between the parallel processes, however, there are strategies that
mitigate this cost (LUQUE; ALBA, 2011).

When using metaheuristic algorithms, another challenge is to choose appropriate
parameters for the optimization, considering that the parameters’ values directly influence
the performance of the algorithms (MOBIN et al., 2018). Despite that, many times
the parameters are defined based on conventions, based on the literature, and limited
experimental comparisons (SIPPER et al., 2018).

1.3 Objetive

To address the challenge of BNSL, a parallel GA algorithm with automatic param-
eter adjustment was developed. In addition to that, the impact of data quantization on
the BNSL search space was studied, and a quantization method that considers the BN
structure was proposed. The usage of this quantization method in BNSL was evaluated.

1.4 Agenda

The remainder of this thesis is structured as follows. Chapter 2 describes related
works and gives an overview of what has been done on the topics of BNSL, the concept of
life in Genetic Algorithms, and quantization for BNs. Chapter 3 describes the methods and
algorithms developed and their respective tests. Chapter 4 presents the results obtained
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from the tests made and their discussion. Chapter 5 has the conclusion made from
the results obtained and also discusses possible future works. Appendix A shows the
publications that directly resulted from this doctoral research and other publications that
were the result of collaborations.
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2 RELATED WORKS

In this chapter related works are described and an overview of what has been done
on the topics is shown. This chapter is split into three sections each covering a topic
important for this thesis. The three sections are Bayesian Networks Structural Learning
(BNSL), the concept of Life in Genetic Algorithm, and quantization for BN.

2.1 Bayesian Networks Structural Learning (BNSL)

From 2016 to 2020, several works involving BNSL were published. Some of these
discuss applications of structural learning of BN. Sevinc, Kucuk and Goltas (2020) use
BNs to analyze the causes of forest fires using data from southwestern Turkey and conclude
that the factors that most affect the occurrence of a fire are the month and temperature.
Lytvynenko et al. (2019c) learn a BN to observe the dependencies of a country’s Gross
Domestic Product and provide investment strategies to increase it. Lytvynenko et al.
(2019a) develop a BN model to be used in modeling drug distribution networks. Chen et al.
(2019) learned a BN to provide early warning of accidents on Chinese roads. Lytvynenko et
al. (2019b) use a BN to analyze the relationships of variables that affect public satisfaction
with security agencies. Zhang et al. (2019) perform simulated transport tests considering
different social factors and use a BN to simulate the synthetic population. Ruiz-Ruano
and Puga (2019) learn a BN to analyze the variables that affect entrepreneurial intention
and discover that the most important ones are self-efficacy, convenience, attitude, and
social norm. Alfonso, Manjarrés and Pickin (2019) propose a semi-automatic method of
educational competency maps from a repository of multiple-choice questionnaire answers.
In Li and Liu (2018), a Dynamic Bayesian Network is used in conjunction with Wavelet
decomposition to predict the path of a storm. Finally, in Ong, Yau and Looi (2016), BN is
used to explore the relationships between the factors that affect the brand awareness of
Malaysian university students and discover that the most significant factors are the state
of origin and the year of study.

Others deal with the learning of modified BN models. In the work of Ramazzotti
et al. (2019), a comparison is made between several structural learning methodologies
for Suppes-Bayes Causal Networks, which is a subclass of BN. In the work of Villa and
Stella (2018), non-stationary continuous-time Bayesian Networks are introduced, and their
learning from real data is tested. Finally, in the work of Ding and Zhuang (2018), the
distributed learning algorithm of BN is proposed for a cloud computing context.

Finally, some authors specifically deal with structural learning methods. In Correia,
Cussens and Campos (2020), a structural learning method is proposed using pruning of
the parent set considering the BDeu score. In Cambasi et al. (2019), a comparison of
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learning tools for Dynamic Bayesian Networks is made, using BayesiaLab, BayesFusion,
Bayes Server, Netica, Hugin Lite, BNT, Banjo, Amidst, BNLearn, Infer.NET, Mocapy++,
Libpgm, and Pgmpy. In Gross et al. (2019), a learning method based on the persistence of
edge occurrence despite perturbation is proposed, considering an analytical threshold. The
proposed threshold is derived from the random walk problem, and its value is calculated
by the formula f+

th = (1/3) +
√

2/K, where K is the number of learned structures. In
Correia, Campos and Gaag (2019), an analysis of the effect of the Equivalent Sample Size
of the BDeu score on the structural learning of BNs is made.

In Li et al. (2018), a BN learning method is proposed using multi-population
bacterial foraging optimization. In Li and Guo (2018), a hybrid method of structural
learning is proposed by combining search and score-based learning with expert knowledge.
In this method, the explicit and vague knowledge of experts is considered in the scoring
function. This scoring function is given by the equation

ScoreEV BIC = BIC(D) +
R∑

j=1

Nexplicit∑
i=1

log P (Vexplicit
j
i |ei, γj)

+ k
R∑

j=1

Nvague∑
i=1

log P (Vvague
j
i |ei, βj) (2.1)

where Nexplicit is the number of pairs of nodes with explicit knowledge, Nvague is the number
of pairs of nodes with vague knowledge, Vexplicit

j
i is the three types of explicit knowledge,

Vvague
j
i is the three types of vague knowledge, and P (Vexpliciti

j|ei, γj) and P (Vvague
j
i |ei, βj)

are calculated by decision trees available in the article. In Scanagatta et al. (2018a), an
approximate structural learning method for large BNs is proposed. In Scanagatta et al.
(2018b), a learning method for BNs with a treewidth limit is presented. In Beretta et al.
(2018), a comparison of structural learning methods for BNs is made. In Campos et al.
(2018), a structural learning method is proposed using pruning of the parent set considering
the BIC score.

In Amirkhani et al. (2017), the structural learning of BN using a score that
incorporates expert opinions is proposed. The score is calculated by

Scoreexplicit(G; D, O, γ) = log P (G) + log P (D|G) + log P (O|G, γ) (2.2)

where G is the structure of the BN, D is the data, O is the expert opinions, and γ is the
estimate of expert accuracy. In Liu et al. (2017), a hybrid method of structural learning
for BNs is proposed, where a constraint-based method is used to divide the network into
smaller pieces, then a search and score-based method is used to learn the BNs of these
pieces, and finally, the pieces are joined together. In Yang et al. (2016), the bacterial
foraging optimization algorithm is used to perform search and score-based structural
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learning of BNs. Finally, in Zhu, Liu and Jiang (2016), the artificial bee colony algorithm
is used to perform search and score-based structural learning of BNs.

2.2 Concept of Life in Genetic Algorithm

The concept of life on GA was first introduced in Arabas, Michalewicz and Mulawka
(1994). The paper proposes a Genetic Algorithm with Varying Population Size (GAVaPS),
wherein each member of the population is endowed with a life value that dictates the
number of generations it will remain a part of the population. Three distinct methods for
determining this life parameter were proposed: linear, proportional, and bi-linear. All three
methods calculate the life value based on various factors such as an individual’s score, the
mean score of the population, the highest and lowest scores within the population, as well
as the highest and lowest scores discovered thus far. Despite being an old algorithm, it has
been used in the works of Heng-zhou and Tao-shen (2016) and Abdelaziz (2017).

In 2000, Fernandes, Tavares and Rosa (2000) introduced an enhanced iteration
of GAVaPS known as the non-incest Genetic Algorithm with Varying Population Size
(niGAVaPS). In this version, the algorithm prohibits the reproduction of closely related
individuals, aiming to preserve population diversity and prevent premature convergence.
A year later, Fernandes and Rosa (2001) presented another upgraded variant of GAVaPS,
termed the negative Assortative Mating Genetic Algorithm with Varying Population Size
(nAMGAVaPS). The nAMGAVaPS employs non-random mating, wherein parents are
chosen based on their phenotypic similarity. One parent is randomly selected, while the
second parent is the one with the maximum Hamming distance from the first parent.

In contrast to earlier studies, Bäck, Eiben and Vaart (2000) introduces a GA that
incorporates a life parameter similar to GAVaPS. However, this GA distinguishes itself by
employing a self-adaptive mutation rate and crossover rate. Concerning the life parameter
assignment method, the bi-linear approach is employed. It must be noted that the top-
performing individual does not experience a reduction in its remaining life. Additionally,
in contrast to GAVaPS, this GA generates and adds only two individuals during each
iteration.

In a more contemporary context, Varnamkhasti and Hassan (2012) introduced a
GA that incorporates the concept of life. This GA, known as the neurofuzzy inference
systems genetic algorithm, also employs the bi-linear calculation method to determine life
values. Furthermore, this algorithm incorporates gender and fuzzy logic in its approach.
Through the utilization of fuzzy logic, it assigns linguistic labels such as “infant”, “adult”
or “old” to the “age” of each individual.

Jianhua, yuanxiang and Lingling (2014) suggests incorporating a degradation
mechanism into evolutionary algorithms. This mechanism categorizes individuals into



52

three distinct age groups: childhood, prime, and old age. The assigned age group, coupled
with other parameters like food consumption, significantly influences the individual’s
various processes, including reproduction. Unlike GAVaPS, in this proposed approach,
there isn’t a fixed age at which individuals are removed from the population. Instead,
removal is determined by a death rate that escalates as an individual ages.

2.3 Quantization for Bayesian Networks

We conducted a literature review on the subjects of “Quantization” or “Discretiza-
tion” and “Bayesian Network” resulting in the discovery of sixteen relevant papers. Several
of these papers incorporate information theory into their methodologies, as exemplified
by Friedman and Goldszmidt (1996) in which a method was introduced to adjust vari-
able quantization during structural learning. This technique employed a metric based
on the Minimum Description Length principle1 (FRIEDMAN; GOLDSZMIDT, 1996) to
determine the optimal quantization threshold. The performance of networks generated by
various methods was evaluated using prediction accuracy (whether the predicted values
match the actual values). In another study, Kozlov and Koller (1997) proposed a quantiza-
tion approach that aimed to minimize information loss (maximizing the relative entropy
between the quantized values and the actual values) caused by quantization through the
use of non-uniform partitions.

Ciunkiewicz et al. (2022) introduced a dynamic quantization algorithm designed to
pinpoint intervals that inadequately capture the underlying distribution, utilizing relative
entropy error based on Kullback-Leibler divergence as a key metric. This approach involves
a continuous process of merging and splitting intervals guided by this measurement,
ultimately leading to intervals that faithfully represent the underlying distribution. To
assess its efficacy, the proposed method was pitted against static quantization using a
dataset pertaining to toxicity risk in breast radiotherapy. Despite the improved fidelity of
quantization achieved by the proposed method, the predictive performance of the BN did
not exhibit consistent enhancement.

In other studies, the techniques of expectation-maximization and likelihood are
employed. For instance, in the work by Monti and Cooper (1998), a multi-variable quanti-
zation approach is introduced, wherein each continuous variable undergoes quantization
based on its interactions with other variables. To achieve this, a scoring method is employed
to assess the quality of the quantization, taking into account both the BN structure and
the data.

Mabrouk et al. (2015) introduced a quantization technique that factors in the
acquired conditional dependencies. This quantization process involves clustering and
1 Model selection principle that dictates that the shortest description of the data is the best

model.
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leverages expectation-maximization based on the Gaussian mixture model. To assess
its effectiveness, various quantization methods were subjected to comparison using the
tabu search algorithm for structural learning. The evaluation of the learned BNs was
based on several criteria, including the structural quality (similarity to the expected BN),
computational time, and the parameter quality of the learned CPTs, gauged by their
predictive accuracy.

Chen, Wheeler and Kochenderfer (2015) put forth a quantization approach designed
for integration with the K2 algorithm during the structural learning of BNs. This method
optimizes quantization by taking into account the network structure, which includes
the variable’s parents, children, and spouses. The evaluation of this quantization method
involved a comparison with the Minimum Description Length (MDL) approach, considering
the mean cross-validated log-likelihood of the data in relation to both the BN and the
quantization.

Furthermore, there exist miscellaneous studies that tackle the quantization problem
with distinct approaches. For instance, Song et al. (2011) presents a multi-variate quantiza-
tion method that capitalizes on the strong correlations within high-dimensional data. This
technique combines a non-parametric dimensionality reduction approach with a Gaussian
mixture model. Initially, dimensionality reduction is applied, followed by quantization
through the utilization of the mixture model. Notably, this method is specifically tailored
for high-dimensional variables and underwent testing in the context of robot grasping.

In their work, Lima et al. (2014) introduces a quantization technique that operates
by quantizing data based on peak and valley values. This approach quantizes all variables
simultaneously using a GA, with the goal of minimizing the Normalized Root Mean Square
Error for a selected output variable. The performance of this quantization method is
assessed against quartiles-based quantization using a dataset related to the Bit’s Rate of
Penetration in the Brazilian pre-salt layer. The results reveal that the proposed method
consistently outperformed the quartiles-based approach in terms of accuracy.

In their study, Fang et al. (2017) employs matrix decomposition as a means
of conducting quantization. They introduce a quantization approach rooted in matrix
decomposition, which enables the quantization of continuous variables into multiple states
with varying probabilities. To evaluate this method, a two-node BN was employed, and
the analysis was conducted with a focus on BN inference.

Talvitie, Eggeling and Koivisto (2019) introduced an algorithm for structural learn-
ing in BNs that incorporates an adaptive quantization technique for handling continuous
variables. This method employs quantile quantization, with the number of divisions rang-
ing from 2 to 7, depending on the model’s free structural parameters. The algorithm’s
performance was assessed through a comparative analysis with other structural learn-
ing algorithms, considering the accuracy of the discovered structure and its predictive
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performance. Notably, the proposed procedure consistently outperformed the examined
algorithms.

Mayfield et al. (2017) introduced the Structure Aware Discretization (SAD) algo-
rithm, which is a structure-aware quantization method designed to optimize bin ranges
and the number of bins in a way that strikes a balance between effectively filling CPTs
and maintaining adequate resolution. SAD achieves this by reducing the number of bins
to ensure that each bin contains a predefined minimum number of occurrences and to
minimize the number of CPT combinations with insufficient cases. The study compared
SAD with Equal Cases Discretization (ECD) and a method without structural awareness
adjustment, called Structure-unaware Stage Discretization (SUD). These methods were
evaluated using a water odor and taste dataset, with the assessment based on metrics such
as the area under the receiver operating curve and the true skill statistic. Both SAD and
SUD demonstrated similar performance, and both outperformed ECD.

Moreover, certain studies involve comparisons among various methods. For instance,
in the work by Asghari, Qian and Stow (2017), a comparative analysis of quantization
methods in BNs was conducted. This analysis examined the influence of quantization
methods and the number of intervals on the resulting BNs. Notably, the BN structure
was pre-established, and the bnlearn library was utilized to learn the CPTs based on the
quantized data. The comparison encompassed CPTs, predictions, and recommendations.
The findings indicated that these aspects varied across models, and there was no universally
superior method across all metrics.

In Beuzen, Marshall and Splinter (2018), a comparison was conducted among
quantization methods categorized into manual, supervised, and unsupervised classes.
These methods were evaluated using a 4-node BN with a predefined structure, focusing
solely on the learning of CPTs using quantized data. The comparison was based on two
key metrics: model accuracy and the F-score. The findings revealed distinct strengths
for each category of quantization method. Manual quantization methods yielded BNs
with enhanced interpretability, supervised methods excelled in predictive capacity, and
unsupervised methods demonstrated computational simplicity and versatility as their
primary advantages.

In Ropero, Renooij and Gaag (2018), four distinct quantization methods were
employed to discretize environmental data: Equal Frequency, Equal Width, Chi-Merge,
and the Minimum Description Length principle. Of these methods, Chi-Merge stood out
as a supervised approach that initially starts with intervals consisting of a single data
point and employs Chi-Squared statistics to determine which intervals should be merged.
Remarkably, Chi-Merge emerged as the top-performing method, demonstrating the best
average performance in the conducted tests for the classification problem.

In Sari et al. (2021), a comparison was made among three quantization methods:
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equal-width, equal-frequency, and K-means, using earthquake damage data. Notably,
K-means outperformed the other methods, achieving the highest level of accuracy in the
conducted test.

In Toropova and Tulupyeva (2022), an examination of the impact of various
quantization methods on the performance of BNs was carried out to estimate behavioral
rates. The methods under scrutiny included equal width, equal frequency, EF_Unique, and
expert quantization. These methods were applied and evaluated using a dataset related to
behavioral rates. The findings revealed that equal width quantization consistently delivered
the highest and average levels of precision among the tested quantization techniques.
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3 MATERIAL AND METHODS

To facilitate the development of the work, it was divided into four parts. The
first part focused on creating or utilizing a parameter-tuning method for an evolutionary
algorithm, ensuring that the search process effectively explored the search space and
yielded good solutions for problems with varying characteristics. The second part involved
the development of a BNSL algorithm that aimed to achieve better coverage of the search
space. The third part studied the effects of quantization on the BNSL search space and
the development of methods to help in quantizing data for BNs. Finally, the fourth part
entailed the development of a scoring function to be used as one of the objectives within
the evolutionary algorithm. Also, a section was made just describing all the datasets used.
Below, you will find descriptions of how each of these aspects of the work was developed.

3.1 Datasets

In this section, the datasets used throughout this thesis are presented.

3.1.1 D3

D3 is a simulated discrete dataset. It was generated by the equation


A = rand_int(0, 9)

B = rand_int(0, 9)

C = A + B

(3.1)

where rand_int(0, 9) indicates a sampling of a uniform distribution considering only the
integer numbers from 0 to 9. A section of each variable’s signal and a histogram of the
variables can be seen in Figure 7. The expected BN structure for this dataset can be seen
in Figure 8.
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Figure 7 – A section of the signal of each variable and the variable’s distribution for the D3
dataset. n is the number of the sample, density is the density of the histogram
and the y-axis value is the amplitude.

0 25 50 75 100
n

0

2

4

6

8

A

0 1
Density

0 25 50 75 100
n

0

2

4

6

8

B

0 1
Density

0 25 50 75 100
n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
C

0.0 0.5
Density

Source: Author

Figure 8 – Expected BN structure for the D3 dataset.
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3.1.2 D4

D4 is a simulated discrete dataset with added noise to be turned into a simulated
continuous dataset. It was generated by the equation



A′ = rand_int(0, 9)

B′ = rand_int(0, 9)

C ′ = A′ + B′

D′ = A′ + rand_int(0, 9)

A = A′ + N (µ = 0, σ = 0.4)

B = B′ + N (µ = 0, σ = 0.4)

C = C ′ + N (µ = 0, σ = 0.4)

D = D′ + N (µ = 0, σ = 0.4)

(3.2)

where rand_int(0, 9) indicates a sampling of a uniform distribution considering only the
integer numbers from 0 to 9 and N (µ = 0, σ = 0.4) indicates a sampling of a normal
distribution with µ = 0 and σ = 0.4. A section of each variable’s signal and a histogram of
the variables can be seen in Figure 9. The expected BN structure for this dataset can be
seen in Figure 10.
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Figure 9 – A section of the signal of each variable and the variable’s distribution for the D4
dataset. n is the number of the sample, density is the density of the histogram
and the y-axis value is the amplitude.
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Figure 10 – Expected BN structure for the D4 dataset.
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3.1.3 D5

D5 is a simulated discrete dataset. It was generated by the equation



A = rand_int(0, 9)

B = rand_int(0, 9)

C = A + B

D = A + rand_int(0, 9)

E = C + D

(3.3)

where rand_int(0, 9) indicates a sampling of a uniform distribution considering only the
integer numbers from 0 to 9. The expected BN structure for this dataset can be seen in
Figure 11.

Figure 11 – Expected BN structure for the D5 dataset.
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3.1.4 XYZ

XYZ is a simulated continuous dataset. It was generated by the equation


X = N (µ = 0, σ = 1)

Y = 3 · X + 1 + N (µ = 0, σ = 1)

Z = 2 · X + 2 + N (µ = 0, σ = 1)

(3.4)

where N (µ = 0, σ = 1) indicates a sampling of a normal distribution with µ = 0 and
σ = 1. A section of each variable’s signal and a histogram of the variables can be seen in
Figure 12. The expected BN structure for this dataset can be seen in Figure 13.
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Figure 12 – A section of the signal of each variable and the variable’s distribution for the
XYZ dataset. n is the number of the sample, density is the density of the
histogram and the y-axis value is the amplitude.
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Figure 13 – Expected BN structure for the XYZ dataset.
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3.1.5 XYZ3

XYZ3 is a simulated continuous dataset. It was generated by the equation



X = N (µ = −2, σ = 0.1) ∪ N (µ = 0, σ = 0.1)

∪N (µ = 2, σ = 0.1)

Y = 3 · X + 1 + 0.7 ∗ N (µ = 0, σ = 1)

Z = 2 · X + 2 + 0.7 ∗ N (µ = 0, σ = 1)

(3.5)

where N (µ, σ) indicates a sampling of a normal distribution with µ and σ. A section of
each variable’s signal and a histogram of the variables can be seen in Figure 14. The
expected BN structure for this dataset can be seen in Figure 15.

Figure 14 – A section of the signal of each variable and the variable’s distribution for the
XYZ3 dataset. n is the number of the sample, density is the density of the
histogram and the y-axis value is the amplitude.
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Figure 15 – Expected BN structure for the XYZ3 dataset.
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3.1.6 2T

2T is a simulated continuous dataset. It was generated by the equation


X = N (µ = 0, σ = 1)

Y =

N (µ = 0, σ = 1) − 3 when X ≤ 0

N (µ = 0, σ = 1) + 3 when X > 0

(3.6)

where N (µ = 0, σ = 1) indicates a sampling of a normal distribution with µ = 0 and
σ = 1. A section of each variable’s signal and a histogram of the variables can be seen in
Figure 16. The expected BN structure for this dataset can be seen in Figure 17.

Figure 16 – A section of the signal of each variable and the variable’s distribution for
the 2T dataset. n is the number of the sample, density is the density of the
histogram and the y-axis value is the amplitude.
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Figure 17 – Expected BN structure for the 2T dataset.

X Y

Source: Author

3.1.7 Weather

Weather is a real data dataset. It was acquired from Imperatriz (5◦ 31′ 33′′ S, 47◦

28′ 33′′ W), a Brazilian city in the state of Maranhão. It contains hourly measurements
of temperature, humidity, radiation and wind speed. Measurements started at 23:00
on 02/03/2008 and ended at 14:00 on 21/01/2022. The data was obtained from the
National Institute of Meteorology (INMET), accessed at https://tempo.inmet.gov.br/
TabelaEstacoes/A225. A section of each variable’s signal and a histogram of the variables
can be seen in Figure 18.

https://tempo.inmet.gov.br/TabelaEstacoes/A225
https://tempo.inmet.gov.br/TabelaEstacoes/A225
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Figure 18 – A section of the signal of each variable and the variable’s distribution for the
Weather dataset. n is the number of the sample, density is the density of the
histogram and the y-axis value is the amplitude.
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3.1.8 Skin

Skin is a real data dataset from the literature called Skin Segmentation that can
be found at the UCI Machine Learning Repository (BHATT; DHALL, 2012). The skin
dataset is collected by randomly sampling R, G, and B values from face images of various
age groups, race groups, and genders. The dataset has 4 variables, the RGB values and
the classification (skin or non-skin).

3.1.9 Haberman

Haberman is a real data dataset from the literature called Haberman’s Survival
that can be found at the UCI Machine Learning Repository (HABERMAN, 1999). The
dataset contains cases from a study that was conducted between 1958 and 1970 at the
University of Chicago’s Billings Hospital on the survival of patients who had undergone
surgery for breast cancer. It has 4 variables: age, operation year, positive auxillary nodes,
and survival status.
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3.1.10 Lizards

Lizards is a literature dataset for BNSL about the perching behavior of two
species of lizards in South Bimini island. More details about it can be seen at https:
//www.bnlearn.com/documentation/man/lizards.html. It has 3 variables and its expected
structure can be seen in Figure 19.

Figure 19 – Expected BN structure for the Lizards dataset. Species refers to the species of
the lizard, Height refers to the perch height and Diameter refers to the perch
diameter.
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Source: Author

3.1.11 Marks

Marks is a literature dataset for BNSL containing examination marks of 88 students
on five different topics. More details about it can be seen at https://www.bnlearn.com/
documentation/man/marks.html. It has 5 variables and its expected structure can be seen
in Figure 20.

https://www.bnlearn.com/documentation/man/lizards.html
https://www.bnlearn.com/documentation/man/lizards.html
https://www.bnlearn.com/documentation/man/marks.html
https://www.bnlearn.com/documentation/man/marks.html
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Figure 20 – Expected BN structure for the Marks dataset. It must be noted that the
expected structure for this dataset is a super-structure, meaning that it only
has edges with no direction.
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3.1.12 Coronary

Coronary is a literature dataset for BNSL containing the probable risk factors
for coronary thrombosis from 1841 men. More details about it can be seen at https:
//www.bnlearn.com/documentation/man/coronary.html. It has 6 variables and its expected
structure can be seen in Figure 21.

https://www.bnlearn.com/documentation/man/coronary.html
https://www.bnlearn.com/documentation/man/coronary.html
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Figure 21 – Expected BN structure for the Coronary dataset. It must be noted that the
expected structure for this dataset is a super-structure, meaning that it only
has edges with no direction.
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3.1.13 Asia

Asia is a literature dataset for BNSL about lung diseases (tuberculosis, lung
cancer, or bronchitis) and visits to Asia. More details about it can be seen at https:
//www.bnlearn.com/documentation/man/asia.html. It has 8 variables and its expected
structure can be seen in Figure 22.

https://www.bnlearn.com/documentation/man/asia.html
https://www.bnlearn.com/documentation/man/asia.html
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Figure 22 – Expected BN structure for the Asia dataset. D refers to dyspnoea, T refers to
tuberculosis, L refers to lung cancer, B refers to bronchitis, A refers to visit to
Asia, S refers to smoking, X refers to chest X-ray and E refers to tuberculosis
versus lung cancer/bronchitis.
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3.1.14 Sachs

Sachs is a literature dataset for BNSL with Protein-Signaling data. It has 11
variables and its expected structure can be seen in Figure 23.
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Figure 23 – Expected BN structure for the Sachs dataset. All variables are target molecules
measured in the original study by Sachs et al. (2005). Raf refers to phosphory-
lation at S259, Erk1 and Erk2 refer to phosphorylation at T202 and Y204, P38
refers to phosphorylation at T180 and Y182, Jnk refers to phosphorylation
at T183 and Y185, AKT refers to phosphorylation at S473, Mek1 and Mek2
refers to phosphorylation at S217 and S221, PKA detects proteins and pep-
tides containing a phospho-Ser/Thr residue with arginine at the -3 position,
PKC detects phosphorylated PKC -α, -βI, -βII, -δ, -ϵ, -η, and -θ isoforms
only at C-terminal residue homologous to S660 of PKC-βII, PLCg refers to
phosphorylation at Y783, PIP2 detects PIP2 and PIP3 detects PIP3.
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3.1.15 Insurance

Insurance is a literature dataset for BNSL which was created to estimate the claim
cost for a car insurance policyholder. It has 27 variables and its expected structure can be
seen in Figure 24.
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Figure 24 – Expected BN structure for the Insurance dataset.
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3.1.16 Alarm

Alarm is a literature dataset for BNSL which was created to implement an alarm
message system for patient monitoring. It has 37 variables and its expected structure can
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be seen in Figure 25.

Figure 25 – Expected BN structure for the Alarm dataset.
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3.1.17 Hailfinder

Hailfinder is a literature dataset for BNSL which was created for forecasting severe
weather. It has 56 variables and its expected structure can be seen in Figure 26. More
information can be found in https://www.bnlearn.com/documentation/man/hailfinder.
html and on its original paper by Abramson et al. (1996).

Figure 26 – Expected BN structure for the Hailfinder dataset. All nodes are weather
measurements and weather forecast parameters. As the structure is really big
and the names of the variables would not be readable, they were not included.

Source: Author

https://www.bnlearn.com/documentation/man/hailfinder.html
https://www.bnlearn.com/documentation/man/hailfinder.html
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3.2 Parameter Tuning

The work on parameter tuning began with a literature review on the subject, where
several relevant studies were identified. In the study by Branke and Elomari (2011), an
evolutionary algorithm is used to tune another evolutionary algorithm. In Trindade and
Campelo (2019), sequential optimization of regression models is employed to fine-tune
metaheuristics. Tatsis and Parsopoulos (2019) utilizes approximate gradient search and line
search in the parameter domain for tuning. López-Ibáñez et al. (2016) introduces the irace
package, which uses iterated racing procedures for tuning. Montero, Riff and Rojas-Morales
(2018) reviews tuning methods and analyzes the impact of parameter settings on the final
results. Skakov and Malysh (2018) employs an evolutionary algorithm for tuning. Vogel
and Wilke (2018) proposed a tuning method for problems with restricted budgets, where
each parameter vector is evaluated only once. Finally, Joshi and Bansal (2020) adopts
an approach based on the relationship between algorithm performance and functional
landscape.

Considering the articles found, it was decided to test an implementation of a GA for
offline parameterization (parameterization that is not performed during the execution of the
algorithm (TATSIS; PARSOPOULOS, 2019; LÓPEZ-IBÁÑEZ et al., 2016)). An attempt
was also made to reproduce the method proposed in Vogel and Wilke (2018) because it
is an interesting approach for structural learning algorithms that have a time-consuming
execution when dealing with a BN with a higher number of variables.

The implementation tests of the GA for tuning did not yield promising results in
initial tests, and reproducing the method proposed in Vogel and Wilke (2018) was not
possible. Given this, it was decided to explore online parameterization (parameter control),
where the search algorithm’s parameters are adjusted during its execution (TATSIS;
PARSOPOULOS, 2019; LÓPEZ-IBÁÑEZ et al., 2016). To do this, a new evolutionary
algorithm was implemented to adapt its parameters during execution to improve the search
space coverage. This method will be described later on.

3.3 BNSL Algorithm

Due to the widespread use of the genetic algorithm (DUDEK; JANIGA; WOJ-
NAROWSKI, 2021), it was decided to create an initial implementation of a multi-population
genetic algorithm with population mixing. In this algorithm, mutation is performed by
randomly selecting between changing the direction of an random edge, removing an random
edge, or adding an random edge in a way that the Bayesian network does not form any
cycles. Generating new members of the population involves copying one of the parents and
adding the edges that are different between the two parents until the resulting Bayesian
network has no cycles. Selection of the population for the next generation is done by
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preserving the best individuals in the population and randomly removing members from
the rest of the population until the desired number is reached.

This method was developed, but initial tests did not show good performance
in terms of parameter tuning, as mentioned earlier. After deciding to explore online
parameterization, the algorithm was modified so that its parameters would be adjusted
during execution. To achieve better coverage of the search space, it was decided to use a
variable-sized population based on the concept of lifetime, and the mutation rate would be
adjusted according to the current population. An in-depth discussion about the concept of
life in GAs can be seen in Section 2.2.

The proposed method was named Adaptive Genetic Algorithm with Varying
Population Size (AGAVaPS). It updates its parameters during execution and is focused
on better covering the search space. In AGAVaPS, each individual has its own mutation
rate and a parameter called "life" that determines how many iterations that individual
will be part of the population. The mutation rate of each individual is sampled from a
normal distribution N (µmut, 0.1), where µmut is initialized to 0.5, and its value is updated
at each iteration based on the average mutation rates of the current population. This
update follows the formula:

µmut(n)′ = µpop(n − 1) − (µmut(n − 1) − µpop(n − 1))

µmut(n) =


µmut(n)′, if 0.3 < µmut(n)′ < 0.7

µpop(n − 1) − U(0.1, 0.3), if 0.7 ≤ µmut(n)′

µpop(n − 1) + U(0.1, 0.3), if µmut(n)′ ≤ 0.3

(3.7)

in this way, the search conducted by the algorithm adapts according to the population.
Therefore, if the population has an average mutation rate higher than the mean used in
the sampling, it indicates that exploration is successful and will be reinforced by increasing
the mean for the next sampling. In the opposite situation, if the population’s average
is lower than the sampling mean, it suggests that the population is achieving greater
success in local search, and it will be reinforced by decreasing the sampling mean. Finally,
a limitation was imposed on extreme values in the sampling mean to prevent the search
from saturating at one of the extremes. To achieve this, if the updated mean reaches one
of these limits, the population mean is perturbed in the opposite direction using a sample
from a uniform distribution.

The life parameter is generated by the equation:

life = 10 · N (0.5, 0.15) (3.8)
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where life ∈ N∗ and N (0.5, 0.15) indicates a sample of a normal distribution with µ = 0.5
and σ = 0.15. This way, each individual has a number of iterations in which it will be
part of the population. In each iteration, the lifetimes of individuals are decremented by 1,
except for the top 10% best individuals that are preserved. When the life value reaches 0,
the individual is removed from the population.

Additionally, the possibility for an individual to undergo the mutation process
twice was added to increase the coverage of the search space. This is done as follows:


double mutation, if r < 0.15 · mutation rate

single mutation, if 0.15 · mutation rate ≤ r < mutation rate

no mutation, otherwise

(3.9)

where r is a randomly sampled number from a uniform distribution between 0 and 1.

The life parameter causes the population to have a variable size. The population
has an initial size and a maximum size. This maximum size is set to limit the population’s
size due to computational constraints when necessary. If the population size exceeds
the maximum value, individuals with the lowest lifetime values are removed from the
population until the size matches the limit. During this removal process, the top 10% best
individuals in the population are protected from removal.

The reproduction (crossover) is performed using two individuals (parents) to gener-
ate one individual (child). Parents are selected through a tournament of size "tournament
size", with the default value being 3. Selection by tournament functions by randomly
selecting a number of solutions equal to the tournament size and selecting the best solution
(according to score/objective function value) between them to be used for the reproduction.
The reproduction rate (γ) is fixed at 0.5. This way, it is expected that in the initial
iterations, the population will grow in size until the number of new individuals and the
number of individuals removed become approximately equal. When this happens, a balance
is achieved.

This optimizer was then tested in three test cases to analyze its performance and
behavior. The first test was a behavior test of the search process. The second was an
optimization test using benchmark functions and comparing the performance with other
algorithms. The third was an application test for complex problems, specifically in feature
selection and BNSL.

For the first and second tests, the benchmark used was the single-objective opti-
mization benchmark from CEC20171. It consists of 30 functions, all minimization problems
that have been shifted, rotated, and rescaled to the [−100, 100]D range. The minimum

1 https://github.com/tilleyd/cec2017-py(AWAD et al., 2016; TILLEY, 2020)

https://github.com/tilleyd/cec2017-py
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value of each function is 100 ∗ i where i is the index of the function (AWAD et al., 2016).

The thirty functions are divided into four types. f1 to f3 are unimodal functions. f4
to f10 are simple multimodal functions. f11 to f20 are hybrid functions. And f21 to f30
are composite functions (AWAD et al., 2016). More information about the benchmark can
be found in its definition document (AWAD et al., 2016) and in the Python implementation
used (TILLEY, 2020).

For the tests, all functions were used in their 10-dimensional (10D) forms. They were
considered with both free initial space ([−100, 100]D) and limited initial space ([80, 100]D),
where D = 10. The tests with limited initial space evaluate the optimizer’s ability to
explore the search space even in more challenging situations.

In the search behavior test, AGAVaPS was executed for function f1 with limited
initial space and 20,000 evaluations of the objective function. At each iteration, the
following values were recorded: score, population size, the number of individuals added to
the population (children), the number of duplicate children removed, and the number of
individuals removed from the population. These data were then plotted and analyzed.

For the comparison test, AGAVaPS was compared with five other optimizers.
These five were chosen because they are commonly used and have their implementations
provided by the EvoloPy library2 (FARIS et al., 2016a). The five optimizers are Genetic
Algorithm (GA) (HANH et al., 2019), Particle Swarm Optimization (PSO) (XIA et al.,
2020; KENNEDY; EBERHART, 1995), Firefly Algorithm (FFA) (YANG, 2010a), Cockoo
Search Algorithm (CS) (YANG; DEB, 2009) and Bat Algorithm (BAT) (YANG, 2010b).

For this test, AGAVaPS had its reproduction and mutation methods identical to
the GA implementation from EvoloPy. Reproduction involves blending the coordinates of
the two parents at a randomly chosen point. Mutation is performed by resampling one
of the coordinates. Additionally, AGAVaPS was tested in two different configurations,
one with tournament size = 3 (referred to as AGAVaPS) and another more compatible
with the low elitism of the GA with tournament size = 1 (referred to as AGAVaPS*). The
population size used for both AGAVaPS configurations and the GA was 50.

The parameters used for the other algorithms were recommended by Kazikova,
Pluhacek and Senkerik (2020), who conducted an analysis of the same implementation for
this same benchmark. The parameter values are shown in Table 3.

2 https://github.com/7ossam81/EvoloPy (FARIS et al., 2016b)

https://github.com/7ossam81/EvoloPy
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Table 3 – Parameters used in the preliminary comparison test of AGAVaPS. The choice of
the parameter was made considering the work Kazikova, Pluhacek and Senkerik
(2020) and the parameters and their meaning are explained on the proposal
articles PSO (XIA et al., 2020; KENNEDY; EBERHART, 1995), FFA (YANG,
2010a), CS (YANG; DEB, 2009) and BAT (YANG, 2010b).

Optimizer Parameter

PSO

Acceleration coefficients c1 = c2 = 1.9
Maximum speed VMAX = 6
Maximum inertia wMAX = 0.5
Minimum inertia wMIN = 0.5
Population size of 30

FFA

Randomness α = 0.25
Absorption coefficient γ = 1
Minimum beta βMIN = 0.2
β0 = 1.0
Population size of 20

CS
Discovery rate pa = 0.25
α = 0.01
Population size of 20

BAT

Loudness A = 1.5
Pulse rate r = 0.5
Minimum frequency QMIN = 0
Maximum frequency QMAX = 2
Population size of 50

Source: Author.

Each of the optimizers was run 100 times for each of the 30 functions, saving three
performance measures for each run: grid coverage, best solution found, and execution
time. This was done for both the case with free initial space and limited initial space. The
number of objective function evaluations was limited to 100,000 evaluations (10 · 10, 000),
as suggested in Awad et al. (2016) and also used in Kazikova, Pluhacek and Senkerik
(2020).

The grid coverage measure aims to quantify how well the optimizer explored the
search space. It is calculated by determining the percentage of quadrants in a grid with
100 bins that were explored by the algorithm. A quadrant is considered explored if at
least one point within it was evaluated by the optimizer. For all measures, the mean and
standard deviation of the 100 runs were calculated.

To compare the performance of the algorithms, an analysis similar to that conducted
in Salgotra et al. (2021) was performed. To check for differences in performance between
the algorithms, a Wilcoxon test with a significance level of 0.05 was conducted. The
algorithms were ranked (f-rank) based on their performance considering the results of the
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Wilcoxon tests (DERRAC et al., 2011). It should be noted that for cases where algorithm
A had statistically equivalent performance to algorithms B and C, but algorithms B and
C did not exhibit this equivalence according to the Wilcoxon test, algorithms A, B, and
C were not grouped in the f-rank.

Additionally, the performance of each algorithm was compared to the performance
of AGAVaPS (rank) and AGAVaPS* (rank*) in terms of win/tie/loss. Win (+) indicates
when the algorithm in question performed better than the proposed algorithm. Tie (=)
occurs when the algorithm in question performed statistically equivalently to the proposed
algorithm. Loss (-) indicates when the algorithm in question performed worse than the
proposed algorithm. These comparisons were compiled into tables showing the average
f-rank, final f-rank, and the overall win/tie/loss score for the test cases.

The feature selection and BNSL test were conducted with AGAVaPS and GA only,
as the other methods are more suitable for numerical problems. The test used for the
feature selection used the binary low-dimension (Low) and binary mid-dimension (Mid)
datasets and followed the methodology used in Chiesa et al. (2020). The Low dataset
is obtained by filtering and normalizing RNA-Seq data, containing 58 samples and 169
features. The Mid dataset is a characterization dataset of NMR spectrometry of metabolic
profiles from urine, containing 106 samples and 701 features.

In this test, GA and AGAVaPS were run with a population size of 100 and a limit
of 100 generations for the Low dataset and 150 generations for the Mid dataset. For both
datasets, an individual represents a set of selected features, containing between 5 and 20
features. Mutation involved swapping one feature in the set for one that was not in the
set. Reproduction was performed by combining the parent sets. For AGAVaPS, which
generates only one offspring, it was generated by taking the intersection of the parent sets
and randomly adding features from the parent sets. For GA, which generates two offspring,
the algorithm selected an index for set separation and combined the opposite parts.

Both algorithms were run 100 times for each of the datasets. The mean, standard
deviation, minimum, and maximum values were recorded for the number of selected
features and the score. The score used was the same as in Chiesa et al. (2020). It employs
Multi-Dimensional Scaling (MDS) considering the selected features and calculates the
averaged Silhouette Index (aSI) for the coordinates obtained from MDS. The resulting
score is aSI if aSI > 0 and 0 otherwise. Therefore, feature selection is a maximization
problem where the best score is 1, and the worst is 0. Additionally, execution time was
also recorded for comparison using mean and standard deviation.

For the BNSL test, AGAVaPS was compared to Hill Climbing (HC) and GA. HC
is an optimization algorithm widely employed for BNSL. The HC implementation used
is the one from pgmpy (ANKAN; PANDA, 2015). Pgmpy is a Python library designed
for handling Probabilistic Graphical Models, including BNs (ANKAN; PANDA, 2015).
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In this comparative analysis, we utilized three datasets sourced from the literature: Asia
(LAURITZEN; SPIEGELHALTER, 1988), Coronary (REINIS et al., 1981), and Sachs
(SACHS et al., 2005). These datasets are all accessible via the bnlearn package and
are commonly employed in BNSL assessments (SCUTARI, 2010). Specifically, the Asia
dataset comprises 8 variables, yielding a search space encompassing a staggering 7.84e+11
possible BN structures. In contrast, the Coronary dataset comprises 6 variables, resulting
in a relatively more manageable search space of 3.78e+06 potential BN configurations.
Lastly, the Sachs dataset involves 11 variables, leading to an extensive search space of
approximately 3.16e+22 possible BNs. Across all datasets, both the AGAVaPS and GA
algorithms were executed with a predefined limit of only 10,000 evaluations. In contrast,
the HC method was executed as implemented in pgmpy, commencing from a random BN
starting point.

Each of the algorithms was executed 100 times for each dataset, and the best
BN discovered, along with its execution time, was recorded. These collected values were
subsequently subjected to a comparative analysis, which included calculating the mean
and standard deviation. Additionally, a Wilcoxon signed-rank test with a significance level
of 0.05 was employed to assess the significance of the performance difference between
the proposed algorithm and the comparison algorithms. To evaluate the degree of corre-
spondence between the BNs and the datasets, the Bayesian Information Criterion (BIC)
was employed as the scoring metric. The BIC is derived from the Schwarz Information
Criterion and aims to minimize the conditional entropy of the variables while considering
their parent nodes (CAMPOS, 2006). It’s important to note that the BIC score is a
maximization score that yields negative values.

After this, the multi-objective version of AGAVaPS was developed and further
tested in BNSL. AGAVaPS underwent some changes to be able to deal with multi-objective
optimization. The method to select the Pareto set was added. Also, the selection of the
10% best individuals was adapted to select all members of the Pareto set, and if there is
still space left to select more individuals, the number of individuals is divided between the
objectives, and that number of best individuals for that score are selected.

Then, the algorithm was further tested in BNSL. The first test made was a small-
scale parameter analysis for AGAVaPS on BNSL was carried out. For that µmut and γ

were varied and tested for different BNSL datasets. The number of evaluations used was
10,000 and the values evaluated for the parameters are shown in Table 4. AGAVaPS was
run ten times for each combination of parameters and the mean BIC score of these ten
runs was used to rank the parameters combinations and the combination with the best
mean rank was the one used for the comparison test with other algorithms.
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Table 4 – Parameter values used on the AGAVaPS parameter analysis for BNSL including
the initial mutation mean (µmut) and reproduction rate (γ).

Parameter Values
µmut 0.1, 0.3 and 0.5

γ 0.3 and 0.5
Source: Author.

Afterward, AGAVaPS was compared to HC and tabu search (TABU) on BNSL
considering different datasets from the literature available at bnlearn (SCUTARI, 2010).
The datasets and their characteristics can be seen in Table 5. HC and TABU were chosen
because in Constantinou et al. (2021) 15 BNSL methods were compared and HC and TABU
presented the best overall performance for the tests made. The algorithms were compared
considering the F1 score, Structural Hamming Distance (SHD), Balanced Scoring Function
(BSF), BIC score and execution time. The equations that define F1, SHD and BSF can be
seen in Equations 3.10, 3.11, 3.12 and 3.13. These three metrics measure how close the
expected structure and the structure found are. The best value for F1 is 1, for SHD is 0
and for BSF is 1. An explanation of what true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) mean for BNSL can be seen in Figure 27.

Table 5 – Datasets parameters including number of nodes (number of variables), number
of edges, which is the number of edges of the expected structure, number of
samples of the dataset, and the number of possible DAGs that the BN structure
search space for the dataset has.

Dataset Number of nodes Number of edges Number of samples Number of DAGs
Alarm 37 46 20,000 3.01e+237
Asia 8 8 5,000 7.84e+11

Coronary 6 9 1,841 3.78e+06
Hailfinder 56 66 20,000 ≫2.11e+303
Insurance 27 52 20,000 1.90e+129

Sachs 11 17 100,000 3.16e+22
Sachs 2e4 11 17 20,000 3.16e+22

Source: Ribeiro and Maciel (2023)

F1 score = 2 · TP
2 · TP + FP + FN (3.10)

SHD = FN + FP (3.11)

BSF = 0.5 ·
(

TP
a

+ TN
i

− FP
i

− FN
a

)
(3.12)



83

i = |N |(|N | − 1)
2 − a (3.13)

Figure 27 – Example of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) for BNSL used for calculating F1 score (Equation
3.10), SHD (Equation 3.11) and BSF (Equation 3.12) for the comparison of
the performance of the search algorithms.
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Each algorithm was run thirty times for each dataset. The number of evaluations
used for AGAVaPS and the max in-degree used by all algorithms can be seen in Table 6.
Max in-degree is the limit of number of parents for a variable. The mean and standard
variation were calculated. The algorithms were also ranked and the Wilcoxon signed-rank
test with a significance level of 0.05 was used to determine which algorithms had the same
performance, and thus had the same rank. The mean rank in all test cases was calculated
and used for comparison.

Table 6 – Number of evaluations for the AGAVaPS for each dataset for the comparison
with the other search algorithms (number of evaluations). The maximum in-
degree used for each dataset for all algorithms (max in-degree) is also shown.
Maximum in-degree is the limit of number of parents for a variable.

Dataset Number of evaluations Max in-degree
Alarm 1,000,000 4
Asia 10,000 4

Coronary 10,000 5
Hailfinder 1,000,000 4
Insurance 100,000 3

Sachs 10,000 3
Sachs 2e4 10,000 3

Source: Ribeiro and Maciel (2023)
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3.4 Quantization and Bayesian Network

To better understand the BNSL search space and how the quantization of the
variables affects this search space, a landscape analysis was carried out to better understand
the characteristics of the BNSL search space. To achieve this, analyses were conducted on
the scores of all BNs for problems with 3 to 6 variables, considering that for these numbers
of variables, it was possible to evaluate all the search space. The number of DAGs for
different numbers of variables can be seen in Table 7. The scores used for this analysis
included K2, BDeu, and BIC, which were already implemented in the pgmpy library. The
datasets used for analysis consisted of three simulated datasets, two datasets from the
literature, and two real datasets from the UCI Machine Learning Repository3. The details
about each dataset used can be seen in Table 8.

Table 7 – Number of DAGs for a given number of variables.

Number of variables Number of DAGs
3 2,50e+01
4 5,43e+02
5 2,93e+04
6 3,78e+06
7 1,14e+09
8 7,84e+11
9 1,21e+15
10 4,18e+18
11 3,16e+22
12 5,22e+26
13 1,87e+31
14 1,44e+36
15 2,38e+41
16 8,38e+46
17 6,27e+52
18 9,94e+58
19 3,33e+65
20 2,34e+72
21 3,47e+79
22 1,08e+87
23 6,97e+94
24 9,44e+102
25 2,66e+111

Source: Author

3 https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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Table 8 – Datasets used for the landscape analysis.

Dataset Type Number of variables Expected Structure
D3 Simulated 3 Figure 8
D4 Simulated 4 Figure 10
D5 Simulated 5 Figure 11

Lizards Literature 3 Figure 19
Marks Literature 6 Figure 20

Skin Segmentation (Skin) Real 4 -
Haberman’s Survival (Haberman) Real 4 -

Source: Author

To visualize the search space, we implemented a technique to map BNs into
numerical representations. To achieve this, all possible BNs were sorted by the number of
edges, and numbers were assigned to each BN in an equidistant manner within the range
[number of edges, number of edges + 1). An example of this can be seen in Figure 28.

Figure 28 – Example of how the DAGs were mapped into numbers to perform the landscape
analysis. This example considers a three-variable system to showcase the
process, as it only has 15 possible DAGs and its visualization is easier. Each
BN structure is mapped to a number considering its number of edges. The BNs
were sorted by the number of edges, and numbers were assigned to each BN in
an equidistant manner within the range [number of edges, number of edges+1).
The x-axis represents the numerical value attributed to a structure. Meaning
that each BN structure is mapped to a numeric value on the x-axis. The
structure is shown above its corresponding numeric value to exemplify this
procedure.

0 1

1 1.17 1.33 1.50 1.67 1.83 2

2 2.08 2.17 2.25 2.33 2.42 2.50 2.58 2.67 2.75 2.83 2.92 3

3 3.17 3.33 3.50 3.67 3.83 4

Source: Ribeiro et al. (in press)

With this approach, an initial analysis of the search space was conducted for each
score across all datasets. Initially, a common x-axis was used to assess how the same BNs
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were evaluated by different scores. Subsequently, the x-axis of each plot was arranged
according to the respective score to observe the behavior of each score.

The next analysis aimed to determine whether the scores, despite their differing
behaviors, agreed on which networks were the best. To achieve this, for each number of
edges, it was determined how many scores identified the same structure as the best within
that range.

Subsequently, the variation in the search space was evaluated following the variation
in the data included in the dataset. To accomplish this, only the three simulated datasets
were used. One hundred different batches of the datasets were generated, and the mean
and standard deviation of the assessed scores for each BN were analyzed. Additionally,
the changes in scores were examined concerning the volume of data in the dataset. To do
this, the three simulated datasets were examined with sample sizes of 100, 1, 000, 10, 000,
100, 000, and 1, 000, 000.

After these analyses, we started analyzing the effect of quantization on BNSL
search space. The first analysis done was changing the quantization of variable A for the
dataset D4, considering 2, 4, 6, 8, 10, 12, 14, 16, and 18 quantization levels for it (meaning
that variable A could assume this number of states). Variable A has the ideal quantization
of 10, because dataset D4 is a discrete dataset with added noise, thus having an ideal value
of quantization (a specific number of states that the variable originally assumed). The
search spaces for each of these cases were plotted together for analysis. The quantization
was done using bins of equal width.

To further analyze how the variation of quantization affects the search space, the
score of the expected structure was plotted for different values of quantization of its
variables. Three types of variations were tested: varying one variable at a time, varying two
variables together, and varying all three variables together. The variables that were not
varied were fixed on the ideal quantization for the dataset D3 and on 200 for the dataset
XYZ. The datasets used for this and the following analysis are described in Table 9.

Table 9 – Datasets used for the landscape analysis.

Dataset Type Number of variables Expected Structure Variables’ Distribution
D3 Simulated discrete 3 Figure 8 Figure 7
D4 Simulated discrete 4 Figure 10 Figure 9

XYZ Simulated continuous 3 Figure 13 Figure 12
XYZ3 Simulated continuous 3 Figure 13 Figure 14

2T Simulated continuous 2 Figure 17 Figure 16
Source: Author

The results were interesting and to better understand them, the variation of Y for
XYZ was repeated plotting each component of the score to understand how each component
affected the final score value and its behavior with the varying quantization. Considering
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the results a proposal of method of choosing a quantization of variables was made. The
proposal was to choose the quantization on the peak of the curve as the quantization of the
variable and repeat the same for the other variables, varying the structure. An example of
this method and its problems are shown in the Results and Discussion (Chapter 4).

After that, different proposals using BNSL to choose a quantization for its variables
were tested. The base idea was to have different quantizations and bins or cut-point data
inserted as variables and use BNSL. The resulting structure would give the quantization or
cut-points to be used. For the BNSL in this test, the exhaustive search and blip (Bayesian
network Learning Improved Project)4 (SCANAGATTA et al., 2018a) were used. Exhaustive
search could only be used for a small number of variables, while blip is a BNSL algorithm
developed to deal with a high number of variables (SCANAGATTA et al., 2018a). These
proposals were tested for XYZ.

Another approach tried out was using Expectation Maximization (EM) coupled
with a structural score that penalized the zero count on the CPT of variables. Thus giving
a better score when the CPT was better filled. With that in mind, a variation of the BIC
score was made, where the penalization was done considering the number of empty spaces
on the CPT. The score should also enable the estimator to be changed so that the EM can
check if removing some points from the data could improve the score. The formulation is

MDLNonZero(G : D) =
n∑

i=1

qi∑
j=1

max
θij

[
ri∑

k=1
Nijk log(θ̂ijk(G)) − c · n_non_zeros(ij, θij)

]
(3.14)

where n is the number of variables; ri is the number of states of the variable Xi; qi

is the number of possible configurations of the parent set PaG(Xi) of Xi, where qi =∏
Xj∈P aG(Xi) rj; wij, j = 1, . . . , qi represents a configuration of PaG(Xi); and where

θ̂ijk(G) = N̂ijk + ε

N̂ij + εri

(3.15)

where, N̂ijk is the estimator of Nijk which the number of instances in the data set D where
the variables Xi take the value xik and the set of variables PaG(Xi) take the value wij

and N̂ij is the estimator of Nij which is the number of instances in the data set where
the variables in PaG(Xi) take their configuration wij, where Nij = ∑ri

k=1 Nijk. For both
estimators, they can either assume the true value of Nijk and Nij or zero. This way, outliers
values that make the score worse, as their contribution to the score is smaller than the
penalty they bring, can be disregarded by the score. ε is a very small value used to avoid
having θ̂ijk(G) = 0 which would make the log value be undefined. This score was tested
and a sensitivity test to the parameters was done using the datasets XYZ and XYZ3.
4 https://github.com/mauro-idsia/blip

https://github.com/mauro-idsia/blip
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Considering the EM, after some concept work and first tests the idea that seemed
most promising was doing the EM using BN learned from the discretized data, then adding
connections from each variable to its raw data variable. Then the discretized data is erased
for prediction. For the prediction, for each point, new CPTs are created for the raw data
variables by getting the density of a normal distribution modeled on the current points
included in each bin. This means, that it gets a probability of the point being predicted to
belong to each bin and that information is used to build the CPT of the raw variables and
do the prediction of the new discretized data. This method was tested for the XYZ and
2T datasets, plotting initial and final modeled normal distributions for each bin.

While testing and further developing this method, we had an idea for another
approach. This new approach was named CPT Limit-Based Quantization (CLBQ). A
flowchart detailing the method and giving an overview of the method can be seen in Figure
29. On CLBQ, a maximum size for the CPTs is determined considering the dataset size.
This is done by the following equation

M = Number of samples
η

(3.16)

where η is the desired number of samples for each element of the CPT and M is the
maximum CPT size. This limit is put in place to guarantee model quality considering
the data volume you have at your disposal, however, most of the time the quantizations
chosen by CLBQ allow for a higher model quality than the one instantiated by this limit.
Considering a uniform distribution, which would be the worst-case scenario, the value of
η = 3 was chosen to be used on the method.
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Figure 29 – Flowchart detailing CLBQ and giving an overview of the step it takes to
quantize data given a BN structure. All quantization values refer to the
number of states a variable can assume.
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Source: Ribeiro et al. (in press)

Then, with the CPT limit defined and given a BN structure, the maximum quanti-
zation of each variable is calculated using a heuristic method. In this method, each variable
quantization is initialized in 1, and one by one they are increased by 1. After each increase,
all the CPT sizes are calculated and checked if their size is still smaller than the size limit.
If a CPT surpassed the size limit, the variable that was increased is has their quantization
value fixed on the value prior to the increase. The CPT size is calculated by multiplying
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the quantization of the variable and its parents’ quantizations (ROHMER, 2020). This
process is stopped when all variables have their quantization value fixed on their limit
value.

The next step of the the process is to analyze the quantization values between 2
and the quantization limit and select a quantization that presents a trade-off between the
mean squared error (MSE) between the original values and the quantized values, and the
BN structure score. For this analysis, one variable is analyzed at each time. The variables
are selected according to the following priority list: i) higher maximum quantization value;
ii) greater number of parents. The selected variables the quantization values are used to
evaluate the BN score and the MSE beginning from qv = 2. For each quantization value
an angle θq is also calculated as follows.

θq = arctan
(

∆MSEq

∆Scoreq

)
(3.17)

∆MSEq = |MSEMIN − MSEq|
|MSEMIN − MSEMAX |

(3.18)

∆Scoreq = |ScoreMIN − Scoreq|
|ScoreMIN − ScoreMAX |

(3.19)

For the previous equations the values of MSEMIN and ScoreMIN are obtained by
using the quantization limit value of the variable. MSEMAX and ScoreMAX use qv = 2.
The interpretation of the angle θq can be seen in Figure 30.

Figure 30 – Example of what θq represents. BIC is the BN structure score used. The blue
curve is the values of MSE and BIC score for all the quantization values of the
variable under analysis. The quantization value under analysis is represented
in orange.

Source: Ribeiro et al. (in press)
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This analysis of increasing values of qv is stopped after ten qv values had θ ≤ 2. A
Pareto set is created from the evaluated quantization values and the smallest quantization
from the Pareto set with θ ≤ 2 is selected to be used as the variable’s quantization value.

When a quantization value is selected, the quantization value of that variable is
fixed on it and the maximum quantization value of the variables that have not been
analyzed yet is updated considering the now fixed value. For the score and MSE evaluation,
the quantization of the variables that are not under analysis is either on their fixed value
already selected or on the maximum quantization value found.

CLBQ was tested using four different datasets. The four datasets are described
in Table 10. The first test made was a functionality test where a step-by-step analysis of
CLBQ was done for it quantizing the variables of the D4 dataset considering its expected
structure.

Table 10 – Datasets used for the CLBQ test and analysis.

Dataset Type Number of variables Expected Structure Variables’ Distribution
D4 Simulated discrete 4 Figure 10 Figure 9

XYZ Simulated continuous 3 Figure 13 Figure 12
XYZ3 Simulated continuous 3 Figure 13 Figure 14

Weather Real 4 - Figure 18
Source: Author

The second test done was a comparison between CLBQ and Dynamic Discretization
(DD) algorithm proposed in Ciunkiewicz et al. (2022) for the D4, XYZ, XYZ3, and
Weather datasets. To compare the quantization chosen by CLBQ and DD, the quantization
histogram was plotted against the distribution of the variables, and the MSE of the
quantizations was compared.

In addition to that, a landscape analysis for BNSL using CLBQ was also done, to
check if the use of CLBQ in BNSL would keep the expected structure as one of the best
structures, such that it could be found by a search algorithm performing the BNSL while
using CLBQ to quantize the variables. An analysis of the structures with equal or higher
score than the score of the expected structure was also performed. In this analysis, the
structure, the quantization chosen by CLBQ, the score considering this chosen quantization,
and the score quantization considering the quantization selected for the expected structure
were analyzed.

In addition to that, an initial execution time analysis of CLBQ was done measuring
the mean and standard deviation (STD) of the execution time of CLBQ for each structure
when making the landscape analysis.
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3.5 Score Function

The initial idea for the development of this score was to bring the predictability
quality of BN to contrast with a classic score that analyzes the congruence between
structure and data. With this in mind, three initial scoring proposals called P1, P2, and
P3 were made. P1 is based on the prediction power (PP) measure which is calculated by
the equation:

PP = 1 − e−D (3.20)

where D is the relative entropy between the real values of the system and the predic-
tion error of the forecast made by the model (in our case, the model is the BN under
test) (SCALASSARA; MACIEL; PEREIRA, 2009). The relative entropy is also called
Kullback–Leibler divergence and can be calculated by

D =
∑
x∈X

P (x) log
(

P (x)
Q(x)

)
(3.21)

where P and Q are discrete probability distributions defined on the same sample space X.
The calculation is done by averaging the PP for several tests of the same model.

The P2 score is based on the difference between the distributions of the prediction
and the actual values. To do this, it calculates the average of the absolute differences
between the histograms of the prediction and the actual values. Both histograms use the
same bins.

Finally, the P3 score is based on the normalized mean error and is calculated using
the equation:

P3 =

N∑
i=1

|valuei−forecasti|
max(valuei)−min(valuei)

N · size(valuei)
(3.22)

where N is the number of outputs the system has, valuei is the actual value for
output i, and forecasti is the predicted value for output i.

A preliminary test was conducted using two synthetic systems described by the
summation of functions and employing the Hill Climbing learning method. In this test, the
three proposed scores were compared with each other and with the K2 and BDeu scores,
considering the average number of edges and the prediction accuracy rate of the outputs.

The two considered systems are composed of three output signals and one input,
which represents time. In the first system, the sum of a sine wave (signal A) and a square
wave (signal B) was used to generate signal C. The equations for these signals are as
follows:



93

A = 2 · sin
(6 · π

50 · t
)

(3.23)

B =

0, if 100k ≤ t < 50(2k + 1) for k ∈ N0

50, otherwise
(3.24)

C = A + B + U(0, 2) (3.25)

where U(0, 2) represents uniform noise ranging from 0 to 2.

The second system consists of two sine waves (signal A and B) and their sum
(signal C). Here are the equations:

A = sin
(3 · π

100 · t
)

(3.26)

B = sin
(

π2

100 · t

)
(3.27)

C = A + B + U(0, 0.2) (3.28)

where U(0, 0.2) represents uniform noise ranging from 0 to 0.2.
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4 RESULTS AND DISCUSSION

In this chapter, the results of the tests made are shown following the order on
which they were presented in the previous chapter.

4.1 AGAVaPS Behavior Test

The result of the AGAVaPS behavior test can be seen in Figure 31. As was expected
the population size increases greatly for the first iterations, until the number of removed
individuals reaches the number of individuals added to the population. This is a result of
the sampling of the life parameter happening with a mean value of five. After this point,
the population size reaches a kind of stability while AGAVaPS explores the search space
and has not stagnated the search in some regions.

Figure 31 – Evolution of different values during execution of AGAVaPS for the f1 test
function from the CEC2017 benchmark. The values are the population size
(Pop), number of new individuals added to the population (Children), number
of new individuals that were not added to the population because they were
duplicates of solutions already in the population (Duplicates), number of
individuals removed from the population (Killed), the expected number of
new individuals to be added to the population (Expected children) and the
best score (Score).

Source: Ribeiro and Maciel (2022)

After the stagnation happens, the population size starts to oscillate as a result of
the µmut update strategy that changes its value to the opposite size when an extreme value
is reached. This results in AGAVaPS oscillating between exploitation and exploration at
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this point of the search. When in the exploration phase, the population size increases, as
the exploration of new regions increases the diversity of the population and the generation
of duplicates is decreased. Meanwhile, in the exploitation phase, the population size is
decreased by the increase in the duplicate generation that results from exploring the same
regions and having a population that is composed of very similar solutions.

4.2 AGAVaPS CEC2017 Benchmark Test

The results of the comparison of AGAVaPS with other algorithms for the CEC2017
benchmark can be seen in Tables 11 and 12. In Table 11 the win/tie/loss results were
aggregated. In Table 12 the average and overall ranks are shown. Win is when an algorithm
performs better than the proposed algorithm. Tie, is when their performance was equivalent
and loss is when the algorithm had a worse performance than the proposed algorithm.
Free refers to the test cases with a free initial population, limited refers to the test where
the initial population was limited to a small part of the search space and both is the sum
of the free and limited cases.
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Table 11 – Aggregated win/tie/loss for the comparison of AGAVaPS with other algorithms
for the CEC2017 benchmark. “rank” is the comparison with AGAVaPS with
tournament size = 3 and “rank*” is the comparison with AGAVaPS with
tournament size = 1. Win is when an algorithm performs better than the
proposed algorithm. Tie, is when their performance was equivalent and loss
is when the algorithm had a worse performance than the proposed algorithm.
Free refers to the test cases with a free initial population, limited refers to the
test where the initial population was limited to a small part of the search space
and both is the sum of the free and limited cases.

GAVaPS GA PSO FFA BAT CS
Grid Free rank 30/00/00 30/00/00 02/02/26 00/05/25 00/00/30 00/00/30

rank* 30/00/00 30/00/00 00/01/29 00/00/30 00/00/30 00/00/30
Limited rank 30/00/00 30/00/00 00/00/30 00/05/25 00/00/30 00/00/30

rank* 30/00/00 30/00/00 00/00/30 00/00/30 00/00/30 00/00/30
Both rank 60/00/00 60/00/00 02/02/56 00/10/50 00/00/60 00/00/60

rank* 60/00/00 60/00/00 00/01/59 00/00/60 00/00/60 00/00/60
Best Free rank 03/00/27 07/02/21 12/00/18 15/02/13 01/00/29 21/01/08

rank* 01/00/29 03/10/17 13/00/17 17/03/10 01/00/29 23/01/06
Limited rank 00/00/30 14/01/15 03/00/27 16/03/11 00/01/29 16/01/13

rank* 00/00/30 09/08/13 03/00/27 16/01/13 00/01/29 16/00/14
Both rank 03/00/57 21/03/36 15/00/45 31/05/24 01/01/58 37/02/21

rank* 01/00/59 12/18/30 16/00/44 33/04/23 01/01/58 39/01/20
Time Free rank 00/00/30 00/00/30 00/00/30 00/00/30 00/00/30 00/01/29

rank* 00/00/30 28/00/02 01/00/29 00/00/30 18/02/10 10/01/19
Limited rank 00/00/30 00/00/30 00/00/30 00/00/30 00/00/30 00/01/29

rank* 00/00/30 26/01/03 01/00/29 00/00/30 09/04/17 07/00/23
Both rank 00/00/60 00/00/60 00/00/60 00/00/60 00/00/60 00/02/58

rank* 00/00/60 54/01/05 02/00/58 00/00/60 27/06/27 17/01/42
Source: Ribeiro and Maciel (2022)
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Table 12 – Mean and overall rank analysis for the comparison of AGAVaPS with other
algorithms for the CEC2017 benchmark. “AGAVaPS” refers to AGAVaPS
with tournament size = 3 and “AGAVaPS*” refers to with AGAVaPS with
tournament size = 1. Free refers to the test cases with a free initial population,
limited refers to the test where the initial population was limited to a small
part of the search space and both is the sum of the free and limited cases.

AGAVaPS AGAVaPS* GAVaPS GA PSO FFA BAT CS
Grid Free Average 4.03 3.00 1.00 2.00 5.73 4.87 7.70 6.57

Overall 4 3 1 2 6 5 8 7
Limited Average 4.00 3.00 1.00 2.00 6.37 4.83 7.70 6.17

Overall 4 3 1 2 6 5 7 6
Both Average 4.02 3.00 1.00 2.00 6.05 4.85 7.70 6.37

Overall 4 3 1 2 6 5 8 7
Best Free Average 2.93 3.37 5.77 3.87 4.03 2.80 6.53 1.67

Overall 2 3 6 4 5 2 7 1
Limited Average 2.87 2.83 6.67 3.00 5.77 2.67 5.80 2.53

Overall 1 1 3 1 2 1 2 1
Both Average 2.90 3.10 6.22 3.43 4.90 2.73 6.17 2.10

Overall 2 2 5 3 4 2 5 1
Time Free Average 1.00 3.83 7.77 2.17 6.03 6.40 3.40 4.33

Overall 1 4 7 2 6 6 3 5
Limited Average 1.00 3.37 7.70 2.17 5.97 6.33 3.53 4.37

Overall 1 3 6 2 5 5 3 4
Both Average 1.00 3.60 7.73 2.17 6.00 6.37 3.47 4.35

Overall 1 3 7 2 5 6 3 4
Source: Ribeiro and Maciel (2022)

These results show that AGAVaPS performed better than four algorithms out of six
when considering grid coverage, only losing to GAVaPS and GA. AGAVaPS, GAVaPS, and
GA had a better performance on the search space coverage than other algorithms, when
considering limited initial space, showing that these algorithms are capable of overcoming
poor starting conditions.

AGAVaPS also had a good performance when considering the best solution found,
having tied on the best performance for the test cases with limited initial space. Moreover,
when considering execution time, AGAVaPS was the fastest algorithm for all the test
cases.

4.3 AGAVaPS Feature Selection Test

The measurements for the score values and execution time can be seen in Table 13.
AGAVaPS has a higher mean, maximum, and minimum score than the GA. Thus, showing
that AGAVaPS had a better performance on both test cases in feature selection.
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Table 13 – Results of the feature selection test. “Low” refers to the binary low-dimension
dataset and “Mid” refers to the binary mid-dimension dataset.

Low Mid
AGAVaPS GA AGAVaPS GA

Score mean 0.2174 0.1471 0.3755 0.2326
std 0.0076 0.0080 0.0442 0.0364
min 0.2004 0.1287 0.2947 0.1702
max 0.2312 0.1739 0.4381 0.3773
p-value 3.90e-18 3.90e-18

Time mean 39.70 68.07 76.85 158.16
std 12.82 19.03 8.48 21.09
p-value 9.77e-14 3.90e-18

Source: Ribeiro and Maciel (2022)

When considering the execution time, AGAVaPS was faster than GA for all the
test cases. The p-value of the Wilcoxon rank-sum test shows that the performance of both
algorithms are different.

4.4 AGAVaPS BNSL Test

The results of the BNSL test can be seen in Table 14. AGAVaPS performed better
than HC and GA when considering the score, having a higher mean score and a very small
variance. When considering the execution time, HC was the best-performing algorithm,
followed by GA and AGAVaPS. The performance and consistency of the AGAVaPS were
remarkable and suggested that the AGAVaPS could be suitable to be used for BNSL.
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Table 14 – Results of the BNSL initial test using AGAVaPS, GA and HC.

Asia AGAVaPS GA HC
Score mean -11,107.29 -11,126.50 -11,130.00

std 3.64e-12 12.06 17.59
p-value 9.61e-18 3.83e-18

Time mean 78.40 18.73 0.49
std 4.91 0.23 0.09
p-value 3.90e-18 3.90e-18

Coronary AGAVaPS GA HC
Score mean -6,717.30 -6,718.24 -6,720.31

std 0.18 0.54 2.72
p-value 2.10e-17 5.34e-17

Time mean 78.26 8.59 0.21
std 4.25 0.11 0.03
p-value 3.90e-18 3.90e-18

Sachs AGAVaPS GA HC
Score mean -671,029.96 -672,021.98 -672,101.88

std 98.93 318.82 1,545.56
p-value 3.89e-18 5.91e-15

Time mean 156.47 871.73 22.50
std 4.32 16.76 2.39
p-value 3.90e-18 3.90e-18

Source: Ribeiro and Maciel (2022)

4.5 AGAVaPS Parameter Analysis for BNSL

The results of the AGAVaPS parameter analysis can be seen in Tables 15 and
16. Table 15 shows the mean values of the BIC score for each parameter combination
tested for each dataset. This mean score is obtained considering the highest score found
for each run. Table 16 shows the ranks of the parameter combinations for the results of
the previous table. From these tables, it can be seen that for many cases the differences
between combinations were minimal. The parameters with the best performance were
γ = 0.5 and µmut = 0.5. This parameter combination was used for the comparison test.
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Table 15 – Results of the parameter analysis made for AGAVaPS considering BNSL. The
mean value of the BIC score is shown for each combination of parameters. γ is
the reproduction rate and µmut is the initial mutation mean. The best values
for each dataset are marked in bold.

Dataset γ = 0.3 µmut = 0.1 γ = 0.3 µmut = 0.3 γ = 0.3 µmut = 0.5 γ = 0.5 µmut = 0.1 γ = 0.5 µmut = 0.3 γ = 0.5 µmut = 0.5
Alarm -237,238.73 -236,307.90 -236,341.33 -236,970.01 -237,319.48 -236,152.09
Asia -11,113.07 -11,113.09 -11,112.20 -11,113.08 -11,112.26 -11,111.43

Coronary -6,717.78 -6,718.03 -6,718.03 -6,717.71 -6,718.35 -6,717.65
Hailfinder -1,058,908.27 -1,056,481.45 -1,056,888.71 -1,055,479.40 -1,055,095.71 -1,053,574.88
Insurance -279,586.47 -279,470.58 -278,965.12 -279,035.66 -279,547.27 -279,198.98

Sachs -719,733.24 -720,224.68 -720,133.82 -720,506.56 -720,161.80 -720,588.25

Source: Ribeiro and Maciel (2023)

Table 16 – Results of the parameter analysis made for AGAVaPS considering BNSL. The
rank of each parameter combination is shown for each test case. The mean
rank is also shown on the line “Mean”.

Dataset γ = 0.3 µmut = 0.1 γ = 0.3 µmut = 0.3 γ = 0.3 µmut = 0.5 γ = 0.5 µmut = 0.1 γ = 0.5 µmut = 0.3 γ = 0.5 µmut = 0.5
Alarm 5 2 3 4 6 1
Asia 4 6 2 5 3 1

Coronary 3 5 4 2 6 1
Hailfinder 6 4 5 3 2 1
Insurance 6 4 1 2 5 3

Sachs 1 4 2 5 3 6
Mean 4.17 4.17 2.83 3.50 4.17 2.17

Source: Ribeiro and Maciel (2023)

4.6 Comparison of AGAVaPS, TABU and HC on BNSL

The results of the comparison of AGAVaPS, TABU and HC on BNSL can be seen
in Table 17 to 21. Tables 17, 18 and 19 show the mean, standard deviation and rank of
the F1, SHD and BSF metrics. Table 20 shows the same values for the BIC score and
Table 21 shows the same for the execution time.
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Table 17 – Results of the comparison of AGAVaPS, TABU and HC on BNSL. The values
of F1 (mean (std)) (Equantion 3.10) are shown for each dataset and algorithm
in the upper part of the table. The bottom part of the table shows the ranks
of each algorithm for each test case.

Datasets HC F1 TABU F1 AGAVaPS F1
Alarm 0.744 (0.049) 0.732 (0.054) 0.776 (0.026)
Asia 0.655 (0.135) 0.732 (0.118) 0.899 (0.032)

Coronary 0.892 (0.060) 0.879 (0.060) 0.859 (0.051)
Hailfinder 0.554 (0.053) 0.560 (0.043) 0.554 (0.042)
Insurance 0.683 (0.064) 0.661 (0.072) 0.659 (0.023)

Sachs 0.823 (0.099) 0.836 (0.120) 0.926 (0.021)
Sachs 2e4 0.843 (0.112) 0.850 (0.103) 0.932 (0.022)

Alarm rank 2 2 1
Asia rank 2 2 1

Coronary rank 1 1 1
Hailfinder rank 1 1 1
Insurance rank 1 1 1

Sachs rank 2 2 1
Sachs 2e4 rank 2 2 1
Mean Rank 1.57 1.57 1.00

Source: Ribeiro and Maciel (2023)

From the F1 score results it can be seen that the algorithms were tied for half of
the test cases. In addition to that, AGAVaPS had a better performance than HC and
TABU for all the test cases that were not a full tie. Furthermore, HC and TABU had the
same performance for all the test cases, thus the improvement from using a tabu list was
not observed.
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Table 18 – Results of the comparison of AGAVaPS, TABU and HC on BNSL. The values
of SHD (mean (std)) (Equation 3.11) are shown for each dataset and algorithm
in the upper part of the table. The bottom part of the table shows the ranks
of each algorithm for each test case.

Datasets HC SHD TABU SHD AGAVaPS SHD
Alarm 28.367 (6.253) 30.033 (7.418) 18.467 (2.045)
Asia 6.500 (2.872) 4.933 (2.421) 1.533 (0.499)

Coronary 1.867 (0.991) 2.100 (0.978) 2.400 (0.841)
Hailfinder 68.900 (10.543) 67.867 (8.671) 45.700 (2.923)
Insurance 34.167 (7.572) 36.967 (8.503) 30.533 (1.688)

Sachs 6.500 (3.704) 6.067 (4.546) 2.533 (0.763)
Sachs 2e4 5.700 (4.157) 5.467 (3.845) 2.367 (0.752)

Alarm rank 2 2 1
Asia rank 2 2 1

Coronary rank 1 1 1
Hailfinder rank 2 2 1
Insurance rank 2 2 1

Sachs rank 2 2 1
Sachs 2e4 rank 2 2 1
Mean Rank 1.86 1.86 1.00

Source: Ribeiro and Maciel (2023)

From the SHD metric results, it can be seen that AGAVaPS was the best-performing
algorithm, being the first-ranked algorithm for all test cases. Moreover, once more HC and
TABU were tied for all test cases.
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Table 19 – Results of the comparison of AGAVaPS, TABU and HC on BNSL. The values
of BSF (mean (std)) (Equation 3.12) are shown for each dataset and algorithm
in the upper part of the table. The bottom part of the table shows the ranks
of each algorithm for each test case.

Datasets HC BSF TABU BSF AGAVaPS BSF
Alarm 0.852 (0.045) 0.839 (0.040) 0.728 (0.018)
Asia 0.520 (0.203) 0.636 (0.162) 0.836 (0.045)

Coronary 0.748 (0.121) 0.719 (0.118) 0.728 (0.088)
Hailfinder 0.613 (0.053) 0.622 (0.040) 0.445 (0.055)
Insurance 0.642 (0.072) 0.621 (0.081) 0.563 (0.024)

Sachs 0.760 (0.144) 0.776 (0.175) 0.899 (0.030)
Sachs 2e4 0.785 (0.162) 0.797 (0.149) 0.911 (0.038)

Alarm rank 1 1 2
Asia rank 2 2 1

Coronary rank 1 1 1
Hailfinder rank 1 1 2
Insurance rank 1 1 2

Sachs rank 2 2 1
Sachs 2e4 rank 2 2 1
Mean Rank 1.43 1.43 1.43

Source: Ribeiro and Maciel (2023)

From the BSF metric results, it can be seen that all algorithms were tied when
considering the overall mean rank. Once more, HC and TABU were tied for all the test
cases. AGAVaPS was the best-performing algorithm for three test cases (Asia, Sachs
and Sachs 2e4) and tied with HC and TABU for Coronary. These results indicate that
AGAVaPS performed better on datasets with fewer nodes when considering BSF.
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Table 20 – Results of the comparison of AGAVaPS, TABU and HC on BNSL. The values
of the BIC score (mean (std)) are shown for each dataset and algorithm in the
upper part of the table. The bottom part of the table shows the ranks of each
algorithm for each test case.

Datasets HC Score TABU Score AGAVaPS Score
Alarm -2.232759e+05 (1.8e+03) -2.230440e+05 (1.7e+03) -2.275161e+05 (1.1e+03)
Asia -1.116352e+04 (1.4e+02) -1.113056e+04 (1.7e+01) -1.111352e+04 (4.7e+00)

Coronary -6.719031e+03 (1.4e+00) -6.719848e+03 (2.3e+00) -6.717676e+03 (6.9e-01)
Hailfinder -1.002213e+06 (6.5e+03) -1.001578e+06 (4.9e+03) -1.043391e+06 (6.7e+03)
Insurance -2.735643e+05 (4.4e+03) -2.749877e+05 (5.9e+03) -2.744720e+05 (1.1e+03)

Sachs -7.299457e+05 (9.5e+03) -7.302275e+05 (1.1e+04) -7.201837e+05 (1.4e+03)
Sachs 2e4 -1.466913e+05 (2.2e+03) -1.465159e+05 (1.9e+03) -1.447779e+05 (2.8e+02)

Alarm rank 1 1 2
Asia rank 2 2 1

Coronary rank 2 2 1
Hailfinder rank 1 1 2
Insurance rank 1 1 1

Sachs rank 2 2 1
Sachs 2e4 rank 2 2 1
Mean Rank 1.57 1.57 1.28

Source: Ribeiro and Maciel (2023)

From the BIC scores results, it can be seen that AGAVaPS was the best-performing
algorithm for four test cases (Asia, Coronary, Sachs and Sachs 2e4) and tied with HC and
TABU for Insurance. AGAVaPS performed better for datasets with 27 variables or less
when considering the BIC score. This may be a result of AGAVaPS not evaluating enough
structures. Again, HC and TABU had the same performance for all test cases.
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Table 21 – Results of the comparison of AGAVaPS, TABU and HC on BNSL. The values
of the execution time (mean (std)) are shown for each dataset and algorithm
in the upper part of the table. The bottom part of the table shows the ranks
of each algorithm for each test case.

Datasets HC Time TABU Time AGAVaPS Time
Alarm 88.35 (68.35) 77.44 (38.65) 18,319.84 (3,005.39)
Asia 0.55 (0.09) 0.53 (0.06) 357.56 (29.58)

Coronary 0.26 (0.04) 0.26 (0.02) 500.70 (30.09)
Hailfinder 1,128.75 (1,245.82) 1,233.54 (1,455.88) 15,699.09 (946.69)
Insurance 13.12 (1.22) 11.44 (0.94) 784.67 (34.78)

Sachs 71.80 (9.80) 66.62 (13.84) 418.22 (6.50)
Sachs 2e4 3.87 (0.61) 3.66 (0.60) 70.04 (3.81)

Alarm rank 1 1 2
Asia rank 1 1 2

Coronary rank 1 1 2
Hailfinder rank 1 1 2
Insurance rank 2 1 3

Sachs rank 1 1 2
Sachs 2e4 rank 1 1 2
Mean Rank 1.14 1.00 2.14

Source: Ribeiro and Maciel (2023)

From the execution time results, it can be seen that TABU was the fastest algorithm.
TABU was tied with HC for five out of seven test cases. HC and TABU being faster than
AGAVaPS was expected since both are simpler search algorithms.

4.7 BNSL Landscape Analysis

In Figure 32 the landscape analysis for the datasets D3, D4, D5, Lizards, Skin,
Haberman and Marks can be seen. In it, the BIC, BDeu and K2 scores are considered,
each one with a different color. The x-axis for each landscape plot is mapped to different
structures so that each score plot would be sorted by the score for each number of edges.
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Figure 32 – Landscape of the scores BIC, BDeu and K2 for the datasets D3, D4, D5,
Lizards, Skin, Haberman and Marks. The expected structure is marked by a
circle. For this plot, the x-axis is mapped to different structures for each score,
having the structure sorted by each score. Skin, Haberman and Marks are
real data datasets that don’t have an expected structure, thus the location of
the expected structure was not marked.
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In Figure 32 it can be seen that the expected structures were between the best
structures. In addition to that, it could be seen that BDeu and K2 had similar behavior.
This similarity was expected since K2 is a specific case of the BDeu score. In addition to
that, for the datasets with a smaller number of variables it could be seen that when there
is enough data, all scores behave considerably similarly, which was also expected.

In Figure 33 the landscape analysis for the datasets D3, D4, D5, Lizards, Skin,
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Haberman and Marks can be seen. In it, the BIC, BDeu and K2 scores are considered,
each one with a different color. The x-axis for each landscape plot is mapped to the
same structures for all scores. The structures were sorted considering the BIC score. In
it, it could be seen that despite having similar behaviors, BDeu and K2 present different
evaluations from structures and have their differences. Also, it could be seen that many
times the scores did not match which structure was the best.

Figure 33 – Landscape of the scores BIC, BDeu and K2 for the datasets D3, D4, D5,
Lizards, Skin, Haberman and Marks. For this plot, the x-axis is mapped to
the same structures for all scores. The structures were sorted considering the
BIC score.
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In Table 22 the match of best structures (number of scores that had the same best
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structure) for each number of edges can be seen. For some datasets, the scores agree a
lot and for others, they don’t. All the times when only 2 scores agreed, the match was
between K2 and BDeu.

Table 22 – Match of best structures between BIC, BDeu and K2 scores for each number
of edges.

Dataset Number of edges
1 2 3 4 5 6 7 8 9 10

D3 3 3 0 - - - - - - -
D4 2 3 2 0 0 0 - - - -
D5 2 3 3 3 2 0 0 0 0 0

Lizards 2 2 2 - - - - - - -
Skin 2 2 0 0 0 0 - - - -

Haberman 3 0 0 0 0 0 - - - -
Marks 2 0 0 0 0 0 0 0 0 0

Source: Author

After this first analysis, the variation of this landscape considering different dataset
sizes and different samples was explored. In Figure 34 the mean and standard deviation of
the scores when varying the samples of a dataset are shown. From it, it can be seen that
the samples included in a dataset greatly influence the resulting landscape and score. This
indicates that having a large dataset is important, to decrease this effect.
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Figure 34 – Landscape analysis with the variation of the scores resulting from having
different samples of the same system. The lighter-colored fill indicates the
standard deviation of the score and the dark-colored line indicates the mean
value of the score.
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In Figures 35 and 36 the effect of dataset size on the landscape can be seen. In
Figure 35 the landscape plots are done on the same y-axis, while in Figure 36 they are
plotted using different y-axis so that the individual behaviors can be seen. From the plots,
it can be seen that all datasets presented a change in the landscape with the size change.
The most obvious change was the range of the values of the score. There were also changes
in which structures were the best. In addition to that, BIC was the score that presented
less variation in behavior when the dataset size was changed.
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Figure 35 – Landscape analysis considering different dataset sizes and using the same
x-axis and y-axis.
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Figure 36 – Landscape analysis considering different dataset sizes and using the same
x-axis and different y-axis.
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4.8 BNSL Landscape Variation Considering Quantization

The result for the variation of the quantization of one variable for the D4 dataset
can be seen in Figure 37. From it, it can be seen that the variation of a single variable
quantization is capable of changing the overall range of values of the score and can make
small changes to the landscape, including changing the best structure by a slight score
value.



113

Figure 37 – Landscape variation when varying the quantization of variable A for the D4
dataset. The ideal quantization of A is 10.
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In Figures 38, 39 and 40 the variation of the landscape when varying one, two,
and three variables at the same time for the D3 dataset can be seen. For all of them the
quantization refers to the number of states a variable can assume. This dataset has a
determined ideal quantization of ten bins for A and B and nineteen for C. It is interesting
to observe that in all three figures for the ideal quantization values and its multiples an
improvement of the score occurs. It is also interesting to observe that for all of them, the
score for low quantization values tends to be higher.
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Figure 38 – Landscape variation when varying the quantization of one variable at a time
for the D3 dataset. The dashed line indicates the score when considering the
ideal quantization values.
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Figure 39 – Landscape variation when varying the quantization of two variables at a time
for the D3 dataset. The dashed line indicates the score when considering the
ideal quantization values.
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Figure 40 – Landscape variation when varying the quantization of all variables at the same
time for the D3 dataset. The dashed line indicates the score when considering
the ideal quantization values.
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In Figures 41, 42 and 43 the variation of the landscape when varying one, two, and
three variables at the same time for the XYZ dataset can be seen. From it, it can be seen
that differently from D3 which had an ideal quantization, on these landscapes no specific
quantization resulted in a sudden increase in the score. In addition to that, the general
behavior of the score being higher for lower quantization values remained.
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Figure 41 – Landscape variation when varying the quantization of one variable at a time
for the XYZ dataset.
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Figure 42 – Landscape variation when varying the quantization of two variables at a time
for the XYZ dataset.
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Figure 43 – Landscape variation when varying the quantization of all variables at the
same time for the XYZ dataset.
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When the Y variable, which is the middle variable on the expected structure, was
the only variable an upward variation was observed before the declining behavior. To
investigate what caused this behavior the components of the score were analyzed separately
while the quantization of Y was varied. This analysis can be seen in Figure 44. From it, it
can be observed that the contribution of the edge X → Y presents the general behavior of
descent as the quantization increases. Meanwhile, the contribution of the edge Y → Z

presents an increasing behavior that seems to converge to a value.
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Figure 44 – BIC score components when varying the quantization of one variable at a
time for the XYZ dataset.
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Thus, it can be seen that the decrease in the quantization of a successor is beneficial
for the score, while the increase in the quantization of a predecessor is beneficial to the
score, but only until a certain point. With this in mind, choosing the peak point of the
curve as the quantization of Y seems like a good quantization strategy.

In Figure 45 a representation of this method and its limitations is shown. The blue
curve was made with X and Z quantizations fixed on 200, for it the best quantization for
Y would be 10. However, if X and Z quantizations are fixed in 10, the curve becomes very
noisy and the best quantization for Y would be 8. However, since the curve becomes so
noisy, the method does not seem as trustworthy as it seemed at first glance.
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Figure 45 – Landscape for the XYZ dataset varying variable Y quantization with two
different fixed values for variables X and Z quantizations. The plots were made
with different y-axis, each axis is indicated by different colors, matched to the
color of the curve plotted on it.
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4.9 BNSL Quantization by Variable Transformation

The results of the tests from variable transformation to bins variables and cut-points
variables can be seen in Figure 46. The expectation for this method to work to reduce the
quantization would be to have many bins that relate to the same bin in other variables for
the bins variables case and to have cut points that did not connect to the other variables
for the cut-points variables. However, as it can be seen the results obtained did not match
that.
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Figure 46 – BN structure learned by Blip for the transformation of the variables to bins
and cut points for the XYZ dataset.
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The results of the transformation in variables of multiple quantizations for each
variable can be seen in Figures 47 and 48. From them, it can be seen that the result was
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exactly as expected, in which there is only one edge connecting one variable to the other.
However, it still lacks consistency of the result depending on the quantizations used.

Figure 47 – BN structure learned by Blip for the transformation to variables multiple
quantizations for the XYZ dataset.
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Figure 48 – BN structure learned by Blip for the transformation to variables multiple
quantizations for the XYZ dataset.
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4.10 MDL Non-Zero Score Test

The results of the application of the MDL Non-Zero score to the datasets XYZ
and XYZ3 can be seen in Figures 49 and 50. Figure 49 includes different values of the
parameters ε and c to give a better understanding of their effect. From the results, it’s
clear that the MDL Non-Zero score would rather that outliers values did not occur to
improve the score. This means that these values had their estimator N̂ijk set to zero and
that improved the score.
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Figure 49 – Results of the application of the MDL Non-Zero score to the XYZ dataset
considering different values of ε and c. The values of the CPT that were
considered as relevant by MDL Non-Zero are marked in yellow and the values
that the MDL Non-Zero score would rather have not existed to improve the
score value are marked in orange.
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Figure 50 – Result of the application of the MDL Non-Zero score to the XYZ3 dataset
considering ε = 0.1 and c = 0.5. The values of the CPT that were considered
as relevant by MDL Non-Zero are marked in yellow and the values that the
MDL Non-Zero score would rather have not existed to improve the score value
are marked in orange.
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4.11 EM BN Test

The results of the EM BN tests for the XYZ dataset only using the X and Y
variables and for the dataset 2T can be seen in Figures 51 and 52. In both of them, it can
be seen that the distributions used at the start and end of the execution have differences,
indicating the changing of points from one bin to another. However, the changes a very
slight and do not significantly change the number of bins used.

Figure 51 – Normal distributions used to model each bin at the start and finish on the
EM BN test for the XYZ dataset considering only the X and Y variables.
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Figure 52 – Normal distributions used to model each bin at the start and finish on the
EM BN test for the 2T dataset.

−4 −3 −2 −1 0 1 2 3 4
0.0

0.2

0.4

0.6
Start

−4 −3 −2 −1 0 1 2 3 4
0.0

0.2

0.4

0.6
Finish

(a) X

−6 −4 −2 0 2 4 6
0.0

0.1

0.2

0.3

Start

−6 −4 −2 0 2 4 6
0.0

0.1

0.2

0.3

Finish

(b) Y

Source: Author

4.12 CLBQ Step-by-step Test

The result of the step-by-step test of CLBQ for the D4 dataset can be seen in
Figure 53. On it, the process of CLBQ can be better seen and understood. For each
step, the variable selected and its MSE, BIC score, and Pareto set plot are shown. The
quantization value and the angle θ for the selected quantization and its neighbors are also
shown on the Pareto plot.
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Figure 53 – Step-by-step test of CLBQ for the D4 dataset and the structure used on
it. On the BICxMSE plot, the Pareto front found by CLBQ is plotted, and
the number of bins and angle θ are presented for the selected quantization
(highlighted in bold letters) and its first neighbors. At the top of each chart,
the number of each step is shown in bold letters and which variable is being
analyzed on it. BIC is the structure score, and MSE is the mean squared
error between quantized data for a given number of bins and the original data.
Number of bins refers to the amount used to quantize the variable. Pareto
refers to the members of the Pareto set found. Chosen refers to the selected
quantization value from the Pareto set.
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4.13 CLBQ Performance Test

The results of the quantization chosen by CLBQ and DD and their MSE for all
datasets can be seen in Tables 23, 24, 25 and 26. For the Weather dataset three structures
were considered generating different quantizations. The first structure considered was the
structure learned using the PC algorithm that can be seen in Figure 56. The other two
structures are the best scoring structures for the Weather dataset with 3 and 4 edges,
which can be seen in Figure 61b. The comparison of the histogram of the quantizations
and the variables’ actual distribution can be seen in Figures 54 and 57 for CLBQ and in
Figures 55 and 58 for DD. From these results, it can be seen that CLBQ presented better
modeling of the variables when considering MSE and also had more interesting histograms.
The results in Figure 54c are especially curious since CLBQ chooses a quantization that
models each peak of the distribution with one bin.

Table 23 – Results comparing the quantization values and MSE of the ideal quantization,
the quantization obtained by CLBQ, and the quantization obtained by DD for
the D4 dataset.

qA qB qC qD MSEA MSEB MSEC MSED

Ideal 10 10 19 19 0.120 0.126 0.100 0.097
CLBQ 13 13 11 12 0.069 0.074 0.298 0.245

DD 9 13 11 4 5.763 0.988 1.334 2.208
Source: Ribeiro et al. (in press)

Table 24 – Results comparing the quantization values and MSE of the quantization ob-
tained by CLBQ and the quantization obtained by DD for the XYZ dataset.

qX qY qZ MSEX MSEY MSEZ

CLBQ 9 10 10 0.095 0.788 3.140
DD 4 4 4 0.502 5.118 20.403

Source: Ribeiro et al. (in press)

Table 25 – Results comparing the quantization values and MSE of the quantization ob-
tained by CLBQ and the quantization obtained by DD for the XYZ3 dataset.

qX qY qZ MSEX MSEY MSEZ

CLBQ 5 11 12 0.010 0.254 0.912
DD 4 4 4 0.470 2.323 10.997

Source: Ribeiro et al. (in press)
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Table 26 – Results comparing the quantization values and MSE of the quantization ob-
tained by CLBQ for three different structures and the quantization obtained
by DD for the XYZ dataset.

qTins qRHins qRad qWspeed MSETins MSERHins MSERad MSEWspeed

QP C 14 14 14 13 0.241 3.261 26,498.219 0.075
Q3 13 13 11 11 0.281 3.557 43,433.104 0.105
Q4 12 13 11 11 0.327 3.557 43,433.104 0.105
DD 4 6 11 8 4.759 32.588 73,400.493 0.118

Source: Ribeiro et al. (in press)
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Figure 54 – Plot of the histogram of the quantization found by CLBQ for the expected
structure and the actual variables’ distribution for the D4, XYZ, XYZ3
datasets. The variables’ distribution is shown in lighter-colored dashed lines.
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Figure 55 – Plot of the histogram of the quantization found by DD and the actual variables’
distribution for the D4, XYZ, XYZ3 datasets. The variables’ distribution is
shown in lighter-colored dashed lines.
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Figure 56 – BN structure found using the PC algorithm for the Weather dataset. Tins
refers to the current temperature, Wspeed refers to the wind speed, RHins
refers to the current relative humidity and Rad refers to the current radiation.
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Tins Wspeed

Source: Ribeiro et al. (in press)
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Figure 57 – Plot of the histogram of the quantization found by CLBQ for the best structure
found with 3 and 4 edges and the structure found using PC, and the actual
variables’ distribution for the Weather dataset. The variables’ distribution is
shown in lighter-colored dashed lines.
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Figure 58 – Plot of the histogram of the quantization found by DD and the actual variables’
distribution for the Weather dataset. The variables’ distribution is shown in
lighter-colored dashed lines.
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The landscape analysis with different sample sizes can be seen in Figure 59 and
the mean and STD execution time of CLBQ from making these landscapes can be seen in
Table 27. From the landscape it can be seen that there was a consistency in selecting the
same structures as the best ones despite the change in dataset size and the variance of the
landscape affects structures with worse scores. This consistency of the best suggests that
the use of CLBQ on BNSL is possible.
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Figure 59 – Landscape plots made for the BIC score while using CLBQ considering different
dataset sizes. The dataset sizes used were 103, 104, and 105 samples.
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Table 27 – Mean and STD execution time of CLBQ when building the landscape plots
with different dataset sizes. All values are in seconds and the results are shown
in the format mean (std).

Dataset Size = 103 Size = 104 Size = 105

D4 1.55 (0.66) 6.69 (1.87) 55.88 (9.98)
Weather 1.32 (0.66) 2.93 (0.86) 10.56 (1.92)

XYZ 1.29 (0.53) 4.02 (0.45) 29.73 (2.38)
XYZ3 1.17 (0.36) 3.70 (0.35) 28.48 (2.30)

Source: Ribeiro et al. (in press)

Considering the execution time, the execution time of CLBQ varies a lot between
dataset sizes and between datasets. This discrepancy is likely attributed to the evaluation
of the score and the distributions of variables. The BIC score utilized considers the number
of data points for each element in every CPT, leading to an evaluation time dependent on
the dataset size. Additionally, variations in the distributions of variables could account for
differences between datasets, as the number of quantization values assessed until a trade-off
is reached varies based on the variables’ distribution, influencing both the structural score
and the MSE values employed in CLBQ. While the time required for CLBQ to select
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quantizations may not be as minimal as desired, it proves to be quite efficient for a
single-structure evaluation. Despite potentially contributing to an increased running time
in the context of search and score BNSL, this additional time could be considered valuable
in exchange for having the quantization tailored for each structure, especially given the
inherently time-intensive nature of the BNSL process.

The analysis of the location of the expected structure on the CLBQ landscape can
be seen in Figure 60. It is observed that for dataset D4, the expected BN proved to be the
optimal structure with three edges. However, for datasets XYZ and XYZ3, the expected
BN, while not the most favorable, still exhibited a commendable score. In the case of the
Weather dataset, the expected BN derived from the PC algorithm did not align with the
best structure identified in the landscape analysis. This discrepancy can be elucidated by
the BIC score’s penalizing mechanism, which discourages the addition of edges unless it
significantly enhances data description (CAMPOS, 2006). Consequently, for the specific
dataset in question, a model complexity balanced with data description was achieved with
just 3 or 4 edges. BNs with 5 or 6 edges incurred higher penalization due to increased
complexity, resulting in a lower score compared to the optimal BNs with 3 or 4 edges.
An examination of the superior structures was undertaken to discern which structures
outperformed the expected ones.
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Figure 60 – Location of the expected structure or the structure learned using PC for all
datasets. The location is marked by red dashed lines. This landscape was built
using the whole dataset and CLBQ was used to quantize the data for each
structure.
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The results of this analysis of the best structures can be seen in Figures 61 and 62.
From it, it is evident that for dataset D4, the only BN with a score matching that of the
expected structure is the one with a permutation of one of the edges from the expected
structure. This underscores the suitability of using CLBQ in the search and score process
of BNSL, as the expected structure could be selected given a robust search algorithm.
Regarding XYZ and XYZ3, it is observed that, under the same quantization, these
structures exhibit either identical or very close scores to those of the expected structure.
Notably, the quantization values are remarkably similar, aligning with expectations given
the minor limitations on structure and the substantial dataset size. This suggests that
subtle variations in variable quantization impact the BIC score, leading to a mix of the best
structures. Furthermore, many structures with equal or higher scores are permutations of
edges from the expected structure. This is promising, as the direction of edges in a BN does
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not necessarily follow causal relationships (LUO; ZHAO; DU, 2019). Thus, while it may
not achieve the same level as observed for dataset D4, it still indicates the appropriateness
of employing CLBQ for BNSL.

Lastly, for the Weather dataset, all the best structures feature edges indicating
dependencies present in the PC structure, although with varying orientations. This implies
that these connections represent crucial dependencies for data description based on the
BIC score. Considering the characteristics of the BIC score and the identified optimal
BNs, these results are promising and suggest a favorable potential for using CLBQ in BN
structure learning.
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Figure 61 – Analysis of BNs with scores higher or equal to the score of the expected BN. X
is the numeric value assigned to the structure on the x-axis for the landscape
plot. The quantization selected is shown in front of the variables’ names. BIC
CLBQ is the score found using CLBQ quantization for that structure and BIC
Expected is the score found by using the quantization found for the expected
structure.
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Figure 62 – Analysis of BNs with scores higher or equal to the score of the expected BN. X
is the numeric value assigned to the structure on the x-axis for the landscape
plot. The quantization selected is shown in front of the variables’ names. BIC
CLBQ is the score found using CLBQ quantization for that structure and BIC
Expected is the score found by using the quantization found for the expected
structure.
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4.14 BNSL Scores Test

The results of the preliminary test conducted with the predictability scores P1,
P2, and P3 can be seen in Table 28. From them, we can observe that for both systems,
the proposed scores did not show good performance. However, this can be explained by
the fact that many times the selected RBs had either no edges or only one edge. This
indicates that one possibility is that the Hill Climbing method may not be well-suited for
the proposed scores, as it adds one edge at a time. A method that tests already structured
RBs may perhaps achieve better results.

Table 28 – Results of the predictability scores test.

System Score Edges
mean

Hit
rate A

Hit
rate B

Hit
rate C

1

K2 4 1.00 1.00 0.53
BDeu 3 1.00 1.00 0.53

P1 0 0.08 0.50 0.14
P2 0 0.08 0.50 0.14
P3 2 1.00 0.50 0.52

2

K2 3 0.57 0.91 0.57
BDeu 1 1.00 1.00 0.57

P1 0 1.00 1.00 0.00
P2 1 1.00 1.00 0.00
P3 2 0.57 0.86 0.00

Source: Author
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5 CONCLUSIONS

Many aspects and methods for BNSL were covered in this thesis. Considering
the proposed algorithm to perform the search and score BNSL AGAVaPS, from its
behavior test it was seen how the algorithm performed its search varied from exploration
to exploitation. The test with the CEC2017 Benchmark showed that AGAVaPS had a
competitive performance against other well-established search algorithms, having a good
coverage of the search space without losing the quality of the solution, which could make
it a good choice for problems with huge search spaces or where the search space coverage
is of interest.

The feature selection test corroborates the suitability of the use of AGAVaPS for
problems with huge search spaces, with AGAVaPS being the best-performing algorithm
on it. Moreover, the preliminary test of AGAVaPS on BNSL also had AGAVaPS as the
best-performing algorithm on it. In addition to that, AGAVaPS presented a very small
STD showing that AGAVaPS was capable of finding the best solutions even with different
starting conditions.

The parameter analysis of AGAVaPS for BNSL showed that γ = 0.5 and µmut = 0.5
were the best parameters to be used for BNSL considering the datasets used, although
the difference in performance between the parameters combination was small. In the
comparison test of AGAVaPS, TABU, and HC on BNSL it was seen that HC and TABU
performed the same for almost all metrics, only having a small difference in execution
time. Meaning that no relevant improvement of performance resulted from the use of a
tabu list was seen on the tests performed.

Moreover, AGAVaPS performed better for the F1 score, SHD, and BIC score. For
the F1 score and SHD, AGAVaPS was the best-ranked algorithm for all tests. For the BIC
score, AGAVaPS was ranked first for the test cases with 27 nodes or less. This may be a
result of a lack of enough evaluations for AGAVaPS to properly cover the search space.
For BSF, all algorithms tied in the mean rank with AGAVaPS performing better for the
test cases with a smaller number of nodes.

When considering the execution time, the result was that HC and TABU were
faster than AGAVaPS. This result was expected, as TABU and HC are simpler algorithms
than AGAVaPS and were projected to be fast. Even though AGAVaPS takes more time
to perform the search it is still an interesting algorithm for BNSL because the BNSL is
usually only performed once and taking more time to learn a better structure is a trade-off
that can be of interest.

On this comparison test, AGAVaPS had a poorer performance than the other
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algorithms for test cases with a higher number of nodes for two metrics. Thus, future work
on AGAVaPS would be to study ways to improve its performance in datasets with a higher
number of nodes, considering making changes to parameter values, problem definition,
and mutation and reproduction processes. Furthermore, the use of parallelism and code
optimization also need to be explored to improve the execution time.

For the BNSL landscape analysis, the differences and convergence of behavior for
the scores were observed. The convergence of behavior happens when there is enough data
for that, so for the datasets with 3 edges, the scores had similar landscapes, while for the
datasets with more variables presented different evaluations of structures between the
scores.

When looking at the variation of the landscape due to samples of the dataset and
dataset size, it was seen that the samples of a dataset can greatly influence the score
landscape, thus having a big dataset is important. The dataset size affects the range of the
values of the scores and also introduces differences in the score landscape, which is most
likely related to having more different samples in the dataset, and as seen this affects the
landscape.

The test varying the quantization of one variable showed that the quantization
of one variable can already change the score range and also add small changes to the
landscape. When considering a fixed structure and analyzing how the varying quantization
of the variables affected the score of the structure, it was seen that in cases where an
ideal quantization exists, peaks of the score will occur for that ideal quantization and its
multiples. However, when there is not a specific ideal quantization this behavior was not
observed.

For both cases, it was observed a tendency to decrease the score resulted from
increasing the quantization value. Moreover, for the continuous variables test it was
observed that the BIC score component of a parent to a descendant when varying the
quantization of the parent improved as the quantization increased until reaching a limit.
The quantization method based on this characteristic presented inconsistency based on
the quantization value of other variables.

The approach of quantization choice by BNSL using variables of bins, cut-points,
and variables quantization also had problems with inconsistency. Specifically, the approach
using bins and cut-points did not have the expected result to decide a better quantization,
and the one using variables quantization had interesting results, however was not very
consistent.

When looking at the MDL Non-Zero score, the score produced the results expected
and was capable of identifying points that the existence worsened the score. This capacity
to identify outliers is very interesting. The EM BN quantization method presented the
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interesting capacity of changing points of bins, however, these changes were not big enough
to significantly alter the quantization and reduce the number of bins.

Considering the CLBQ tests, for the comparison of quantization using MSE and
histogram, CLBQ did not find the ideal quantization for the D4 dataset test case, however,
for all cases it found quantizations that had good MSE and modeled well the variables’
distribution. CLBQ performed better than DD for all the test cases and showed its capacity
to balance data fidelity, model quality, and structure score.

For the landscapes with different dataset sizes, no major variances were observed
on the landscapes, showing that the use of CLBQ was resilient to dataset size, maintaining
the best networks as the best. This indicated that the use of CLBQ on BNSL is possible.

Regarding the execution time, the CLBQ execution time varies with the dataset
size and between datasets. The execution time for one structure is relatively small, however,
for its application of BNSL, the trade-off between the added time and the benefit of having
the quantization done for each structure needs to be considered.

When considering the location of the expected structure on the landscape, not
always the expected structure was the best scoring structure, however, the best structure
had the same dependencies in different directions. Since the direction of the dependencies
is not an issue for the BN, this indicated that the application of CLBQ on BNSL is possible
and would return a good BN.

The limitations of CLBQ detected by the tests are that it does not guarantee to
return the ideal quantization and that CLBQ is very dependent on data volume, with a
small data volume CLBQ will sacrifice data fidelity in exchange for model quality.

Addressing the predictability scores, the test showed very poor performance of all
scores, especially for P1 and P2. In addition to that, the method of evaluation of these
scores is quite time-consuming. Thus, there is a need to study other possibilities and
formulations for a score based on predictability.

The next steps are to improve the AGAVaPS coding, to improve its execution time.
Also, to explore other problems’ definitions for the BNSL problem to improve AGAVaPS
performance for larger problems with a higher number of variables. Finally, run more
extensive tests with the proposed algorithm (AGAVaPS and CLBQ) to further confirm
the results obtained and to further analyze their performance.
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