• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.18.2017.tde-07062017-100654
Document
Author
Full name
Marcelo Aparecido Carrapato
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2016
Supervisor
Committee
Flauzino, Rogério Andrade (President)
Seixas, Falcondes José Mendes de
Silva, Jorge Luiz e
Title in Portuguese
Sistema de inferência Fuzzy para avaliação de defeitos elétricos em transformadores de potência utilizando análises cromatográficas
Keywords in Portuguese
Análise cromatográfica
Identificação de falhas
Óleo isolante
Sistema Fuzzy
Transformadores de potência
Abstract in Portuguese
O objetivo deste trabalho de pesquisa foi de fazer a modelagem por meio de sistemas de inferência Fuzzy da análise da concentração dos gases dissolvidos no óleo mineral isolante e desta forma diagnosticar defeitos elétricos internos em transformadores de Potência. Assim sendo o sistema proposto deve fornecer respostas que auxiliem no diagnóstico de falhas e avarias nos interiores dos transformadores e no processo de tomada de decisões no acompanhamento da evolução destas falhas de forma a aumentar a confiabilidade em relação à utilização dos métodos individualmente. O sistema desenvolvido baseou-se na pesquisa acadêmica de normas e técnicas mais utilizadas na literatura que relacionam o gás dissolvido no óleo mineral isolante com a falha. O sistema proposto foi validado por meio de dados reais de dois transformadores pilotos e vários sistemas Fuzzy foram construídos, cada um especialista em um determinado método. Os resultados encontrados mostraram-se compatíveis com aqueles obtidos pelos métodos convencionais comprovando que a ferramenta pode ser utilizada como suporte para uma análise rápida e confiável do estado do óleo isolante dos transformadores.
Title in English
Fuzzy inference system for electrical defect assessment in power transformers using chromatographic analysis
Keywords in English
Chromatographic Analysis
Fuzzy system
Insulating oil
Power transformers
Troubleshooting
Abstract in English
The objective of this research was to model by analyzing the fuzzy inference systems the concentration of gases dissolved in the insulating oil and diagnosing thereby internal defects in electrical power transformers. Therefore the proposed system should provide answers that help in the diagnosis of faults and malfunctions in the interiors of the transformers and in the decision-making process in monitoring the evolution of these failures in order to increase the reliability regarding the use of the methods individually. The system developed was based on academic research standards and techniques commonly used in the literature relating the gas dissolved in the insulating oil with failure. The proposed system was validated by real data of two pilots transformers and various Fuzzy systems were built, each an expert in a particular method. The results were compatible with those obtained by conventional methods proving that the tool can be used as support for quick and reliable analysis of the insulating oil condition of transformers.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Marcelo.pdf (2.28 Mbytes)
Publishing Date
2017-06-12
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.