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RESUMO

BUENO, J. N. A. D. Métodos Recursivos Robustos para Sistemas Discretos Sujeitos

a Incertezas Politópicas. 2023. Tese de Doutorado (Programa de Doutorado) – Escola de

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2023.

O problema de regulação quadrática linear para sistemas discretos tem sido assunto de

pesquisa desde suas primeiras aparições na literatura nos anos 1960. Desde então, difer-

entes formulações e aplicações surgiram com objetivo de atender a uma ampla gama de

casos teóricos e práticos, como sistemas submetidos aos efeitos de variações paramétri-

cas desconhecidas. Mais especificamente, nesta tese nós investigamos o problema de

regulação quadrática para sistemas discretos lineares e com saltos Markovianos sujeitos

a incertezas politópicas. Nós definimos os problemas em termos de otimização min-max

baseada em mínimos quadrados regularizados incertos e funções de penalidade. Nós

consideramos os casos onde incertezas afetam matrizes do modelo e probabilidades de

transição, e também sistemas com saltos Markovianos com cadeia não observada. Para

cada cenário, nós elaboramos uma função de custo quadrática para acomodar todos os

vértices do politopo de uma maneira unificada enquanto mantemos a convexidade dos

problemas de otimização. As soluções são recursivas e produzem ganhos de realimen-

tação de estado robustos com esforço computacional relativamente menor que o esforço

despendido em abordagens baseadas em desigualdades matriciais lineares. Expandindo

as estruturas matriciais das soluções, conseguimos formas reduzidas equivalentes que

são mais adequadas para análises de convergência e estabilidade através de equações

algébricas de Riccati. Então, considerando que algumas condições de detectabilidade e

estabilizabilidade sejam satisfeitas, os ganhos de realimentação garantem a estabilidade

dos sistemas em malha fechada associados. O método proposto não exige ajuste adicional

de parâmetros durante a operação, o que é desejável em aplicações embarcadas e em

sistemas com muitos vértices e modos Markovianos. Ademais, nós providenciamos exemp-

los numéricos e de aplicações para validarmos nossos resultados e para compará-los com

outros controladores disponíveis na literatura de controle robusto.

Palavras-chave: Regulador quadrático linear. Controle robusto. Incertezas politópicas. Sis-

temas lineares discretos. Sistemas sujeitos a saltos Markovianos. Equações algébricas de

Riccati. Otimização.





ABSTRACT

BUENO, J. N. A. D. Robust Recursive Frameworks for Discrete-Time Linear Systems

Subject to Polytopic Uncertainties. 2023. Doctoral thesis (Doctorate Program) – São

Carlos School of Engineering, University of São Paulo, São Carlos, 2023.

The linear quadratic regulation problem for discrete-time systems has been subjected to

research since its first appearance in the literature in the 1960s. Thereafter, different formula-

tions and applications came to light to accommodate a wide range of theoretical and practical

cases, such as systems undergoing the effects of unknown parametric variations. More

specifically, in this thesis, we investigate the quadratic regulation problem for discrete-time

linear and Markov jump linear systems subject to polytopic uncertainties. We define the

problems regarding min-max optimization based on regularized least squares with uncertain

data and penalty functions. We consider the cases where uncertainties affect the model

matrices and transition probabilities and Markov jumps systems with unobserved chains. For

each scenario, we designed a quadratic cost function to take all polytopic vertices into ac-

count in a unified manner while keeping the optimization problems’ convexity. The recursive

solutions yield robust state feedback gains with a relatively lower computational burden if

compared, for instance, with linear matrix inequalities approaches. By expanding the matrix

structures of the solutions, we achieved equivalent reduced forms that are more adequate

for convergence and stability analyses based on algebraic Riccati equations. Then, provided

that some detectability and stabilizability conditions hold, the feedback gains ensure the

stability of the associated closed-loop systems. The proposed method requires no further

parameter tuning during operation, which is desirable in embedded applications and in

systems with many vertices and Markov modes. Furthermore, we provide numerical and

application examples to validate our results and to compare them with other approaches

available in the literature on robust control.

Keywords: Linear quadratic regulator. Robust control. Polytopic uncertainties. Discrete-time

linear systems. Markov jump systems. Algebraic Riccati equations. Optimization.
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1 INTRODUCTION

Since its appearances in the literature in the 1960s and 1970s (KALMAN, 1960a),

(KALMAN, 1960b), (DORATO; LEVIS, 1971), the linear quadratic regulation problem (LQR,

for short) became a very visited subject regarding control systems. From then on, researchers

evolved the LQR formulations to accommodate different practical applications (JAEN et al.,

2006), (KO; JATSKEVICH, 2007), (FERRESE et al., 2011), (GATSIS; RIBEIRO; PAPPAS,

2014), (WANG et al., 2019), and theoretical cases (JI; CHIZECK, 1990), (BEMPORAD et

al., 2002), (CAO; REN, 2010), (GOMMANS et al., 2014). In this sense, researchers turned

their efforts to uncertainty, sensitivity analyses, and disturbance rejection on these class

problems, given the need to sidestep the performance degradation generated by unknown

parameters and exogenous inputs (SEZER; SILJAK, 1981), (SWORDER, 1977). The robust

LQR problem is still a subject of research efforts and relates to different theoretical and

practical cases (see, for instance, Petersen and McFarlane (1994), Chizeck et al. (1986),

Polyak and Tempo (2001), Tzortzis, Charalambous and Hadjicostis (2020)).

In special, Terra, Cerri and Ishihara (2014) and Cerri and Terra (2017) presented re-

cursive frameworks for the robust recursive linear quadratic regulation problem (RLQR for

short) regarding discrete-time linear and Markov jump linear systems with norm-bounded

uncertainties. The authors formulated min-max optimization problems regarding regularized

least-squares and penalty functions, such that some quadratic cost function is minimized

whilst the system undergoes the worst case of uncertainties. They obtained, thereafter,

optimal robust solutions defined in terms of symmetric matrix arrangements and Riccati

equations, which were later applied with success on different real-world systems (JUTINICO

et al., 2017), (NAKAI et al., 2018), (BARBOSA et al., 2019), (BENEVIDES et al., 2019),

(BUENO et al., 2019), (MORAIS et al., 2020), (MARCOS et al., 2022).

In this work, on the other hand, we consider the robust linear quadratic regulation of

discrete-time dynamic systems whose regions of uncertainties are polytopes. In the following

sections, we will introduce the problems under study in this thesis and provide a literature

review on robust control for the classes of dynamic systems subject to polytopic uncertainties

we are interested in.

1.1 Discrete-Time Linear Systems Subject to Polytopic Uncertainties

In the past few decades, the characteristics of linear systems undergoing the effects

of polytopic uncertainties drew the attention of many academics. Undoubtedly, this class

of systems has proven to be helpful in a wide range of practical applications, including

power systems (CUI et al., 2017), (SADABADI; SHAFIEE; KARIMI, 2018), electronic circuits

(ZHAO et al., 2014), robotic manipulation (YU; CHEN; WOO, 2002), (JABALI; KAZEMI,

2017), autonomous navigation of ground vehicles (NGUYEN et al., 2018), (HANG; CHEN;
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LUO, 2019), aircraft systems (FENG et al., 2005), (HUANG et al., 2013), among others.

Not surprisingly, the success of these implementations is due to advancements in con-

trol theory for dynamic systems in polytopic domains. Oliveira, Bernussou and Geromel

(1999) presented a highly relevant result on the robust stability of discrete-time polytopic

systems. Inserting a matrix variable into the well-known Lyapunov function yielded a less

conservative manner of obtaining parameter-dependent Lyapunov functions via linear matrix

inequalities (LMI)-based optimization problems. Indeed, this method laid the foundations for

further research towards novel conditions for the stability of polytopic systems (DAAFOUZ;

BERNUSSOU, 2001), (RAMOS; PERES, 2001), (GEROMEL; OLIVEIRA; BERNUSSOU,

2002), (GERSHON; SHAKED, 2006), (DONG; YANG, 2007), (MORENO-MORA; BECKEN-

BACH; STREIF, 2022), (ZHU; ZHENG, 2020), (CAO; LIU; LU, 2022).

Among the numerous approaches found in the literature on robust control, H2 and H∞
feedback synthesis became renowned for treating parametric uncertainties varying inside

convex hulls. Caigny et al. (2010), for instance, delineated exponential stability conditions

through parameter-dependent LMI to obtain an upper bound for H2 and H∞ performance

criteria. Also, the authors provided systematic procedures for the computation of gain-

scheduled static output feedback controllers and validated their claims in a vibroacoustic

system. Geromel, Korogui and Bernussou (2007) achieved less conservative LMI conditions

for the guaranteed cost H2 and H∞ control problems. In addition, regarding computation

speed, the Frank-Wolfe algorithm for quadratic programming (FRANK; WOLFE, 1956) is

pointed out to take advantage of the convex structure of the defined problem. Hosoe,

Hagiwara and Peaucelle (2018) presented a noteworthy analysis on robust stability and

robust stabilization of discrete-time systems expressed by random polytopes. In this study,

an auxiliary variable is added with the intention of evaluating the effect of randomness on

the system dynamics at the expense of increasing numerical complexity since the new

inequality constraints include expectations that are not straightforward to handle. The recent

work by Pereira, Oliveira and Kienitz (2021) presented an H2 control synthesis with reduced

conservatism based on a poly-quadratic condition. The authors achieve this goal by extending

the results outlined by Pandey and de Oliveira (2017), which, in turn, includes the results

presented by Daafouz and Bernussou (2001) as a particular case. For completeness, the

reader can also find deeper discussions about LMI-based control techniques and convex

optimization in the classic books by Boyd et al. (1994) and Boyd and Vandenberghe (2004).

A common factor of the above references is using LMIs to define stability and stabilizability

conditions. However, as the number of inequalities usually depends on the number of vertices

describing the uncertainties, the computational effort required for feedback gain realization

might become excessive. This aspect motivates us to pursue robust and computationally

efficient solutions for the quadratic regulation problem of discrete-time linear systems subject

to polytopic uncertainties.
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1.2 Discrete-Time Markov Jump Linear Systems Subject to Polytopic Uncertainties

Many systems experience sudden changes in their dynamics due to external distur-

bances, sensor or actuator failures, and shifting of operation points in linearized plants,

among other factors. For minor effects on the system behavior, we can use classical tech-

niques for sensitivity analysis. Otherwise, a stochastic approach is preferable to investigate

stability and stabilization (COSTA; FRAGOSO; MARQUES, 2005). In such cases, it is pos-

sible to model the dynamics via an ensemble of discrete-time linear systems orchestrated

by a Markov chain. The transition from a Markov mode to another, or permanency in the

actual mode, obeys a set of transition probabilities inherent to each specific process. Costa,

Fragoso and Marques (2005) contributed with valuable discussions on control and filtering

problems for discrete-time Markov jump linear systems (DMJLS, abbreviated) and provide a

collection of examples to illustrate the relevance of this class of problems.

More specifically, the control problem for DMJLS subject to polytopic uncertainties has

been gaining importance and attention in the scientific community. The case with perfectly

observed Markov chain was addressed, for instance, in Boukas and Liu (2000) and Alattas

et al. (2022) regarding systems with time-delay; Zhang, Song and Cai (2022) for constrained

model predictive control; Gabriel, Gonçalves and Geromel (2018) presented a differential

LMI approach for optimal H2 and H∞ control synthesis; and Vargas et al. (2022) for linear

parameter-varying (LPV) systems. Within the class of DMJLS with observed Markov modes,

systems with polytopic uncertain probabilities are also widely investigated. In real-world

systems, the transition probabilities are hard to obtain and are usually estimated based on

experimental data (SHI; LI, 2015). Therefore, these quantities are prone to identification

errors which might degenerate the overall performance and even cause instability (XIONG et

al., 2005). Clearly, this is a more complex problem with fundamental importance for practical

applications. Gonçalves, Fioravanti and Geromel (2012) examined robust and networked

control problems under H∞ performance criteria; Lu, Li and Xi (2013) focused on model

predictive control; Lopes et al. (2019) also investigated the model predictive control, but

assuming input and state constraints; and Zacchia Lun, D’Innocenzo and Di Benedetto

(2019) introduced necessary and sufficient conditions for robust mean-square stability of

polytopic time-inhomogeneous DMJLS.

Another problem of interest is the robust control of DMJLS, whose Markov chain is par-

tially or entirely unobserved. In the first, the information about the active mode is intermittent,

whereas in the second such information is never available to the controller. Notable results

have been reported in the related literature. For example, Costa, Fragoso and Todorov (2015)

presented the detector based approach for DMJLS with partial information on the Markov

chain and H2 control, in which the Bernoulli jump case is also handled; Todorov and Fragoso

(2016) examined the mixed H2/H∞ controller synthesis; de Oliveira, Costa and Daafouz

(2020) provided results regarding H2, H∞ and mixed H2/H∞ control problems aided by
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the detector approach; and Oliveira, Costa and Gabriel (2022) focused on the H∞ output

feedback control. These robust methods proposed for DMJLS require a certain number

of LMIs to be satisfied in the designed optimization problems, whose solutions yield the

controller gains. With this in mind, we are interested in finding recursive solutions to sidestep

LMI-based synthesis and achieve lower computational times to yield state feedback gains.

1.3 Objectives

We present robust recursive solutions for quadratic regulation problems regarding linear

and Markov jump linear systems subject to polytopic uncertainties. Our approach is based

on regularized least-squares with uncertain data and penalty functions whilst simultaneously

weighting both the actual input signal and future states. We formulate min-max optimization

problems whose quadratic cost functions consider the polytopic vertices in a unified manner.

The solutions for such problems yield robust state feedback gains. Convergence and stability

conditions are well established in terms of algebraic Riccati equations. Thus, the existence

of our recursive solutions is not checked via LMIs. Furthermore, we impose no restrictions

on how fast the uncertainties vary within the polytopes between two consecutive iterations.

We organized the remaining of this document in the following way:

• In Chapter 2, we outline and discuss some useful preliminary concepts, namely least-

squares problems, the penalty function method, and Riccati equations. They will be of

fundamental importance throughout the work.

• In Chapter 3, we investigate the quadratic regulation problem for discrete-time linear

systems subject to polytopic uncertainties. We provide a robust recursive solution

and conditions for convergence and stability. Then, we validate the given solution via

numerical examples.

• In Chapter 4, we devote to the quadratic regulation problem for DMJLS subject to

polytopic uncertainties. We assume perfect knowledge of transition probabilities to

design the quadratic cost function. Conditions for convergence and stability are defined

by achieving reduced forms of the solution. We also give numerical examples for

validation and comparison purposes.

• In Chapter 5, we address the regulation problem of DMJLS, whose transition probabili-

ties are also subject to polytopic uncertainties. We design a cost function that accounts

for the uncertainties in the probabilities whilst keeping its quadratic structure. We then

propose the associated recursive solution and validate it with numerical examples.

• In Chapter 6, we focus on the regulation problem of polytopic DMJLS with unobserved

(hidden) modes. We yield an augmented system where the knowledge about the actual
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active mode is interpreted as uncertainty. It is possible to recover the original variables

from the augmented ones. We close the chapter with numerical examples.

• We finish the text in Chapter 7 with concluding remarks. Moreover, we discuss some

open problems related to polytopic discrete-time systems as promising subjects for

future research efforts.

• For completeness, in Appendix A, we give some auxiliary results regarding matrix

analysis applied along this research, and we outline the procedure for identification of

powertrain model for heavy-duty ground vehicles in Appendix B.

1.4 Published papers

The following journal and conference papers regard the results and studies carried out

throughout this research work.

1. J. N. A. D. Bueno, K. D. T. Rocha and M. H. Terra, Robust Recursive Regulator for

Systems Subject to Polytopic Uncertainties. IEEE Access, 2021.

2. J. N. A. D. Bueno, L. B. Marcos, K. D. T. Rocha and M. H. Terra, Regulation of

Markov Jump Linear Systems Subject to Polytopic Uncertainties. IEEE Transactions

on Automatic Control, 2022.

3. J. N. A. D. Bueno, L. B. Marcos, K. D. T. Rocha and M. H. Terra, Regulation of Uncertain

Markov Jump Linear Systems With Application on Automotive Powertrain Control. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 2023.

4. J. N. A. D. Bueno, K. D. T. Rocha and M. H. Terra, Gain-Scheduled Robust Recursive

Lateral Control for Autonomous Ground Vehicles Subject to Polytopic Uncertainties.

Latin Amer. Robotics Symp. (LARS), 2020.

5. J. N. A. D. Bueno, L. B. Marcos, K. D. T. Rocha and M. H. Terra, Longitudinal Control

of an Autonomous Truck With Unobserved Gears. IEEE URUCON, 2021.

6. J. N. A. D. Bueno, K. D. T. Rocha, L. B. Marcos and M. H. Terra, Mode-Independent

Regulator for Polytopic Markov Jump Linear Systems. 30th Mediterranean Conf. on

Control and Automation (MED), 2022.

7. J. N. A. D. Bueno, L. B. Marcos, K. D. T. Rocha and M. H. Terra, Robust Regulation

of Markov Jump Linear Systems with Uncertain Polytopic Transition Probabilities.

European Control Conference (ECC), 2022.

The author also contributed to the following journal and conference papers during the

doctorate program.
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1. G. A. P. de Morais, L. B. Marcos, J. N. A.D. Bueno, N. F. de Resende, M. H. Terra,

V. Grassi Jr, Vision-based robust control framework based on deep reinforcement

learning applied to autonomous ground vehicles. Control Engineering Practice, 2020.

2. K. D. T. Rocha, J. N. A. D. Bueno, L. B. Marcos and M. H. Terra, Robust Kalman Filtering

for Systems Subject to Polytopic Uncertainties. 30th Mediterranean Conference on

Control and Automation (MED), 2022.

3. L. B. Marcos, J. N. A. D. Bueno, K. D. T. Rocha, and M. H. Terra, Longitudinal control of

self-driving heavy-duty vehicles: a robust Markovian approach. IEEE 61st Conference

on Decision and Control (CDC), 2022.

4. K. D. T. Rocha, J. N. A. D. Bueno, L. B. Marcos, M. H. Terra, Polytopic Robust

Distributed Kalman Consensus Filter for Sensor Networks. 8th IFAC Symposium on

System Structure and Control (SSSC), 2022.

Finally, the author contributed to the following book chapter during the doctorate program.

1. G. A. P. de Morais, L. B. Marcos, J. N. A. D. Bueno, M. H. Terra, and V. Grassi Jr. Deep

learning for autonomous vehicles: a vision-based approach to self adapted robust

control. In: Fei Hu; Iftikhar Rasheed. (Org.). Deep Learning and Its Applications for

Vehicle Networks. 1st ed., 2023, v. 1, p. 215-233.
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2 THEORETICAL BACKGROUND

In this chapter, we revisit the well-known least-squares problem when data and measures

are subject to uncertainties (KAILATH; SAYED; HASSIBI, 2000), (CERRI, 2009), Sayed and

Nascimento (1999), (TERRA; CERRI; ISHIHARA, 2014), Sayed, Nascimento and Cipparrone

(2002), and Sayed and Chen (2002). Based on optimization problems, we present, from a

polytopic point of view, convex solutions that encompass all vertices of the uncertainties.

In the following, we present a classical way to deal with constrained optimization problems

through penalty functions. They are useful for placing the constraints into the cost func-

tion with a penalty parameter. If any constraints are violated, it imposes a high cost in the

optimization process, resulting in an equivalent unconstrained optimization problem. More

importantly, given that some conditions are satisfied, the solution of this equivalent problem

converges to the original constrained problem. We outline some critical results on the penalty

functions method, which can be found in greater detail in the specialized literature, such

as in Luenberger and Ye (2010), Albert (1972) and Bazaraa, Sherali and Shetty (2006).

Fundamental concepts on controllability, observability and mean square stabilizability of o

discrete-time linear systems with and without subject to Markovian jumps are provided (LAN-

CASTER; RODMAN, 1995), (BERTSEKAS, 2005), and (COSTA; FRAGOSO; MARQUES,

2005). We also present Riccati algebraic equations for both classes of systems, which define

the central framework we will adopt to develop the control approaches of this work.

2.1 Least-Squares Problems

2.1.1 Weighted least-squares

Consider the quadratic optimization problem

min
x

J(x), (1)

whose quadratic cost function J : Rr → R is defined as

J(x) = ‖Ax− b‖2
W = (Ax− b)TW (Ax− b), (2)

where W is a known symmetric positive definite weighting matrix, A ∈ Ra×r and b ∈ Ra are

known and x ∈ Rr is an unknown vector.

Lemma 2.1. (KAILATH; SAYED; HASSIBI, 2000) A vector x̂ ∈ Rr is a minimizer of the cost

function (2) if, and only if, it satisfies the normal equation

ATWAx̂ = ATWb, (3)

and the corresponding minimal value of (2) is given by

J(x̂) = ‖Ax̂− b‖2
W = bTWb− bTWAx̂. (4)
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If A has full column rank, the solution x̂ is unique and given by

x̂ = (ATWA)−1ATWb. (5)

And in this case, the minimal cost is

J(x̂) = ‖Ax̂− b‖2
W = bT (W −WA(ATWA)−1ATW )b. (6)

The following lemma remodels the solution for problem (1)–(2) through a matrix arrange-

ment.

Lemma 2.2. (CERRI, 2009) Consider the problem (1)–(2) with W = W T > 0. The following

expressions are equivalent:

(i)

x̂ = arg min
x

(Ax− b)TW (Ax− b). (7)

(ii) x = x̂ is a solution to ATWAx̂ = ATWb.

(iii) (γ, x) = (γ̂, x̂) is a solution to [
W−1 A

AT 0

][
γ

x

]
=

[
b

0

]
. (8)

If A has full column rank, then the solution x̂ is unique and given by

x̂ = (ATWA)−1ATWb, (9)

and, in this case, the respective minimal cost is

J(x̂) =
[
bT 0

] [W−1 A

AT 0

]−1 [
b

0

]
. (10)

The nonsingularity of the central matrix block is assured by Lemma A.3 in Appendix A.

2.1.2 Regularized least-squares

Consider the quadratic optimization problem

min
x

J(x), (11)

whose quadratic cost function J : Rr → R is defined as

J(x) = ‖x‖2
Q + ‖Ax− b‖2

W = xTQx+ (Ax− b)TW (Ax− b), (12)

where Q and W are known symmetric positive definite weighting matrices, A ∈ Ra×r and

b ∈ Ra are known and x ∈ Rr is an unknown vector. We see that from problem (11)–(12) we

recover the least-squares problems introduced in Section 2.1.1 by selecting Q = 0.
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Lemma 2.3. (SAYED, 2001) The solution x̂ for the optimization problem (11)–(12) is given

by

x̂ = (Q+ ATWA)−1ATWb, (13)

and the minimal value of the cost function (12) is then

J(x̂) = bT (W−1 + AQ−1AT )−1b. (14)

2.1.3 Regularized least-squares subject to uncertainties

Let us now address the case in which matrices A and b are subject to structured

parametric uncertainties, i.e., A = A0 + δA, and b = b0 + δb. Thus, consider the optimization

problem

min
x

max
δA, δb

J(x, δA, δb). (15)

The cost function J(x, δA, δB) is defined as

J(x, δA, δb) = ‖x‖2
Q + ‖(A0 + δA)x− (b0 + δb)‖2

W

= xTQx+ ((A0 + δA)x− (b0 + δb))T W ((A0 + δA)x− (b0 + δb)) , (16)

where Q and W are known symmetric positive definite weighting matrices, A0 ∈ Ra×r and

b0 ∈ Ra are known and x ∈ Rr is an unknown vector. The uncertainties {δA, δb} are modeled

as: [
δA δb

]
= MΓ

[
Â b̂

]
, (17)

with known M ∈ Ra×pV , Γ = diag{α1, . . . , αV } ⊗ Ip, known vertices A(l) ∈ Rp×r, b(l) ∈ Rp,

l = 1, . . . , V , such that Â =
[
(A(1))T · · · (A(V ))T

]T
, b̂ =

[
(b(1))T · · · (b(V ))T

]T
, and α =[

α1 . . . αV

]T
belongs to the unit simplex ΛV defined by

ΛV :=

{
α ∈ RV : αl ≥ 0,

V∑
l=1

αl = 1

}
. (18)

Clearly, the uncertain case accommodates the regularized least-squares problem without

uncertainties presented in Section 2.1.2 by choosing A(l) = 0 and b(l) = 0, l = 1, . . . , V .

The next result is based on Cerri (2009) and Sayed and Nascimento (1999) and provides

the unique solution for the min-max optimization problem (15)–(16).

Lemma 2.4. Consider the optimization problem (15)–(16). The following sentences are

equivalent:

(i) For Q > 0, there is a unique x̂ := x(λ̂) such that

x̂ = arg min
x

max
δA,δb

J(x, δA, δb),[
δA δb

]
= MΓ

[
Â b̂

]
.
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(ii) For Q > 0, there is a unique x̂ such that

x̂ = arg min
x



 IA0

Â

x−
 0

b0

b̂



T Q 0 0

0 W (λ̂) 0

0 0 λ̂I

( • )
 ,

where the Lagrange multiplier λ̂ is given by

λ̂ := arg min
λ>‖MTWM‖

{f(λ)}, (19)

with

f(λ) := ‖x(λ)‖2
Q + λ‖Âx(λ)− b̂‖2 + ‖A0x(λ)− b0‖2

W (λ), (20)

x(λ) := [Q(λ) + AT0W (λ)A0]−1[AT0W (λ)b0 + λÂT b̂], (21)

Q(λ) := Q+ λÂT Â, (22)

W (λ) := W +WM
(
λI −MTWM

)†
MTW. (23)

(iii) (α, ζ, γ, x) = (α̂, ζ̂, γ̂, x̂) is a solution to
Q−1 0 0 I

0 W (λ̂)−1 0 A0

0 0 λ̂−1I Â

I AT0 ÂT 0



α

ζ

γ

x

 =


0

b0

b̂

0

 .
In addition, the unique solution x̂ and the corresponding cost J(x̂) are obtained by

[
x̂

J(x̂)

]
=


0 0

0 b0

0 b̂

I 0


T 

Q−1 0 0 I

0 W (λ̂)−1 0 A0

0 0 λ̂−1I Â

I AT0 ÂT 0


︸ ︷︷ ︸

W

−1 
0

b0

b̂

0

 , (24)

where Â =
[
(A(1))T . . . (A(V ))T

]T
, and b̂ =

[
(b(1))T . . . (b(V ))T

]T
.

Proof. We cast the original regularized least-squares problem with uncertain data discussed

in (TERRA; CERRI; ISHIHARA, 2014) from a polytopic perspective by choosing {δA, δb}
as in (17). Then, the steps follow directly with the procedures thoroughly described in Cerri

(2009). Moreover, since both weight matrices Q and W are positive definite, we have W

nonsingular according to Lemma A.3 (see Appendix A).

Remark 2.1. Authors in Sayed, Nascimento and Cipparrone (2002), Sayed and Nascimento

(1999), and Sayed and Chen (2002) meticulously investigated problem (15)–(16) with respect

to its convexity. Observe that (15)–(17) can be expressed by

min
x

{
‖x‖2

Q + max
δA,δb
{T (x, δA, δb)}

}
,
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where T (x, δA, δb) = ‖(A0 + δA)x − (b0 + δb)‖2
W . The residual function T (x, δA, δb) is

convex in x for any pair δA, δb. As such, the maximum

L(x) = max
δA,δb
{T (x, δA, δb)}

is also convex in x. In addition, given that Q > 0, both ‖x‖2
Q and ‖x‖2

Q + L(x) are strictly

convex in x. Therefore, the uniqueness of the minimizing solution x̂ provided in Lemma 2.4

for problem (15)–(16) is guaranteed.

Remark 2.2. As mentioned by Sayed and Chen (2002), for any W positive definite and

λ > ‖MTWM‖ we have
(
λ̂I −MTWM

)
positive definite and, as such, nonsingular.

Therefore, the inverse operation can replace the pseudoinverse in (23) and we have W (λ) =

W +WM
(
λI −MTWM

)−1
MTW .

Note that the solution provided in Lemma 2.4 depends on the multiplier λ̂, which is the

minimizer in (19). From a practical point of view, this is a drawback since an additional

optimization problem over λ restricted to the open interval (‖MTWM‖, +∞) must be

solved to obtain x̂ ultimately. According to Sayed (2001), W (λ) in (23) is positive definite

if λ > ‖MTWM‖, which implies f(λ) in (20) being also positive definite with a unique

global minimum. In fact, as stated in Sayed (2001) and confirmed by results shown in

Sayed and Chen (2002), f(λ) reaches amplitudes close to its minimum value for arguments

λ that are not far from the lower bound ‖MTWM‖. Thus, we make the approximation

λ̂ ≈ β‖MTWM‖, for some β > 1, to sidestep the need of finding λ̂ through (19) in online

applications.

2.2 Penalty Functions

Consider the following constrained minimization problem.

min
x
{f(x)}, (25)

subject to g(x) = 0,

and assume it is replaced by

min
x∈Rn

{q(x, µ) := f(x) + g(x)Tµg(x)}, (26)

whose solution is given by x̂(µ). The term g(x)Tµg(x), µ > 0, is called penalty function and

satisfies

(i) g(x)Tg(x) is continuous;

(ii) g(x)Tg(x) ≥ 0 for all x ∈ Rr.
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The steps to solve (25) via penalty functions are defined as follows (BAZARAA; SHERALI;

SHETTY, 2006):

Step 1: Let {µk}, k = 1, 2, ..., ∞, be a sequence such that, for each k, µk ≥ 0 and

µk+1 > µk. Define the problem

min
x∈Rn
{q(x, µk) := f(x) + g(x)Tµkg(x)}. (27)

Step 2: Define a real ε > 0 as the termination criteria. Select ϑ > 1 and initial conditions

x1 and µ1 > 0.

Step 3: Set k = 1, then:

Step 3.1: Starting with xk, solve the follwing optimization problem:

min
xk∈Rn

{q(xk, µk)},

and obtain the optimal solution xk+1. Go Step 3.2.

Step 3.2: If g(xk+1)Tµkg(xk+1) < ε, then stop. Else, set µk+1 = ϑµk and go back to

Step 3.1.

Ideally, if x∗ solves (25) and x̂(µ) minimizes q(x, µ) in (26), then we have limµ→∞ x̂(µ) =

x∗ and x̂(µ) is optimal as stated by the next lemmas. Otherwise, if µ→∞ is not allowed for

some reason, then x̂(µ) is a sub-optimal solution for the constrained problem.

Lemma 2.5. (LUENBERGER; YE, 2010) Let {µk}, k = 1, 2, ..., ∞ be a sequence such

that, for each k, µk ≥ 0, µk+1 > µk, and q(x, µ) = f(x) + g(x)Tµg(x). Then,

(i) q(xk, µk) ≤ q(xk+1, µk+1);

(ii) g(xk)
Tg(xk) ≥ g(xk+1)Tg(xk+1);

(iii) f(xk) ≤ f(xk+1).

Lemma 2.6. (LUENBERGER; YE, 2010) Let x∗ be a solution to (25). Then, for each

k = 1, 2, ..., ∞ we have

f(x∗) ≥ q(xk, µk) ≥ f(xk).

Theorem 2.1. (LUENBERGER; YE, 2010) Let {xk}, k = 1, 2, ..., ∞, be a sequence

generated by the penalty functions method. Then, any limit point of this sequence is a

solution to (25).

Observe that we incorporate, via penalty functions, the problem constraints into the

cost function. As we will see in the next chapters, this allows us to encompass all polytope

vertices at once. Thenceforth we must ultimately solve a single matrix equation with minimal

parameter tuning in order to obtain the state feedback gains.

Remark 2.3. Although the literature on optimal control introduces µk as a variable, we will

tune it to a constant value µ. As such, this parameter can be interpreted as an additional

weight in the robust regularized least-squares problem.
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2.3 Bellman’s Principle of Optimality

Let us consider the following finite horizon optimization problem:

min
xk+1,uk

{
‖xN‖2

PN
+

N−1∑
t=0

(‖xt‖2
Qt + ‖ut‖2

Rt)

}
, (28)

subject to xk+1 = Fkxk +Gkuk,

where xk ∈ Rn, uk ∈ Rm, PN > 0, Qk > 0 and Rk > 0, k = 0, . . . , N .

The optimal solution for (28) satisfies Bellman’s Principle of Optimality, which can be

stated as follows (BERTSEKAS, 2005).

Bellman’s Principle of Optimality. Let X̂ = {X̂0, X̂1, . . . , X̂N−1} be the optimal

policy that solves (28), where X̂k = {x̂k+1, ûk}. Consider now the sub-problem

min
xk+1,uk

{
‖xN‖2

PN
+

N−1∑
t=t0

(‖xt‖2
Qt + ‖ut‖2

Rt)

}
,

subject to xk+1 = Fkxk +Gkuk.

Then, the truncated policy {X̂t0 , X̂t0+1, . . . , X̂N−1} is optimal for this sub-problem.

Two fundamental aspects arise when we consider Bellman’s Principle of Optimality to

solve a finite horizon optimization problem. First, we solve the problem in a backward fashion,

which means that we use the information from instant t = N as the boundary to solve the

step t = N − 1, then we use t = N − 1 as the boundary to the step t = N − 2 and so

forth until t = t0. Second, the solution is, therefore, recursive. Cerri (2009) explored these

features to demonstrate in detail how to split the problem (28) into one-step problems and,

furthermore, how to treat the robust case in a similar manner.

That said, in the next chapters we address a series of quadratic optimization problems

with finite horizon, and separate them into one-step quadratic problems by means of the

aforementioned concepts. We refer the reader to (CERRI, 2009), where the complete splitting

procedure is outlined, and to (BERTSEKAS, 2005) for deeper details about Bellman’s

Principle of Optimality and dynamic programming.

2.4 Algebraic Riccati equations

The following concepts regarding algebraic Riccati equations are fundamental for the

analyses of convergence and stability of the recursive solutions achieved throughout this

thesis. The proofs are omitted, but the reader can easily find them in the classical literature

about control systems and algebraic Riccati equations.



38

2.4.1 Discrete-time linear systems

Theorem 2.2. (LANCASTER; RODMAN, 1995) Consider the system

xk+1 = Axk +Buk, (29)

yk = Cxk, k = 1, ..., N − 1

with A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. The system is said be controllable if and only if

the matrix pair {A,B} is controllable, i.e.,

rank
([
B AB A2B . . . An−1B

])
= n.

Theorem 2.3. (LANCASTER; RODMAN, 1995) The system (29) is observable if and only if

the matrix pair {C,A} is observable, i.e.,

rank





C

CA

CA2

...

CAn−1




= n.

Definition 2.1. (BERTSEKAS, 2005) The system xk+1 = Lxk, where L = A+BK, is stable

if all eigenvalues of L are located inside the open unit disc. If this is the case, ‖xk‖ → 0 as

k →∞.

Definition 2.2. (LANCASTER; RODMAN, 1995) The matrix pair {A,B} is stabilizable if

there exists a feedback matrix K ∈ Rn×n such that L = A+BK is stable.

Theorem 2.4. (LANCASTER; RODMAN, 1995) If the matrix pair {A,B} is controllable, the

it is stabilizable.

Theorem 2.5. (BERTSEKAS, 2005) Assume the pair {A,B} is controllable and {A,C} is

observable. Then, there exists a unique P > 0 such that the discrete-time algebraic Riccati

equation

Pk = Q+ ATPk+1A− ATPk+1B
(
R +BTPk+1B

)−1
BTPk+1A, (30)

whereQ = CCT , converges to P as k →∞. Moreover, the eigenvalues of the corresponding

closed-loop matrix L = A + BK, with matrix K = −(R + BTPB)−1BTPA, are located

inside the open unit disc.

2.4.2 Discrete-time Markov jump linear systems

ConsiderA = (A1, . . . , As) ∈ Hn,n,B = (B1, . . . , Bs) ∈ Hn,m, C = (C1, . . . , Cs) ∈ Hp,n,

Θ = {1, . . . , s}, transition probability matrix P ∈ Rs×s, and recall the following results

borrowed from the literature on the control of discrete-time Markov jump linear systems.
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Theorem 2.6. (COSTA; FRAGOSO; MARQUES, 2005) Consider the DMJLS

xk+1 = Aθkxk +Bθkuk, (31)

yk = Cθkxk,

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, Aθk ∈ Rn×n, and Bθk ∈ Rn×m, for k = 0, ..., N − 1 and

θk ∈ Θ. The system with uk = 0 is mean square stable (MSS) if for any initial condition

x0 ∈ Rn, θ0 ∈ Θ, we have ‖E{xk}‖ → 0 as k →∞.

Definition 2.3. (COSTA; FRAGOSO; MARQUES, 2005) The pair {A,B} is mean square

stabilizable if there exists K = (K1, ..., Ks) ∈ Hm,n such that when uk = Kθkxk, θk ∈ Θ,

(31) is MSS. In this case, K is said to stabilize the pair {A,B}.

Definition 2.4. (COSTA; FRAGOSO; MARQUES, 2005) The pair {C,A} is mean square

detectable if there exists H = (H1, ..., Hs) ∈ Rn×p such that rσ(D) < 1, where D =

(PT ⊗ In2) diag
(
(Aθk +HθkCθk)⊗ (Aθk +HθkCθk)

)
, θk ∈ Θ.

Theorem 2.7. (COSTA; FRAGOSO; MARQUES, 2005) The following statements are equiv-

alent:

(i) System (31) is MSS.

(ii) rσ(CN ) < 1, where C =
(
PT ⊗ In2

)
andN = diag{(Aθk +HθkCθk)⊗(Aθk +HθkCθk)},

for θk ∈ Θ.

(iii) For all x0 ∈ Rn and θ0 ∈ Θ, we have
∑∞

k=0 E {‖xk‖2} <∞.

Definition 2.5. (COSTA; FRAGOSO; MARQUES, 2005) P = (P1, ..., Ps) ∈ Hn
+ is a stabiliz-

ing solution for the coupled Riccati equations

Pθkk = Qθk + ATθkEk+1Aθk − ATθkEk+1Bθk(Rθk +BT
θk
Ek+1Bθk)

−1BT
θk
Ek+1Aθk , (32)

where Qθk = CθkC
T
θk

, if P satisfies (32) for all θk ∈ Θ and K = (K1, ..., Ks) ∈ Hm,n

stabilizes (A,B) in the mean square sense when uk = Kθkxk, where Ek+1 =
∑s

j=1 pijPj,k+1

and Kθk is given by

Kθk = −(Rθk +BT
θk
EBθk)

−1BT
θk
EAθk , (33)

with E =
∑s

j=1 pijPj .

Corollary 2.1. (COSTA; FRAGOSO; MARQUES, 2005) If the pair {A,B} is mean square

stabilizable and {C,A} is mean square detectable, then the stabilizing solution for the

coupled algebraic Riccati equations (32) exists.
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Theorem 2.8. (COSTA; FRAGOSO; MARQUES, 2005) Assume that the pair {A,B} is

mean square stabilizable. Then, for any initial condition P 0 = (P1,0, ..., Ps,0) ∈ Hn
+, the

sequence {P k} = {(P1,k, ..., Ps,k)} converges to a solution P = (P1, ..., Ps) ∈ Hn
+ for (32)

when k → ∞. Additionally, if the pair {C,A} is mean square detectable, then P is the

unique positive semidefinite stabilizing solution for (32).

The concepts outlined in Sections 2.1.3 and 2.2 are fundamental to solving the regulation

problems we formulate in the next chapters for systems subject to polytopic uncertainties. As

such, we derive solutions structured as matrix arrangements and, in sequence, we achieve

equivalent forms suitable for convergence and stability analysis through the Riccati equations

presented in Section 2.4.
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3 ROBUST REGULATOR FOR SYSTEMS SUBJECT TO POLYTOPIC UNCERTAIN-

TIES

In this chapter, we present the solution for the linear quadratic optimization problem for

systems subject to uncertainties varying within a convex hull. The formulation is recursive

and exhibits different characteristics when compared to well-known solutions found in the

literature on polytopic systems, such as Boyd et al. (1994), Colaneri, Geromel and Locatelli

(1997), Oliveira, Geromel and Bernussou (2010), Duan and Yu (2013), among others.

We write the vertices of uncertainties related to state and input matrices under the

form of subsystems to ensemble a constraint set for the min-max optimization problem.

Then, it is possible to rearrange this set as a single equality constraint and, by means of a

penalty function, we place the vertices into the original cost. As consequence, we obtain

an equivalent unconstrained minimization problem that takes into account the whole set of

polytope vertices at once. As the new penalized cost function is quadratic with respect to the

minimization variables, we derive the robust recursive solution in the form of a symmetric

matrix arrangement based on the preliminary concepts described in Chapter 2.

In the next sections, we will formulate the control problem, outline the proposed solution

and demonstrate the convergence and stability of the presented method. Finally, we provide

numerical and real-world examples for validation purposes.

3.1 Problem Formulation

Consider the uncertain discrete-time linear system

xk+1 = (Fk + δFk)xk + (Gk + δGk)uk, (34)

for k = 0, ..., N − 1, where xk ∈ Rn is the state vector, uk ∈ Rm is the control input,

Fk ∈ Rn×n and Gk ∈ Rn×m are known nominal system matrices, and {δFk, δGk} are

uncertainty matrices described by

[
δFk δGk

]
=

V∑
l=1

αl,k

[
F

(l)
k G

(l)
k

]
, (35)

with F (l)
k ∈ Rn×n and G(l)

k ∈ Rn×m known and coefficients αk =
[
α1,k . . . αV,k

]T
belonging to

the unit simplex with V vertices

ΛV =

{
αk ∈ RV : αl,k ≥ 0,

V∑
l=1

αl,k = 1

}
. (36)

Assume known initial condition x0 and states xk observed at each instant k. Our task is

to find a sequence of input signals
{
u∗0, ..., u

∗
N−1

}
which makes the states xk converge to
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zero despite the maximum influence of uncertainties. To this end, we define the following

min-max optimization problem based on the uncertain model (34)–(35):

min
xk+1,uk

max
δFk,δGk

{
‖xN‖2

PN
+

N−1∑
t=0

(
‖xt‖2

Qt + ‖ut‖2
Rt

)}
(37)

subject to


In
...

In

xk+1 =


Fk + V δF

(1)
k

...

Fk + V δF
(V )
k

xk +


Gk + V δG

(1)
k

...

Gk + V δG
(V )
k

uk.
Based on Bellman’s Principle of Optimality and on principles of dynamic programming

(BERTSEKAS, 2005), we approach problem (37) by splitting it into N one-step optimization

problems of the form

min
xk+1,uk

max
δFk,δGk

{
‖xk+1‖2

Pk+1
+ ‖xk‖2

Qk
+ ‖uk‖2

Rk

}
, (38)

subject to:


In
...

In

xk+1 =


Fk + V δF

(1)
k

...

Fk + V δF
(V )
k

xk +


Gk + V δG

(1)
k

...

Gk + V δG
(V )
k

uk, (39)

for k = N − 1, . . . , 0, where δF (l)
k := αl,kF

(l)
k , δG(l)

k := αl,kG
(l)
k , l = 1, . . . , V , and weighting

matrices Pk+1 > 0, Qk > 0, and Rk > 0.

Remark 3.1. We explicitly express the vertices {F (l)
k , G

(l)
k }, l = 1, . . . , V , in the constraint

(39) instead of directly considering only their convex combination. Nonetheless, we recover

the original system (34) by premultiplying both sides of (39) by 1TV ⊗ In, yielding

V xk+1 =

(
V Fk + V

V∑
l=1

αl,kF
(l)
k

)
xk +

(
V Gk + V

V∑
l=1

αl,kG
(l)
k

)
uk,

xk+1 = (Fk + δFk)xk + (Gk + δGk)uk.

All constraints in (39) can be incorporated into the quadratic cost function by means of a

penalty parameter. In this case, all vertices of the polytopic model will be weighted in the

cost function in a unified way and the coefficients αl,k will be interpreted as a contraction.

Notice that (39) can be redefined as
In
...

In

xk+1 =



Fk
...

Fk

+


V δF

(1)
k

...

V δF
(V )
k


xk +



Gk

...

Gk

+


V δG

(1)
k

...

V δG
(V )
k


uk, (40)

from which we define g(xk+1, uk) as

g(xk+1, uk) =



In −Gk

...
...

In −Gk

+


0 −V δG(1)

k
...

...

0 −V δG(V )
k



[
xk+1

uk

]
−



Fk
...

Fk

+


V δF

(1)
k

...

V δF
(V )
k


xk,

(41)
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and C(xk+1, uk) = g(xk+1, uk)
Tµg(xk+1, uk), with the penalty parameter µ > 0.

Therefore, the constraints are placed into the cost function via C(xk+1, uk) so that, after

some algebraic manipulation, problem (38)–(39) becomes

min
xk+1,uk

max
δFk,δGk

Jk(xk+1, uk, δFk, δGk), (42)

for k = N − 1, . . . , 0, with one-step cost function given by

Jk(xk+1, uk, δFk, δGk) =

[
xk+1

uk

]T [
Pk+1 0

0 Rk

][
xk+1

uk

]

+






0 0

In −Gk

...
...

In −Gk

+


0 0

0 −V δG(1)
k

...
...

0 −V δG(V )
k



[
xk+1

uk

]
−



−In
Fk
...

Fk

+


0

V δF
(1)
k

...

V δF
(V )
k


xk



T[
Qk 0

0 µInV

]{
•
}
.

(43)

The subsequent section presents the process through which we come to a solution for

(42)–(43) and, as consequence, how we obtain the robust recursive linear quadratic regulator

(RLQR, for short) for system (34) subject to polytopic uncertainties (35).

3.2 RLQR for Discrete-Time Linear Systems Subject to Polytopic Uncertainties

In order to solve (42)–(43), the formulation presented in Section 3.1 intended to fit the

optimization problem into the quadratic framework given in Chapter 2. In this sense, the

following identifications are necessary between (43) and (16):

J ← Jk(xk+1, uk, δFk, δGk), x←
[
xk+1

uk

]
, Q←

[
Pk+1 0

0 Rk

]
, W ←

[
Qk 0

0 µInV

]
,

A0 ←


0 0

In −Gk
...

...

In −Gk

 , δA←


0 0

0 −V δG(1)
k...

...

0 −V δG(V )
k

 , b0 ←


−In
Fk
...

Fk

xk, δb←


0

V δF
(1)
k...

V δF
(V )
k

xk.
(44)

Also, by comparing (43) and (17) we map

M ←
[

0

InV

]
, A(l) ←

[
0 −V G(l)

k

]
, b(l) ← V F

(l)
k xk, l = 1, . . . , V. (45)

Given that W in our case is definite positive, we rewrite (23) as

W (λ) =
(
W−1 − λ−1MMT

)−1
,
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which implies, with W in (44) and M in (45),

W (λ)←
[
Qk 0

0 Φ−1

]
, (46)

where Φ = (µ−1 − λ−1)InV . In addition, since λ ∈
(
‖MTWM‖,∞

)
and λ̂ ≈ β‖MTWM‖

for some β > 1, as discussed in Section 2.1.3, the associations (44) and (45) yield

λ̂ ≈ β

∥∥∥∥∥ [0 InV

] [Qk 0

0 µInV

][
0

InV

]∥∥∥∥∥ = βµ. (47)

We are now in a position to state the main result of this chapter:

Theorem 3.1. Consider the optimization problem (42)–(43), with known PN > 0, Qk > 0,

and Rk > 0. For a fixed µ > 0, the solution and corresponding cost are given by x̂k+1

ûk

Jk(x̂k+1, ûk)

 =

In 0 0

0 Im 0

0 0 xTk


LkKk

Pk

xk, k = 0, . . . , N − 1, (48)

with {Lk, Kk, Pk} recursively given byLkKk

Pk

 =

0 0 0 0 0 In 0

0 0 0 0 0 0 Im

0 0 −In F̂ T
k F̂ T

V,k 0 0

×


(Pk+1)−1 0 0 0 0 In 0

0 R−1
k 0 0 0 0 Im

0 0 Q−1
k 0 0 0 0

0 0 0 Φ 0 Î −Ĝk

0 0 0 0 Σ 0 −ĜV,k

In 0 0 ÎT 0 0 0

0 Im 0 −ĜT
k −ĜT

V,k 0 0



−1 

0

0

−In
F̂k

F̂V,k

0

0


, k = N − 1, . . . , 0,

(49)

where Φ := µ−1(1− β−1)InV , Σ := (βµ)−1InV , with β > 1,

F̂k :=


Fk
...

Fk

 ∈ RnV×n, Ĝk :=


Gk

...

Gk

 ∈ RnV×m,

F̂V,k :=


F

(1)
k
...

F
(V )
k

 ∈ RnV×n, ĜV,k :=


G

(1)
k
...

G
(V )
k

 ∈ RnV×m, Î :=


In
...

In

 ∈ RnV×n.
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Proof. Recall that δF (l)
k = αl,kF

(l)
k and δG(l)

k = αl,kG
(l)
k , where F (l)

k and G(l)
k are vertices of

a polytope with coefficients αk ∈ ΛV . Since (42)–(43) is a robust regularized least-squares

problem, we make use of the identifications (44)–(45) to fit the problem under study into the

framework provided by Lemma 2.4. With this association and based on Lemma 2.4, we yield

the recursive solution for problem (42)–(43) as a symmetric matrix arrange of the form x̂k+1

ûk

Jk(x̂k+1, ûk)

 =

0 0 0 0 0 In 0

0 0 0 0 0 0 Im

0 0 −xTk In xTk F̂
T
k xTk F̂

T
V,k 0 0

×


(Pk+1)−1 0 0 0 0 In 0

0 R−1
k 0 0 0 0 Im

0 0 Q−1
k 0 0 0 0

0 0 0 Φ 0 Î −Ĝk

0 0 0 0 Σ 0 −ĜV,k

In 0 0 ÎT 0 0 0

0 Im 0 −ĜT
k −ĜT

V,k 0 0



−1 

0

0

−Inxk
F̂kxk

F̂V,kxk

0

0


, (50)

 x̂k+1

ûk

Jk(x̂k+1, ûk)

 =

In 0 0

0 Im 0

0 0 xTk


0 0 0 0 0 In 0

0 0 0 0 0 0 Im

0 0 −In F̂ T
k F̂ T

V,k 0 0

×


(Pk+1)−1 0 0 0 0 In 0

0 R−1
k 0 0 0 0 Im

0 0 Q−1
k 0 0 0 0

0 0 0 Φ 0 Î −Ĝk

0 0 0 0 Σ 0 −ĜV,k

In 0 0 ÎT 0 0 0

0 Im 0 −ĜT
k −ĜT

V,k 0 0


︸ ︷︷ ︸

W

−1 

0

0

−In
F̂k

F̂V,k

0

0


xk, (51)

which yields (48) and (49). We approximate λ̂ by λ̂ ≈ βµ, for some β > 1, to sidestep

additional computational effort as discussed in Section 2.1.3. As such, we attain Σ :=

(βµ)−1InV , and Φ = µ−1(1− β−1)InV . In general, by choosing β ∈ (1, 2] leads to adequate

results. The mappings presented in (44) imply Q > 0, since both Pk+1 and Rk are positive

definite. The convexity of problem (42) is, therefore, ensured by Remark 2.1 and the solution

(48)–(49) is in fact unique. Finally, the block matrix W is nonsingular according to Lemma

A.3 (see Appendix A).

Theorem 3.1 brings up to light some interesting aspects. At each instant, a single matrix

equation is solved considering all vertices of the polytope in a unified manner. The method
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accommodates time-varying uncertainties without further online parameter tuning. Instead,

approaches such as in Boyd et al. (1994) and Hosoe, Hagiwara and Peaucelle (2018) require

the solution of optimization problems subject to coupled LMI constraints and, for a higher

number of vertices, the region of feasible solutions becomes more restrained to satisfy all

inequalities. The RLQR for systems subject to polytopic uncertainties is, therefore, also

suitable for online applications, which is its main advantage. Finally, (48) computes the future

state as xk+1 = Lkxk and, in turn, Lk is equivalent to the closed-loop matrix of system (34)

when uk = Kkxk.

In the following statement, we extend the result from Theorem 3.1 and provide a manner

to compute matrices {Lk, Kk, Pk} in an equivalent reduced form. As we will see in the

subsequent section, the reduced forms will be useful for convergence and stability analysis.

Theorem 3.2. Consider the optimization problem (42)–(43). For a fixed µ > 0, the solution

given by (48)–(49) is equivalent to

 x̂k+1

ûk

Jk(x̂k+1, ûk)

 =

In 0 0

0 Im 0

0 0 xTk


LkKk

Pk

xk, k = 0, . . . , N − 1, (52)

with

Lk = P−1
k+1Pk+1F̄k − P−1

k+1Pk+1Ḡk

(
Im + ḠT

kPk+1Ḡk

)−1
ḠT
kPk+1F̄k, (53)

Kk = −R̄kV G
T
k (P̄k+1 + V GkR̄kG

T
k )−1F̄k + (Σ + ĜV,kR

−1
k ĜT

V,k)
−1F̂V,k, (54)

Pk = Q̄k + F̄Tk Pk+1F̄k − F̄Tk Pk+1Ḡk

(
Im + ḠT

kPk+1Ḡk

)−1
ḠT
kPk+1F̄k, (55)

for k = N − 1, . . . , 0, where

F̄k = Fk −GkR
−1
k ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

F̂V,k,

R̄k = R−1
k

(
Im − ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

ĜV,kR
−1
k

)
,

Q̄k = Qk + F̂ T
V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

F̂V,k,

Σ = (βµ)−1InV , Ḡk = GkR̄
1/2,

Pk+1 = V P̄−1
k+1, P̄k+1 = ϕ+ V P−1

k+1,

ϕ = µ−1(1− β−1)In, β > 1.
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Proof. From Theorem 3.1, we see that (49) holds since the system of equations

(Pk+1)−1 0 0 0 0 In 0

0 R−1
k 0 0 0 0 Im

0 0 Q−1
k 0 0 0 0

0 0 0 Φ 0 Î −Ĝk

0 0 0 0 Σ 0 −ĜV,k

In 0 0 ÎT 0 0 0

0 Im 0 −ĜT
k −ĜT

V,k 0 0





a

b

c

d̄

e

Lk

Kk


=



0

0

−In
F̂k

F̂V,k

0

0


(56)

has a unique solution, where d̄ = 1V ⊗ d, d ∈ Rn×n. Note that

Φ = µ−1(1− β−1)InV =


ϕ 0 . . . 0

0 ϕ . . . 0
...

... . . . 0

0 0 . . . ϕ

 , (57)

with ϕ = µ−1(1− β−1)In. Let us expand (56) to get the following set of equations:

P−1
k+1a+ Lk = 0,

R−1
k b+Kk = 0,

Q−1
k c = −In,

Φd̄+ ÎLk − ĜkKk = F̂k,

Σe− ĜV,kKk = F̂V,k,

Ina+ ÎT d̄ = 0,

Imb− ĜT
k d̄− ĜT

V,ke = 0.

(58a)

(58b)

(58c)

(58d)

(58e)

(58f)

(58g)

An additional equation results from the combination of (56) and (49):

Pk = −c+ F̂ T
k d̄+ F̂ T

V,ke,

Pk = −c+
[
F T
k . . . F T

k

]
d
...

d

+ F̂ T
V,ke,

Pk = −c+ V F T
k d+ F̂ T

V,ke. (59)

By manipulating (58a) and (58c), respectively, we have:

a = −Pk+1Lk, (60)

c = −Qk. (61)
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Meanwhile, the development of (58d) results in
ϕ 0 . . . 0

0 ϕ . . . 0
...

... . . . 0

0 0 . . . ϕ



d

d
...

d

+


In

In
...

In

Lk −

Gk

Gk

...

Gk

Kk =


Fk

Fk
...

Fk

 ,

ϕd+ Lk −GkKk = Fk. (62)

From (58f),

Ina+
[
In . . . In

]
d
...

d

 = 0,

V d = −Ina, (63)

and substituting a from (60) yields

d = V −1Pk+1Lk. (64)

From (58b),

b = −RkKk, (65)

and by placing into (58g) results

Im(−RkKk)−
[
GT
k . . . GT

k

]
d
...

d

− ĜT
V,ke = 0,

−RkKk − V GT
k d− ĜT

V,ke = 0,

Kk = −R−1
k V GT

k d−R−1
k ĜT

V,ke. (66)

By joining (66) and (58e) produces

Σe+ ĜV,kR
−1
k

(
V GT

k d+ ĜT
V,ke
)

= F̂V,k,

Σe+ ĜV,kR
−1
k V GT

k d+ ĜV,kR
−1
k ĜT

V,ke = F̂V,k,

ĜV,kR
−1
k V GT

k d+
(

Σ + ĜV,kR
−1
k ĜT

V,k

)
e = F̂V,k. (67)

By substituting Kk from (66) into (62) and isolating matrix Lk:

ϕd+ Lk +Gk

(
R−1
k V GT

k d+R−1
k ĜT

V,ke
)

= Fk,

ϕd+ Lk +GkR
−1
k V GT

k d+GkR
−1
k ĜT

V,ke = Fk,

Lk = Fk −
(
ϕ+GkR

−1
k V GT

k

)
d−GkR

−1
k ĜT

V,ke, (68)
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and by placing into (64) yields

d = V −1Pk+1

[
Fk −

(
ϕ+GkR

−1
k V GT

k

)
d−GkR

−1
k ĜT

V,ke
]
,

d = V −1Pk+1Fk − V −1Pk+1

(
ϕ+GkR

−1
k V GT

k

)
d− V −1Pk+1GkR

−1
k ĜT

V,ke,[
In + V −1Pk+1

(
ϕ+GkR

−1
k V GT

k

)]
d+ V −1Pk+1GkR

−1
k ĜT

V,ke = V −1Pk+1Fk. (69)

By isolating e in (67) results

e =
(

Σ + ĜV,kR
−1
k ĜT

V,k

)−1 (
F̂V,k − ĜV,kR

−1
k V GT

k d
)
, (70)

and placing it into (69) yields

V
−1Pk+1Fk =

[
In + V −1Pk+1

(
ϕ+GkR

−1
k V GT

k

)]
d

+ V −1Pk+1GkR
−1
k ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1 (
F̂V,k − ĜV,kR

−1
k V GT

k d
)
,

V
−1Pk+1Fk =

[
In + V −1Pk+1

(
ϕ+GkR

−1
k V GT

k

)]
d

+ V −1Pk+1GkR
−1
k ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

F̂V,k

− V −1Pk+1GkR
−1
k ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

ĜV,kR
−1
k V GT

k d,

[
In + V −1Pk+1

(
ϕ+GkR

−1
k V GT

k

)
− Pk+1GkR

−1
k ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

ĜV,kR
−1
k GT

k

]
d =

V −1Pk+1Fk − V −1Pk+1GkR
−1
k ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

F̂V,k,{
In + V −1Pk+1ϕ+ Pk+1GkR

−1
k

[
Im − ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

ĜV,kR
−1
k

]
GT
k

}
d =

V −1Pk+1

[
Fk −GkR

−1
k ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

F̂V,k

]
. (71)

We define

F̄k = Fk −GkR
−1
k ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

F̂V,k, (72)

R̄k = R−1
k

[
Im − ĜT

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1

ĜV,kR
−1
k

]
. (73)

Therefore, (
In + V −1Pk+1ϕ+ Pk+1GkR̄kG

T
k

)
d = V −1Pk+1F̄k,

d =
(
In + Pk+1

(
V −1ϕ+GkR̄kG

T
k

))−1
V −1Pk+1F̄k,

d =
(
V −1Pk+1(V P−1

k+1 + ϕ+ V GkR̄kG
T
k )
)−1

V −1Pk+1F̄k,

d = (V P−1
k+1 + ϕ+ V GkR̄kG

T
k )−1F̄k.
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Considering P̄k+1 = ϕ+ V P−1
k+1, then,

d = (P̄k+1 + V GkR̄kG
T
k )−1F̄k. (74)

By placing (74) in (64), we obtain

Lk = V P−1
k+1d,

Lk = V P−1
k+1(P̄k+1 + V GkR̄kG

T
k )−1F̄k,

Lk = V P−1
k+1

(
(In + V GkR̄kG

T
k P̄
−1
k+1)−1P̄k+1

)−1 F̄k,

Lk = V P−1
k+1P̄

−1
k+1(In + V GkR̄kG

T
k P̄
−1
k+1)−1F̄k,

with Ḡk = GkR̄
1/2
k , then

Lk = V P−1
k+1P̄

−1
k+1(In + V ḠkImḠ

T
k P̄
−1
k+1)−1F̄k,

Lk = V P−1
k+1P̄

−1
k+1(In − V Ḡk(Im + ḠT

k V P̄
−1
k+1Ḡk)

−1ḠT
k P̄
−1
k+1)F̄k,

Lk = V P−1
k+1P̄

−1
k+1F̄k − V P−1

k+1P̄
−1
k+1V Ḡk(Im + ḠT

k V P̄
−1
k+1Ḡk)

−1ḠT
k P̄
−1
k+1F̄k,

and, by defining Pk+1 = V P̄−1
k+1, we have

Lk = P−1
k+1Pk+1F̄k − P−1

k+1Pk+1Ḡk

(
Im + ḠT

kPk+1Ḡk

)−1
ḠT
kPk+1F̄k,

which corresponds to (53). Now, substitute (74) and (70) into (66), so that

Kk = −R−1
k V GT

k d−R−1
k ĜT

V,k

(
−(Σ +GV,kR

−1
k GT

V,k)
−1V ĜV,kR

−1
k GT

k d +

(Σ +GV,kR
−1
k GT

V,k)
−1F̂V,k

)
,

Kk = −R−1
k

(
Im − ĜT

V,k(Σ +GV,kR
−1
k GT

V,k)
−1ĜV,kR

−1
k

)
V GT

k d+

(Σ +GV,kR
−1
k GT

V,k)
−1F̂V,k,

Kk = −R̄kV G
T
k + (Σ +GV,kR

−1
k GT

V,k)
−1F̂V,k,

Kk = −R̄kV G
T
k (P̄k+1 + V GkR̄kG

T
k )−1F̄k + (Σ +GV,kR

−1
k GT

V,k)
−1F̂V,k,

which is the same as (54). Next, we substitute (61), (74) and (70) into (59), thus we have:

Pk = Qk + V F T
k d+ F̂ T

V,k

(
Σ + ĜV,kR

−1
k ĜT

V,k

)−1 (
F̂V,k − ĜV,kR

−1
k V GT

k d
)
,

Pk = Qk +
(
V F T

k − F̂ T
V,k(Σ + ĜV,kR

−1
k ĜT

V,k)
−1V ĜV,kR

−1
k GT

k

)
d+

F̂ T
V,k(Σ + ĜV,kR

−1
k ĜT

V,k)
−1F̂V,k,

Pk = Qk + F̄Tk V d+ F̂ T
V,k(Σ + ĜV,kR

−1
k ĜT

V,k)
−1F̂V,k.
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We define

Q̄k = Qk + F̂ T
V,k(Σ + ĜV,kR

−1
k ĜT

V,k)
−1F̂V,k, (75)

then,

Pk = Q̄k + F̄Tk V d,

Pk = Q̄k + F̄Tk V (P̄k+1 + V GkR̄kG
T
k )−1F̄k,

Pk = Q̄k + F̄Tk V
(
(In + V ḠkImḠ

T
k P̄
−1
k+1)P̄k+1

)−1 F̄k,

Pk = Q̄k + F̄Tk V P̄−1
k+1(In + V ḠkImḠ

T
k P̄
−1
k+1)−1F̄k,

Pk = Q̄k + F̄Tk V P̄−1
k+1

(
In − V Ḡk(Im + ḠT

k V P̄
−1
k+1Ḡk)

−1ḠT
k P̄
−1
k+1

)
F̄k,

Pk = Q̄k + F̄Tk V P̄−1
k+1F̄k − F̄Tk V P̄−1

k+1Ḡk(Im + ḠT
k V P̄

−1
k+1Ḡk)

−1ḠT
k V P̄

−1
k+1F̄k,

Pk = Q̄k + F̄Tk Pk+1F̄k − F̄Tk Pk+1Ḡk

(
Im + ḠT

kPk+1Ḡk

)−1
ḠT
kPk+1F̄k,

which corresponds to (55).

Remark 3.2. Bearing in mind the set of equations in (56), we are able to clarify why the

optimization problem (42)–(43) is solved over both variables {uk, xk+1}. This selection of

variables allows us to provide, in a unified manner, both stability and robustness to the

control system by solving the following equations:

ÎLk = (F̂k + ĜkKk)− Φd̄,

Σe = (F̂V,k + ĜV,kKk),

which involve all polytope vertices of (34). Meanwhile, if µ→∞, we have Φ→ 0 and Σ→ 0,

hence (F̂V,k + ĜV,kKk) → 0 and (F̂k + ĜkKk) → ÎLk. As such, we achieve the optimal

RLQR. If it is not possible to tune µ→∞, we adjust µ−1 → ε in order to obtain a sub-optimal

robust recursive regulator.

Remark 3.3. For any penalty parameter µ > 0, if β → 1+, then ϕ→ 0 and Pk+1 → Pk+1.

As such, (55) becomes a standard Riccati equation given by

Pk = Q̄k + F̄Tk Pk+1F̄k − F̄Tk Pk+1Ḡk

(
Im + ḠT

kPk+1Ḡk

)−1
ḠT
kPk+1F̄k. (76)

The penalty µ can be interpreted as a weighting parameter and is closely related to the

optimality of the solution. In fact, (48) (as well as (52)) converges to the optimal solution of

the original constrained problem as µ→∞. Nonetheless, although a finite positive penalty

parameter yields a sub-optimal solution, the resulting feedback gain still stabilizes system

(34) when uk = Kkxk. In the following section, we elaborate on this aspect based on the

reduced forms introduced in Theorem 3.2.
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3.3 Convergence and Stability

To perform the analysis, let us consider invariant system parameters while allowing

coefficients αk to be time-varying, and β → 1+. As such, we have the following discrete-time

system realization:

xk+1 = (F +
V∑
l=1

αl,kF
(l))xk + (G+

V∑
l=1

αl,kG
(l))uk, αk ∈ ΛV .

We are now in a position to establish conditions for convergence and stability of the

RLQR for systems subject to polytopic uncertainties.

Theorem 3.3. Assume that {F̄ , Ḡ} is controllable, {Q̄1/2, F̄} is observable and consider

(76) with initial condition PN > 0. Then, there exists P > 0 symmetric such that lim
k→∞

Pk = P .

Moreover, P is the unique stabilizing solution for (55) and the closed-loop system matrix

L = F̄ − Ḡ
(
Im + ḠTPḠ

)−1
ḠTP F̄ ,

such that xk+1 = Lxk, is stable.

Proof. Notice that (55) conforms to the standard Riccati recursive equation (30), namely

Pk = Q+ ATPk+1A− ATPk+1B
(
R +BTPk+1B

)−1
BTPk+1A,

through the identifications A← F̄ , Q← Q̄, R← Im, and B ← Ḡ. Therefore, as thoroughly

discussed in (BERTSEKAS, 2005, Chapter 4) and (LANCASTER; RODMAN, 1995, Chapter

12) and given the above equivalences, it follows that lim
k→∞

Pk = P , where P > 0 is the

unique solution for (55). In addition, the feedback gain K, such that uk = Kxk, makes the

eigenvalues of L lie within the open unit disc.

3.4 Illustrative Examples

We present two illustrative examples to validate the proposed robust recursive regulator.

For comparison purposes, we adopt the robust controller presented in Oliveira, Bernussou

and Geromel (1999) computed with the YALMIP Toolbox (LÖFBERG, 2004). The first

example focuses on the computational efficiency and behavior of closed-loop eigenvalues,

while the second example is an application of the RLQR on a commercial quadrotor model.

Example 3.1. Consider the discrete-time system, based on Oliveira, Bernussou and Geromel

(1999), with state-space matrices and initial conditions given by

F =


0.8 −0.25 0 1

1.0 0 0 0

0 0 0.2 0.03

0 0 1.0 0

 , G =


0.5

0

0.5

0

 , x0 =


1.0

3.0

−0.5

−1.0

 ,
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subject to polytopic uncertainties with parameterized vertices (ρF (i), G(i)), i = 1, 2, ρ ∈ R,

where

F (1) =


0 0 0 0

0 0 0 0

0.8 −0.5 0 1

0 0 0 0

 , F (2) = −F (1), G(1) =


−0.5

0

0.5

0

 , G(2) = −G(1), ρ > 0.

We search for the maximum values {ρ̄RLQR, ρ̄ref} for which the closed-loop system is

stable with the robust recursive regulator for any ρ ≤ ρ̄RLQR, and with the controller from

Oliveira, Bernussou and Geromel (1999, Theorem 3) for any ρ ≤ ρ̄ref. To this end, we set up

a horizon N = 100, µ = 1015, β = 1.2 and weighting matrices PN = I4, Qk = I4, and Rk = 1

for the quadratic cost function (43). The feedback gain and the Riccati solution obtained with

Lemma 3.1 converged to

K =
[
−0.6901 0.4589 −0.2739 −0.9830

]
,

P = 1015


3.5861 −2.1681 −0.8085 4.2750

−2.1681 1.3437 0.1812 −2.7604

−0.8085 0.1812 3.1651 0.6119

4.2750 −2.7604 0.6119 6.1168

 .

The robust controller adopted for comparison purposes yielded feedback gain

Kref =
[
0.0233 0.0668 −0.8731 −0.2706

]
.

We perform an iterative search procedure and attain ρ̄RLQR = 1.9130 and ρ̄ref = 1.0511.

Such a result indicates that the robust recursive regulator is able to handle a wider range

of uncertainties. We show the eigenvalues of the closed-loop system, denoted by ν, in

Figs. 1 and 2. Observe that, when ρ = ρ̄ref, both approaches are capable of stabilizing

the closed-loop system, while only the robust recursive regulator ensures stability when

ρ = ρ̄RLQR.

Now, let us assume different values of µ and, for each of them, we search for the

maximum ρ̄RLQR for which the closed-loop system is stable with the robust recursive regulator

for any ρ ≤ ρ̄RLQR. We summarize the results in Table 1. Observe that ρ̄RLQR converges

to 1.9130 as µ increases. It is noteworthy, moreover, that ρ̄RLQR > ρ̄ref and the closed-loop

system remains stable even for small values of µ.

Finally, we examine the computational effort demanded to calculate the feedback gains.

The average elapsed time to compute the gain with Lemma 3.1 was 1.7 ms, whilst the

controller from Oliveira, Bernussou and Geromel (1999, Theorem 3) required 149.7 ms on

average. As such, the diminished computational effort indicates that the proposed robust

recursive approach is also adequate for online applications.
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Figure 1 – Eigenvalues of the closed-loop system with ρ = ρ̄ref: max{‖ν‖RLQR} = 0.937381,
max{‖ν‖ref} = 0.999707.
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(a) Robust regulator.
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(b) Robust controller for comparison.

Source: author.

Figure 2 – Eigenvalues of the closed-loop system with ρ = ρ̄RLQR: max{‖ν‖
RLQR
} =

0.999980, max{‖ν‖ref} = 1.296115.
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(a) Robust recursive regulator.
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Source: author

Example 3.2. The following 4-DOF system is based on Rosales et al. (2017) and describes

a trajectory tracking model of a commercial quadrotor, more specifically, a Parrot AR 2.0:

xk+1 =

[
Ξ 0

0.01I4 I4

]
xk +

[
0.01I4

0

]
uk, (77)
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Table 1 – Effects of µ over ρ̄RLQR and maximum norms of closed-loop eigenvalues with the
robust recursive regulator.

µ ρ̄RLQR ‖νµ‖
1 1.20730 0.999966

10 1.75800 0.999970

105 1.91290 0.999973

1010 1.91300 0.999980

1012 1.91300 0.999980
Source: author.

with

Ξ =


0.9985 0.0003 0 0

0.0003 0.9970 0 0

0 0 0.9755 0

0 0 0 0.9893

 ,

where xk =
[
eTvk e

T
pk

]T
∈ R8 represents the error state vector, with evk =

[
evx evy evz evψ

]T
and epk =

[
ex ey ez eψ

]T
, in which {evx, ex}, {evy, ey}, and {evz, ez} are the velocity and

position errors along the global x, y and z axes, in this order, and {evψ , eψ} are the angular

velocity and orientation errors, respectively. The commands are computed via vdronek =

urefk − uk, where urefk is the reference control input and uk is calculated with the selected

control law. To design the reference signal urefk , we used the Parrot’s official simulator

Sphinx to perform flight with the desired trajectory.

For this example, the main task is to control the quadrotor so as to track an 8-shaped

reference trajectory beginning at the origin of the global coordinate frame. Polytopic un-

certainties δFk and δGk represent variations on elements of Fk and Gk that could result

from unmodeled dynamics, nonlinearities and disturbances. In this manner, we consider two

polytope vertices to compose δFk and δGk, such that

F (i) =

[
10−2EΞi 0

0 0

]
, G(i) =

[
10−3Υi

0

]
, i = 1, 2,

where

EΞ1 = −


1.37 5.99 0 0

4.64 6.82 0 0

0 0 1.29 0

0 0 0 3.12

 , Υ1 = −


0.1 0 0 0

1.1 0.3 0 0

0 0 0.1 0

0 0 0 2.0

 ,
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EΞ2 =


0.80 2.66 0 0

3.10 6.21 0 0

0 0 1.04 0

0 0 0 5.13

 , Υ2 =


6.5 7.4 0 0

0.8 4.3 0 0

0 0 0.1 0

0 0 0 1.9

 .

For the quadratic cost function (43), we select µ = 1010, β = 1.00001, and weights

PN = 1012I8, Qk = diag{0.5 · 1010I4, 1010I4}, and Rk = I4. Therefore, the feedback gain K

attained with Theorem 3.1 is

K =


−60.7374 22.3468 0 0 −82.7444 31.6448 0 0

23.1583 −48.7937 0 0 33.4338 −64.1943 0 0

0 0 −99.4591 0 0 0 −140.2319 0

0 0 0 −74.5335 0 0 0 −102.0202

 ,

while Oliveira, Bernussou and Geromel (1999, Theorem 3) returned, for comparison,

Kref =


−72.3857 25.2426 0 0 −41.1403 13.8486 0 0

2.6812 −78.7751 0 0 1.7914 −43.3649 0 0

0 0 −96.8010 0 0 0 −56.3373 0

0 0 0 −97.2112 0 0 0 −54.8025

 .

We carried out 1000 Monte Carlo experiments, each with time horizon equal to N = 3000,

meaning flights with duration of 30 seconds. For both controllers, the initial condition is

x0 =
[
0.40 0.33 −0.64 0.01 0 0 0.01 0

]T
. The resulting motion of the quadrotor and the

reference trajectory in the global coordinate frame are presented in Fig. 3, while the norms

of errors and input vectors are shown in Figs. 4a and 4b, respectively. Additionally, the norms

and standard deviations of velocity and position tracking errors, ‖ev‖L2 , σv, ‖ep‖L2 , and σp,

respectively, and of the control input, ‖u‖L2 and σu, in this order, are summarized in Table 2.

The results show that the robust recursive regulator was able to successfully minimize the

errors while consuming less energy to perform trajectory tracking, as can be seen in Fig. 4b

and Table 2.

Let us now assume parameterized vertices (ρF (i), G(i)) and search for the maxima

{ρ̄RLQR, ρ̄ref} such that the closed-loop system is stable with the RLQR for ρ ≤ ρ̄RLQR and

with the robust controller adopted for comparison for ρρ̄ref. We find ρ̄RLQR = 11.5002 and

ρ̄ref = 11.4967, and in this case that both approaches provide similar levels of robustness.
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Figure 3 – Resulting trajectory of the quadrotor in the global coordinate frame.
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Figure 4 – Norms of tracking errors and control inputs obtained with the robust recursive
regulator and the robust controller adopted for comparison.
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Table 2 – Averages and standard deviations of trajectory tracking errors and control inputs
for Example 3.2.

Controller ‖ev‖L2 σv ‖ep‖L2 σp ‖u‖L2 σu

Lemma 3.1 1.8996 0.0347 0.3366 0.0060 152.8521 2.7864
Oliv., Bern., Gerom.,

1999, Th. 3
1.8503 0.0338 0.4185 0.0073 155.3303 2.8313

Source: author.
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4 ROBUST REGULATOR FOR MARKOV JUMP SYSTEMS SUBJECT TO POLYTOPIC

UNCERTAINTIES

Discrete-time Markov jump linear systems (DMJLS, for short) subject to polytopic uncer-

tainties have attracted growing attention from researchers in recent decades. In fact, there

is a vast amount of available literature enveloping robust control methods for this class of

systems, and remarkable examples include, but are not limited to, Park and Kwon (2002),

Ma, Zhang and Liu (2008), Zou et al. (2015), Lu, Li and Xi (2013), Gabriel, Gonçalves and

Geromel (2018), Lopes et al. (2019), and Zhang, Song and Cai (2022). In such works, the

synthesis of controllers relies on LMI-based problems, which grow in complexity according

to the number of possible Markov modes and of vertices in each of these modes. Moreover,

most of the available solutions require dedicated software packages, which might increase

the computational burden and prohibit application in low-cost hardware. In this scenario, the

literature lacks robust recursive approaches that can circumvent the drawbacks.

In the present chapter, we aim to find a recursive solution for the linear quadratic regula-

tion problem regarding DMJLS with polytopic uncertainties affecting the system matrices to

fill this gap. We formulate a min-max optimization problem subject to equality constraints

whose solution yields the recursive regulator for this class of systems. The constraints are

composed of subsystems defined on each vertex of the uncertainties. Then, by using the

penalty functions method, we attain an unconstrained problem after incorporating this set

into the cost function. The conditions for convergence and stability are well established

based on coupled algebraic equations derived from the proposed solution. As such, once

we know the parameters matrices, it is enough to check the stabilizability and detectability

of the system. Furthermore, we provide numerical examples to verify the proposed robust

recursive solution’s effectiveness in regulation and computational effort and compare the

results with the performance obtained with a robust controller borrowed from the specialized

literature (GONÇALVES; FIORAVANTI; GEROMEL, 2012). We also show the results of the

recursive regulator applied to an autonomous heavy-duty truck whose mathematical model

was borrowed from (KIENCKE, 2005) and (RAJAMANI, 2012). The model matrices, polytope

vertices, and transition probability matrix were identified based on experimental data (see

details in Appendix B).

It is worth mentioning that in this chapter, we consider the transition probability matrix

wholly known. The case where polytopic uncertainties affect the transition probabilities will

be dealt with in Chapter 5.

4.1 Problem Formulation

A DMJLS subject to uncertainties is described by

xk+1 = (Fθk,k + δFθk,k)xk + (Gθk,k + δGθk,k)uk, (78)
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where k = 0, ..., N −1, xk ∈ Rn is the state vector, uk ∈ Rm is the control input, Fθk,k ∈ Rn×n

and Gθk,k ∈ Rn×m are nominal system and input matrices, respectively, θ = {θ0, ..., θN−1} is

a Markov chain with modes θk ∈ Θ = {1, ..., s}. The known transition probability matrix for

the DMJLS (78) is defined by P = [pij] ∈ Rs×s with

Prob(θk+1 = j|θk = i) = pij, Prob(θ0 = i) = pi,0,
s∑
j=1

pij = 1, 0 ≤ pij ≤ 1. (79)

Uncertainty matrices {δFθk,k, δGθk,k} are modeled as

[
δFθk,k δGθk,k

]
=

V∑
l=1

αl,k

[
F

(l)
θk,k

G
(l)
θk,k

]
, (80)

with known matrices (vertices) F (l)
θk,k
∈ Rn×n and G(l)

θk,k
∈ Rn×m, and the coefficients αk =[

α1,k . . . αV,k

]T
belong to the unit simplex

ΛV =

{
αk ∈ RV : αl,k ≥ 0,

V∑
l=1

αl,k = 1

}
. (81)

Suppose all states xk and modes θk are observed at every instant k and the system

evolves from {x0, θ0}. Then, the objective is to determine Kk = (K1,k, . . . , Ks,k) ∈ Hm,n

such that uk = Kθk,kxk, θk ∈ Θ, regulates the DMJLS (78) subject to uncertainties (80).

With this in mind, let us define the following optimization problem:

min
uk, xk+1

max
δFθk,k, δGθk,k

E

{
‖xN‖2

PθN ,N
+

N−1∑
t=0

(
‖xt‖2

Qθt,t
+ ‖ut‖2

Rθt,t

) ∣∣St} (82)

subject to 
In
...

In

xk+1 =


Fθk,k + V δF

(1)
θk,k

...

Fθk,k + V δF
(V )
θk,k

xk +


Gθk,k + V δG

(1)
θk,k

...

Gθk,k + V δG
(V )
θk,k

uk, (83)

where St = {θt, xt}. Based on Bellman’s Principle of Optimality, we can separate (82) into

N one-step problems of the form

min
uk, xk+1

max
δFθk,k, δGθk,k

J (xk+1, uk, δFθk,k, δGθk,k), (84)

subject to (83),

for k = N − 1, . . . , 0, and quadratic cost function

Jk(xk+1, uk, δFθk,k, δGθk,k) = xTk+1Ψθk,k+1xk+1 + xTkQθk,kxk + uTkRθk,kuk, (85)
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with

Ψi,k+1 = E{Pi,k+1|Sk} =
s∑
j=1

pijPj,k+1,

where Pθk,k+1 > 0, Qθk,k > 0, and Rθk,k > 0, δF (l)
θk,k

= αl,kF
(l)
θk,k

, and δG(l)
θk,k

= αl,kG
(l)
θk,k

.

By using the penalty functions method, we include the set of constraints (83) into the

cost function and comprise all vertices of uncertainties at once for the actual mode at each

instant k. To this end, we rewrite the constraints under the form of
xk+1

...

xk+1

−


Fθk,k

...

Fθk,k

+


V δF

(1)
θk,k

...

V δF
(V )
θk,k


xk −



Gθk,k

...

Gθk,k

+


V δG

(1)
θk,k

...

V δG
(V )
θk,k


uk = 0, (86)

and define the functions

g(xk+1, uk, θk) =



In −Gθk,k

...
...

In −Gθk,k

+


0 −V δG(1)

θk,k
...

...

0 −V δG(V )
θk,k



[
xk+1

uk

]
−



Fθk,k

...

Fθk,k

+


V δF

(1)
θk,k

...

V δF
(V )
θk,k


xk.

(87)

and C(xk+1, uk, θk) = g(xk+1, uk, θk)
Tµg(xk+1, uk, θk), where µ > 0 is the penalty parameter.

Then we add C(xk+1, uk, θk) to (85) and, with some algebraic manipulation, we redefine

the optimization problem (84) as

min
uk, xk+1

max
δFi,k, δGi,k

Jk(xk+1, uk, δFi,k, δGi,k), (88)

for each i = θk ∈ Θ, where k = N − 1, . . . , 0, with one-step cost function given by

Jk(xk+1, uk, δFθk,k, δGθk,k) =

[
xk+1

uk

]T [
Ψi,k+1 0

0 Ri,k

][
xk+1

uk

]

+






0 0

In −Gi,k
...

...

In −Gi,k

+


0 0

0 −V δG(1)
i,k...

...

0 −V δG(V )
i,k



[
xk+1

uk

]
−



−In
Fi,k

...

Fi,k

+


0

V δF
(1)
i,k...

V δF
(V )
i,k


xk



T[
Qi,k 0

0 µInV

]{
•
}
.

(89)

The following sections present the recursive solution for the established optimization

problem and provide conditions for convergence and stability of the closed-loop system

subject to polytopic uncertainties.

4.2 RLQR for DMJLS Subject to Polytopic Uncertainties

As the optimization problem (88)–(89) is a particular case of the robust regularized

least-squares problem, its structure identifies with the framework outlined in Section 2.1.3 as
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follows:

J ← Jk(xk+1, uk, δFi,k, δGi,k), x←
[
xk+1

uk

]
, Q←

[
Ψi,k+1 0

0 Ri,k

]
, W ←

[
Qi,k 0

0 µInV

]
,

M ←
[

0

InV

]
, A0 ←


0 0

In −Gi,k

...
...

In −Gi,k

 , δA←


0 0

0 −V δG(1)
i,k

...
...

0 −V δG(V )
i,k

 , A(l) ←
[
0 −V G(l)

i,k

]
, (90)

Γ← α̂k ⊗ In, b0 ←


−In
Fi,k

...

Fi,k

xk, δb←


0

V δF
(1)
i,k

...

V δF
(V )
i,k

xk, b(l) ← V F
(l)
i,kxk, l = 1, . . . , V,

where α̂k = diag{α1,k, . . . , αV,k}. From (90), observe that W > 0. As such, the pseudo-

inverse in (23) becomes an actual inverse operation, i.e., W (λ) =
(
W−1 − λ−1MMT

)−1.

Bearing in mind that λ̂ ≈ βµ for β > 1, as discussed in Section 2.1.3, we have the following

relation:

W (λ)←
[
Qi,k 0

0 Φ−1

]
, (91)

where Φ = µ−1(1− β−1)InV .

Let us now establish the main result of this chapter through the following lemma:

Lemma 4.1. The recursive solution for the optimization problem (88)–(89), for µ > 0,

i = θk ∈ Θ and k = N − 1, . . . , 0, is provided by:

 x̂k+1

ûk

Jk(x̂k+1, ûk, i)

 =

In 0 0

0 Im 0

0 0 xTk


Li,kKi,k

Pi,k

xk, (92)

with

Li,kKi,k

Pi,k

 =



0 0 0

0 0 0

0 0 −In
0 0 F̂i,k

0 0 ÊFi,k
In 0 0

0 Im 0



T 

Ψ−1
i,k+1 0 0 0 0 In 0

0 R−1
i,k 0 0 0 0 Im

0 0 Q−1
i,k 0 0 0 0

0 0 0 Φ 0 Î −Ĝi,k

0 0 0 0 Σ 0 −ÊGi,k
In 0 0 ÎT 0 0 0

0 Im 0 −ĜT
i,k −ÊT

Gi,k
0 0



−1 

0

0

−In
F̂i,k

ÊFi,k
0

0


, (93)
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where Pi,k > 0, Qi,k > 0, Ri,k > 0, Φ := µ−1(1− β−1)InV , Σ := (βµ)−1InV , with β > 1,

F̂i,k :=


Fi,k

...

Fi,k

 ∈ RnV×n, Ĝi,k :=


Gi,k

...

Gi,k

 ∈ RnV×m,

ÊFi,k := V


F

(1)
i,k
...

F
(V )
i,k

 ∈ RnV×n, ÊGk := V


G

(1)
i,k
...

G
(V )
i,k

 ∈ RnV×m, Î :=


In
...

In

 ∈ RnV×n.

Proof. After performing the identifications showed in (90) and (91), by applying Lemma 2.4

produces the recursive solution for (88)–(89) as follows:

 x̂k+1

ûk

Jk(x̂k+1, ûk, i)

 =

0 0 0 0 0 In 0

0 0 0 0 0 0 Im

0 0 −xTk In xTk F̂
T
i,k xTk Ê

T
Fi,k

0 0

×


(Ψi,k+1)−1 0 0 0 0 In 0

0 R−1
i,k 0 0 0 0 Im

0 0 Q−1
i,k 0 0 0 0

0 0 0 Φ 0 Î −Ĝi,k

0 0 0 0 Σ 0 −ÊGi,k
In 0 0 ÎT 0 0 0

0 Im 0 −ĜT
i,k −ÊT

Gi,k
0 0



−1 

0

0

−Inxk
F̂i,kxk

ÊFi,kxk

0

0


, (94)

 x̂k+1

ûk

Jk(x̂k+1, ûk, i)

 =

In 0 0

0 Im 0

0 0 xTk


0 0 0 0 0 In 0

0 0 0 0 0 0 Im

0 0 −In F̂ T
i,k ÊT

Fi,k
0 0

×


(Ψi,k+1)−1 0 0 0 0 In 0

0 R−1
i,k 0 0 0 0 Im

0 0 Q−1
i,k 0 0 0 0

0 0 0 Φ 0 Î −Ĝi,k

0 0 0 0 Σ 0 −ÊGi,k
In 0 0 ÎT 0 0 0

0 Im 0 −ĜT
i,k −ÊT

Gi,k
0 0



−1 

0

0

−In
F̂i,k

ÊFi,k
0

0


xk. (95)

Here we adopt the approximation λ̂ ≈ βµ, β > 1, so that Σ := (βµ)−1InV and Φ =

µ−1(1− β−1)InV . Then, for each mode i ∈ Θ, the closed-loop matrix Li,k, the feedback gain

Ki,k and the weight matrix Pi,k are computed from (95) by defining x̂k+1

ûk

Jk(x̂k+1, ûk, i)

 =

In 0 0

0 Im 0

0 0 xTk


Li,kKi,k

Pi,k

xk.
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In the sequence, we provide a reduced formulation of the solution presented by Lemma

4.1 for problem (88)–(89).

Theorem 4.1. For a fixed µ > 0, the solution for problem (88)–(89), which is given by

(92)–(93), is equivalent to:

Li,k = Xi,k+1F̄i,k −Xi,k+1Ḡi,k
(
Im + ḠTi,kΨi,k+1Ḡi,k

)−1 ḠTi,kΨi,k+1F̄i,k, (96)

Ki,k = −R−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k

− R̄i,kG
T
i,k

(
In + Ψi,k+1Ḡi,kḠTi,k

)−1
Ψi,k+1F̄i,k, (97)

Pi,k = Q̄i,k + F̄Ti,kΨi,k+1F̄i,k − F̄Ti,kΨi,k+1Ḡi,k
(
Im + ḠTi,kΨi,k+1Ḡi,k

)−1 ḠTi,kΨi,k+1F̄i,k, (98)

where

F̄i,k = Fi,k −Gi,kR
−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k ,

Q̄i,k = Qi,k + ÊT
Fi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k ,

R̄i,k = R−1
i,k

[
Im− ÊT

Gi,k

(
Σ+ ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊGi,kR
−1
i,k

]
,

Ψi,k+1 = V
(
µ−1(1− β−1)In + VΨ−1

i,k+1

)−1
, β > 1,

Xi,k+1 = Ψ−1
i,k+1Ψi,k+1, Ḡi,k = Gi,kR̄

1/2
i,k .

Proof. Note that matrices Ki,k and Li,k in (93) compose the solution for the following linear

system: 

Ψ−1
i,k+1 0 0 0 0 In 0

0 R−1
i,k 0 0 0 0 Im

0 0 Q−1
i,k 0 0 0 0

0 0 0 Φ 0 Î −Ĝi,k

0 0 0 0 Σ 0 −ÊGi,k
In 0 0 ÎT 0 0 0

0 Im 0 −ĜT
i,k −ÊT

Gi,k
0 0





ξ1

ξ2

ξ3

Ξ4

ξ5

Li,k

Ki,k


=



0

0

−In
F̂k

ÊFk
0

0


, (99)

with Ξ4 = 1V ⊗ ξ4, ξ4 ∈ Rn×n, and

Φ = µ−1(1− β−1)InV = IV ⊗ ϕ, (100)
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where ϕ = µ−1(1− β−1)In. By developing (99) we have the set of equations



Ψ−1
i,k+1ξ1 + Li,k = 0,

R−1
i,k ξ2 +Ki,k = 0,

Q−1
i,k ξ3 = −In,

ΦΞ4 + ÎLi,k − Ĝi,kKi,k = F̂i,k,

Σξ5 − ÊGi,kKi,k = ÊFi,k ,

Inξ1 + ÎTΞ4 = 0,

Imξ2 − ĜT
i,kΞ4 − ÊT

Gi,k
ξ5 = 0,

(101)

(102)

(103)

(104)

(105)

(106)

(107)

and substitute (99) into (93) to produce

Pk,i =
[
0 0 −In F̂ T

i,k ÊT
Fi,k

0 0
]


ξ1

ξ2

ξ3

Ξ4

ξ5

Li,k

Ki,k


,

Pi,k = −ξ3 + V F T
i,kξ4 + ÊT

Fi,k
ξ5. (108)

Assume that (93) holds, which implies a unique solution for the set of equations from

(101) to (108). Thence, from (101) and (103) we have

ξ1 = −Ψi,k+1Li,k, (109)

ξ3 = −Qi,k. (110)

Next, expand (104) to yield

ϕξ4 + Li,k −Gi,kKi,k = Fi,k. (111)

From (106),

ξ4 = −V −1ξ1, (112)

and by combining it with (109) results in

Li,k = VΨ−1
i,k+1ξ4. (113)

Now, (102) implies

ξ2 = −Ri,kKi,k, (114)
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and place it into (107) to obtain

Ki,k = −R−1
i,kV G

T
i,kξ4 −R−1

i,k Ê
T
Gi,k

ξ5. (115)

By substituting (115) into (105) produces:

ÊGi,kR
−1
i,kV G

T
i,kξ4 +

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)
ξ5 = ÊFi,k . (116)

Now, substitute (113) and (115) into (111):(
ϕ+ VΨ−1

i,k+1 +Gi,kR
−1
i,kV G

T
i,k

)
ξ4 +Gi,kR

−1
i,k Ê

T
Gi,k

ξ5 = Fi,k. (117)

Therefore, let us combine (116) and (117) to obtain the following linear system:[
ϕ+ VΨ−1

i,k+1 +Gi,kR
−1
i,kV G

T
i,k Gi,kR

−1
i,k Ê

T
Gi,k

ÊGi,kR
−1
i,kV G

T
i,k Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

][
ξ4

ξ5

]
=

[
Fi,k

ÊFi,k

]
. (118)

Define

U =

[
ϕ+ VΨ−1

i,k+1 +Gi,kR
−1
i,kV G

T
i,k Gi,kR

−1
i,k Ê

T
Gi,k

ÊGi,kR
−1
i,kV G

T
i,k Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

]
=

[
A B
C D

]
. (119)

Then, [
ξ4

ξ5

]
= U−1

[
Fi,k

ÊFi,k

]
, (120)

where U−1 is given by the Banachiewicz formula (see Lemma A.5) as

U−1 =

[
(U/D)−1 −(U/D)−1BD−1

−D−1C(U/D)−1 D−1 +D−1C(U/D)−1BD−1

]
, (121)

in which U/D = A− BD−1C is the Schur Complement of D in U . Thus,

U/D = ϕ+ VΨ−1
i,k+1 +Gi,kR

−1
i,kV G

T
i,k −Gi,kR

−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊGi,kR
−1
i,kV G

T
i,k,

U/D = ϕ+ VΨ−1
i,k+1 + V Gi,kR

−1
i,k

(
Im − ÊT

Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊGi,kR
−1
i,k

)
GT
i,k.

Define

R̄i,k = R−1
i,k

[
Im − ÊT

Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊGi,kR
−1
i,k

]
, (122)

so that U/D = ϕ+ VΨ−1
i,k+1 + V Gi,kR̄i,kG

T
i,k. Now define

Ωi,k+1 = ϕ+ VΨ−1
i,k+1,

such that U/D = Ωi,k+1 + V Gi,kR̄i,kG
T
i,k, and

(U/D)−1 = Ω−1
i,k+1 − Ω−1

i,k+1V Gi,k(R̄
−1
i +GT

i,kΩ
−1
i,k+1V Gi,k)

−1GT
i,kΩ

−1
i,k+1.



67

Also,

D−1 +D−1C(U/D)−1BD−1 =
(

Σ + ÊGi,kR
−1
i,k Ê

T
Gi,k

)−1

+
(

Σ + ÊGi,kR
−1
i,k Ê

T
Gi,k

)−1

V ÊGi,kR
−1
i,kG

T
i,k

(
Ω−1
i,k+1 − Ω−1

i,k+1V Gi,k(R̄
−1
i

+GT
i,kΩ

−1
i,k+1V Gi,k)

−1GT
i,kΩ

−1
i,k+1

)
Gi,kR

−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

,

D−1 +D−1C(U/D)−1BD−1 =
(

Σ + ÊGi,kR
−1
i,k Ê

T
Gi,k

)−1 [
InV + V ÊGi,kR

−1
i,kG

T
i,k

(
Ω−1
i,k+1

−Ω−1
i,k+1V Gi,k(R̄

−1
i +GTi,kΩ

−1
i,k+1V Gi,k)

−1GTi,kΩ
−1
i,k+1

)
Gi,kR

−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1 ]
.

From (120)–(121),

ξ4 = (U/D)−1Fi,k − (U/D)−1BD−1ÊFi,k ,

ξ4 =
(
Ω−1
i,k+1 − Ω−1

i,k+1V Gi,k(R̄
−1
i +GT

i,kΩ
−1
i,k+1V Gi,k)

−1GT
i,kΩ

−1
i,k+1

)
×
(
Fi,k −Gi,kR

−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k

)
,

and define

F̄i,k = Fi,k −Gi,kR
−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k ,

such that

ξ4 =
(
Ω−1
i,k+1 − Ω−1

i,k+1V Gi,k(R̄
−1
i +GT

i,kΩ
−1
i,k+1V Gi,k)

−1GT
i,kΩ

−1
i,k+1

)
F̄i,k,

ξ4 =
(
Ωi,k+1 + V Gi,kR̄i,kG

T
i,k

)−1 F̄i,k. (123)

From (120)–(121),

ξ5 = −D−1C(U/D)−1Fi,k +
(
D−1 +D−1C(U/D)−1BD−1

)
ÊFi,k ,

ξ5 = −D−1C(U/D)−1
(
Fi,k − BD−1ÊFi,k

)
+D−1ÊFi,k ,

ξ5 = −
(

Σ + ÊGi,kR
−1
i,k Ê

T
Gi,k

)−1

V ÊGi,kR
−1
i,kG

T
i,k

×
(
Ω−1
i,k+1 − Ω−1

i,k+1V Gi,k(R̄
−1
i +GT

i,kΩ
−1
i,k+1V Gi,k)

−1GT
i,kΩ

−1
i,k+1

) (
Fi,k

−Gi,kR
−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k

)
+
(

Σ + ÊGi,kR
−1
i,k Ê

T
Gi,k

)−1

ÊFi,k ,

ξ5 =
(

Σ + ÊGi,kR
−1
i,k Ê

T
Gi,k

)−1 (
ÊFi,k − V ÊGi,kR−1

i,kG
T
i,k

(
Ωi,k+1 + V Gi,kR̄i,kG

T
i,k

)−1 F̄i,k
)
,

ξ5 =
(

Σ + ÊGi,kR
−1
i,k Ê

T
Gi,k

)−1 (
ÊFi,k − V ÊGi,kR−1

i,kG
T
i,kξ4

)
. (124)
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Now substitute (110), (123) and (124) into (108):

Pi,k = −ξ3 + V F T
i,kξ4 + ÊT

Fi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1 (
ÊFi,k − V ÊGi,kR−1

i,kG
T
i,kξ4

)
,

Pi,k = Qi,k + V F̄Ti,kξ4 + ÊT
Fi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k .

Define

Q̄i,k = Qi,k + ÊT
Fi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k ,

Ḡi,k = Gi,kR̄i,k1/2,

then,

Pi,k = Q̄i,k + V F̄Ti,k
(
Ωi,k+1 + V Ḡi,kImḠTi,k

)−1 F̄i,k,

Pi,k = Q̄i,k + V F̄Ti,k
(
In + V Ω−1

i,k+1Ḡi,kImḠTi,k
)−1

Ω−1
i,k+1F̄i,k,

Pi,k = Q̄i,k + F̄Ti,kΨi,k+1F̄i,k − F̄Ti,kΨi,k+1Ḡi,k
(
Im + ḠTi,kΨi,k+1Ḡi,k

)−1 ḠTi,kΨi,k+1F̄i,k,

which corresponds to (98), where Ψi,k+1 = V Ω−1
i,k+1 = V

(
µ−1(1− β−1)In + VΨ−1

i,k+1

)−1.

Now, place (123) into (113) to obtain

Li,k = VΨ−1
i,k+1

(
Ωi,k+1 + V Gi,kR̄i,kG

T
i,k

)−1 F̄i,k,

Li,k = VΨ−1
i,k+1

(
In + V Ω−1

i,k+1ḠTi,kImḠTi,k
)−1

Ω−1
i,k+1F̄i,k,

Li,k = VΨ−1
i,k+1

(
In − V Ω−1

i,k+1Ḡi,k
(
Im + ḠTi,kV Ω−1

i,k+1Ḡi,k
)−1 ḠTi,k

)
Ω−1
i,k+1F̄i,k,

Li,k = Xi,k+1F̄i,k −Xi,k+1Ḡi,k
(
Im + ḠTi,kΨi,k+1Ḡi,k

)−1 ḠTi,kΨi,k+1F̄i,k,

which corresponds to (96), with Xi,k+1 = Ψ−1
i,k+1Ψi,k+1. Finally, substitute (123) and (124)

into (115), such that

Ki,k = −R−1
i,kV G

T
i,kξ4 −R−1

i,k Ê
T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1 (
ÊFi,k − V ÊGi,kR−1

i,kG
T
i,kξ4

)
,

Ki,k = −R−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k

− V R−1
i,k

(
Im − ÊT

Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊGi,kR
−1
i,k

)
GT
i,kξ4,

Ki,k = −R−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k − V R̄i,kG
T
i,kξ4,

Ki,k = −R−1
i,k Ê

T
Gi,k

(
Σ + ÊGi,kR

−1
i,k Ê

T
Gi,k

)−1

ÊFi,k

− R̄i,kG
T
i,k

(
In + Ψi,k+1Ḡi,kḠTi,k

)−1
Ψi,k+1F̄i,k,

which corresponds to (97).
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Remark 4.1. For any positive penalty µ, when β → 1+ we have

Li,k = F̄i,k − Ḡi,k
(
Im + ḠTi,kΨi,k+1Ḡi,k

)−1 ḠTi,kΨi,k+1F̄i,k,

and also

Pi,k = Q̄i,k + F̄Ti,kΨi,k+1F̄i,k − F̄Ti,kΨi,k+1Ḡi,k
(
Im + ḠTi,kΨi,k+1Ḡi,k

)−1 ḠTi,kΨi,k+1F̄i,k,

which is a standard coupled Riccati equation (COSTA; FRAGOSO; MARQUES, 2005).

4.3 Convergence and Stability

At this point, we can provide the conditions for convergence and stability of the closed-

loop system with the recursive regulator for DMJLS subject to polytopic uncertainties. We

consider the DMJLS (78) with time-invariant parameters, time-varying polytope coefficients

αk, and β → 1+. Moreover, we define F̄ = (F̄1, . . . , F̄s) ∈ Hn,n, Ḡ = (Ḡ1, . . . , Ḡs) ∈ Hn,m,

Q̄ = (Q̄1, . . . , Q̄s) ∈ Hn,n, and assume Q̄i > 0, R̄i > 0, and constant pij , for i, j ∈ Θ.

Theorem 4.2. Consider (98) with initial condition PN > 0, fixed µ > 0, and a priori known F̄ ,

Ḡ and Q̄. Assume the matrix pair {F̄ , Ḡ} is stabilizable and {Q̄1/2, F̄} is detectable. Then,

Pk ∈ Hn
+ generated by (98) converges to a unique P = (P1, . . . , Ps) ∈ Hn

+ for which the

closed-loop matrix

Li = F̄i − Ḡi
(
Im + ḠTi ΨiḠi

)−1 ḠTi ΨiF̄i
of the DMJLS (78) is mean square stable, with Ψi =

∑s
j=1 pijPj .

Proof. The reduced form of Pi,k achieved in Theorem 4.1 has the structure of the coupled

algebraic Riccati equations (32) when β → 1+, as we mentioned in Remark 4.1. As such,

we make the following identifications:

Ai ← F̄i, Bi ← Ḡi, Ri ← Im, Qi ← Q̄i, Ek+1 ← Ψi,k+1.

We also have that (Im + ḠTi Ψi,k+1Ḡi) is positive definite for any µ > 0. Then, by the

fundamental arguments presented in Costa, Fragoso and Marques (2005) and assuming

detectability and stabilizability of the pairs {Q̄1/2, F̄} and {F̄ , Ḡ}, respectively, it follows that

Pk ∈ Hn
+ converges to P ∈ Hn

+. In this case, Ψi,k+1 → Ψi, Li,k → Li, Ki,k → Ki, and the

solution P ensures stability of the closed-loop matrix Li of (78) when uk = Kixk.

4.4 Illustrative Examples

We provide two examples to illustrate the performance of the proposed solution for

the robust regulation problem of DMJLS subject to polytopic uncertainties. For the sake of

comparison, we also apply a robust Markovian H∞ controller (GONÇALVES; FIORAVANTI;

GEROMEL, 2012), which is based on an optimization problem with LMI constraints and

computed via the YALMIP Toolbox (LÖFBERG, 2004).
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Example 4.1. Consider the following unstable two-mode DMJLS subject to polytopic uncer-

tainties with randomly generated vertices:

• Mode 1:

F1,k =

 1.0 1.0 1.0

−2.5 3.2 1.2

1.4 1.6 2.0

 , G1,k =

1 0 1

0 1 2

1 1 1

 ,

F
(1)
1,k =

0.3268 −0.0938 0

0 0.7264 0.0758

0 0 −0.8579

 , G
(1)
1,k =

−0.3148 0 0

0 0.2660 −0.3699

0 0.3623 0

 ,

F
(2)
1,k =

0.3107 0 0

0 −0.8650 0.0511

0 −0.7575 0

 , G
(2)
1,k =

−0.1067 0 0

0 −0.0500 0

0 0.0090 0

 .
• Mode 2:

F2,k =

 1.0 1.0 1.0

−2.7 0.4 2.1

−3.4 2.5 4.8

 , G2,k =

1 0 1

0 1 2

1 1 1

 ,

F
(1)
2,k =

0.0367 0 0.2137

0 0.1028 −0.1753

1.5460 0.2421 0

 , G
(1)
2,k =

0.2 0 0

0 0 0.7893

0 0 −0.1926

 ,

F
(2)
2,k =

 0 0 0.2688

−0.8273 0.0794 0

1.0264 0.2747 0

 , G
(2)
2,k =

−0.1681 0 −0.2984

0 0.0159 −0.5264

0.1500 −0.0500 0

 .
Assume that the initial condition and the transition probability matrix are, respectively,

x0 =

0.024

0.244

0.556

 , P =

[
0.60 0.40

0.25 0.75

]
.

We choose the following parameters for (89) to set up the penalized cost function:

Q1,k =

10 0 0

0 20 0

0 0 20

 , R1,k =

10−4 0 0

0 0.1 0

0 0 0.1

 ,

Q2,k =

1.6 0 0

0 20 0

0 0 20

 , R2,k =

10−4 0 0

0 0.1 0

0 0 0.1

 ,
P1,0 = P2,0 = I3, µ = 1015, β = 1.1.
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With the above configuration, Lemma 4.1 provided the state feedback gains Ki and the

solutions for the coupled Riccati equations as follows:

K1 =

−2.0607 0.0745 −0.7042

0.1209 −1.1493 −0.3461

1.0366 −0.9135 −0.4782

 , P1 = 1015

 7.0137 −2.5253 1.4391

−2.5253 9.5378 1.2458

1.4391 1.2458 5.5096

 ,

K2 =

−0.5555 −1.2694 −1.4926

3.9370 −1.1469 −3.3779

−0.4086 0.2399 0.4694

 , P2 = 1016

 1.6759 0.1355 −0.0572

0.1355 0.1354 0.0965

−0.0572 0.0965 0.1787

 .
In addition, the robust Markovian H∞ state feedback gains are

K1,H∞ =

−2.4500 0.3001 −0.9001

−0.4000 −0.6001 −0.9998

1.4500 −1.3000 −0.1000

 , K2,H∞ =

−0.1500 −1.5505 −1.8495

4.3999 −1.5013 −3.7985

−0.8499 0.5510 0.8488

 .
The simulation results were averaged over 5000 Monte Carlo experiments performed on

a 2.50 GHz i5-3210M CPU with 8 GB of RAM. We chose, for each experiment, a time horizon

ofN = 100, and the coefficients αk changed randomly at every iteration. In Fig. 5, we present

the norms of the states vector obtained with the robust recursive regulator and averaged

over all experiments. Fig. 6 shows the maximum spectral radii rσ of the open-loop system

and of the closed-loop system subject to polytopic uncertainties with the recursive regulator

for different values of penalty parameter µ. It is worth pointing out that the proposed solution

stabilizes the system even for small values of µ, since all the spectral radii remain lower

than 1 in all experiments. As we can verify in Table 3, both the robust recursive regulator

for polytopic DMJLS (PMRR for short) and the robust Markovian H∞ controller presented

equivalent performances in terms of norms of states and input vectors, denoted by ‖x̄‖L2
and ‖ū‖L2 respectively. Nevertheless, the computational time T̄c required to compute the

feedback gains of the recursive regulator is, on average, two orders of magnitude lower when

compared with the robust H∞ controller borrowed from Gonçalves, Fioravanti and Geromel

(2012).

Table 3 – Simulation results for Example 4.1.

Controller ‖x̄‖L2 σx̄ T̄c (ms) σT̄c (ms) ‖ū‖L2 σū

PMRR 1.3772 0.1375 3.8695 0.3694 3.1035 0.3101

Markovian H∞ 1.5175 0.1513 548.6110 57.6667 3.9510 0.3952

Source: author.
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Figure 5 – Averaged norms of system states with the robust recursive regulator for DMJLS.
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Figure 6 – Open-loop and closed-loop spectral radii, rσ, of 5000 experiments with randomly
selected coefficients αi,k.
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Example 4.2. The following DMJLS represents the drivetrain model of an autonomous

heavy-duty G 360 CB6x4HSZ Scania truck. The model matrices, polytope vertices, and

transition probability matrix were identified based on experimental data acquired while driving

the truck around the University of São Paulo campus at São Carlos. For this example, the

model captures the drivetrain behavior regarding only the throttle inputs and has 7 Markov

modes related to the transmission rates from 4th to 10th gears, hence θk ∈ {1, ..., 7}.
Each mode has three polytopic vertices to compose the uncertainties {δFi,k, δGi,k}, which

represent different road slopes (uphill, downhill and flat). The reader can find further details

about the identification process in Appendix B.

The state errors are represented by xk = qk−qref
k , where qk =

[
q1 q2 q3

]T
is composed

of driveshaft torsion, engine speed, and wheel speed, respectively, and control input uk =

τk − τ ref
k , in which τk is the throttle pedal position. Also, qref

k and τ ref
k are the reference values

for states and throttle pedal positions. The longitudinal control task consists of tracking the

experimentally collected reference trajectories qref =
[
qref

1 qref
2 qref

3

]T
via torques delivered

by the engine of the autonomous truck, with initial condition x0 =
[
0.01 0.05 0.07

]T
. Thus,

we set up all modes of the robust recursive regulator for polytopic DMJLS (PMRR for short)

with the parameters

Qi,k = 107I3, Ri,k = 10−5, Pi,0 = I3, µ = 108, β = 1.01,

so Lemma 4.1 provided the following state feedback gains and solutions for the coupled

algebraic Riccati equations:

K1 =
[
−0.6865 1.2587 −1.9331

]
, P1 = 108

 2.3111 0.6433 −3.4075

0.6433 2.3121 −1.4776

−3.4075 −1.4776 5.8408

 ,

K2 =
[
−0.5946 2.0856 −3.7260

]
, P2 = 108

 2.9142 1.2187 −3.6208

1.2187 2.4324 −2.0820

−3.6208 −2.0820 5.3026

 ,

K3 =
[
−1.1787 2.7242 −4.9167

]
, P3 = 108

 2.6205 0.9629 −3.4112

0.9629 1.5256 −1.2244

−3.4112 −1.2244 4.8664

 ,

K4 =
[
−1.8830 −1.6333 −1.6257

]
, P4 = 109

 0.1687 0.2244 −0.3969

0.2244 0.5736 −0.6772

−0.3969 −0.6772 1.1323

 ,

K5 =
[
−3.1022 2.2056 −7.8284

]
, P5 = 108

 1.8769 1.7349 −3.6534

1.7349 2.6935 −3.6689

−3.6534 −3.6689 7.9961

 ,
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K6 =
[
−2.6115 2.3310 −7.6846

]
, P6 = 109

 0.1784 0.2142 −0.3951

0.2142 0.7585 −0.7262

−0.3951 −0.7262 1.1118

 ,

K7 =
[
−2.4008 8.9769 −14.2961

]
, P7 = 109

 0.1510 0.2679 −0.4306

0.2679 1.4666 −1.3874

−0.4306 −1.3874 1.8013

 .
We adopted the robust Markovian H∞ controller proposed by Gonçalves, Fioravanti and

Geromel (2012) for comparison purposes, which produced the state feedback gains

K1,H∞ =
[
−5.9045 −8.3354 5.4019

]
, K2,H∞ =

[
−0.5789 −11.4083 −5.9273

]
,

K3,H∞ =
[
−3.3750 −8.9377 −3.5108

]
, K4,H∞ =

[
−20.4683 −45.3066 30.4169

]
,

K5,H∞ =
[
−8.5321 −21.7993 −3.3409

]
, K6,H∞ =

[
−48.3065 −114.8764 53.3493

]
,

K7,H∞ =
[
−88.6635 −214.5633 168.4129

]
.

Notably, the robust Markovian H∞ controller resulted in 42 LMI constraints to be satisfied to

compute the state feedback gains.

We carried out a total of 1000 Monte Carlo experiments, and during each experiment,

coefficients αi,k changed randomly a few times to emulate a more realistic scenario. Table 4

shows the averaged results regarding the norms of trajectory tracking errors and required

throttle pedal position. Fig. 7 and Fig. 8 display the system states and the throttle pedal

positions, respectively. Even though the LMI constraints were satisfied, the robust Markovian

H∞ strategy yielded gains that could not properly track the reference trajectories in this

specific application, as seen in Fig. 9. In contrast, the proposed recursive regulator for

DMJLS successfully tracked the reference trajectories with minor errors and feasible engine

torques even when the system is subject to polytopic uncertainties.

Table 4 – Simulation results for Example 4.2.

Controller ‖x̄‖L2 σx̄ ‖τ̄‖L2 στ̄

PMRR 2.5992 0.0454 8.9117 0.1427

H∞ 180.8734 4.1442 42.9357 1.0703

Source: author.
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Figure 7 – Heavy duty vehicle states with the robust recursive regulator for DMJLS.
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Figure 8 – Throttle pedal position with the robust recursive regulator for DMJLS.
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Figure 9 – Norms of the state errors with the Markovian robust H∞ controller.
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5 ROBUST REGULATOR FOR DMJLS WITH POLYTOPIC UNCERTAIN TRANSITION

PROBABILITIES

In this chapter, we focus on the class of DMJLS in which polytopic uncertainties affect not

only the state space matrices but also the transition probabilities. Besides the aspects men-

tioned in Chapter 4, uncertain transition probabilities bring forth a higher level of complexity.

A plethora of articles reported in the literature on robust control for DMJLS assume complete

knowledge of these quantities; however, the transition probabilities are often estimated

from experimental data and belong to an interval of uncertainties. Robust approaches are

thus necessary as estimation errors might lead the systems to unstable regions or at least

degrade performance (XIONG et al., 2005). There are various ways to specifically model

uncertainties affecting transition probabilities. For instance, in Tzortzis, Charalambous and

Hadjicostis (2021), the transition probabilities are limited by a ball. Zacchia Lun, D’Innocenzo

and Di Benedetto (2019), Park and Kwon (2002), Costa, Fragoso and Todorov (2015), and

Lun, Abate and D’Innocenzo (2019), to name a few, modeled the transition probabilities as

quantities lying within a polytope. Li et al. (2020), and Sun, Zhang and Wu (2020) consider

that some elements in the transition probabilities matrix are unknown. This approach was

also found in the earlier notable works by Zhang and Boukas (2009), and Zhang and Lam

(2010). It is worth mentioning that the case of unknown elements in the transition probabilities

matrix can be equivalently handled by a convex combination of vertices (GONÇALVES;

FIORAVANTI; GEROMEL, 2011).

That said, our main contribution in this chapter is a recursive solution for the regulation

problem of DMJLS subject to polytopic uncertainties on state space matrices and transition

probabilities. Our first step is to verify how the uncertain probabilities affect the expectations

appearing in the cost function. We express these portions in a more suitable manner for

our purposes. We formulate an optimization problem with a penalized cost function whose

solution recursively returns the robust state-feedback gains, hence the name robust recur-

sive regulator. Provided that certain positivity, stabilizability, and detectability conditions are

satisfied, the associated closed-loop system is stable despite the presence of uncertain-

ties. Finally, we validate our results in numerical and application examples, assessing the

performance regarding regulation and computational burden.

5.1 Problem Formulation

Consider the following realization of a DMJLS:

xk+1 = (Fθk,k + δFθk,k)xk + (Gθk,k + δGθk,k)uk, (125)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input vector, Fθk,k ∈ Rn×n andGθk,k ∈ Rn×m

are system and input matrices, respectively, whereas θk ∈ Θ = {1, . . . , s} is the actual

active Markov mode. δFθk,k and δGθk,k are convex polytopic uncertainties that depend on
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the time-varying coefficients αk =
[
α1,k . . . αVn,k

]T
∈ ΛVn , such that

[
δFθk,k δGθk,k

]
=

Vn∑
l=1

αl,k

[
F

(l)
θk,k

G
(l)
θk,k

]
,

ΛVn =

{
α ∈ RVn

∣∣∣ Vn∑
l=1

αl = 1, 0 ≤ αl ≤ 1

}
.

The transition probability matrix Pk ∈ Rs×s is assumed to be uncertain and is defined as

Pk = P0 + δPk, Prob(θ0) = π
(0)
i + δπi,

Pk =
[
p

(0)
ij + δpij,k

]
= Prob(θk+1 = j | θk = i),

s∑
j=1

(p
(0)
ij + δpij,k) = 1, 0 ≤ p

(0)
ij + δpij,k ≤ 1, 0 ≤ p

(0)
ij ≤ 1, (126)

where the uncertainty δPk is also polytopic and depends on the time-varying coefficients

ξk =
[
ξ1,k . . . ξVp,k

]T
∈ ΛVp , such that

δPk =
[
δpij,k

]
=

[
Vp∑
l=1

ξl,kp
(l)
ij

]
,

ΛVp =

{
ξ ∈ RVp

∣∣∣ Vp∑
l=1

ξl = 1, 0 ≤ ξl ≤ 1

}
. (127)

Remark 5.1. We assume 0 ≤ p
(0)
ij ≤ 1. Also, from (126), we have

∑s
j=1(p

(0)
ij + δpij,k) = 1,

and 0 ≤ p
(0)
ij + δpij,k ≤ 1. Therefore, the portion δpij,k is allowed to assume negative values

to ensure that Pk is a transition probability matrix.

Before investigating the robust regulation of the DMJLS (125), let us first define the s-
sequencesQk = (Q1,k, . . . , Qs,k) ∈ Hn

+,Rk = (R1,k, . . . , Rs,k) ∈ Hm
+ ,P k = (P1,k, . . . , Ps,k) ∈

Hn
+, i ∈ Θ, where Qk and Rk are known. Then, set the following optimization problem:

min
xk+1,uk

max
δFi,k, δGi,k, δPk

{
E{‖xN‖2PθN ,N +

N−1∑
t=0

(‖xt‖2Qi,t + ‖ut‖2Ri,t) |It}
}
, (128)

subject to 
In
...

In

xk+1 =


Fi,k + VnδF

(1)
i,k...

Fi,k + VnδF
(Vn)
i,k

xk +


Gi,k + VnδG

(1)
i,k...

Gi,k + VnδG
(Vn)
i,k

uk, (129)

where δF (l)
i,k = αl,kF

(l)
i,k , δG(l)

i,k = αl,kG
(l)
i,k, i ∈ Θ, θN ∈ Θ, and information It = {θt, xt}. By

applying Bellman’s Principle of Optimality to (128), we yield

min
xk+1,uk

max
δFi,k, δGi,k, δPk

{
Jk = E

{
‖xk+1‖2

Pi,k+1
+ ‖xk‖2

Qi,k
+ ‖uk‖2

Ri,k
| Ik

}
},

subject to (129),
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and taking the expectations in Jk we obtain:

min
xk+1,uk

max
δFi,k, δGi,k, δPk

{
Jk = ‖xk+1‖2

Ψi,k+1
+ ‖xk‖2

Qi,k
+ ‖uk‖2

Ri,k

}
,

subject to (129), (130)

where Ψi,k+1 = E{Pi,k |Ik}. Observe that the uncertainties δPk will reflect upon the expec-

tation Ψi,k+1, given by

Ψi,k+1 =
s∑
j=1

(p
(0)
ij,k + δpij,k)Pj,k+1,

Ψi,k+1 = Ψ
(0)
i,k+1 + δΨi,k+1,

with

Ψ
(0)
i,k+1 =

s∑
j=1

p
(0)
ij Pj,k+1, and δΨi,k+1 =

s∑
j=1

δpij,kPj,k+1. (131)

Remark 5.2. The constraints (129) actually represent the DMJLS (125). Pre-multiplying
both sides of (129) by

[
In · · · In

]
yields

Vnxk+1 = Vn

(
Fi,k +

Vn∑
l=1

αl,kF
(l)
i,k

)
xk + Vn

(
Gi,k +

Vn∑
l=1

αl,kG
(l)
i,k

)
uk,

which corresponds to (125).

In (131), observe that

δΨi,k+1 =
s∑
j=1

(
Vp∑
l=1

ξl,kp
(l)
ij

)
Pj,k+1,

δΨi,k+1 =
s∑
j=1

(ξ1,kp
(1)
ij + . . .+ ξVp,kp

(Vp)
ij )Pj,k+1,

δΨi,k+1 = (ξ1,kp
(1)
i1 + . . .+ ξVp,kp

(Vp)
i1 )P1,k+1 + . . .+ (ξ1,kp

(1)
is + . . .+ ξVp,kp

(Vp)
is )Ps,k+1,

δΨi,k+1 = ξ1,kp
(1)
i1 P1,k+1 + . . .+ ξVp,kp

(Vp)
i1 P1,k+1 + . . .

+ ξ1,kp
(1)
is Ps,k+1 + . . .+ ξVp,kp

(Vp)
is Ps,k+1,

δΨi,k+1 =

√
ξ1,kp

(1)
i1 P1,k+1

√
ξ1,kp

(1)
i1 + . . .+

√
ξVp,kp

(Vp)
i1 P1,k+1

√
ξVp,kp

(Vp)
i1 + . . .

+

√
ξ1,kp

(1)
is Ps,k+1

√
ξ1,kp

(1)
is + . . .+

√
ξVp,kp

(Vp)
is Ps,k+1

√
ξVp,kp

(Vp)
is .

Let us group the above equation in terms of vertices l = 1, . . . , Vp, such that

δΨi,k+1 =

√
ξ1,kp

(1)
i1 P1,k+1

√
ξ1,kp

(1)
i1 + . . .+

√
ξ1,kp

(1)
is Ps,k+1

√
ξ1,kp

(1)
is + . . .

+

√
ξVp,kp

(Vp)
i1 P1,k+1

√
ξVp,kp

(Vp)
i1 + . . .+

√
ξVp,kp

(Vp)
is Ps,k+1

√
ξVp,kp

(Vp)
is ,

δΨi,k+1 = δpTi,kPPPk+1δpi,k, (132)



80

where PPPk+1 = IVp ⊗ diag(P1,k+1, . . . , Ps,k+1), and

δpi,k =


ξ1,kIsn . . . 0

... . . . ...

0 . . . ξVp,kIsn


◦1/2 

p
(1)
i
...

p
(Vp)
i


◦1/2

,

with vertices p(l)
i =

[
p

(l)
i1 In . . . p

(l)
is In

]T
, for l = 1, . . . , Vp. Let us now define some auxiliary

matrices which we will use throughout this chapter:

F i,k = 1Vn ⊗ Fi,k, Gi,k = 1Vn ⊗Gi,k, In = 1Vn ⊗ In,

δF i,k =


δF

(1)
i,k
...

δF
(Vn)
i,k

 , δGi,k =


δG

(1)
i,k

...

δG
(Vn)
i,k

 ,

EF i,k = Vn


F

(1)
i,k
...

F
(Vn)
i,k

 , EGi,k = Vn


G

(1)
i,k
...

G
(Vn)
i,k

 , EPPPi =


p

(1)
i
...

p
(Vp)
i


◦1/2

.

That said, we are able to map the problem (130) into an unconstrained problem. We show

this procedure in the following lemma.

Lemma 5.1. For a given fixed penalty parameter µ > 0, the constrained optimization problem

(130) is equivalent to the unconstrained problem

min
xk+1,uk

max
δi,k

J µ
k (xk+1, uk, δk), (133)

for k = N−1, . . . , 0, where δi,k := {δFi,k, δGi,k, δPk}, i ∈ Θ := {1, . . . , s}, and cost function
J µ
k (.) given by

J µk (xk+1, uk, δk) =

[
xk+1

uk

]T[
Ψ

(0)
i,k+1 0

0 Ri,k

][
xk+1

uk

]
+



 0 0

0 0

In −Gi,k

+
 0 0

δpi 0

0 −VnδGi,k


[xk+1

uk

]

−


−In0

F i,k

+

 0

0

VnδF i,k


xk


T Qi,k 0 0

0 PPPk+1 0

0 0 µInVn

{ •}. (134)

Proof. Let us reformulate the constraints in (129) as f̄(xk+1, uk, δi,k) = 0, such that

f̄(xk+1, uk, δi,k) = Inxk+1 − (F i,k + VnδF i,k)xk − (Gi,k + VnδGi,k)uk,

which is equivalent to

f̄(xk+1, uk, δi,k) =
([
In 0

]
+
[
0 −VnδGi,k

])[xk+1

uk

]
− (F i,k + VnδF i,k)xk.
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Let us introduce a positive penalty parameter µ ∈ R, which we shall keep fixed throughout

the algorithm, and use it to design the penalty function pf (xk+1, uk, δi,k) ∈ R as

pf (xk+1, uk, δi,k) = ‖f̄(xk+1, uk, δi,k)
T‖2

µIn .

Note that µ penalizes any violation of (129). Therefore, we formulate the unconstrained

problem by defining the penalized cost

J µ
k (xk+1, uk, δk) = ‖xk+1‖2

Ψi,k+1
+ ‖xk‖2

Qi,k
+ ‖uk‖2

Ri,k
+ pf (xk+1, uk, δi,k),

J µ
k (xk+1, uk, δk) =

[
xk+1

uk

]T [
Ψ

(0)
i,k+1 0

0 Ri,k

][
xk+1

uk

]
+ xTk+1δΨi,k+1xk+1 + xTkQi,kxk

+

(([
In 0

]
+
[
0 −VnδGi,k

])[xk+1

uk

]
− (F i,k + VnδF i,k)xk

)T

µIn(•),

J µ
k (xk+1, uk, δk) =

[
xk+1

uk

]T[
Ψ

(0)
i,k+1 0

0 Ri,k

][
xk+1

uk

]
+ xTk+1(δpTi,kPPPk+1δpi,k)xk+1 + xTkQi,kxk

+

(([
In 0

]
+
[
0 −VnδGi,k

])[xk+1

uk

]
− (F i,k + VnδF i,k)xk

)T

µIn(•),

J µ
k (xk+1, uk, δk) =

[
xk+1

uk

]T[
Ψ

(0)
i,k+1 0

0 Ri,k

][
xk+1

uk

]
+



 0 0

0 0

In −Gi,k

+

 0 0

δpi 0

0 −VnδGi,k


[xk+1

uk

]

−


−In0

F i,k

+

 0

0

VnδF i,k


xk


T Qi,k 0 0

0 PPPk+1 0

0 0 µInVn

{ •},
which is identical to (134).

At this point, it is convenient to restate the main goal of this chapter. Given the optimization

problem (133) with k = N −1, . . . , 0, we search for a recursive solution {x̂k+1, ûk}, such that

ûk = Ki,kxk. Moreover, the state-feedback gainsKi,k ∈Kk, whereKk = (K1,k, . . . , Ks,k) ∈
Hm,n, must stabilize the closed-loop DMJLS (125) in the mean-square sense regardless of

uncertainties δi,k. We outline the procedure to yield the recursive solution in the next section.

5.2 RLQR for Polytopic DMJLS with Uncertain Transition Probabilities

Based upon Lemma 5.1 and Lemma 2.4, let us make the following identifications:

J ← J µk , x←
[
xk+1

uk

]
, A0 ←

 0 0

0 0

In −Gi,k

 , b0 ←

−In0

F i,k

xk,
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δA←

 0 0

δpi,k 0

0 −VnδGi,k

, δb←
 0

0

VnδF i,k

xk, M ←
 0 0

IsnVp 0

0 InVn

,
Â←

[
EPPPi 0

0 −EGi,k

]
, b̂←

[
0

EF i,k

]
xk, Q←

[
Ψ

(0)
i,k+1 0

0 Ri,k

]
,

W ←

Qi,k 0 0

0 PPPk+1 0

0 0 µInVn

 , Γ←
[
ξ̄k ⊗ Isn 0

0 ᾱk ⊗ In

]
, (135)

where ᾱk = diag(αk), and ξ̄k = diag(ξk).

We also have W (λ) = (W−1 − λ−1HHT )−1 by the Sherman-Morrison-Woodbury inver-

sion formula (see Lemma A.6 in Appendix A), where λ = β‖HTWH‖ for some scalar β > 1,

as discussed in Section 2.1.3. Therefore, we attain

W (λ) =

Q
−1
i,k 0 0

0 Π1 0

0 0 Π2

 , λ = β

∥∥∥∥∥
[
PPPk+1 0

0 µInVn

]∥∥∥∥∥ ,
Π1 = PPP−1

k+1 − λ−1IsnVn , Π2 = (µ−1 − λ−1)InVn . (136)

We are now in a position to present the main result of this chapter, which is a recursive

solution for the problem (133).

Theorem 5.1. Consider known weights Qk ∈ Hn
+, Rk ∈ Hm

+ , PN ∈ Hn
+, fixed µ > 0, and

i ∈ Θ. The solution for the optimization problem (133) is given by x̂k+1

ûk

Jk(x̂k+1, ûk)

 =

In 0 0

0 Im 0

0 0 xTk


Li,kKi,k

Pi,k

xk, k = 0, . . . , N − 1, (137)

where

Li,k =
(
In − κ(Ω̃i,k+1 + VnḠi,kḠ

T
i,k)
−1
)
F̃i,k

− Ḡi,k

(
Im + ḠT

i,kΨ̃i,k+1Ḡi,k

)−1
ḠT
i,kΨ̃i,k+1F̃i,k,

(138)

Ki,k = −VnR̄i,kG
T
i,k

(
Ω̃i,k+1 + VnḠi,kḠ

T
i,k

)−1
F̃i,k

−R−1
i,kE

T
Gi,k

(
λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1
EF i,k ,

(139)

Pi,k = Q̄i,k + F̃ T
i,kΨ̃i,k+1F̃i,k − F̃ T

i,kΨ̃i,k+1Ḡi,k

(
Im + ḠT

i,kΨ̃i,k+1Ḡi,k

)−1
ḠT
i,kΨ̃i,k+1F̃i,k,

(140)

for k = N − 1, . . . , 0, with
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Ψ̃i,k+1 = VnΩ̃−1
i,k+1, Ω̃i,k+1 = κIn + Vn

(
Ψ

(0)
i,k+1

)−1
Êpi,k, κ = (µ−1 − λ−1),

Êpi,k = In −ET
PPPi

(
λ−1IsVpn +EPPPi(Ψ

(0)
i,k+1)−1ET

PPPi

)−1
EPPPi(Ψ

(0)
i,k+1)−1,

F̃i,k = Fi,k −Gi,kR
−1
i,kE

T
Gi,k

(
λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1
EF i,k ,

R̄i,k = R−1
i,k

(
Im −ET

Gi,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1EGi,kR
−1
i,k

)
,

Q̄i,k = Qi,k +ET
F i,k

(
λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1
EF i,k ,

Ḡi,k = Gi,kR̄
1/2
i,k , λ = β

∥∥∥∥∥
[
PPPk+1 0

0 µInVn

]∥∥∥∥∥ , β > 1.

Proof. Notice that the unconstrained problem (133) is a special case of the regularized least-

squares with uncertain data. With the mappings given in (135), along with W (λ) and λ as

shown in (136), we design the solution (137) based upon Lemma 2.4, with {Li,k, Ki,k, Pi,k}
initially obtained through the recursion

Li,kKi,k

Pi,k

 =



0 0 0

0 0 0

0 0 −In
0 0 0

0 0 F i,k

0 0 0

0 0 EF i,k
In 0 0

0 Im 0



T 

(Ψ
(0)
i,k+1)−1 0 0 0 0 0 0 In 0

0 R−1
i,k 0 0 0 0 0 0 Im

0 0 Q−1
i,k 0 0 0 0 0 0

0 0 0 Π1 0 0 0 0 0

0 0 0 0 Π2 0 0 In −Gi,k

0 0 0 0 0 λ−1IsnVp 0 EPPPi 0

0 0 0 0 0 0 λ−1InVn 0 −EGi,k
In 0 0 0 ITn ET

PPPi 0 0 0

0 Im 0 0 −GT
i,k 0 −ET

Gi,k
0 0


︸ ︷︷ ︸

M

−1

0

0

−In
0

F i,k

0

EF i,k
0

0


,

(141)

for k = N−1, . . . , 0, with i ∈ Θ, and {Π1,Π2, λ} as in (136). Notice that Lemma A.3 ensures

M > 0, thusM−1 exists for any µ > 0. Now, from (141) we see that

Υ1

Υ2

Υ3

Υ4

Υ5

Υ6

Υ7

Li,k

Ki,k


=M−1



0

0

−In
0

F i,k

0

EF i,k
0

0


=⇒ M



Υ1

Υ2

Υ3

Υ4

Υ5

Υ6

Υ7

Li,k

Ki,k


=



0

0

−In
0

F i,k

0

EF i,k
0

0


, (142)

where Υ5 :=
[
υT5 . . . υT5

]T
, υ5 ∈ Rn×n. Therefore, the system of simultaneous equations

given by (142), namely
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

(Ψ
(0)
i,k+1)−1Υ1 + Li,k = 0,

R−1
i,kΥ2 +Ki,k = 0,

Q−1
i,kΥ3 = −In,
Π1Υ4 = 0,

Π2Υ5 + InLi,k −Gi,kKi,k = F i,k,

λ−1IsnVpΥ6 +EPPPiLi,k = 0,

λ−1InVnΥ7 −EGi,kKi,k = EF i,k ,

Υ1 + ITnΥ5 +ET
PPPiΥ6 = 0,

Υ2 −GT
i,kΥ5 −ET

Gi,k
Υ7 = 0,

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

has {Li,k, Ki,k} as elements of its unique solution. Also, combine (142) and (141) to yield

Pi,k =
[
0 0 −In 0 F T

i,k 0 ET
F i,k

0 0
]



Υ1

Υ2

Υ3

Υ4

Υ5

Υ6

Υ7

Li,k

Ki,k


,

Pi,k = −Υ3 + F T
i,kΥ5 +ET

F i,k
Υ7,

Pi,k = −Υ3 + VnF
T
i,kυ5 +ET

F i,k
Υ7. (152)

Let us proceed to solve (143)–(152) to finally obtain matrices Li,k, Ki,k, and Pi,k, i ∈ Θ. First,

from (143), (144), and (145), respectively, we have

Υ1 = −Ψ
(0)
i,k+1Li,k, (153)

Υ2 = −Ri,kKi,k, (154)

Υ3 = −Qi,k. (155)

Then, from (147),

Π2Υ5 + InLi,k −Gi,kKi,k = F i,k,

Π2υ5 + Li,k −Gi,kKi,k = Fi,k,

Li,k = Fi,k +Gi,kKi,k − κυ5, (156)
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where κ = µ−1 − λ−1, hence κ ∈ R, and substitute (153) and (156) into (150) to get

−Ψ
(0)
i,k+1Li,k + ITnΥ5 +ET

PPPiΥ6 = 0,

−Ψ
(0)
i,k+1Li,k + Vnυ5 +ET

PPPiΥ6 = 0,

−Ψ
(0)
i,k+1(Fi,k +Gi,kKi,k − κυ5) + Vnυ5 +ET

PPPiΥ6 = 0,

−Ψ
(0)
i,k+1Fi,k −Ψ

(0)
i,k+1Gi,kKi,k +

(
κΨ

(0)
i,k+1 + VnIn

)
υ5 +ET

PPPiΥ6 = 0. (157)

From (154) and (151) we get

−Ri,kKi,k −GT
i,kΥ5 −ET

Gi,k
Υ7 = 0,

−Ri,kKi,k − VnGT
i,kυ5 −ET

Gi,k
Υ7 = 0,

Ki,k = −R−1
i,k (VnG

T
i,kυ5 +ET

Gi,k
Υ7). (158)

Place (158) into (149) to obtain

λ−1InVnΥ7 +EGi,kR
−1
i,k (VnG

T
i,kυ5 +ET

Gi,k
Υ7) = EF i,k ,

VnEGi,kR
−1
i,kG

T
i,kυ5 + (λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)Υ7 = EF i,k . (159)

Substitute (158) into (157), such that

−Ψ
(0)
i,k+1Fi,k −Ψ

(0)
i,k+1Gi,kKi,k +

(
κΨ

(0)
i,k+1 + VnIn

)
υ5 +ET

PPPiΥ6 = 0,

−Ψ
(0)
i,k+1Fi,k + Ψ

(0)
i,k+1Gi,kR

−1
i,k (VnG

T
i,kυ5 +ET

Gi,k
Υ7) +

(
κΨ

(0)
i,k+1 + VnIn

)
υ5 +ET

PPPiΥ6 = 0,

and multiply both of its sides to the left by (Ψ
(0)
i,k+1)−1 to yield

−Fi,k +Gi,kR
−1
i,k (VnG

T
i,kυ5 +ET

Gi,k
Υ7) +

(
κIn + Vn(Ψ

(0)
i,k+1)−1

)
υ5 + (Ψ

(0)
i,k+1)−1ET

PPPiΥ6 = 0,

− Fi,k + (VnGi,kR
−1
i,kG

T
i,k + κIn + Vn(Ψ

(0)
i,k+1)−1)υ5 + (Ψ

(0)
i,k+1)−1ET

PPPiΥ6

+ VnGi,kR
−1
i,kE

T
Gi,k

Υ7 = 0.

Define Ωk+1 = κIn + Vn(Ψ
(0)
i,k+1)−1, and the above equation becomes

(VnGi,kR
−1
i,kG

T
i,k + Ωi,k+1)υ5 + (Ψ

(0)
i,k+1)−1ET

PPPiΥ6 +Gi,kR
−1
i,kE

T
Gi,k

Υ7 = Fi,k. (160)

Now, place (156) and (158) into (148) to produce

λ−1IsnVpΥ6 +EPPPi(Fi,k +Gi,kKi,k − κυ5) = 0,

λ−1IsnVpΥ6 +EPPPiFi,k +EPPPiGi,kKi,k −EPPPiκυ5 = 0,

λ−1IsnVpΥ6 +EPPPiFi,k −EPPPiGi,kR
−1
i,k (VnG

T
i,kυ5 +ET

Gi,k
Υ7)−EPPPiκυ5 = 0,

−(VnEPPPiGi,kR
−1
i,kG

T
i,k + κEPPPi)υ5 + λ−1Υ6 −EPPPiGi,kR

−1
i,kE

T
Gi,k

Υ7 = −EPPPiFi,k. (161)
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Multiply both sides of (160) to the left by EPPPi and add into (161) to yield

(VnEPPPiGi,kR
−1
i,kG

T
i,k +EPPPiΩi,k+1)υ5 +EPPPi(Ψ

(0)
i,k+1)−1ET

PPPiΥ6 +EPPPiGi,kR
−1
i,kE

T
Gi,k

Υ7

− (VnEPPPiGi,kR
−1
i,kG

T
i,k + κEPPPi)υ5 + λ−1Υ6 −EPPPiGi,kR

−1
i,kE

T
Gi,k

Υ7

= EPPPiFi,k −EPPPiFi,k,

(EPPPiΩi,k+1 − κEPPPi)υ5 + (λ−1IsnVp +EPPPi(Ψ
(0)
i,k+1)−1ET

PPPi)Υ6 = 0. (162)

Observe that

EPPPiΩi,k+1 − κEPPPi = EPPPi(κIn + Vn(Ψ
(0)
i,k+1)−1)− κEPPPi ,

EPPPiΩi,k+1 − κEPPPi = EPPPi((µ
−1 − λ−1)In + Vn(Ψ

(0)
i,k+1)−1)− (µ−1 − λ−1)EPPPi ,

EPPPiΩi,k+1 − κEPPPi = (µ−1 − λ−1)EPPPi + VnEPPPi(Ψ
(0)
i,k+1)−1 − (µ−1 − λ−1)EPPPi ,

EPPPiΩi,k+1 − κEPPPi = VnEPPPi(Ψ
(0)
i,k+1)−1.

Therefore, (162) becomes

VnEPPPi(Ψ
(0)
i,k+1)−1υ5 + (λ−1IsnVp +EPPPi(Ψ

(0)
i,k+1)−1ET

PPPi)Υ6 = 0. (163)

Let us now take (159), (160) and (163) to compose the following set of equations:
VnEGi,kR

−1
i,kG

T
i,kυ5 + (λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)Υ7 = EF i,k ,

(VnGi,kR
−1
i,kG

T
i,k + Ωi,k+1)υ5 + (Ψ

(0)
i,k+1)−1ET

PPPiΥ6 +Gi,kR
−1
i,kE

T
Gi,k

Υ7 = Fi,k,

VnEPPPi(Ψ
(0)
i,k+1)−1υ5 + (λ−1IsnVp +EPPPi(Ψ

(0)
i,k+1)−1ET

PPPi)Υ6 = 0.

From (163),

Υ6 = −(λ−1IsnVp +EPPPi(Ψ
(0)
i,k+1)−1ET

PPPi)
−1VnEPPPi(Ψ

(0)
i,k+1)−1υ5. (164)

Substitute (164) into (160), then

(VnGi,kR
−1
i,kG

T
i,k + Ωi,k+1)υ5

− (Ψ
(0)
i,k+1)−1ET

PPPi(λ
−1IsnVp +EPPPi(Ψ

(0)
i,k+1)−1ET

PPPi)
−1VnEPPPi(Ψ

(0)
i,k+1)−1υ5

+Gi,kR
−1
i,kE

T
Gi,k

Υ7 = Fi,k,(
VnGi,kR

−1
i,kG

T
i,k + Ωi,k+1

− (Ψ
(0)
i,k+1)−1ET

PPPi(λ
−1IsnVp +EPPPi(Ψ

(0)
i,k+1)−1ET

PPPi)
−1VnEPPPi(Ψ

(0)
i,k+1)−1

)
υ5

+Gi,kR
−1
i,kE

T
Gi,k

Υ7 = Fi,k,(
VnGi,kR

−1
i,kG

T
i,k + κIn + Vn(Ψ

(0)
i,k+1)−1

− (Ψ
(0)
i,k+1)−1ET

PPPi(λ
−1IsnVp +EPPPi(Ψ

(0)
i,k+1)−1ET

PPPi)
−1VnEPPPi(Ψ

(0)
i,k+1)−1

)
υ5

+Gi,kR
−1
i,kE

T
Gi,k

Υ7 = Fi,k,
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(
VnGi,kR

−1
i,kG

T
i,k + κIn

+ Vn(Ψ
(0)
i,k+1)−1

(
In −ET

PPPi(λ
−1IsnVp +EPPPi(Ψ

(0)
i,k+1)−1ET

PPPi)
−1EPPPi(Ψ

(0)
i,k+1)−1

))
υ5

+Gi,kR
−1
i,kE

T
Gi,k

Υ7 = Fi,k.

Define

Êpi,k = In −ET
PPPi

(
λ−1IsnVp +EPPPi(Ψ

(0)
i,k+1)−1ET

PPPi

)−1
EPPPi(Ψ

(0)
i,k+1)−1,

then

(
VnGi,kR

−1
i,kG

T
i,k + κIn + Vn(Ψ

(0)
i,k+1)−1Êpi,k

)
υ5 +Gi,kR

−1
i,kE

T
Gi,k

Υ7 = Fi,k,

υ5 =
(
VnGi,kR

−1
i,kG

T
i,k + κIn + Vn(Ψ

(0)
i,k+1)−1Êpi,k

)−1
(Fi,k −Gi,kR

−1
i,kE

T
Gi,k

Υ7). (165)

We have, from (159),

Υ7 = (λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1(EF i,k − VnEGi,kR−1
i,kG

T
i,kυ5), (166)

and substitute Υ7 into (165) to get

υ5 =
(
VnGi,kR

−1
i,kG

T
i,k + κIn + Vn(Ψ

(0)
i,k+1)−1Êpi,k

)−1
(
Fi,k

−Gi,kR
−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1(EF i,k − VnEGi,kR−1
i,kG

T
i,kυ5)

)
.

Define Ω̃i,k+1 = κIn + Vn
(
Ψ

(0)
i,k+1

)−1
Êpi,k, then the above equation becomes

υ5 = (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1

×
(
Fi,k −Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1(EF i,k − VnEGi,kR−1
i,kG

T
i,kυ5)

)
,

υ5 = (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1Fi,k

− (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1

× (EF i,k − VnEGi,kR−1
i,kG

T
i,kυ5),

υ5 = (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1Fi,k

− (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1EF i,k

+ (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,kυ5,

υ5 = (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1

(
Fi,k −Gi,kR−1

i,kE
T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1EF i,k
)

+ (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,kυ5.

Now, define

F̃i,k = Fi,k −Gi,kR
−1
i,kE

T
Gi,k

(
λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1
EF i,k ,
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such that (5.2) turns into

υ5 = (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1F̃i,k

+ (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,kυ5,(

In − (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn + EGi,kR
−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,k

)
υ5

= (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1)−1F̃i,k.

Multiply both sides of the above equation to the left by (VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1) to yield(

VnGi,kR
−1
i,kG

T
i,k + Ω̃i,k+1 −Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,k

)
υ5 = F̃i,k,(

Ω̃i,k+1 + VnGi,kR
−1
i,k (Im −ET

Gi,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,k )GTi,k

)
υ5 = F̃i,k.

Define

R̄i,k = R−1
i,k

(
Im −ET

Gi,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1EGi,kR
−1
i,k

)
,

hence (5.2) becomes

(Ω̃i,k+1 + VnGi,kR̄i,kG
T
i,k)υ5 = F̃i,k,

υ5 = (Ω̃i,k+1 + VnGi,kR̄i,kG
T
i,k)
−1F̃i,k. (167)

Next, substitute Υ7 from (166) into (158), such that

Ki,k = −R−1
i,k

(
VnG

T
i,kυ5 +ET

Gi,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1(EF i,k − VnEGi,kR−1
i,kG

T
i,kυ5)

)
,

Ki,k = −R−1
i,k

(
VnG

T
i,kυ5 +ET

Gi,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1EF i,k

−ET
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,kυ5

)
,

Ki,k = −R−1
i,k

(
VnG

T
i,k −ET

Gi,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,k

)
υ5

−R−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1EF i,k ,

Ki,k = −VnR−1
i,k

(
Im −ET

Gi,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1EGi,kR
−1
i,k

)
GT
i,kυ5

−R−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1EF i,k ,

Ki,k = −VnR̄i,kG
T
i,kυ5 −R−1

i,kE
T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1EF i,k ,

and by substituting υ5 from (167) we obtain

Ki,k = −VnR̄i,kG
T
i,k(Ω̃i,k+1 + VnGi,kR̄i,kG

T
i,k)
−1F̃i,k

−R−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1EF i,k .

Define Ḡi,k = Gi,kR̄
1/2
i,k , then the above equation becomes

Ki,k = −VnR̄i,kG
T
i,k

(
Ω̃i,k+1 + VnḠi,kḠ

T
i,k

)−1
F̃i,k

−R−1
i,kE

T
Gi,k

(
λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1
EF i,k ,
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which matches (139). Next, place (139) and (166) into (156) to produce

Li,k = Fi,k −Gi,kR
−1
i,k (VnG

T
i,kυ5 +ET

Gi,k
Υ7)− κυ5,

Li,k = Fi,k −Gi,kR
−1
i,kVnG

T
i,kυ5 −Gi,kR

−1
i,kE

T
Gi,k

Υ7 − κυ5.

By using Υ7 from (166) we have

Li,k = Fi,k −Gi,kR
−1
i,kVnG

T
i,kυ5 − κυ5

−Gi,kR
−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1(EF i,k − VnEGi,kR−1
i,kG

T
i,kυ5),

Li,k = Fi,k −Gi,kR
−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1EF i,k

−
(
VnGi,kR

−1
i,kG

T
i,k + κIn −Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,k

)
υ5,

Li,k = F̃i,k −
(
κIn + VnGi,kR

−1
i,kG

T
i,k

− VnGi,kR
−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1EGi,kR
−1
i,kG

T
i,k

)
υ5,

Li,k = F̃i,k −
(
κIn

+ VnGi,kR
−1
i,k

(
Im −Gi,kR

−1
i,kE

T
Gi,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1EGi,kR
−1
i,k

)
GT
i,k

)
υ5,

Li,k = F̃i,k − (κIn + VnGi,kR̄i,kG
T
i,k)υ5,

and with υ5 from (167) we produce

Li,k = F̃i,k − (κIn + VnGi,kR̄i,kG
T
i,k)(Ω̃i,k+1 + VnGi,kR̄i,kG

T
i,k)
−1F̃i,k,

Li,k =
(
In − κ(Ω̃i,k+1 + VnGi,kR̄i,kG

T
i,k)
−1
)
F̃i,k

− VnGi,kR̄i,kG
T
i,k(Ω̃i,k+1 + VnGi,kR̄i,kG

T
i,k)
−1F̃i,k,

Li,k =
(
In − κ(Ω̃i,k+1 + VnḠi,kḠ

T
i,k)
−1
)
F̃i,k − VnḠi,kḠ

T
i,k(Ω̃i,k+1 + VnḠi,kḠ

T
i,k)
−1F̃i,k.

(168)

Based upon Lemma A.7, we have that

ImḠ
T
i,k(Ω̃i,k+1 + VnḠi,kḠ

T
i,k)
−1 = (Im + ḠT

i,kVnΩ̃−1
i,k+1Ḡi,k)

−1ḠT
i,kΩ̃

−1
i,k+1,

and combining with (168) we obtain

Li,k =
(
In − κ(Ω̃i,k+1 + VnḠi,kḠ

T
i,k)
−1
)
F̃i,k

− Ḡi,k(Im + ḠT
i,kVnΩ̃−1

i,k+1Ḡi,k)
−1ḠT

i,kVnΩ̃−1
i,k+1F̃i,k,

Li,k =
(
In − κ(Ω̃i,k+1 + VnḠi,kḠ

T
i,k)
−1
)
F̃i,k

− Ḡi,k(Im + ḠT
i,kΨ̃i,k+1Ḡi,k)

−1ḠT
i,kΨ̃i,k+1F̃i,k,
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which corresponds to (138), with Ψ̃i,k+1 = VnΩ̃−1
i,k+1. Now, substitute Υ3 and Υ7 from (155)

and (166), respectively, into (152) to yield

Pi,k = Qi,k + VnF
T
i,kυ5 +ET

F i,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1(EF i,k − VnEGi,kR−1
i,kG

T
i,kυ5),

Pi,k = Qi,k + VnF
T
i,kυ5 +ET

F i,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1EF i,k

−ET
F i,k

(λ−1InVn +EGi,kR
−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,kυ5.

(169)

Define

Q̄i,k = Qi,k +ET
F i,k

(
λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1
EF i,k ,

then (169) turns into

Pi,k = Q̄i,k + VnF
T
i,kυ5 −ET

F i,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1VnEGi,kR
−1
i,kG

T
i,kυ5,

Pi,k = Q̄i,k + Vn
(
F T
i,k −ET

F i,k
(λ−1InVn +EGi,kR

−1
i,kE

T
Gi,k

)−1EGi,kR
−1
i,kG

T
i,k

)
υ5,

Pi,k = Q̄i,k + VnF̃
T
i,kυ5.

Finally, substitute υ5 from (167) to obtain

Pi,k = Q̄i,k + VnF̃
T
i,k(Ω̃i,k+1 + VnGi,kR̄i,kG

T
i,k)
−1F̃i,k,

Pi,k = Q̄i,k + VnF̃
T
i,k

(
Ω̃−1
i,k+1 − Ω̃−1

i,k+1VnḠi,k(Im + ḠT
i,kΩ̃

−1
i,k+1VnḠi,k)

−1ḠT
i,kΩ̃

−1
i,k+1

)
F̃i,k,

Pi,k = Q̄i,k + F̃ T
i,kVnΩ̃−1

i,k+1F̃i,k

− F̃ T
i,kVnΩ̃−1

i,k+1VnḠi,k(Im + ḠT
i,kVnΩ̃−1

i,k+1Ḡi,k)
−1ḠT

i,kVnΩ̃−1
i,k+1F̃i,k,

Pi,k = Q̄i,k + F̃ T
i,kΨ̃i,k+1F̃i,k − F̃ T

i,kΨ̃i,k+1Ḡi,k

(
Im + ḠT

i,kΨ̃i,k+1Ḡi,k

)−1
ḠT
i,kΨ̃i,k+1F̃i,k,

which matches (140) and completes the proof.

By means of Theorem 5.1, we can compute the robust state-feedback gains Kk =

(K1,k, . . . , Ks,k) ∈ Hm,n in a recursive fashion, whereby the polytope vertices are accounted

for altogether in each Markov mode. Furthermore, observe that xk+1 = Li,kxk, thus we

say that Li,k in (138) is the correspondent closed-loop matrix associated to (125) when

uk = Ki,kxk.

Remark 5.3. By applying the Sherman–Morrison–Woodbury formula (see Lemma A.6), we

get Êpi,k = (In + λET
PPPiEPPPi(Ψ

(0)
i,k+1)−1)−1. If λ → ∞, then Êpi,k → 0 and Pi,k is a constant

matrix for k = 0, . . . , N − 1. That said, we adopt some fixed µ > 0 and β > 1 for which

Êpi,k > 0 to ensure the convergence to a stabilizing solution. Moreover, as discussed in

(ROCHA; TERRA, 2021), β ∈ (1, 2] returns adequate numerical results regarding stability

and fits as an initial candidate for any search method.
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5.2.1 Convergence and stability

Let us now consider the DMJLS described by (125) and the cost function (134) with fixed

parameters, whilst allowing coefficients αk and ξk to be time-varying. Thus, we analyze the

realization

xk+1 =

(
Fi +

Vn∑
l=1

αl,kF
(l)
i

)
xk +

(
Gi +

Vn∑
l=1

αl,kG
(l)
i

)
uk, (170)

where uk = Ki,kxk, with gains Ki,k, i ∈ Θ, given by Theorem 5.1. Moreover, we assume

Êpi,k > 0 and restate (138) and (140) with time-invariant parameters as

Li,k =
(
In − κ(Ω̃i,k+1 + VnḠiḠ

T
i )−1

)
F̃i − Ḡi

(
Im + ḠT

i Ψ̃i,k+1Ḡi

)−1
ḠT
i Ψ̃i,k+1F̃i, (171)

Pi,k = Q̄i + F̃ T
i Ψ̃i,k+1F̃i − F̃ T

i Ψ̃i,k+1Ḡi

(
Im + ḠT

i Ψ̃i,k+1Ḡi

)−1
ḠT
i Ψ̃i,k+1F̃i. (172)

Notice that (172) fits into the well-known class of coupled algebraic Riccati equations

(COSTA; FRAGOSO; MARQUES, 2005). Thus, the conditions for convergence and stability

are established based on the classic regulation problem for DMJLS, as we outline in the

following statement.

Proposition 5.1. Assume the pairs (Q̄
1/2
i , F̃i) and (F̃i, Ḡi), are mean square detectable

and mean square stabilizable, respectively, and Êpi,k > 0, for all i ∈ Θ. Consider fixed µ > 0,

β > 1, and initial condition PN = (P1,N , . . . , Ps,N) ∈ Hn
+. Then, P k ∈ Hn

+ generated by

(172) converges to its unique solution P = (P1, . . . , Ps) ∈ Hn
+. Moreover, the closed-loop

system matrix associated with (170) is mean-square stable.

Proof. Given the resemblance between (172) and the coupled algebraic Riccati equations,

the proof follows based on the fundamental arguments presented in (COSTA; FRAGOSO;

MARQUES, 2005) for detectability and stabilizability of DMJLS.

In the next section, we verify the performance of the robust regulator presented in this

chapter in numerical and application examples.

5.3 Illustrative Examples

We present three examples: the first two are numerical, and we investigate the regulation

performance of the recursive regulator; in the third example, we assess the effectiveness of

the regulator when applied to the estimated powertrain model of the autonomous Scania

truck (see Appendix B. We perform the simulations in a 2.3 GHz i7-11800H CPU with 16

GB of RAM. The results are compared with those obtained with the robust H2 controller

borrowed from (COSTA; FRAGOSO; TODOROV, 2015) to verify the competitiveness and

potential of our approach. For shortness, throughout the examples, we denote the robust

recursive regulator for polytopic MJLS with uncertain transition probabilities by M3R.
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Remark 5.4. Without loss of generality, in the following examples, we produce αk ∈ ΛVn and

ξk ∈ ΛVp from a uniform distribution, at each time step k.

Example 5.1. Let us consider the DMJLS based on (ZHANG; BOUKAS, 2009) described

by the following parameters:

• Mode 1:

F1,k =

[
0.32 −0.4

0.8 −0.8

]
, F

(1)
1,k =

[
0.064 −0.080

0.160 −0.160

]
, F

(2)
1,k = −F (1)

1,k ,

G1,k =

[
2

1

]
, G

(1)
1,k =

[
0.2

0

]
, G

(2)
1,k =

[
0

0.1

]
.

• Mode 2:

F2,k =

[
0.08 −0.26

0.80 −1.12

]
, F

(1)
2,k =

[
0.016 −0.052

0.160 −0.224

]
, F

(2)
2,k = −F (1)

2,k ,

G2,k =

[
1

−1

]
, G

(1)
2,k =

[
0.1

0

]
, G

(2)
2,k =

[
0

−0.1

]
.

• Mode 3:

F3,k =

[
0.16 −0.08

0.8 −0.96

]
, F

(1)
3,k =

[
0.032 −0.016

0.160 −0.192

]
, F

(2)
3,k = −F (1)

3,k ,

G3,k =

[
1

1

]
, G

(1)
3,k =

[
0.1

0

]
, G

(2)
3,k =

[
0

0.1

]
.

• Mode 4:

F4,k =

[
0.48 −0.18

0.8 −0.88

]
, F

(1)
4,k =

[
0.096 −0.036

0.160 −0.176

]
, F

(2)
4,k = −F (1)

4,k ,

G4,k =

[
0.8

−1

]
, G

(1)
4,k =

[
0.08

0

]
, G

(2)
4,k =

[
0

−0.1

]
.

The transition probabilities are assumed to be subject to uncertainties and defined by a

known portion P0 and vertices {P(1),P(2)} given by

P0 =


0.3 0 0.1 0

0 0 0.3 0.2

0 0.1 0 0.3

0.2 0 0 0

 , P(1) =


0 0.6 0 0

0.5 0 0 0

0 0 0.6 0

0 0 0.4 0.4

 , P(2) =


0 0 0 0.6

0 0.5 0 0

0.6 0 0 0

0 0.4 0.4 0

 .

Also, we adopt initial conditions x0 =
[
1 1

]T
, and π0 =

[
0.25 0.25 0.25 0.25

]
.
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We consider N = 50 and compose the cost function (134) with weight matrices Qi,k = I2,

Ri,k = 1, i ∈ {1, 2, 3, 4}, and µ = 1012. Then, we compute the robust feedback gains with

Theorem 5.1 with Pi,N = I2, β = 1.001, hence obtaining

K1 =
[
−0.2282 0.2655

]
, K2 =

[
0.1603 −0.1386

]
,

K3 =
[
−0.2956 0.2896

]
, K4 =

[
−0.0149 −0.1803

]
,

whilst the robust H2 gains are

KH2,1 =
[
−0.5957 0.5138

]
, KH2,2 =

[
0.3647 −0.4337

]
,

KH2,3 =
[
−0.4152 0.4576

]
, KH2,4 =

[
0.2314 −0.4063

]
.

We take 5000 realizations of the Markov chain and allow coefficients αk and ξk to change

in each iteration of each experiment, which makes uncertainties δFi,k, δGi,k, and δPk to

be time-varying. We summarize the averaged results in Table 5. We present, in Fig. 10

and Fig. 11, respectively, the averaged norms of the state vector and the spectral radius of

the closed-loop system with the robust recursive regulator. As can be seen, the regulator

ensured the stability of the closed-loop system despite the effects of polytopic uncertainties

on the system and transition probability matrices. Even though the results were competitive

with respect to regulation, the proposed regulator demanded substantially smaller averaged

computational time to return the feedback gains when compared to the robust H2 controller.

Table 5 – Averaged results of Example 5.1.

Controller ‖xk‖ σ‖xk‖ ‖uk‖ σ‖uk‖ tc [ms] σtc [ms]

M3R 1.4337 0.2009 0.0374 0.0053 0.9635 0.0976

Robust H2 1.4403 0.2008 0.0704 0.0099 108.2582 44.397

Source: author.

Example 5.2. Consider now the DMJLS with parameters based on (COSTA et al., 1999),

namely

• Mode 1:

F1,k =

[
0 1

−2.5 3.2

]
, F

(1)
1,k =

[
0 0.150

−0.375 0.480

]
, F

(2)
1,k = −F (1)

1,k ,

G1,k =

[
0

1

]
, G

(1)
1,k =

[
0

0.1

]
, G

(2)
1,k = −G(1)

1,k.
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Figure 10 – Averaged norms of system state vector with the robust recursive regulator in
Example 5.1.
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Source: author.

Figure 11 – Spectral radii of the closed-loop system with the robust recursive regulator in
Example 5.1.
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Source: author.

• Mode 2:

F2,k =

[
0 1

−4.3 4.5

]
, F

(1)
2,k =

[
0 0.150

−0.645 0.675

]
, F

(2)
2,k = −F (1)

2,k ,

G2,k = G1,k, G
(1)
2,k = G

(1)
1,k, G

(2)
2,k = G

(2)
1,k.

• Mode 3:

F3,k =

[
0 1

5.3 −5.2

]
, F

(1)
3,k =

[
0 0.1

0.53 −0.52

]
, F

(2)
3,k = −F (1)

3,k ,

G3,k = G1,k, G
(1)
3,k = G

(1)
1,k, G

(2)
3,k = G

(2)
1,k.
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We consider x0 =
[
1 1

]T
, and π0 =

[
0.16 0.30 0.54

]
, whereas the uncertain transition

probability matrix is defined by the following known P0 and vertices {P(1),P(2),P(3)}:

P0 =

0.67 0.17 0.16

0.30 0.47 0.23

0.26 0.10 0.64

 , P(1) =

−0.12 0 0.12

0 0.07 −0.07

−0.09 0 0.09

 ,

P(2) =

 0.12 −0.12 0

−0.07 0.07 0

0 0.09 −0.09

 , P(3) =

 0 −0.12 0.12

−0.07 0 0.07

−0.09 0.09 0

 .

We carry out a total of 5000 in realizations of the Markov chain. Again, the coeffi-

cients αk and ξk change from one iteration to another, as mentioned in Remark 5.4, hence

{δFi,k, δGi,k, δPk} are time-varying matrices. We consider N = 30 and set up (134) with

Qi,k = I2, Ri,k = 1, and µ = 1012. Then, with Pi,N = I2 and β = 1.01, Theorem 5.1 produces

the feedback gains

K1 =
[
2.7034 −3.4232

]
, K2 =

[
4.6743 −4.8162

]
, K3 =

[
−5.3000 5.2271

]
.

In Fig. 12, we show the averaged norms of the closed-loop state vector with the robust

recursive regulator. In Fig. 13a, observe that the DMJLS with uk = 0 is highly unstable.

Regardless, the proposed robust recursive regulator ensured closed-loop stability, as we

depict in Fig. 13b. Furthermore, the mean computational time required to compute K =

(K1, K2, K3) was 0.8974 ms, with standard deviation of 67.87 µs. The robust H2 controller,

however, required on average 61.8440 ms, with a standard deviation of 21.7730 ms.

Figure 12 – Averaged norms of system state vector with the robust recursive regulator in
Example 5.2.
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Source: author.

Example 5.3. Let us address the powertrain control problem for the autonomous heavy-

duty vehicle, whose model is described in Appendix B. The DMJLS has 14 operation
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Figure 13 – Spectral radii of the DMJLS in Example 5.2.
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(a) Spectral radii of the open-loop DMJLS considered in Example 5.2.
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(b) Spectral radii of the closed-loop system with the robust recursive regulator in
Example 5.2.

Source: author.

modes, and state-space and transition probability matrices are subject to polytopic un-

certainties. We recorded the Markov jumps and the reference signals for accelerator and

brake pedals positions whilst driving the vehicle inside the campus of the University of São

Paulo, in the city of São Carlos. To improve the controllability of the powertrain model, we

must split each matrix Gi, i ∈ {1, . . . , 14}, into two columns, hence Gi ←
[
0.5Gi 0.5Gi

]
,

uk ←
[
0.5uTk 0.5uTk

]T
, and τk ←

[
0.5τTk 0.5τTk

]T
. We retrieve the original required pedal

positions by adding up the entries in the newly defined vector τk. We assume initial conditions

x0 =
[
0.10 −0.50 −0.07

]T
, and θ0 = 3. Therefore, the truck starts the simulation with the

6th gear engaged and accelerating. The recorded data comprises a time horizon N = 1591,

meaning about 5 minutes driving.

We select high values for Qi to weight the norm of tracking errors xk. Meanwhile,

high values for Ri have the purpose of diminishing energy consumption and minimizing
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acceleration and deceleration jerks, since Ri weights the norm of input uk. That said, we

build the cost function (134) with the parameters

Qi = 1010I3, Ri = 1011I2, i ∈ {1, . . . , 7},
Qi = 1010I3, Ri = 1010I2, i ∈ {8, . . . , 14},

Pi,N = I3, i ∈ {1, . . . , 14}, µ = 109, β = 1.00001.

Given the above configuration, Theorem 5.1 returns the feedback gains

K1 =

[
−0.0744 −0.5561 0.5460

−0.0744 −0.5561 0.5460

]
, K8 =

[
0 0 0.0066

0 0 0.0066

]
,

K2 =

[
0.0139 0.0351 −0.0773

0.0139 0.0351 −0.0773

]
, K9 =

[
0 0 −0.1283

0 0 −0.1283

]
,

K3 =

[
0.1025 0.4456 −0.5648

0.1025 0.4456 −0.5648

]
, K10 =

[
0 0 0.1284

0 0 0.1284

]
,

K4 =

[
−0.0552 2.1204 −2.0373

−0.0552 2.1204 −2.0373

]
, K11 =

[
0 0 0.0241

0 0 0.0241

]
,

K5 =

[
−0.0347 1.1205 −1.1562

−0.0347 1.1205 −1.1562

]
, K12 =

[
0 0 0.0989

0 0 0.0989

]
,

K6 =

[
0.0020 0.0642 −0.0676

0.0020 0.0642 −0.0676

]
, K13 =

[
0 0 −0.0217

0 0 −0.0217

]
,

K7 =

[
−0.0294 0.6454 −0.6334

−0.0294 0.6454 −0.6334

]
, K14 =

[
0 0 −0.0782

0 0 −0.0782

]
.

We performed 1000 simulations, and allowed coefficients αk and ξk to vary throughout

each run conditioned by Remark 5.4. In Table 6 we summarize the results for the robust

recursive regulator (M3R) and the robust H2 controller, averaged over all runs. In Fig. 14

we depict the closed-loop trajectories of the states and the recorded references, while in

Fig. 15 we show the computed accelerator and brake pedals position signals. Even affected

by uncertainties δk, the robust recursive regulator maintained closed-loop stability and

adequately tracked the reference trajectories. Under the same conditions, the robust H2

gains could not ensure the stability of the closed-loop system.

It is worth mentioning that the computational times required by the proposed recursive

method are acceptable for application on the autonomous truck. In fact, we have tc < Tsamp =

0.2s, where Tsamp is the sampling period defined for the model identification procedure (see

Appendix B). Therefore, it is possible to evaluate the feedback gains within the sampling

period.
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Table 6 – Averaged results of the longitudinal control for the autonomous truck.

Controller ‖xk‖ σ‖xk‖ ‖τk‖ σ‖τk‖ tc [ms] σtc [ms]

M3R 3.5302 0.0825 0.8775 0.0217 17.5976 0.5690

Robust H2 Inf Inf Inf Inf 4155.2019 588.9904

Source: author.

Figure 14 – Resulting closed-loop states trajectories with the robust recursive regulator for
the shown Markov chain realization.
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Figure 15 – Resulting positions of accelerator and brake pedals with the robust recursive
regulator.
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(a) Accelerator pedal position.
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(b) Brake pedal position.

Source: author.
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6 ROBUST REGULATOR FOR UNCERTAIN DMJLS WITH UNOBSERVED CHAIN

The motivation behind this chapter is related to the difficulty in detecting how Markov

mode describes the dynamics of the system at a given instant. In many practical situations,

the Markov chain is partially observed if the information about the jump parameter is

intermittent; or totally unobserved if the information about the jump parameter is never

available. Examples of physical systems with such characteristics encompass cyber security

of microgrids (LIU; SIANO; WANG, 2020), robot manipulators (CHE; ZHU; ZHOU, 2021),

cruise control for unmanned aerial vehicles (LI et al., 2021), and so forth. We are interested,

therefore, in developing mode-independent recursive control approaches for DMJLS subject

to polytopic uncertainties. Valuable results were reported in the literature to solve this class

of problems. We can cite, for instance, (COSTA; FRAGOSO; TODOROV, 2015) regarding

detector-based H2 controller synthesis; (TODOROV; FRAGOSO, 2016) for mixed H2/H∞

synthesis; (SHEN et al., 2014) concerning the dissipative control problem; and (SOUZA,

2005) discussing the H∞ control approach.

That said, we focus on the regulation of DMJLS with totally unobserved Markov chain

and polytopic uncertainties affecting the matrices of the state-space model. We use auxiliary

variables to build an augmented system and formulate a regularized least-squares problem.

The related cost function is penalized to include all vertices of the DMJLS at once. We achieve

a robust recursive solution, from which we obtain the feedback gains that stabilize the closed-

loop augmented system. Furthermore, we assess the performance of the proposed solution

in two numerical examples.

6.1 Augmented System - Problem Formulation

Let us again consider the DMJLS

xk+1 = (Fθk,k + δFθk,k)xk + (Gθk,k + δGθk,k)uk, (173)

where k = 0, ..., N − 1, xk ∈ Rn, uk ∈ Rm, Fθk,k ∈ Rn×n and Gθk,k ∈ Rn×m are nominal

system and input matrices, respectively, θ = {θ0, ..., θN−1} is a Markov chain with modes

θk ∈ Θ = {1, ..., s}. The transition probability matrix is known and defined by P = [pij] ∈ Rs×s

such that

Prob(θk+1 = j|θk = i) = pij, Prob(θ0 = i) = pi,0,
s∑
j=1

pij = 1, 0 ≤ pij ≤ 1, (174)

whereas the uncertainties {δFθk,k, δGθk,k} are defined as[
δFθk,k δGθk,k

]
=

V∑
l=1

αi,k

[
F

(l)
θk,k

G
(l)
θk,k

]
, (175)
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with known vertices F (l)
θk,k
∈ Rn×n and G(l)

θk,k
∈ Rn×m, and αk =

[
α1,k . . . αV,k

]T
belong to the

unit simplex

ΛV =

{
αk ∈ RV : αl,k ≥ 0,

V∑
l=1

αl,k = 1

}
. (176)

Suppose all states xk are observed at every instant k and the system evolves from

{x0, θ0}. However, now we assume that modes θk, k = 1, . . . , N , are not available to the

controller. Hence we say the Markov chain is totally unobserved. That being said, the

optimization problem

min
uk, xk+1

max
δFθk,k, δGθk,k

{
E
{
‖xN‖2

ΨθN ,N
+

N−1∑
t=0

(
‖xt‖2

Qθt,t
+ ‖ut‖2

Rθt,t

)
| St
}}

, (177)

subject to (173),

where St = {θt = i, xt}, with i ∈ Θ, cannot be used to design a regulator for (173) since

it requires the information regarding the active Markov mode through St. Therefore, in the

next section, we describe how to yield an augmented version of the DMJLS (173) suitable to

approach the robust regulation problem.

Let us consider the Dirac measure, I{θk=i} defined by

I{V}(ν) =

1, if ν ∈ V ,
0, otherwise,

which, in our specific case, we rewrite as

I{θk=i} =

1, if θk = i,

0, otherwise.
(178)

A similar deterministic approach was proposed by Costa (1994) to deal with the minimum

mean-square error estimation problem. We introduce now the following auxiliary variables

zi,k = I{θk=i}xk ∈ Rn, vi,k = I{θk=i}uk ∈ Rm,

zk =

z1,k
...
zs,k

 ∈ Rsn, vk =

v1,k
...
vs,k

 ∈ Rsm. (179)

Notice that we recover the original variables xk and uk from zk and vk, respectively, by doing

xk =
s∑
i=1

zi,k, and uk =
s∑
i=1

vi,k. (180)

From (179) and (173) we have

xk+1 =
s∑
i=1

(Fi,k + δFi,k)zi,k +
s∑
i=1

(Gi,k + δGi,k)vi,k. (181)
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Given that zj,k+1 = I{θk+1=j}xk+1, based on (181) we also have

zj,k+1 =

(
s∑
i=1

(Fi,k + δFi,k)zi,k

)
I{θk+1=j} +

(
s∑
i=1

(Gi,k + δGi,k)vi,k

)
I{θk+1=j}. (182)

To simplify the notation of the Dirac measure, from now on we denote I{θk+1=j} as I{j}. Then,

by adding
s∑
i=1

pijFi,kzi,k +
s∑
i=1

pijGi,kvi,k

to both sides of (182), we have

zj,k+1 =
s∑
i=1

pijFi,kzi,k +
s∑
i=1

(
(I{j} − pij)Fi,k + I{j}δFi,k

)
zi,k+

s∑
i=1

pijGi,kvi,k +
s∑
i=1

(
(I{j} − pij)Gi,k + I{j}δGi,k

)
vi,k. (183)

Since zk+1 =
[
zT1,k+1 . . . zTs,k+1

]T
, by combining (183) with (179) we obtain

z1,k+1

...

zs,k+1

 =


∑s

i=1 pi1Fi,kzi,k
...∑s

i=1 pisFi,kzi,k

+


∑s

i=1

(
(I{1} − pi1)Fi,k + I{1}δFi,k

)
zi,k

...∑s
i=1

(
(I{s} − pis)Fi,k + I{s}δFi,k

)
zi,k



+


∑s

i=1 pi1Gi,kvi,k
...∑s

i=1 pisGi,kvi,k

+


∑s

i=1

(
(I{1} − pi1)Gi,k + I{1}δGi,k

)
vi,k

...∑s
i=1

(
(I{s} − pis)Gi,k + I{s}δGi,k

)
vi,k

 . (184)

Observe that 
∑s

i=1 pi1Fi,kzi,k
...∑s

i=1 pisFi,kzi,k

 =


p11F1,k p21F2,k . . . ps1Fs,k

p12F1,k p22F2,k . . . ps2Fs,k
...

... . . . ...

p1sF1,k p2sF2,k . . . pssFs,k



z1,k

z2,k

...

zs,k

 ,
= Akzk,

where Ak = (PT ⊗ In) diag{F1,k, . . . , Fs,k}, Ak ∈ Rsn×sn. Similarly, we have
∑s

i=1 pi1Gi,kvi,k
...∑s

i=1 pisGi,kvi,k

 = Bkvk,

where Bk = (PT ⊗ In) diag{G1,k, . . . , Gs,k}, Bk ∈ Rsn×sm. Moreover, we can make
∑s

i=1

(
(I{1} − pi1)Fi,k + I{1}δFi,k

)
zi,k

...∑s
i=1

(
(I{s} − pis)Fi,k + I{s}δFi,k

)
zi,k

 = δAkzk,
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and 
∑s

i=1

(
(I{1} − pi1)Gi,k + I{1}δGi,k

)
vi,k

...∑s
i=1

(
(I{s} − pis)Gi,k + I{s}δGi,k

)
vi,k

 = δBkvk.

Therefore, we can write (184) as the augmented version of the DMJLS (173) in terms of the

auxiliary variables zk and vk in the following way:

zk+1 = (Ak + δAk)zk + (Bk + δBk)vk, (185)

with {δAk, δBk} modeled as

[
δAk δBk

]
= H

V∑
l=1

αl,k

[
A(l)
k B(l)

k

]
, (186)

where

A(l)
k = diag

{[
F1,k

F
(l)
1,k

]
, . . . ,

[
Fs,k

F
(l)
s,k

]}
, B(l)

k = diag

{[
G1,k

G
(l)
1,k

]
, . . . ,

[
Gs,k

G
(l)
s,k

]}
,

αl,k = αl,k


diag{Y11,Y21, . . . , Ys1}

...

diag{Y1s,Y2s, . . . , Yss}

 ∈ R2s2n×2sn, Yij =

[
(I{j} − pij)In 0

0 I{j}In

]
,

H = diag{ÎT2s, . . . , ÎT2s} ∈ Rsn×2s2n.

We assume that I{j} and the polytope coefficients αl,k are unknown, and we grouped

them into αl,k. As we will describe in the next sections, the proposed solution is independent

of αl,k. It is possible, therefore, to compute the feedback gains and stabilize the closed-loop

system irrespective of the Markov chain being unobserved.

Let us consider the min-max problem

min
zk+1,vk

max
δAk,δBk

{
‖zN‖2

XN +
N−1∑
t=0

(
‖zt‖2

Qt + ‖vt‖2
Rt

)}
, (187)

subject to

1V ⊗ zk+1 =

Ak + V δA(1)
k...

Ak + V δA(V )
k

 zk +

Bk + V δB(1)
k...

Bk + V δB(V )
k

 vk, (188)

where δA(l)
k = Hαl,kA(l)

k , and δB(l)
k = Hαl,kB(l)

k . Based upon the Principle of Optimality

(BERTSEKAS, 2005), we then divide (187) into N − 1 one-step problems of the form

min
zk+1,vk

max
δAk,δBk

{
Jk = ‖zk+1‖2

Xk+1
+ ‖zk‖2

Qk + ‖vk‖2
Rk

}
, (189)

subject to (188), k = N − 1, . . . , 0,
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with

Qk = diag{Q1,k, . . . , Qs,k}, Rk = diag{R1,k, . . . , Rs,k},

Xk+1 = diag{Ψ1,k+1, . . . , Ψs,k+1}, Ψi,k+1 =
s∑
j=1

pijPj,k+1.

Remark 6.1. Notice that

V∑
l=1

V δA(l)zk = V


(∑s

i=1(I{1} − pi1)Fi,kzi,k
)

(
∑V

l=1 αl,k) +
∑s

i=1 I{1}(
∑V

l=1 αl,kF
(l)
i,k )zi,k

...(∑s
i=1(I{s} − pis)Fi,kzi,k

)
(
∑V

l=1 αl,k) +
∑s

i=1 I{s}(
∑V

l=1 αl,kF
(l)
i,k )zi,k

 ,

= V


∑s

i=1(I{1} − pi1)Fi,kzi,k +
∑s

i=1 I{1}δFi,kzi,k
...∑s

i=1(I{s} − pis)Fi,kzi,k +
∑s

i=1 I{s}δFi,kzi,k

 ,

= V


∑s

i=1

(
(I{1} − pi1)Fi,k + I{1}δFi,k

)
zi,k

...∑s
i=1

(
(I{s} − pis)Fi,k + I{s}δFi,k

)
zi,k

 ,
= V δAkzk.

Similarly, we have
∑V

l=1 V δB(l)vk = V δBkvk. Therefore, it is possible to retrieve (185)

from the constraints (188). We multiply both sides of (188) on the left by ÎTV to obtain

V zk+1 = V (Ak + δAk)zk + V (Bk + δBk)vk, which corresponds to (185).

Let us now define the following penalty function based on (188):

C(zk+1, vk) = ḡ(zk+1, vk)
T µI ḡ(zk+1, vk), (190)

with fixed penalty µ > 0, and

ḡ(zk+1, vk) = 1V ⊗ zk+1 −

Ak + V δA(1)
k...

Ak + V δA(V )
k

 zk −
Bk + V δB(1)

k...

Bk + V δB(V )
k

 vk.
By adding (190) and Jk, we attain a new penalized cost function and yield the following

unconstrained counterpart of (189):

min
zk+1,vk

max
δAk,δBk

{Jk(zk+1, vk, δAk, δBk)}, (191)

where

Jk(zk+1, vk, δAk, δBk) =

[
zk+1

vk

]T [
Xk+1 0

0 Rk

][
zk+1

vk

]

+






0 0

IsV n −Bk
...

...

IsV n −Bk

+


0 0

0 −V δB(1)k
...

...

0 −V δB(V )
k



[
zk+1

vk

]
−



−Isn
Ak

...

Ak

+


0

V δA(1)
k

...

V δA(V )
k


 zk



T[
Qk 0

0 µIsV n

]{
•
}
.

(192)
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The penalty parameter µ > 0 can be seen as a weight related to the equality constraints

(188). We shall design a recursive solution for (191), from which we extract the signals

vk = Kkzk to minimize (192) and, thus, ensure the closed-loop stability of the DMJLS in

(185).

Remark 6.2. Even though (191) relates to the auxiliary variables zk+1 and vk, we obtain

xk+1 and uk of the original system through (180). Therefore, if Kk is such that vk = Kkzk
makes zk → 0, then we expect that xk → 0. In this case, the closed-loop DMJLS (78) is

stable.

In the following section, we present the designed recursive solution for problem (191),

from which it is possible to compute the feedback gains Kk.

6.2 RLQR for DMJLS Subject to Polytopic Uncertainties and Unobserved Chain

We present the robust recursive solution for the optimization problem (191)–(192) in the

next lemma.

Lemma 6.1. Consider the problem (191)–(192) and assume known matrices Qi,k > 0,

Ri,k > 0, and Pi,N > 0, i ∈ Θ. For k = N − 1, . . . , 0, and known fixed scalar µ > 0, the

solution is recursively computed by z∗k+1

v∗k
Jk(z∗k+1, v

∗
k)

 =

Isn 0 0

0 Ism 0

0 0 zTk


LkKk

Pk

 zk, (193)

with

LkKk
Pk

 =

0 0 0 0 0 Isn 0

0 0 0 0 0 0 Ism

0 0 −Isn ÂTk ÊT
Ak 0 0

×


XT
k+1 0 0 0 0 Isn 0

0 R−1
k 0 0 0 0 Ism

0 0 Q−1
k 0 0 0 0

0 0 0 Φ 0 Îsn −B̂k
0 0 0 0 Σ 0 −ÊBk
Isn 0 0 ÎTsn 0 0 0

0 Ism 0 −B̂Tk −ÊT
Bk 0 0



−1

0

0

−Isn
Âk
ÊAk

0

0


, (194)
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where Pk = diag{P1,k, . . . , Ps,k}, Φ = µ−1(1 − β−1)IsV n, Âk = 1V ⊗ Ak, B̂k = 1V ⊗ Bk,
Σ = (2sβµ)−1I2sV n, β > 1,

ÊAk = V


E

(1)
Ak
...

E
(V )
Ak

 , ÊBk = V


E

(1)
Bk
...

E
(V )
Bk

 , Îsn =


Isn
...

Isn

 ∈ RV sn×sn.

Proof. We used the penalty parameter µ to translate (189) into its unconstrained counterpart

(191). As (191) is a special case of the regularized least-squares problem outlined in Section

2.1.3, it is possible to make the correspondences

J ← Jk(zk+1, vk, δAk, δBk), x←
[
zk+1

vk

]
, Q ←

[
Xk+1 0

0 Rk

]
, W ←

[
Qk 0

0 µIsV n

]
,

A0 ←


0 0

Isn −Bk...
...

Isn −Bk

 , δA←


0 0

0 −V δB(1)
k...

...

0 −V δB(V )
k

 , A(l) ←
[
0 −V B(l)

k

]
,

b0 ←


−Isn
Ak...
Ak

 zk, δb←


0

V δA(1)
k...

V δA(V )
k

 zk, b(l) ← VA(l)
k zk, l = 1, . . . , V,

M ←
[

0

diag{H, . . . ,H}

]
, Γ← diag{ᾱ1,k, . . . , ᾱV,k}.

This matching allows us to base our solution upon the matrix arrangement shown in Lemma

2.4, which yields (193) with Lk, Kk, and Pk expressed as in (194). The uniqueness of the

solution is guaranteed for any positive µ, given that Xk+1 > 0 and Ri,k > 0. We also use the

reasonable approximation λ̂ ≈ 2βsµ, for some scalar β > 1, to avoid solving an additional

optimization problem, by the arguments given in 2.1.3. Finally, Lemma A.3 ensures the

existence of the central block matrix in (194).

By defining a set of simultaneous equations based upon (193)–(194) and item (iii) of

Lemma 2.4, we produce an equivalent reduced form for Lk,Kk,Pk} given in Lemma 6.1.

We outline this procedure in the next result.

Theorem 6.1. Consider the problem (191)–(192) and assume Qi,k > 0, Ri,k > 0, Pi,N > 0,

i ∈ Θ, µ > 0, and β > 1. For k = N − 1, . . . , 0, the solution in Lemma (6.1) can be equally

expressed with matrices Lk, Kk, and Pk computed by

Lk = V X−1
k+1Ω−1

k+1Āk − V 2X−1
k+1Ω−1

k+1B̄k
(
Ism − V B̄Tk Ω−1

k+1B̄k
)−1B̄Tk Ω−1

k+1Āk, (195)

Kk = −V R̄kBTk (Isn + V Ω−1
k+1B̄kB̄Tk )−1Ω−1

k+1Āk −R−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊAk , (196)

Pk = Q̄k + ĀTk Ω̃k+1Āk − ĀTk Ω̃k+1B̄k(Ism + B̄Tk Ω̃k+1B̄k)−1B̄Tk Ω̃k+1Āk, (197)
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where

Ωk+1 = ϕ+ V X−1
k+1, ϕ = µ−1(1− β−1)Isn, Ω̃k+1 = V Ω−1

k+1,

Āk = Ak − BkR−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊAk ,

R̄k = R−1
k (Ism − ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊBkR−1

k ),

Q̄k = Qk + ÊT
Ak(Σ + ÊBkR−1

k ÊT
Bk)
−1ÊAk , B̄k = BkR̄1/2

k .

Proof. Based upon (194), define the matrix N such that

XT
k+1 0 0 0 0 Isn 0

0 R−1
k 0 0 0 0 Ism

0 0 Q−1
k 0 0 0 0

0 0 0 Φ 0 Îsn −B̂k
0 0 0 0 Σ 0 −ÊBk
Isn 0 0 ÎTsn 0 0 0

0 Ism 0 −B̂Tk −ÊT
Bk 0 0


︸ ︷︷ ︸

N

−1 

0

0

−Isn
Âk
ÊAk

0

0


=



W1

W2

W3

W 4

W5

Lk
Kk


, (198)

with auxiliary variables W1, W2, W3, W 4, and W5, where W 4 = 1V ⊗W4, W4 ∈ Rsn×sn.
We multiply both sides of (198) on the left by N to yield the following set of simultaneous
equations:

X−1
k+1W1 + Lk = 0, (199a)

R−1
k W2 +Kk = 0, (199b)

Q−1
k W3 = −Isn, (199c)

ΦW 4 + ÎsnLk − B̂kKk = Âk, (199d)

ΣW5 − ÊBkKk = ÊAk , (199e)

W1 + ÎTsnW 4 = 0, (199f)

W2 − B̂TkW 4 − ÊTBkW5 = 0. (199g)

Additionally, we substitute (198) into (194) to produce

Pk = −IsnW3 + ÂTkW 4 + ÊT
AkW5,

Pk = −IsnW3 + VATkW4 + ÊT
AkW5. (200)

Let us now solve (199)–(200) for {W1,W2,W3,W4,W5,Lk,Kk,Pk}, to ultimately attain

(195), (196) and (197). First, from (199a), (199b) and (199c), we have, respectively,

W1 = −Xk+1Lk, (201)

W2 = −RkKk, (202)

W3 = −Qk. (203)
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Moreover, by combining (199f) and (201) we yield

−Xk+1Lk +
[
Isn . . . Isn

]
W4

...

W4

 = 0,

−Xk+1Lk + VW4 = 0,

Lk = V X−1
k+1W4. (204)

Define ϕ = µ−1(1− β−1)In, such that from (199d) we have
ϕ . . . 0
... . . . ...

0 . . . ϕ



W4

...

W4

+


Isn
...

Isn

Lk −

Bk
...

Bk

Kk =


Ak
...

Ak,

 ,
ϕW4 + Lk − BkKk = Ak, (205)

and substitute (204) into (205) such that

ϕW4 + V X−1
k+1W4 − BkKk = Ak,

(ϕ+ V X−1
k+1)W4 − BkKk = Ak,

Ωk+1W4 − BkKk = Ak, (206)

where Ωk+1 = (ϕ+ V X−1
k+1). Now, combine (199g) and (202) to produce

W2 −
[
BTk . . . BTk

]
W4

...

W4

− ÊT
BkW5 = 0,

−RkKk − V BTkW4 − ÊT
BkW5 = 0,

Kk = −VR−1
k BTkW4 −R−1

k ÊT
BkW5, (207)

and substitute (207) into (206) such that

Ωk+1W4 + BkVR−1
k BTkW4 + BkR−1

k ÊT
BkW5 = Ak,

(Ωk+1 + V BkR−1
k BTk )W4 + BkR−1

k ÊT
BkW5 = Ak. (208)

Place (207) into (199e) and yield

ΣW5 + ÊBkVR−1
k BTkW4 + ÊBkR−1

k ÊT
BkW5 = ÊAk ,

(Σ + ÊBkR−1
k ÊT

Bk)W5 + ÊBkVR−1
k BTkW4 = ÊAk , (209)

W5 = (Σ + ÊBkR−1
k ÊT

Bk)
−1(ÊAk − ÊBkVR−1

k BTkW4). (210)
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Substitute (210) into (208) to obtain

(Ωk+1 + V BkR−1
k BTk )W4 + BkR−1

k ÊT
Bk(Σ + ÊBkR−1

k ÊT
Bk)
−1(ÊAk − V ÊBkR−1

k BTkW4) = Ak,(
Ωk+1 + V BkR−1

k BTk − V BkR−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊBkR−1

k BTk
)
W4 =

Ak − BkR−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊAk ,(

Ωk+1 + V BkR−1
k (Ism − ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊBkR−1

k )BTk
)
W4 =

Ak − BkR−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊAk ,

and define the auxiliary matrices

Āk = Ak − BkR−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊAk ,

R̄k = R−1
k (Ism − ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊBkR−1

k ),

B̄k = BkR̄1/2
k ,

such that

(Ωk+1 + V BkR̄kBTk )W4 = Āk,
(Ωk+1 + V B̄kB̄Tk )W4 = Āk,
W4 = (Ωk+1 + V B̄kB̄Tk )−1Āk. (211)

Now, substitute (210) and (211) into (207) to produce

Kk = −VR−1
k BTkW4 −R−1

k ÊT
Bk(Σ + ÊBkR−1

k ÊT
Bk)
−1(ÊAk − V ÊBkR−1

k BTkW4),

Kk = −VR−1
k (Ism − ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊBkR−1

k )BTkW4

−R−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊAk ,

Kk = −V R̄kBTkW4 −R−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊAk ,

Kk = −V R̄kBTk (Ωk+1 + V B̄kB̄Tk )−1Āk −R−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊAk .

Note that

(Ωk+1 + V B̄kB̄Tk )−1 =
(
Ωk+1(Isn + V Ω−1

k+1B̄kB̄Tk )
)−1

,

= (Isn + V Ω−1
k+1B̄kB̄Tk )−1Ω−1

k+1.

Therefore,

Kk = −V R̄kBTk (Isn + V Ω−1
k+1B̄kB̄Tk )−1Ω−1

k+1Āk −R−1
k ÊT

Bk(Σ + ÊBkR−1
k ÊT

Bk)
−1ÊAk ,

which corresponds to (196). Next, substitute (211) into (204) and yield

Lk = V X−1
k+1(Ωk+1 + V B̄kB̄Tk )−1Āk,

Lk = V X−1
k+1(Isn + V Ω−1

k+1B̄kB̄Tk )−1Ω−1
k+1Āk,

Lk = V X−1
k+1(Isn + (V Ω−1

k+1B̄k)IsmB̄Tk )−1Ω−1
k+1Āk,

Lk = V X−1
k+1

(
Isn − V Ω−1

k+1B̄k(Ism − B̄Tk V Ω−1
k+1B̄k)−1B̄Tk

)
Ω−1
k+1Āk,

Lk = V X−1
k+1Ω−1

k+1Āk − V 2X−1
k+1Ω−1

k+1B̄k(Ism − V B̄Tk Ω−1
k+1B̄k)−1B̄Tk Ω−1

k+1Āk,
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which matches (195). Place now (203), (210) and (211) into (200), such that

Pk = Qk + VATkW4 + ÊT
Ak(Σ + ÊBkR−1

k ÊT
Bk)
−1(ÊAk − V ÊBkR−1

k BTkW4),

Pk = Qk + ÊT
Ak(Σ + ÊBkR−1

k ÊT
Bk)
−1ÊAk

+ (VATk − ÊT
Ak(Σ + ÊBkR−1

k ÊT
Bk)
−1V ÊBkR−1

k BTk )W4.

Define Q̄k = Qk + ÊT
Ak(Σ + ÊBkR−1

k ÊT
Bk)
−1ÊAk , then

Pk = Q̄k + (VATk − ÊT
Ak(Σ + ÊBkR−1

k ÊT
Bk)
−1V ÊBkR−1

k BTk )︸ ︷︷ ︸
ĀTk

W4,

Pk = Q̄k + V ĀTkW4,

Pk = Q̄k + V ĀTk (Ωk+1 + V B̄kB̄Tk )−1Āk,
Pk = Q̄k + V ĀTk (Ωk+1(Isn + V Ω−1

k+1B̄kB̄Tk ))−1ĀTk ,
Pk = Q̄k + V ĀTk (Isn + V Ω−1

k+1B̄kB̄Tk )−1Ω−1
k+1ĀTk ,

Pk = Q̄k + V ĀTk
(
Isn − V Ω−1

k+1B̄k(Ism + B̄Tk V Ω−1
k+1B̄k)−1B̄Tk

)
Ω−1
k+1Āk,

Pk = Q̄k + V ĀTkΩ−1
k+1Āk − V ĀTk V Ω−1

k+1B̄k(Ism + B̄Tk V Ω−1
k+1B̄k)−1B̄Tk Ω−1

k+1Āk,

and define Ω̃k+1 = V Ω−1
k+1, such that

Pk = Q̄k + ĀTk Ω̃k+1Āk − ĀTk Ω̃k+1B̄k(Ism + B̄Tk Ω̃k+1B̄k)−1B̄Tk Ω̃k+1Āk,

which corresponds to (197).

In Lemma 6.1, we have that zk+1 = Lkzk. Therefore, Lk as in either (194) or (195)

expresses an equivalent form of the closed-loop system matrix with the recursive regulator.

It is also noteworthy that the solution exists for any µ > 0.

Observe that, whenever β → 1+, (197) conforms with (32), since Ω̃k+1 → Xk+1. There-

fore, in Theorem 6.1 we show that it is possible to write the solution for problem (191)–(192)

in terms of recursive algebraic Riccati equations. We then consider time-invariant parameters

and make the connections

Pi,k ←Pk, Ai ← Ā, Bi ← B̄, Qi ← Q̄, Ri ← Ism, and Ek+1 ← Ω̃k+1.

That said, the convergence of Pk to the unique stabilizing solution for (197) is guaranteed

based upon the paramount concepts outlined in (COSTA; FRAGOSO; MARQUES, 2005),

(BERTSEKAS, 2005), and reproduced in Section 2.4.

6.3 Illustrative Examples

We present two examples to verify the performance of the solution proposed in this

chapter. For comparison purposes, we adopt a robustH∞ controller (TODOROV; FRAGOSO,

2016) and compute the feedback gain with the YALMIP Toolbox (LÖFBERG, 2004). We

executed the experiments on a 2.50 GHz i5-3210M CPU with 8 GB of RAM.



112

Example 6.1. Consider the longitudinal model of the G 360 CB6x4HSZ truck examined in

Example 4.2 (see details in Appendix B). In this case, we account only for the acceleration

modes, thus θk ∈ {1, . . . , 7}, and each mode captures the dynamics according to the

transmission rates of gears from 4th to 10th. However, now we assume it is not possible

to detect the actual active mode θk. The states are qk =
[
qT1 qT2 qT3

]T
, where q1 is the

driveshaft torsion, q2 is the engine speed, and q3 is the wheel speed. The control input is

uk = τk − τ ref
k , with τk ∈ [0, 1] being the throttle pedal position. We define the tracking error

as xk = qk − qref
k . Moreover, qref

k is the reference trajectories for states, τ ref
k ∈ [0, 1] is the

reference throttle pedal position, and initial conditions are {x0, θ0} =
{ [

0.1 0.02 0.02
]T
, 1
}

.

We select the following parameters to compose the cost function (192) and to make use of

Theorem 6.1: Qi = I3, Ri = 1010, Pi,N = I3, µ = 1015, β = 1.001. In this case, the system

evolves according to

qk+1 = (Fi,k + δFi,k)qk + (Gi,k + δGi,k)τk,

where τk = uk + τ refk , uk =
∑7

i=1 vi,k, and vk = Kkzk, with {zk, vk} defined as in (179). For

the robust H∞ controller, we adopted γ = 450. We executed 1000 simulations with αk ∈ Λ3

varying randomly in each iteration according to a uniform distribution. In Table 7 we show the

resulting norms of tracking errors ‖x̄k‖, of throttle pedal positions ‖τ̄k‖, and the computational

times T̄c, all averaged over the 1000 simulations, along with the standard deviations σ(.).

We denote the robust recursive regulator for polytopic DMJLS with an unobserved chain as

PMRRU for conciseness. In Fig. 16 we show the trajectories of the states qk with the PMRRU,

whereas in Fig. 17 we present the throttle pedal positions. Both approaches were capable of

ensuring the stability of the closed-loop system and tracked the reference trajectories with

success. Nonetheless, the computation of the recursive regulator gains was, on average,

three orders of magnitude faster than the robust H∞ controller.

Table 7 – Simulation results for Example 4.2.

Controller ‖x̄‖L2 σx̄ ‖τ̄‖L2 στ̄ T̄c (ms) σT̄c (ms)

PMRRU 2.3084 0.0455 9.2593 0.1461 4.178 0.6583

Robust H∞ 2.7715 0.0394 8.8008 0.1409 6.5678 ×103 1.1280 ×103

Source: author.

Example 6.2. We consider the following DMJLS with three modes of an operation whose
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Figure 16 – Trajectories of the closed-loop system states with the PMRRU.
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Figure 17 – Throttle pedal positions of the closed-loop system.
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parameters were adapted from Boukas and Liu (2001):

F1,k =

[
1 0

0 1.2

]
, F2,k =

[
1.13 0

0.16 0.478

]
, F3,k =

[
0.3 0.13

0.16 1.14

]
,

G1,k =

[
0.1 0

0.1 0

]
, G2,k =

[
0.2 0.1

0 −0.1

]
, G3,k =

[
0 0.1

0 −0.1

]
,
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with vertices

F
(1)
1,k =

[
0 0

−0.1 0.1

]
, F

(2)
1,k = −F (1)

1,k , G
(1)
1,k = 0.1G1,k, G

(2)
1,k = −G(1)

1,k,

F
(1)
2,k =

[
0 0

−0.1 0

]
, F

(2)
2,k = −F (1)

2,k , G
(1)
2,k = 0.1G2,k, G

(2)
2,k = −G(1)

2,k,

F
(1)
3,k =

[
0 0

0.1 −0.1

]
, F

(2)
3,k = −F (1)

3,k , G
(1)
3,k = 0.1G3,k, G

(2)
3,k = −G(1)

3,k,

and transition probabilities given by

P =

0.2 0.8 0

0 0.5 0.5

0 0.3 0.7

 .
We computed the feedback gains Kk of the recursive regulator, denoted by PMRRU

for shortness, considering Pi,N = I2, Qi,N = I2, Ri,N = I2, i ∈ {1, 2, 3}, µ = 1015, and

β = 1.01 for Lemma 6.1. In this case, we evolve zk+1 = (Ak + δAk)zk + (Bk + δBk)vk, and

recover the original variables {xk+1, uk} according to (180), namely xk+1 =
∑3

i=1 zi,k+1 and

uk =
∑3

i=1 vi,k, where vk = Kkzk. For the robust H∞ controller, we tuned γ = 10−3. We

executed 1000 experiments with time horizonN = 20. In Fig. 18 we show the averaged norms

of states for both approaches. Table 8 summarizes the overall results of the experiments,

where T̄c and σT̄c are the averaged time required to compute the feedback gains and its

standard deviation, respectively. The performances were similar in terms of norms of states

and control inputs, but the proposed solution required substantially lower computational

effort.

Let us consider now xk+1 = (Fi,k + δFi,k)xk + (Gi,k + δGi,k)uk, where uk =
∑3

i=1 vi,k,

and vk = Kkzk. Performing 1000 experiments under the same conditions mentioned above,

but with N = 100 instead, we obtain the averaged norms of the state vector shown in Fig.

19. Observed that, even though the closed-loop system is stable, the performance degrades.

Therefore, the stabilizing solution for the augmented systems might not be the most adequate

solution for the original system in this example.

Table 8 – Results averaged over 1000 experiments.

Controller ‖xk‖ ‖uk‖ T̄c (ms) σT̄c (ms)

PMRRU 2.4071 16.7466 4.4355 0.6702

Robust H∞ 2.4172 21.9698 208.0839 32.4024

Source: author.
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Figure 18 – Averaged norms of states.
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Figure 19 – Averaged norms of states.
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7 CONCLUSION

In this thesis, we presented and discussed the overall results achieved throughout the

author’s Doctorate Degree Program in Electrical Engineering, as a requirement to earn the

title of Doctor of Science. The theoretical contributions comprise a set of robust recursive

solutions for the regulation problem of linear and Markov jump linear systems subject to

polytopic uncertainties.

We began by presenting a literature review and summarizing important results on

the stability and stabilizability of polytopic systems. Among these, it is noteworthy that a

remarkable collection was provided by Brazilian researchers, especially regarding LMI-based

optimization. Nonetheless, the number of reported recursive solutions for the regulation

problem of discrete-time linear polytopic systems is scarce, which motivated our research

efforts toward filling this gap. That said, this thesis also highlighted the potential of recursive

methods from both theoretical and practical perspectives. We proceeded to the background

theory on robust regularized least-squares with uncertain data and penalty functions method,

which are bases for our approach. The first contribution of this thesis is the solution for the

robust regulation problem of polytopic discrete-time linear systems. It enabled us to move

forward to the regulation problem of discrete-time Markov jump linear systems subject to

polytopic uncertainties on state space matrices, which is our second contribution. The third

contribution involves Markov jump linear systems whose transition probabilities are also

affected by polytopic uncertainties. In this case, we separated the uncertain portions in the

cost function whilst keeping its quadratic structure. The fourth contribution relates to the

regulation problem of polytopic DMJLS with an unobserved Markov chain, based on an

augmented system where we express the information about active modes as uncertainties.

Our formulation takes all vertices of the polytopes into account in a unified manner, thus

allowing us to design unconstrained min-max optimization problems in the least-squares

framework. In all the aforementioned cases, the convexity of the cost functions ensured

unique solutions given a selected fixed penalty parameter. The resulting state feedback

gains are such that the associated closed-loop systems are stable despite the uncertainties.

Furthermore, convergence and stability conditions were established in terms of algebraic

Riccati equations. We provided various examples to assess the effectiveness of the robust

regulators under different scenarios and adopted several robust controllers available in the

literature for comparison purposes. More specifically, in the application examples we focused

on trajectory tracking for unmanned aerial and ground vehicles. Our results were promising

and we verified faster computation of gains without requiring any further parameter tuning

during operation.

The recursive regulation of discrete-time linear systems with input saturation and state

constraints are possible subjects of future research. At first, one should design solutions for

the case without uncertainties, mostly to find ways of incorporating the inequality constraints
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into the recursive framework. Once this intermediate but nevertheless essential step is done,

it would be possible to address the related robust control problems. Up to this moment,

we have found several interesting approaches to address this class of problems, such as

the polytopic representation of the input saturation (KIM, 2017), (HU; DUAN; TAN, 2018);

approximation by saturated sine function (MRACEK; CLOUTIER, 1998); and state-dependent

Riccati equations (KIM; KWON, 2017), (LIN, 2021).
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APPENDIX A – MATRIX ANALYSIS

The purpose of this appendix is to present a compilation of results well known in the

specialized literature. The reader, assumed to be familiar with the basics of Linear Algebra,

might find this appendix convenient for consultation during the reading. Here we omit the

demonstrations, which can be found in the presented references.

A.1 Positive (Semi)Definite Matrices

Definition A.1. (HORN; JOHNSON, 2013) A symmetric matrix A ∈ Rn×n is positive definite,

i.e., A > 0, if xTAx > 0 for all nonzero x ∈ Rn and xTAx = 0 if x = 0.

Definition A.2. (HORN; JOHNSON, 2013) A symmetric matrix A ∈ Rn×n is positive semidef-

inite, i.e., A ≥ 0, if xTAx ≥ 0 for all nonzero x ∈ Rn.

Definition A.3. (HORN; JOHNSON, 2013) A symmetric matrix A ∈ Rn×n is negative definite,

i.e., A < 0, if xTAx < 0 for all nonzero x ∈ Rn and xTAx = 0 if x = 0.

Definition A.4. (HORN; JOHNSON, 2013) A symmetric matrix A ∈ Rn×n is negative

semidefinite, i.e., A ≤ 0, if xTAx ≤ 0 for all nonzero x ∈ Rn.

Proposition A.1. (HORN; JOHNSON, 2013) Each eigenvalue of a positive definite matrix is

a positive number. Each eigenvalue of a negative definite matrix is a negative number.

Lemma A.1. (HORN; JOHNSON, 2013) Consider matrices A ∈ Rn×n symmetric positive

definite and C ∈ Rn×m. Then,

(i) CTAC is positive semidefinite and rank(CTAC) = rank(AC).

(ii) rank(CTAC) = rank(C) and CTAC is positive definite if and only if matrix C has full

column rank.

Lemma A.2. (ABADIR; MAGNUS, 2005) Let A ∈ Rn×n be a positive semidefinite matrix.

Then,

(i) A+B ≥ 0 if B ≥ 0.

(ii) A+B > 0 if B > 0.

Lemma A.3 ((LUENBERGER; YE, 2010)). Consider matrices C ∈ Rp×p and B ∈ Rp×l.

Assume B has rank p and C > 0. Then, the matrix[
C BT

B 0

]

is nonsingular.
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A.2 Matrix Inversion

Lemma A.4. (HORN; JOHNSON, 2013) A matrix A ∈ Rn×n is nonsingular if and only if 0 is

not an eigenvalue of A.

Lemma A.5. ((ZHANG, 2005) - Banachiewicz inversion formula) Consider a nonsingular

square matrix M and a nonsingular matrix S such that

M =

[
P Q

R S

]
.

Then, the Schur complement (M/S) = P −QS−1R is nonsingular and

M−1 =

[
(M/S)−1 −(M/S)−1QS−1

−S−1R(M/S)−1 S−1 + S−1R(M/S)−1QS−1

]
.

Lemma A.6. ((HORN; JOHNSON, 2013) - Sherman–Morrison–Woodbury formula) Assume

A ∈ Rn×n a nonsingular matrix, B ∈ Rn×r, C ∈ Rr×r a nonsingular matrix and D ∈ Rr×n. If

the inverse of (C−1 +DA−1B) exists, then

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1. (212)

Lemma A.7. (CAMPOS, 2009) AssumeA ∈ Rn×n a nonsingular matrix,B ∈ Rn×r,C ∈ Rr×r

a nonsingular matrix and D ∈ Rr×n. If the inverse of (C−1 +DA−1B) exists, then

(A+BC−1D)−1BC−1 = A−1B(C +DA−1B)−1. (213)

A.3 Spectral Radius

Definition A.5. (HORN; JOHNSON, 2013) The spectral radius of a matrix A ∈ Rn×n is

ρ(A) = max{|λ| : λ ∈ σ(A)}, where σ(A) is the set of eigenvalues of A.
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APPENDIX B – IDENTIFICATION OF POLYTOPIC POWERTRAIN MODEL FOR

HEAVY-DUTY VEHICLES

In this appendix, we detail the identification procedure carried out to estimate the polytopic

powertrain model for the Scania G 360 CB6x4HSZ truck shown in Fig. 20. The vehicle has

a 14-speed automatic gearbox and an external circuit that acquires accelerator and brake

signals.

Figure 20 – Scania G 360 CB6x4HSZ vehicle.

Source: author.

B.1 General Setup

Gear shifts provoke sudden changes in the powertrain dynamics. Indeed, the literature

on automotive systems, for instance (KIENCKE, 2005) and (RAJAMANI, 2012), introduce

vehicle longitudinal dynamics as parameter varying models which depend on final drive and

gear ratios, and on the exact knowledge of structural parameters. However, these parameters

and the policies orchestrating the gear shifts are are classified as trade secrets and, therefore,

usually unavailable to the general public. That said, it is reasonable to comprehend the

powertrain as a DMJLS of the form

qk+1 = (Fi + δFi)qk + (Gi + δGi)τk, i ∈ Θ = {1, . . . , s}. (214)

The state vector is qk =
[
q1,k q2,k q3,k

]T
, where q1,k is the driveshaft torsion in rad, q2,k is

the engine angular speed in rad/s, and q3,k is the wheel angular speed in rad/s. The input

signal τk is the required normalized accelerator or brake pedal positions, such that ‖τk‖ ≤ 1.
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The system is subject to polytopic uncertainties {δFi, δGi}, such that[
δFi,k δGi,k

]
=

Vn∑
l=1

αl,k

[
F

(l)
i,k G

(l)
i,k

]
,

ΛVn =

{
α =

[
α1,k . . . αVn,k

]T
∈ RVn

∣∣∣ Vn∑
l=1

αl = 1, 0 ≤ αl ≤ 1

}
.

The transition probability matrix Pk ∈ Rs×s is defined by

Pk = P0 + δPk, Prob(θ0) = π
(0)
i + δπi,

Pk =
[
p

(0)
ij + δpij,k

]
= Prob(θk+1 = j | θk = i),

s∑
j=1

(p
(0)
ij + δpij,k) = 1, 0 ≤ p

(0)
ij + δpij,k ≤ 1,

where

δPk =
[
δpij,k

]
=

[
Vp∑
l=1

ξl,kp
(l)
ij

]
,

ΛVp =

{
ξ =

[
ξ1,k . . . ξVp,k

]T
∈ RVp

∣∣∣ Vp∑
l=1

ξl = 1, 0 ≤ ξl ≤ 1

}
.

Remark B.1. Throughout the identification method presented in this appendix, we assume

that brake and throttle pedals are never excited simultaneously. In addition, the related

signals assume values from 0 to 1, meaning 0 to 100% of the pedal position range.

We limited the longitudinal speed at 50 km/h while driving the truck inside the university

campus, and there was no extra payload connected to the bodywork. As we approach the

model identification problem from a Markovian perspective, we relate each gear to two

Markov modes: one for active acceleration and one for active braking. The vehicle engages

gears from 4th to 10th (i.e., 7 gears) since gears 3rd and lower are used for additional

payloads and gears 11th and 12th in higher speeds. That said, 14 Markov modes compose

the DMJLS that describes the powertrain behavior, namely

• i ∈ {1, . . . , 7} =⇒ accelerating in gears 4th to 10th;

• i ∈ {8, . . . , 14} =⇒ braking in gears 4th to 10th.

Let us now define the tracking error xk = qk − qref,k, where qref,k is the reference

trajectory generated via accelerator/brake signals. Then, based on (214), we yield the

following trajectory tracking error dynamics:

xk+1 = (Fi + δFi)xk + (Gi + δGi)uk, i ∈ {1, . . . , 14},

where uk = τk − τref,k ∈ R, such that τref,k is the reference command signal obtained from

CAN readings, and uk is the controller signal.

To acquire the real-time vehicle variables to compose qk, we read the CAN bus at a

sampling period of Tsamp = 0.2 s, hence fsamp = 5 Hz.
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B.2 Mode Detection

An acceleration mode is detected whenever τref,k ≥ 0, and a braking mode whenever

τref,k < 0. We then compute the signals to be sent to the vehicle in the following way:

τacc,k =

{
τk, if τref,k ≥ 0,

0, otherwise.

τbrake,k =

{
−τk, if τref,k < 0,

0, otherwise,

where τacc,k and τbrake,k are acceleration and brake pedals positions, respectively. Observe

that, at this point, we are able to determine the active Markov mode based on the engaged

gear, which we access via CAN bus, and on τk.

Although the road slope also affects the powertrain dynamics, the changes tend to be

much slower than those caused by gear shifts. Thus, we relate the vertices {F (l)
i,k , G

(l)
i,k},

l = 1, 2, 3, i ∈ Θ, to the steepest downhill, steepest uphill, and flat terrains, respectively.

B.3 State-Space Model Identification

In this section, we adapt the least-squares identification approach presented by (YOUNG;

GARNIER; GILSON, 2008) to fit our purposes. Consider a system of the form zk = ϕkη +

wk, where zk and ϕk are known vectors, η is the unknown vector with parameters that

characterize the model, k = 1, . . . , NS, and NS is the number of available samples. Define

also the related noise-free process ẑk = ϕkη. Then, the identification problem can be stated

as

η̂ = arg min
η

∥∥∥∥∥
[

1

NS

NS∑
k=1

ϕkϕ
T
k

]
η −

[
1

NS

NS∑
k=1

ϕkẑ
T
k

]∥∥∥∥∥
2

.

The solution η̂ is given by (see the detailed demonstration in (YOUNG; GARNIER; GILSON,

2008))

η̂ =

[
NS∑
k=1

ϕkϕ
T
k

]
1

NS

NS∑
k=1

ϕkẑ
T
k . (215)

To ensure numerical stability of the algorithm, we normalize the states qk based upon

constants ci =
[
ci,11 ci,22 ci,33

]T
∈ R3, where ci,11, ci,22, ci,33, i ∈ {1, . . . , 7}, refer to the

maximum values of the elements in qk acquired via CAN bus while accelerating with the i-th

gear engaged.

Meanwhile, for the braking modes, i.e. i = {8, ..., 14}, we have ci =
[
0 ci,22 ci,33

]
, where

ci,33 is the maximum value of q3,k. Observe that ci,11 is set to zero because the clutch relieves

all driveshaft torsion as it disengages during braking. As mentioned in (KIENCKE, 2005),

the relation between the angular velocities of the engine and wheels depends only on the
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engaged gear when the vehicle operates in a steady state. That said, we compute ci,22 for

the braking modes proportionally to the acceleration mode in the same gear:

ci,22 =
ci,33 cj,22

cj,33

, i ∈ {8, ..., 14}, j = i− 7,

where ci,33 is the maximum value read for q3,k. The original values are then recovered simply

by multiplying qk and xk by ci element-wise, for any i ∈ {1, . . . , 14}. Moreover, {ci,22, ci,33}
can differ from {cj,22, cj,33} as they normalize distinct batches of data, which generally have

their own specific maximum values.

Remark B.2. We consider a powertrain model in which the driveshaft torsion is neglected

while the truck brakes. This assumption is valid because ci,22 is relevant for control purposes

when the clutch is re-engaged, while an effective clutch control must be able to re-engage

the clutch with practically no torsion. This mechanical aspect is discussed with further details

in (KIENCKE, 2005).

We separate the collected batches of data with respect to engaged gears, acceleration,

deceleration, and road slope. For accelerator modes, hence i ∈ {1, . . . , 7}, we make the

following mappings to apply (215) so as to yield the set {F̂ (l)
i , Ĝ

(l)
i }, l = 1, 2, 3:

η ←

(F̂
(l)
a,i )

T

(Ĝ
(l)
a,i)

T

 , ϕk ←
[
qTk τTk

]
, ẑ ← qa,k+1,

where F̂ (l)
a,i , Ĝ

(l)
a,i, and qa,k+1, are the a-th rows F̂ (l)

i , Ĝ(l)
i , and qk+1, respectively. In this case,

observe that F̂ (l)
i = Fi + F

(l)
i , and Ĝ(l)

i = Gi +G
(l)
i .

For the brake modes, thus i ∈ {8, . . . , 14}, we shall consider F̂ (l)
i and Ĝ(l)

i built as

F̂
(l)
i =

0 0 0

0 0 1

0 0 f
(l)
i

 , Ĝ(l)
i =

 0

0

g
(l)
i

 ,
for l = 1, 2, 3. We do so due to some mechanical characteristics that arise when the vehicle

activates the braking modes. First, the driveshaft and engine disengage during the braking

action, therefore there is no torsion in the driveshaft and we have q1,k = 0. Second, since

we assume normalized variables and both driveshaft and engine are disengaged, we have

q2,k = q3,k to guarantee safe re-engagement of the clutch. That said, for the braking modes

we make the relations

η ←
[
f

(l)
i g

(l)
i

]T
, ϕk ←

[
qT3,k τ

T
k

]
, ẑ ← q3,k+1,

and apply (215) to obtain matrices {F̂ (l)
i , Ĝ

(l)
i }, l = 1, 2, 3.

To yield a DMJLS in the form of system (214), we consider the nominal model matrices

{Fi, Gi} as the mean of the extreme matrices {F̂ (l)
i , Ĝ

(l)
i }, whereas the vertices are given

by F (l)
i = F̂

(l)
i − Fi, and G

(l)
i = Ĝ

(l)
i − Gi, i ∈ {1, . . . , 14}, l ∈ {1, 2, 3}. The procedure

ultimately returns the following matrices to compose (214):
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• Mode 1 (4th gear, accelerator):

F1 =

 1.0000 0.9449 −0.9347

0.0129 0.4938 0.4688

−0.0003 0.6135 0.3918

 , F (1)
1 =

 0 0.0000 0

−0.0125 0.0085 −0.0043

−0.0002 0.0275 −0.0276

 ,

F
(2)
1 =

 0 0.0000 0

−0.0030 0.0646 −0.0586

0.0023 −0.0506 0.0504

 , F (3)
1 =

 0 0 0

0.0155 −0.0731 0.0630

−0.0020 0.0231 −0.0227

 ,

G1 =

 0

0.1757

0.0040

 , G(1)
1 =

 0

−0.0149

0.0062

 , G(2)
1 =

 0

0.0142

−0.0043

 , G(3)
1 =

 0

0.0006

−0.0020

 ,
c1 =

[
0.9415 200.6431 8.0915

]T
.

• Mode 2 (5th gear, accelerator):

F2 =

1.0000 0.7998 −0.7978

0.0051 0.4666 0.5092

0.0002 0.5529 0.4452

 , F (1)
2 =

 0 0 −0.0000

−0.0029 −0.0277 0.0230

−0.0022 −0.0332 0.0298

 ,

F
(2)
2 =

 0 0 0

0.0005 0.0860 −0.0772

−0.0014 −0.0494 0.0497

 , F (3)
2 =

 0 0 0

0.0025 −0.0582 0.0542

0.0036 0.0825 −0.0796

 ,

G2 =

 0

0.1110

0.0233

 , G(1)
2 =

 0

−0.0134

0.0136

 , G(2)
2 =

 0

0.0128

−0.0004

 , G(3)
2 =

 0

0.0005

−0.0132

 ,
c2 =

[
0.8484 206.7168 10.4782

]T
.

• Mode 3 (6th gear, accelerator):

F3 =

1.0000 1.1013 −1.1001

0.0113 0.3334 0.6405

0.0036 0.6502 0.3457

 , F (1)
3 =

 0 0 0

0.0130 −0.0428 0.0406

0.0043 −0.0324 0.0295

 ,

F
(2)
3 =

 0 0 0

−0.0220 −0.0090 0.0248

−0.0036 0.0140 −0.0104

 , F (3)
3 =

 0 0 0

0.0091 0.0517 −0.0655

−0.0008 0.0184 −0.0191

 ,

G3 =

 0

0.0870

0.0115

 , G(1)
3 =

 0

0.0020

0.0031

 , G(2)
3 =

 0

0.0064

−0.0038

 , G(3)
3 =

 0

−0.0085

0.0008

 ,
c3 =

[
2.2380 211.7433 13.2687

]T
.
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• Mode 4 (7th gear, accelerator):

F4 =

1.0000 0.8374 −0.8363

0.0056 0.8110 0.1729

0.0043 0.2319 0.7620

 , F (1)
4 =

 0 0 0

−0.0046 0.1542 −0.1483

0 0.0437 −0.0413

 ,

F
(2)
4 =

 0 0 0

0.0022 −0.0437 0.0342

−0.0006 −0.0134 0.0098

 , F (3)
4 =

 0 0 0

0.0023 −0.1105 0.1142

0.0005 −0.0304 0.0316

 ,

G4 =

 0

0.0475

0.0180

 , G(1)
4 =

 0

−0.0154

−0.0075

 , G(2)
4 =

 0

0.0078

0.0032

 , G(3)
4 =

 0

0.0077

0.0043

 ,
c4 =

[
2.0827 197.7109 15.3775

]T
.

• Mode 5 (8th gear, accelerator):

F5 =

1.0000 1.8169 −1.8106

0.0033 0.2818 0.7060

0.0009 0.5876 0.4104

 , F (1)
5 =

 0 0 0

−0.0048 0.1694 −0.1726

−0.0017 −0.0723 0.0713

 ,

F
(2)
5 =

 0 0 0

0.0061 −0.0363 0.0344

0.0019 0.0567 −0.0577

 , F (3)
5 =

 0 0 0

−0.0014 −0.1330 0.1382

−0.0003 0.0155 −0.0135

 ,

G5 =

 0

0.0386

0.0158

 , G(1)
5 =

 0

−0.0081

−0.0038

 , G(2)
5 =

 0

0.0023

0.0026

 , G(3)
5 =

 0

0.0059

0.0013

 ,
c5 =

[
1.8243 198.2345 19.1594

]T
.

• Mode 6 (9th gear, accelerator):

F6 =

1.0000 0.8161 −0.8134

0.0083 0.7927 0.1951

0.0047 0.2391 0.7563

 , F (1)
6 =

 0 0 0

−0.0069 0.0573 −0.0489

−0.0030 0.0260 −0.0226

 ,

F
(2)
6 =

 0 0 0

−0.0013 −0.0546 0.0567

−0.0008 −0.0373 0.0383

 , F (3)
6 =

 0 0 0

0.0081 −0.0028 −0.0079

0.0037 0.0112 −0.0156

 ,

G6 =

 0

0.0233

0.0095

 , G(1)
6 =

 0

−0.0003

−0.0004

 , G(2)
6 =

 0

0.0007

0.0007

 , G(3)
6 =

 0

−0.0004

−0.0004

 ,
c6 =

[
3.2577 205.5649 25.1076

]T
.
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• Mode 7 (10th gear, accelerator):

F7 =

1.0000 0.9507 −0.9469

0.0112 0.7144 0.2700

0.0085 0.1217 0.8701

 , F (1)
7 =

 0 0 0

0.0041 −0.0349 0.0352

0.0022 −0.0574 0.0565

 ,

F
(2)
7 =

 0 0 0

0.0020 −0.1244 0.1230

0.0037 −0.0367 0.0341

 , F (3)
7 =

 0 0 0

−0.0062 0.1593 −0.1583

−0.0059 0.0942 −0.0906

 ,

G7 =

 0

0.0190

0.0094

 , G(1)
7 =

 0

0.0007

0.0024

 , G(2)
7 =

 0

0.0013

0.0007

 , G(3)
7 =

 0

−0.0021

−0.0030

 ,
c7 =

[
3.2495 191.4277 28.9388

]T
.

• Mode 8 (4th gear, brake):

F8 =

0 0 0

0 0 1

0 0 0.9823

 , F (1)
8 =

0 0 0

0 0 0

0 0 −0.0054

 , F (2)
8 =

0 0 0

0 0 0

0 0 0.0048

 ,

F
(3)
8 =

0 0 0

0 0 0

0 0 0.0007

 , G8 =

 0

0

0.0329

 , G(1)
8 =

 0

0

0.0275

 ,

G
(2)
8 =

 0

0

0.0320

 , G(3)
8 =

 0

0

−0.0595

 , c8 =

 0

213.5746

8.6130

 .

• Mode 9 (5th gear, brake):

F9 =

0 0 0

0 0 1

0 0 0.9803

 , F (1)
9 =

0 0 0

0 0 0

0 0 0.0111

 , F (2)
9 =

0 0 0

0 0 0

0 0 −0.0149

 ,

F
(3)
9 =

0 0 0

0 0 0

0 0 0.0039

 , G9 =

 0

0

−0.0998

 , G(1)
9 =

 0

0

0.0109

 ,

G
(2)
9 =

 0

0

−0.0853

 , G(3)
9 =

 0

0

0.0745

 , c9 =

 0

192.8893

9.7773

 .
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• Mode 10 (6th gear, brake):

F10 =

0 0 0

0 0 1

0 0 0.9915

 , F (1)
10 =

0 0 0

0 0 0

0 0 0.0088

 , F (2)
10 =

0 0 0

0 0 0

0 0 −0.0023

 ,

F
(3)
10 =

0 0 0

0 0 0

0 0 −0.0066

 , G10 =

 0

0

−0.0802

 , G(1)
10 =

 0

0

−0.0511

 ,

G
(2)
10 =

 0

0

−0.0089

 , G(3)
10 =

 0

0

0.0600

 , c10 =

 0

194.6410

12.1970

 .

• Mode 11 (7th gear, brake):

F11 =

0 0 0

0 0 1

0 0 0.9995

 , F (1)
11 =

0 0 0

0 0 0

0 0 0.0021

 , F (2)
11 =

0 0 0

0 0 0

0 0 0.0044

 ,

F
(3)
11 =

0 0 0

0 0 0

0 0 −0.0065

 , G11 =

 0

0

−0.0772

 , G(1)
11 =

 0

0

−0.0796

 ,

G
(2)
11 =

 0

0

0.0416

 , G(3)
11 =

 0

0

0.0380

 , c11 =

 0

191.5138

14.8955

 .

• Mode 12 (8th gear, brake):

F12 =

0 0 0

0 0 1

0 0 0.9983

 , F (1)
12 =

0 0 0

0 0 0

0 0 0.0114

 , F (2)
12 =

0 0 0

0 0 0

0 0 −0.0051

 ,

F
(3)
12 =

0 0 0

0 0 0

0 0 −0.0062

 , G12 =

 0

0

−0.0950

 , G(1)
12 =

 0

0

−0.1071

 ,

G
(2)
12 =

 0

0

0.0267

 , G(3)
12 =

 0

0

0.0803

 , c12 =

 0

197.0664

19.0465

 .
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Powertrain Markov
jump model

State feedback
gain Ki,k

qref,k

+
τref,k τk qk

+
xk−

uk

+

Figure 21 – Block diagram of the powertrain control loop.

• Mode 13 (9th gear, brake):

F13 =

0 0 0

0 0 1

0 0 0.9890

 , F (1)
13 =

0 0 0

0 0 0

0 0 0.0013

 , F (2)
13 =

0 0 0

0 0 0

0 0 −0.0064

 ,

F
(3)
13 =

0 0 0

0 0 0

0 0 0.0050

 , G13 =

 0

0

−0.0671

 , G(1)
13 =

 0

0

−0.0613

 ,

G
(2)
13 =

 0

0

0.0066

 , G(3)
13 =

 0

0

0.0548

 , c13 =

 0

201.0889

24.5609

 .
• Mode 14 (10th gear, brake):

F14 =

0 0 0

0 0 1

0 0 1.0004

 , F (1)
14 =

0 0 0

0 0 0

0 0 −0.0065

 , F (2)
14 =

0 0 0

0 0 0

0 0 0.0068

 ,

F
(3)
14 =

0 0 0

0 0 0

0 0 −0.0003

 , G14 =

 0

0

−0.0766

 , G(1)
14 =

 0

0

−0.0637

 ,

G
(2)
14 =

 0

0

0.0177

 , G(3)
14 =

 0

0

0.0460

 , c14 =

 0

168.9912

25.5470

 .
In Fig. 21, we show the powertrain control scheme. The controller signal is uk = Kkxk,

the reference input is τref,k, the reference trajectory is qref,k, and τk is the control signal sent

to the powertrain.



140

B.4 Transition Probabilities Identification

To estimate the elements of the transition probability matrix P0, we drove the Scania truck

inside the campus of the university of São Paulo at São Carlos. We ensured that the vehicle

went through enough gear changes, altitude variations, and transitions between acceleration

and deceleration while recording the data from the CAN bus. Then, we calculated the nominal

portions p(0)
ij of Pk as

p
(0)
ij =

κij∑14
r=1 κir

, i, j ∈ {1, . . . , 14},

where κij is the number of jumps from mode i to mode j, and κir is number of jumps from

mode i to mode r. Therefore, we captured the expected behavior of the Markov process and

obtained the following nominal transition probability matrix P0:

P0 =



0.9891 0.0027 0 0.0055 0 0 0 0.0027 0 0 0 0 0 0
0.0070 0.9789 0.0141 0 0 0 0 0 0 0 0 0 0 0

0 0.0003 0.9956 0.0015 0.0017 0.0003 0 0 0 0.0006 0 0 0 0
0 0 0.0040 0.9907 0.0040 0.0013 0 0 0 0 0 0 0 0
0 0 0.0013 0.0009 0.9940 0.0013 0.0022 0 0 0 0 0.0003 0 0
0 0 0.0007 0.0007 0.0013 0.9940 0.0007 0 0 0 0 0 0.0027 0
0 0 0 0.0008 0.0024 0.0008 0.9927 0 0 0 0 0 0 0.0033

0.0174 0 0 0 0 0 0 0.9739 0.0087 0 0 0 0 0
0 0.2500 0 0 0 0 0 0 0.7500 0 0 0 0 0
0 0 0.0169 0 0 0 0 0.0169 0 0.9661 0 0 0 0
0 0 0 0.0217 0 0 0 0 0 0 0.9783 0 0 0
0 0 0 0 0.0085 0 0 0.0042 0 0.0042 0.0042 0.9788 0 0
0 0 0 0 0 0.0034 0 0 0 0.0034 0.0034 0.0034 0.9864 0
0 0 0 0 0 0 0.0044 0 0 0 0 0.0132 0 0.9825



.

Let us now assume a deviation of up to ±30% affecting the elements in the main diagonal

of P0 to produce a more realistic model. This assumption is rather reasonable as different

road scenarios, such as traveling in distinct regions of a country, provoke changes in the

behavior of the Markov process. That said, the vertices p
(l)
ij , l = 1, 2, of the transition

probability matrix were built in the following manner:

p
(1)
ij =



−0.3p
(0)
ii , if j = i,

0.3p
(0)
ii , if (i < 14) and (j = i+ 1),

0.3p
(0)
ii , if (i = 14) and (j = i− 1),

0, otherwise.

p
(2)
ij =



−0.3p
(0)
ii , if j = i,

0.3p
(0)
ii , if (i > 1) and (j = i− 1),

0.3p
(0)
ii , if (i = 1) and (j = i+ 1),

0, otherwise.

At this point, a couple of remarks are adequate to close the appendix.
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Remark B.3. We considered accelerator and brake pedal positions as control signals of

the powertrain so as to design a more general framework. Indeed, the values of τacc,k and

τbrake,k can be translated into voltages or CAN bus signals to be transmitted to the related

electronic modules on different ground vehicles.

Remark B.4. The identification procedure presented in this appendix also applies if we

consider additional payloads and higher longitudinal velocities for the vehicle. If this is the

case, we account for gears crawler-1, crawler-2, 1st, 2nd, 3rd, 11th, and 12th for both

acceleration and brake actions. As such, the DMJLS would have 14 additional Markov

modes. Additionally, we would need at least three more vertices per mode to encompass the

payload variations.
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