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RESUMO

BUENO, J. N. A. D. Métodos Recursivos Robustos para Sistemas Discretos Sujeitos
a Incertezas Politopicas. 2023. Tese de Doutorado (Programa de Doutorado) — Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2023.

O problema de regulagdo quadratica linear para sistemas discretos tem sido assunto de
pesquisa desde suas primeiras aparicées na literatura nos anos 1960. Desde entao, difer-
entes formulacdes e aplicagdes surgiram com objetivo de atender a uma ampla gama de
casos tedricos e praticos, como sistemas submetidos aos efeitos de variagdes paramétri-
cas desconhecidas. Mais especificamente, nesta tese nds investigamos o problema de
regulagdo quadratica para sistemas discretos lineares e com saltos Markovianos sujeitos
a incertezas politopicas. Nés definimos os problemas em termos de otimizagdo min-max
baseada em minimos quadrados regularizados incertos e fun¢des de penalidade. Nés
consideramos os casos onde incertezas afetam matrizes do modelo e probabilidades de
transicao, e também sistemas com saltos Markovianos com cadeia ndo observada. Para
cada cenario, nés elaboramos uma fungao de custo quadratica para acomodar todos os
vértices do politopo de uma maneira unificada enquanto mantemos a convexidade dos
problemas de otimizacéo. As solugdes sdo recursivas e produzem ganhos de realimen-
tacao de estado robustos com esforgco computacional relativamente menor que o esfor¢o
despendido em abordagens baseadas em desigualdades matriciais lineares. Expandindo
as estruturas matriciais das solugdes, conseguimos formas reduzidas equivalentes que
sao mais adequadas para analises de convergéncia e estabilidade através de equagdes
algébricas de Riccati. Entao, considerando que algumas condicdes de detectabilidade e
estabilizabilidade sejam satisfeitas, os ganhos de realimentacdo garantem a estabilidade
dos sistemas em malha fechada associados. O método proposto nao exige ajuste adicional
de parametros durante a operagao, o que € desejavel em aplicagdes embarcadas e em
sistemas com muitos vértices e modos Markovianos. Ademais, n6s providenciamos exemp-
los numéricos e de aplicagbes para validarmos nossos resultados e para compara-los com
outros controladores disponiveis na literatura de controle robusto.

Palavras-chave: Regulador quadratico linear. Controle robusto. Incertezas politdpicas. Sis-
temas lineares discretos. Sistemas sujeitos a saltos Markovianos. Equagdes algébricas de
Riccati. Otimizacao.






ABSTRACT

BUENGO, J. N. A. D. Robust Recursive Frameworks for Discrete-Time Linear Systems
Subject to Polytopic Uncertainties. 2023. Doctoral thesis (Doctorate Program) — Sao
Carlos School of Engineering, University of Sdo Paulo, Sdo Carlos, 2023.

The linear quadratic regulation problem for discrete-time systems has been subjected to
research since its first appearance in the literature in the 1960s. Thereafter, different formula-
tions and applications came to light to accommodate a wide range of theoretical and practical
cases, such as systems undergoing the effects of unknown parametric variations. More
specifically, in this thesis, we investigate the quadratic regulation problem for discrete-time
linear and Markov jump linear systems subject to polytopic uncertainties. We define the
problems regarding min-max optimization based on regularized least squares with uncertain
data and penalty functions. We consider the cases where uncertainties affect the model
matrices and transition probabilities and Markov jumps systems with unobserved chains. For
each scenario, we designed a quadratic cost function to take all polytopic vertices into ac-
count in a unified manner while keeping the optimization problems’ convexity. The recursive
solutions yield robust state feedback gains with a relatively lower computational burden if
compared, for instance, with linear matrix inequalities approaches. By expanding the matrix
structures of the solutions, we achieved equivalent reduced forms that are more adequate
for convergence and stability analyses based on algebraic Riccati equations. Then, provided
that some detectability and stabilizability conditions hold, the feedback gains ensure the
stability of the associated closed-loop systems. The proposed method requires no further
parameter tuning during operation, which is desirable in embedded applications and in
systems with many vertices and Markov modes. Furthermore, we provide numerical and
application examples to validate our results and to compare them with other approaches
available in the literature on robust control.

Keywords: Linear quadratic regulator. Robust control. Polytopic uncertainties. Discrete-time
linear systems. Markov jump systems. Algebraic Riccati equations. Optimization.
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1 INTRODUCTION

Since its appearances in the literature in the 1960s and 1970s (KALMAN, [1960a),
(KALMAN, 1960b), (DORATO; LEVIS, [1971), the linear quadratic regulation problem (LQR,
for short) became a very visited subject regarding control systems. From then on, researchers
evolved the LQR formulations to accommodate different practical applications (JAEN et al.,
2006), (KO; JATSKEVICH, 2007), (FERRESE et al.| 2011), (GATSIS; RIBEIRO; PAPPAS,
2014), (WANG et al., [ 2019), and theoretical cases (JI; CHIZECK, |1990), (BEMPORAD et
al., 2002), (CAO; REN, 2010), (GOMMANS et al.,[2014). In this sense, researchers turned
their efforts to uncertainty, sensitivity analyses, and disturbance rejection on these class
problems, given the need to sidestep the performance degradation generated by unknown
parameters and exogenous inputs (SEZER; SILJAK; 1981), (SWORDER, [1977). The robust
LQR problem is still a subject of research efforts and relates to different theoretical and
practical cases (see, for instance, |Petersen and McFarlane| (1994), |Chizeck et al. (1986),
Polyak and Tempo (2001), [Tzortzis, Charalambous and Hadjicostis| (2020)).

In special, [Terra, Cerri and Ishiharal (2014) and Cerri and Terra (2017) presented re-
cursive frameworks for the robust recursive linear quadratic regulation problem (RLQR for
short) regarding discrete-time linear and Markov jump linear systems with norm-bounded
uncertainties. The authors formulated min-max optimization problems regarding regularized
least-squares and penalty functions, such that some quadratic cost function is minimized
whilst the system undergoes the worst case of uncertainties. They obtained, thereafter,
optimal robust solutions defined in terms of symmetric matrix arrangements and Riccati
equations, which were later applied with success on different real-world systems (JUTINICO
et al., 2017), (NAKAI et al., 2018), (BARBOSA et al., 2019), (BENEVIDES et al., 2019),
(BUENO et al., 2019), (MORAIS et al., 2020), (MARCOS et al., 2022).

In this work, on the other hand, we consider the robust linear quadratic regulation of
discrete-time dynamic systems whose regions of uncertainties are polytopes. In the following
sections, we will introduce the problems under study in this thesis and provide a literature
review on robust control for the classes of dynamic systems subject to polytopic uncertainties
we are interested in.

1.1 Discrete-Time Linear Systems Subject to Polytopic Uncertainties

In the past few decades, the characteristics of linear systems undergoing the effects
of polytopic uncertainties drew the attention of many academics. Undoubtedly, this class
of systems has proven to be helpful in a wide range of practical applications, including
power systems (CUl et al., 2017), (SADABADI; SHAFIEE; KARIMI, 2018), electronic circuits
(ZHAQO et al., 2014), robotic manipulation (YU; CHEN; WOO, 2002), (JABALI; KAZEMI,
2017), autonomous navigation of ground vehicles (NGUYEN et al., 2018), (HANG; CHEN;
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LUO, 2019), aircraft systems (FENG et al., 2005), (HUANG et al., |2013), among others.
Not surprisingly, the success of these implementations is due to advancements in con-
trol theory for dynamic systems in polytopic domains. Oliveira, Bernussou and Geromel
(1999) presented a highly relevant result on the robust stability of discrete-time polytopic
systems. Inserting a matrix variable into the well-known Lyapunov function yielded a less
conservative manner of obtaining parameter-dependent Lyapunov functions via linear matrix
inequalities (LMI)-based optimization problems. Indeed, this method laid the foundations for
further research towards novel conditions for the stability of polytopic systems (DAAFOU/Z;
BERNUSSOU, 2001), (RAMOS; PERES, [2001), (GEROMEL; OLIVEIRA; BERNUSSOU,
2002), (GERSHON; SHAKED, 2006), (DONG; YANG, 2007), (MORENO-MORA; BECKEN1
BACH; STREIF, 2022), (ZHU; ZHENG| [2020), (CAO; LIU; LU, [2022).

Among the numerous approaches found in the literature on robust control, H, and H,
feedback synthesis became renowned for treating parametric uncertainties varying inside
convex hulls. Caigny et al. (2010), for instance, delineated exponential stability conditions
through parameter-dependent LMI to obtain an upper bound for H, and H, performance
criteria. Also, the authors provided systematic procedures for the computation of gain-
scheduled static output feedback controllers and validated their claims in a vibroacoustic
system. Geromel, Korogui and Bernussou| (2007) achieved less conservative LMI conditions
for the guaranteed cost H, and H, control problems. In addition, regarding computation
speed, the Frank-Wolfe algorithm for quadratic programming (FRANK; WOLFE, |1956) is
pointed out to take advantage of the convex structure of the defined problem. Hosoe,
Hagiwara and Peaucelle| (2018) presented a noteworthy analysis on robust stability and
robust stabilization of discrete-time systems expressed by random polytopes. In this study,
an auxiliary variable is added with the intention of evaluating the effect of randomness on
the system dynamics at the expense of increasing numerical complexity since the new
inequality constraints include expectations that are not straightforward to handle. The recent
work by Pereira, Oliveira and Kienitz (2021) presented an H, control synthesis with reduced
conservatism based on a poly-quadratic condition. The authors achieve this goal by extending
the results outlined by |Pandey and de Oliveira| (2017), which, in turn, includes the results
presented by Daafouz and Bernussou| (2001) as a particular case. For completeness, the
reader can also find deeper discussions about LMI-based control techniques and convex
optimization in the classic books by Boyd et al. (1994) and |Boyd and Vandenberghe (2004).

A common factor of the above references is using LMIs to define stability and stabilizability
conditions. However, as the number of inequalities usually depends on the number of vertices
describing the uncertainties, the computational effort required for feedback gain realization
might become excessive. This aspect motivates us to pursue robust and computationally
efficient solutions for the quadratic regulation problem of discrete-time linear systems subject
to polytopic uncertainties.
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1.2 Discrete-Time Markov Jump Linear Systems Subject to Polytopic Uncertainties

Many systems experience sudden changes in their dynamics due to external distur-
bances, sensor or actuator failures, and shifting of operation points in linearized plants,
among other factors. For minor effects on the system behavior, we can use classical tech-
niques for sensitivity analysis. Otherwise, a stochastic approach is preferable to investigate
stability and stabilization (COSTA; FRAGOSO; MARQUES, [2005). In such cases, it is pos-
sible to model the dynamics via an ensemble of discrete-time linear systems orchestrated
by a Markov chain. The transition from a Markov mode to another, or permanency in the
actual mode, obeys a set of transition probabilities inherent to each specific process. |Costa.
Fragoso and Marques (2005) contributed with valuable discussions on control and filtering
problems for discrete-time Markov jump linear systems (DMJLS, abbreviated) and provide a
collection of examples to illustrate the relevance of this class of problems.

More specifically, the control problem for DMJLS subject to polytopic uncertainties has
been gaining importance and attention in the scientific community. The case with perfectly
observed Markov chain was addressed, for instance, in|Boukas and Liu (2000) and Alattas
et al.| (2022) regarding systems with time-delay; Zhang, Song and Cali| (2022) for constrained
model predictive control;|Gabriel, Gongalves and Geromel (2018) presented a differential
LMI approach for optimal H, and H,, control synthesis; and Vargas et al.| (2022) for linear
parameter-varying (LPV) systems. Within the class of DMJLS with observed Markov modes,
systems with polytopic uncertain probabilities are also widely investigated. In real-world
systems, the transition probabilities are hard to obtain and are usually estimated based on
experimental data (SHI; LI, [2015). Therefore, these quantities are prone to identification
errors which might degenerate the overall performance and even cause instability (XIONG et
al., 2005). Clearly, this is a more complex problem with fundamental importance for practical
applications. (Goncalves, Fioravanti and Geromel (2012) examined robust and networked
control problems under H,, performance criteria; Lu, Li and Xi (2013) focused on model
predictive control; Lopes et al.| (2019) also investigated the model predictive control, but
assuming input and state constraints; and Zacchia Lun, D’Innocenzo and Di Benedetto
(2019) introduced necessary and sufficient conditions for robust mean-square stability of
polytopic time-inhomogeneous DMJLS.

Another problem of interest is the robust control of DMJLS, whose Markov chain is par-
tially or entirely unobserved. In the first, the information about the active mode is intermittent,
whereas in the second such information is never available to the controller. Notable results
have been reported in the related literature. For example, |Costa, Fragoso and Todorov| (2015)
presented the detector based approach for DMJLS with partial information on the Markov
chain and H, control, in which the Bernoulli jump case is also handled;|Todorov and Fragoso
(2016) examined the mixed H,/H., controller synthesis; de Oliveira, Costa and Daafouz
(2020) provided results regarding Hs, H., and mixed H,/H,, control problems aided by
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the detector approach; and Oliveira, Costa and Gabriel (2022) focused on the H,, output
feedback control. These robust methods proposed for DMJLS require a certain number
of LMIs to be satisfied in the designed optimization problems, whose solutions yield the
controller gains. With this in mind, we are interested in finding recursive solutions to sidestep
LMI-based synthesis and achieve lower computational times to yield state feedback gains.

1.3 Objectives

We present robust recursive solutions for quadratic regulation problems regarding linear
and Markov jump linear systems subject to polytopic uncertainties. Our approach is based
on regularized least-squares with uncertain data and penalty functions whilst simultaneously
weighting both the actual input signal and future states. We formulate min-max optimization
problems whose quadratic cost functions consider the polytopic vertices in a unified manner.
The solutions for such problems yield robust state feedback gains. Convergence and stability
conditions are well established in terms of algebraic Riccati equations. Thus, the existence
of our recursive solutions is not checked via LMIs. Furthermore, we impose no restrictions
on how fast the uncertainties vary within the polytopes between two consecutive iterations.

We organized the remaining of this document in the following way:

« In Chapter 2] we outline and discuss some useful preliminary concepts, namely least-
squares problems, the penalty function method, and Riccati equations. They will be of
fundamental importance throughout the work.

« In Chapter 3] we investigate the quadratic regulation problem for discrete-time linear
systems subject to polytopic uncertainties. We provide a robust recursive solution
and conditions for convergence and stability. Then, we validate the given solution via
numerical examples.

* In Chapter |4, we devote to the quadratic regulation problem for DMJLS subject to
polytopic uncertainties. We assume perfect knowledge of transition probabilities to
design the quadratic cost function. Conditions for convergence and stability are defined
by achieving reduced forms of the solution. We also give numerical examples for
validation and comparison purposes.

« In Chapter 5, we address the regulation problem of DMJLS, whose transition probabili-
ties are also subject to polytopic uncertainties. We design a cost function that accounts
for the uncertainties in the probabilities whilst keeping its quadratic structure. We then
propose the associated recursive solution and validate it with numerical examples.

« In Chapter 6], we focus on the regulation problem of polytopic DMJLS with unobserved
(hidden) modes. We yield an augmented system where the knowledge about the actual
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active mode is interpreted as uncertainty. It is possible to recover the original variables
from the augmented ones. We close the chapter with numerical examples.

« We finish the text in Chapter [7] with concluding remarks. Moreover, we discuss some
open problems related to polytopic discrete-time systems as promising subjects for
future research efforts.

« For completeness, in Appendix [A], we give some auxiliary results regarding matrix
analysis applied along this research, and we outline the procedure for identification of
powertrain model for heavy-duty ground vehicles in Appendix [B]

1.4 Published papers

The following journal and conference papers regard the results and studies carried out
throughout this research work.

1. J. N. A. D. Bueno, K. D. T. Rocha and M. H. Terra, Robust Recursive Regulator for
Systems Subject to Polytopic Uncertainties. IEEE Access, 2021.

2. J. N. A. D. Bueno, L. B. Marcos, K. D. T. Rocha and M. H. Terra, Regulation of
Markov Jump Linear Systems Subject to Polytopic Uncertainties. IEEE Transactions
on Automatic Control, 2022.

3. J.N. A. D. Bueno, L. B. Marcos, K. D. T. Rocha and M. H. Terra, Regulation of Uncertain
Markov Jump Linear Systems With Application on Automotive Powertrain Control. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2023.
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2 THEORETICAL BACKGROUND

In this chapter, we revisit the well-known least-squares problem when data and measures
are subject to uncertainties (KAILATH; SAYED; HASSIBI, 2000), (CERRI, 2009), Sayed and
Nascimento|(1999), (TERRA; CERRI; ISHIHARA, [2014), Sayed, Nascimento and Cipparrone
(2002), and Sayed and Chen|(2002). Based on optimization problems, we present, from a
polytopic point of view, convex solutions that encompass all vertices of the uncertainties.
In the following, we present a classical way to deal with constrained optimization problems
through penalty functions. They are useful for placing the constraints into the cost func-
tion with a penalty parameter. If any constraints are violated, it imposes a high cost in the
optimization process, resulting in an equivalent unconstrained optimization problem. More
importantly, given that some conditions are satisfied, the solution of this equivalent problem
converges to the original constrained problem. We outline some critical results on the penalty
functions method, which can be found in greater detail in the specialized literature, such
as in Luenberger and Ye (2010), |Albert (1972) and |[Bazaraa, Sherali and Shetty| (2006).
Fundamental concepts on controllability, observability and mean square stabilizability of o
discrete-time linear systems with and without subject to Markovian jumps are provided (LAN-
CASTER; RODMAN, [1995), (BERTSEKAS, 2005), and (COSTA; FRAGOSO; MARQUES,
2005). We also present Riccati algebraic equations for both classes of systems, which define
the central framework we will adopt to develop the control approaches of this work.

2.1 Least-Squares Problems
2.1.1  Weighted least-squares
Consider the quadratic optimization problem
min J(x), (1)
whose quadratic cost function J : R™ — R is defined as
J(x) = || Az — blfyy = (Az — b)"W(Az —b), (2)

where W is a known symmetric positive definite weighting matrix, A € R**” and b € R* are
known and z € R" is an unknown vector.

Lemma 2.1. (KAILATH; SAYED; HASSIBI,|2000) A vector & € R" is a minimizer of the cost
function (2) if, and only if, it satisfies the normal equation

ATW Az = ATW, (3)
and the corresponding minimal value of (2)) is given by

J(2) = ||AZ — b))%, = " Wb — b"W Az (4)
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If A has full column rank, the solution z is unique and given by
&= (ATWA) L ATWb. (5)
And in this case, the minimal cost is
J(2) = ||AZ — b))%, = b1 (W — WAATW A) " ATW)b. (6)

The following lemma remodels the solution for problem (1)—(2) through a matrix arrange-
ment.

Lemma 2.2. (CERRI, 2009) Consider the problem with W = W7 > 0. The following
expressions are equivalent:

(i)
& = arg min(Az — b)T W (Az — b). (7)
(i) © = % is a solution to ATW Az = ATWh.
(iii) (v,z) = (9, %) is a solution to

w1t A
AT 0

Y
x

_ [g] | @)

If A has full column rank, then the solution & is unique and given by
&= (ATWA)TTATWb, (9)
and, in this case, the respective minimal cost is

w1 Al

J(@) =" o o

0

b] . (10)

The nonsingularity of the central matrix block is assured by LemmalA.3 in Appendix[A.

2.1.2 Regularized least-squares
Consider the quadratic optimization problem
min J(x), (11)
whose quadratic cost function J : R” — R is defined as
J(z) = HxHé + [|Az — b||E = 27 Qx + (Az — b)"W (Az — b), (12)

where Q and W are known symmetric positive definite weighting matrices, A € R**" and
b € R* are known and = € R" is an unknown vector. We see that from problem ({1)—(12) we
recover the least-squares problems introduced in Section by selecting ¢ = 0.
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Lemma 2.3. (SAYED, |2001) The solution & for the optimization problem (12) is given

by
= (Q+ATWA)TTATWY, (13)

and the minimal value of the cost function is then

J(2)

bT(W 4+ AQTTAT) . (14)

2.1.3 Regularized least-squares subject to uncertainties

Let us now address the case in which matrices A and b are subject to structured
parametric uncertainties, i.e., A = Ag+ 0 A, and b = by + 0b. Thus, consider the optimization
problem

mxin gf}g J(x,0A,0b). (15)

The cost function J(z,0A, 0 B) is defined as
J(x,64,6b) = [|z]|3 + [1(Ao + 5 A)z — (bo + 0b) 1y
= 27Qux + ((Ag + 6A)x — (bo + 6b))" W (Ao + 6A)x — (by + b)),  (16)

where () and W are known symmetric positive definite weighting matrices, A, € R**" and
bo € R* are known and = € R" is an unknown vector. The uncertainties {0 A, jb} are modeled
as:

[5,4 55} — MT [A B] , (17)
with known M € R>?V, T’ = diag{a, ...,y } ® I,, known vertices AV € RP*", ) € RP,
L= L.V, suehthat A = [(A0)7 .. a0)] b = [p0)7 . 0)] and o =

T
[oq . .av} belongs to the unit simplex Ay, defined by

%4
AV::{aeRV:alzo,Zalzl}. (18)
=1

Clearly, the uncertain case accommodates the regularized least-squares problem without
uncertainties presented in Section [2.1.2|by choosing A = 0 and b = 0,1 =1,...,V.

The next result is based on |Cerri| (2009) and Sayed and Nascimento (1999) and provides
the unique solution for the min-max optimization problem (15)—(16).

Lemma 2.4. Consider the optimization problem (16). The following sentences are
equivalent:

(i) ForQ > 0, there is a unique & := x(\) such that
& = arg minmax J(z,dA, b),
z SAGb

A ab] = mr[A ]
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(i) For () > 0, there is a unique = such that

T
I 0 Q@ 0 0
i =arg min Aoz — | by 0 W) o <-) :
A b 0 0 A
where the Lagrange multiplier \is given by
\ = i 19
Aimarg  min{FO) (19)
with
FO) = zMIB + M Az(X) = b)1” + [[Aoz(A) — boll3y (s (20)
2(A) = [Q(N) + AGW (M) Ag] T [ATW (\)by + AATD], (21)
Q\) == Q+ NAT A, (22)
W) =W + WM (A — MTW M) MTW. (23)

Q' 0 0 I |a 0
0 WM™t 0 Al [¢] b
0 0 A Al |y| b
I AT AT 0| e 0

In addition, the unique solution & and the corresponding cost J(z) are obtained by

T -1

0 0| [Q 0 0 I 0
f% _ O bAO 0 W(S\)il A 0 14/\0 bAO 7 (24)
J(#) 0 0 AU A b
I AT AT 0 0
%
A~ T ja T
where A = [(A(l))T (A(V))T] ,andb = [(b(l))T (b(v)>T] :

Proof. We cast the original regularized least-squares problem with uncertain data discussed
in (TERRA; CERRI; ISHIHARA, 2014) from a polytopic perspective by choosing {6 A, 6b}
as in (17). Then, the steps follow directly with the procedures thoroughly described in [Cerri
(2009). Moreover, since both weight matrices (Q and W are positive definite, we have #’
nonsingular according to Lemma|A.3| (see Appendix [A). O

Remark 2.1. Authors in|\Sayed, Nascimento and Cipparrone (2002),|Sayed and Nascimento
(1999), and Sayed and Chen (2002) meticulously investigated problem (16) with respect
to its convexity. Observe that (17) can be expressed by

min{ lelf + max (7 (204,00} },
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where T (x,8A,b) = ||[(Ag + dA)x — (by + 6b)||3,. The residual function T (x,dA, 6b) is
convex in x for any pair 6 A, 6b. As such, the maximum

L(w) = max{T(x,04,0b)}

is also convex in x. In addition, given that Q > 0, both ||z||?, and ||z||3, + L(x) are strictly
convex in x. Therefore, the uniqueness of the minimizing solution & provided in Lemma|2.4

for problem (16) is guaranteed.

Remark 2.2. As mentioned by Sayed and Chen (2002), for any W positive definite and
A > [|[MTWM| we have (5\1 — MTWM ) positive definite and, as such, nonsingular.
Therefore, the inverse operation can replace the pseudoinverse in and we have W (\) =
W+ WM (M- M"WM)™ M™W.

Note that the solution provided in Lemmadepends on the multiplier A, which is the
minimizer in (19). From a practical point of view, this is a drawback since an additional
optimization problem over ) restricted to the open interval (|| MTW M||, +oc) must be
solved to obtain z ultimately. According to Sayed (2001), W (\) in is positive definite
if \ > ||[MTW M]||, which implies f()) in being also positive definite with a unique
global minimum. In fact, as stated in [Sayed (2001) and confirmed by results shown in
Sayed and Chen (2002), f()) reaches amplitudes close to its minimum value for arguments
A that are not far from the lower bound ||MTW M]||. Thus, we make the approximation
A~ B||MTW M]||, for some 3 > 1, to sidestep the need of finding A through in online
applications.

2.2 Penalty Functions
Consider the following constrained minimization problem.
min {£(2)} (25)
subject to g(z) = 0,

and assume it is replaced by

min {q(z, p) := f(z) + g(x)" pg(x)}, (26)

zeR™

whose solution is given by Z(u). The term g(z)” ug(z), u > 0, is called penalty function and
satisfies

(i) g(x)Tg(z) is continuous;

(i) g(z)Tg(x) > 0forall z € R".
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The steps to solve via penalty functions are defined as follows (BAZARAA; SHERALI;
SHETTY, [2006):

Step 1: Let {ux}, k =1, 2, ..., oo, be a sequence such that, for each k, p, > 0 and
Wi1 > pg. Define the problem

min {q(x, u) := f(x) + g(x) g (x)}. (27)

zeR™
Step 2: Define a real ¢ > 0 as the termination criteria. Select ¥ > 1 and initial conditions
x1 and puy > 0.
Step 3: Set k = 1, then:
Step 3.1: Starting with z, solve the follwing optimization problem:

min {g(zx )},

TLE
and obtain the optimal solution z; ;. Go Step 3.2.
Step 3.2: If g(xp41)T urg(zr41) < €, then stop. Else, set p;,1 = Yu;, and go back to
Step 3.1.

Ideally, if z* solves and z () minimizes ¢(x, i) in (26), then we have lim,, . z(p) =
x* and Z(u) is optimal as stated by the next lemmas. Otherwise, if 1 — oo is not allowed for
some reason, then (1) is a sub-optimal solution for the constrained problem.

Lemma 2.5. (LUENBERGER; YE,|2010) Let {u}, k = 1, 2, ..., oo be a sequence such
that, for each k, ji;; > 0, pr1 > ., and q(z, p) = f(x) + g(x)" ng(z). Then,

() q(@r, ) < q(Trg1s s
(i) g(xr)" g(xx) > g(ari1)" 9(Thi1);
(iii) f(xx) < f(Try1)-
Lemma 2.6. (LUENBERGER; YE, |2010) Let =* be a solution to (25). Then, for each
k=1, 2, ..., oo we have
f(@*) > q(@r, p) > f(wr).
Theorem 2.1. (LUENBERGER; YE, |2010) Let {z\}, k = 1, 2, ..., oo, be a sequence

generated by the penalty functions method. Then, any limit point of this sequence is a
solution to (25).

Observe that we incorporate, via penalty functions, the problem constraints into the
cost function. As we will see in the next chapters, this allows us to encompass all polytope
vertices at once. Thenceforth we must ultimately solve a single matrix equation with minimal
parameter tuning in order to obtain the state feedback gains.

Remark 2.3. Although the literature on optimal control introduces (. as a variable, we will
tune it to a constant value 1. As such, this parameter can be interpreted as an additional
weight in the robust regularized least-squares problem.
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2.3 Bellman’s Principle of Optimality

Let us consider the following finite horizon optimization problem:

Tp+1,Uk i—0

N-1
min {IISBNII?DN + D (i, + ||Ut||?%t)} : (28)

subject to xy,1 = Frxi + Grug,

where 2z, € R", u;, € R™, Py > 0, Qk >Oande>O,k:O,...,N.
The optimal solution for satisfies Bellman’s Principle of Optimality, which can be
stated as follows (BERTSEKAS, 2005).

Bellman’s Principle of Optimality. Let X = {X,, X1,...,Xn_1} be the optimal
policy that solves (28), where X k = {Zk41, U }. Consider now the sub-problem

N-1
min {HmNH?DN + D (llzeliy, + Hut\!?at)} :

T+41,Uk i—t
=to

subject to w1 = Fyxy + Gruy,.

Then, the truncated policy {Xto, Xto-‘rl? X ~N—1} is optimal for this sub-problem.

Two fundamental aspects arise when we consider Bellman’s Principle of Optimality to
solve a finite horizon optimization problem. First, we solve the problem in a backward fashion,
which means that we use the information from instant ¢ = N as the boundary to solve the
stept = N — 1,thenwe uset = N — 1 as the boundary to the stept = N — 2 and so
forth until ¢ = ¢,. Second, the solution is, therefore, recursive. Cerri| (2009) explored these
features to demonstrate in detail how to split the problem (28) into one-step problems and,
furthermore, how to treat the robust case in a similar manner.

That said, in the next chapters we address a series of quadratic optimization problems
with finite horizon, and separate them into one-step quadratic problems by means of the
aforementioned concepts. We refer the reader to (CERRI, 2009), where the complete splitting
procedure is outlined, and to (BERTSEKAS, 2005) for deeper details about Bellman’s
Principle of Optimality and dynamic programming.

2.4 Algebraic Riccati equations

The following concepts regarding algebraic Riccati equations are fundamental for the
analyses of convergence and stability of the recursive solutions achieved throughout this
thesis. The proofs are omitted, but the reader can easily find them in the classical literature
about control systems and algebraic Riccati equations.
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2.4.1 Discrete-time linear systems

Theorem 2.2. (LANCASTER; RODMAN, 1995) Consider the system
Try1 = Ary + Bug, (29)
yk:Ol’k, kzl,...,N—l

with A € R™*", B € R™*™ and C € RP*™, The system is said be controllable if and only if
the matrix pair { A, B} is controllable, i.e.,

rank([B AB A2B ... A”‘lBD:n.

Theorem 2.3. (LANCASTER; RODMAN, |1995) The system is observable if and only if
the matrix pair {C, A} is observable, i.e.,

C
CA
rank C A?

Il
S

C A

Definition 2.1. (BERTSEKAS, 2005) The system xy,1 = Lxy, where L = A+ BK, is stable
if all eigenvalues of L are located inside the open unit disc. If this is the case, ||z

| = 0as
k — oo.

Definition 2.2. (LANCASTER; RODMAN, |1995) The matrix pair { A, B} is stabilizable if
there exists a feedback matrix K € R"*" such that L = A 4+ BK is stable.

Theorem 2.4. (LANCASTER; RODMAN, |1995) If the matrix pair { A, B} is controllable, the
it is stabilizable.

Theorem 2.5. (BERTSEKAS, 2005) Assume the pair { A, B} is controllable and {A,C'} is
observable. Then, there exists a unique P > 0 such that the discrete-time algebraic Riccati
equation

Po=Q+ATPeyA— ATP B (R+ B"P,1B) " BTPA, (30)

where Q = CC™, converges to P as k — oo. Moreover, the eigenvalues of the corresponding
closed-loop matrix . = A + BK, with matrix K = —(R + BT PB)"'BTPA, are located
inside the open unit disc.

2.4.2 Discrete-time Markov jump linear systems

Consider A = (Al, R ,As> € Hn,n, B = (Bl, ey Bs) € Hn,m, C = (Cla RN CS) S Hp,n,
© = {1,...,s}, transition probability matrix P € R***, and recall the following results
borrowed from the literature on the control of discrete-time Markov jump linear systems.
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Theorem 2.6. (COSTA; FRAGOSO; MARQUES, 2005) Consider the DMJLS

Tpy1 = Ao, Tr + Bo, ug, (31)
Y = Cp, g,

where x;, € R", u, € R,y € RP, Ay, € R**", and By, € R, fork = 0,...,N — 1 and
0, € ©. The system with u;, = 0 is mean square stable (MSS) if for any initial condition
o € R™, 0y € ©, we have |[E{x;}|| — 0 as k — oc.

Definition 2.3. (COSTA; FRAGOSO; MARQUES, 2005) The pair { A, B} is mean square
stabilizable if there exists K = (K, ..., K;) € H™" such that when u;, = Ky, xy, 0 € O,
is MSS. In this case, K is said to stabilize the pair { A, B}.

Definition 2.4. (COSTA;, FRAGOSO; MARQUES, 2005) The pair {C, A} is mean square
detectable if there exists H = (Hy,...,H,) € R"*? such that r,(2) < 1, where 9 =
(PT & Inz) dlag((Agk + H@kCQk) X (Agk + H9k09k>), 0, € O.

Theorem 2.7. (COSTA; FRAGOSO; MARQUES, 2005) The following statements are equiv-
alent:

(i) System is MSS.

(Il) TU(CN) <1, whereC = (PT & InQ) andN = diag{(Agk+Hgk09k)®(A9k+H9k09k)},
for 9, € ©.

(iii) For all zy € R™ and 6, € ©, we have Y - E {||)]|*} < oc.

Definition 2.5. (COSTA; FRAGOSO; MARQUES, |2005) P = (P, ..., P;) € H, is a stabiliz-
ing solution for the coupled Riccati equations

Pk = Qo + Ag, Eri1 Ao, — A, Ex1Bo, (Ro, + B, Ex11By,) " By Er1 A, (32)

where Qq, = Cy,Cj , if P satisfies for all 6, € © and K = (Ki,...,K,) € H™"
stabilizes (A, B) in the mean square sense when u;, = Ky, v, where g1 = 35 pijPjxia
and Ky, is given by

Ko, = —(Rg, + By EBy,) "By EA,,, (33)

Corollary 2.1. (COSTA; FRAGOSO; MARQUES, |2005) If the pair { A, B} is mean square

stabilizable and {C, A} is mean square detectable, then the stabilizing solution for the
coupled algebraic Riccati equations exists.
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Theorem 2.8. (COSTA; FRAGOSO; MARQUES, |l2005) Assume that the pair {A, B} is
mean square stabilizable. Then, for any initial condition Py = (P, ..., Pso) € HY, the
sequence { Py} = {(P., ..., Ps )} converges to a solution P = (P, ..., P;) € H" for
when k — oo. Additionally, if the pair {C, A} is mean square detectable, then P is the
unique positive semidefinite stabilizing solution for (32).

The concepts outlined in Sections and[2.2)are fundamental to solving the regulation
problems we formulate in the next chapters for systems subject to polytopic uncertainties. As
such, we derive solutions structured as matrix arrangements and, in sequence, we achieve
equivalent forms suitable for convergence and stability analysis through the Riccati equations
presented in Section [2.4]
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3 ROBUST REGULATOR FOR SYSTEMS SUBJECT TO POLYTOPIC UNCERTAIN-
TIES

In this chapter, we present the solution for the linear quadratic optimization problem for
systems subject to uncertainties varying within a convex hull. The formulation is recursive
and exhibits different characteristics when compared to well-known solutions found in the
literature on polytopic systems, such as |Boyd et al.| (1994), Colaneri, Geromel and Locatelli
(1997), |Oliveira, Geromel and Bernussou| (2010), |[Duan and Yu| (2013), among others.

We write the vertices of uncertainties related to state and input matrices under the
form of subsystems to ensemble a constraint set for the min-max optimization problem.
Then, it is possible to rearrange this set as a single equality constraint and, by means of a
penalty function, we place the vertices into the original cost. As consequence, we obtain
an equivalent unconstrained minimization problem that takes into account the whole set of
polytope vertices at once. As the new penalized cost function is quadratic with respect to the
minimization variables, we derive the robust recursive solution in the form of a symmetric
matrix arrangement based on the preliminary concepts described in Chapter 2|

In the next sections, we will formulate the control problem, outline the proposed solution
and demonstrate the convergence and stability of the presented method. Finally, we provide
numerical and real-world examples for validation purposes.

3.1 Problem Formulation
Consider the uncertain discrete-time linear system
Thy1 = (Fk + (SFk) Tr + (Gk + 5Gk) Uk, (34)

for k = 0,...,N — 1, where x;, € R" is the state vector, u; € R™ is the control input,
Fr, € R and G, € R™™ are known nominal system matrices, and {6 F}, G} } are
uncertainty matrices described by

6F. 0Gy) :ijal,k Laelr (35)
=1

T
with F,ff) € R™™ and Gg) € R™™ known and coefficients ay, = [aLk e am} belonging to
the unit simplex with V' vertices

\%4
Ay = {ak € RV : Qg g >0, ZCKL]{ = 1} . (36)
=1

Assume known initial condition zy and states z;, observed at each instant k. Our task is
to find a sequence of input signals {uf;, . u}‘\,_l} which makes the states x;, converge to
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zero despite the maximum influence of uncertainties. To this end, we define the following
min-max optimization problem based on the uncertain model (34)—(35):

N-—1
min  max {HZ‘NH?DN + Z (lzell, + ||Ut||2Rt)} (37)

Tht1,uk 6F,0Gy

t=0
I, Fp+VSEY Gy + VoG
subjectto | : | xpy1 = : Ty + : Uy,
I, F+ VR Gy + VGl

Based on Bellman’s Principle of Optimality and on principles of dynamic programming
(BERTSEKAS, 2005), we approach problem by splitting it into N one-step optimization
problems of the form

. 2 2 2
Juin - max { e, o+ lleeld, + oy, (38)
I, F, + VorY Gy, + VG
subjectto: | : | xpy1 = : Ty + : U, (39)
I, F+ VoEY Gy, + VGl

for k=N —1,...,0,where 0F" := o, F", 6G\ := 0, , G\, 1 = 1,...,V, and weighting
matrices P, > 0, Q, > 0, and Ry > 0.

Remark 3.1. We explicitly express the vertices {F,gl), G,(f)}, l=1,...,V,in the constraint
(39) instead of directly considering only their convex combination. Nonetheless, we recover
the original system by premultiplying both sides of by 11, @ I,,, yielding

1% 1%
Vg, = (VFk +V Z al,kF]El)> T + (VGk +V Z O./l,kGl(Cl)> Uk,

=1 =1
Tht1 = (Fk + (SFk)iCk + (Gk + 5Gk)uk

All constraints in can be incorporated into the quadratic cost function by means of a
penalty parameter. In this case, all vertices of the polytopic model will be weighted in the
cost function in a unified way and the coefficients «; ; will be interpreted as a contraction.
Notice that can be redefined as

I, Fy VoFY G, VoG
Tky1 = |+ : Tk + |t : Uk, (40)
I, 5, VEY) Gy VoG
from which we define g(zx.1,ux) as
I, —Gy 0 —voGl Fy VoF!
9@, u) = [ |1 [+ : [x’““] -]+ : Tk,
L —c o —veg|) L™ F|  |ver®
(41)
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and C(xpy1,ur) = g(xr1, up)? pg(xrs1, ug), with the penalty parameter 1 > 0.
Therefore, the constraints are placed into the cost function via C'(xy1, ux) so that, after
some algebraic manipulation, problem (38)—(39) becomes

xglll%k 5}2%>G<kjk($k+17Uk75Fk,5Gk), (42)
fork=N —1,...,0, with one-step cost function given by
T p 0 -
Jk(xk+1,Uk,6Fk75Gk) = Lh+1 k41 Tt
) T

0 0 0 0 -1, 0

I, -G 0 —ViGy ] F vsrW 0
+ . . k +l . k Thi1| .k N . k - Qk {.}

: : : : U | : : 0 wlpy

I, —Gyg 0 —V(SGév) 2 V(;Fk(V)

(43)

The subsequent section presents the process through which we come to a solution for
(42)—(43) and, as consequence, how we obtain the robust recursive linear quadratic regulator
(RLQR, for short) for system subject to polytopic uncertainties (35).

3.2 RLQR for Discrete-Time Linear Systems Subject to Polytopic Uncertainties

In order to solve (42)—(43), the formulation presented in Section [3.1]intended to fit the
optimization problem into the quadratic framework given in Chapter [2 In this sense, the
following identifications are necessary between and (16):

P 0 0
J = J(@rsn, un, 6F, 0Gy), e [T Qe |7 W | ,
U 0 Rk 0 [LInV
0 0 0 0 -1, 0
I, -G 0 —vsGW F vert
Ap i Y| R I B E T R R S
I, —G, 0 —VsGY Fy VerY
(44)

Also, by comparing and we map

0

e A(l><_[0 —VG,(H, b« VEDg,, 1=1,....V.  (45)
nV

|

Given that TV in our case is definite positive, we rewrite as

W) = (W = AmMT)
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which implies, with 1V in and M in (45),

(46)

W) [Q’“ ’ ]

0 ot

where ® = (u~! — A1) I,,1. In addition, since A € (||MTW M]||,00) and A ~ 3| MTW M||
for some 3 > 1, as discussed in Section[2.1.3] the associations and yield

Qr 0 0 B
ot Gl -

We are now in a position to state the main result of this chapter:

Theorem 3.1. Consider the optimization problem (43), with known Py > 0, Q; > 0,
and Ry, > 0. For a fixed ;. > 0, the solution and corresponding cost are given by

Tp I, O Ly,
lALk =10 Im 0 Kk Tk, kJZO,...,N—l, (48)
sz(i'k:-i-laﬁkz) 0 0 ZL‘{ Pk

with { Ly, Ky, Py} recursively given by

Ly, 00 0 0O 0 I, 0
Kel=100 0 0 0 0 I,|x
Py 00 -1, FF FL, 0 0
_ - -1 -~ -
(Pes)™ 00 0 0o I, 0 0
0 R' 0 0 0 0 I 0
0 0 @' 0 0O 0 0 —I,
0 o 0 @ 0 I =G, E. |, k=N-1,...,0,
0 0o 0 0 Y0 Gy Fyp
I, o o I7 0 0 0 0
0 I, 0 -GI -G%, 0 1 Lo
(49)
where ® := =11 — )Ly, ¥ = (Bu) "y, with 3 > 1,
Fk Gk
Fk = - anxn, ék = € anxm,
F, e
FY Gy I,
FVk _ c RnVXn’ GV,k — . = RnVXm’ I = c RnVXn.
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Proof. Recall that 6F,§l) = oq,kF,il) and 5G,(f) = al,kG(”, where F,ff) and G,ﬁl) are vertices of
a polytope with coefficients a, € Ay. Since (42)—(43) is a robust regularized least-squares
problem, we make use of the identifications (44)—(45) to fit the problem under study into the
framework provided by Lemma [2.4] With this association and based on Lemma[2.4] we yield
the recursive solution for problem (42)—(43) as a symmetric matrix arrange of the form

Thit 00 0 0 0 I, 0
i, =100 0 0 0 0 I,|x
Je(Tpr, Ug) 0 0 —ail, fokT xfﬁgk 0 0
(Po) 0 0 o0 o I, o1 T o]
0 R0 0 0 0 I, 0
0 0 Q' o0 0 0 0 —I,z
0 o 0 @ 0o I -G Fyay, |, (50)
0 0 0 0 Y0 —Gug Fy i
I, o o I 0 0 0 0
0 L, 0 -GI -GL, 0o o | | 0 |
Trit I, 0 0]Jfoo o o o0 I, 0
i, =10 I, 0[]0 0 0 0 0 0 I,|x
Ji(Fpe, ) 0 0 2f|loo0 -1, FFf FL, 0 0
[(Pyis) 0 0 0 0o 5, 01 [o0]
0 R' 0 0 0 0 I, 0
0 0 Q' 0 0 0 0 —1I,
0 o 0 & 0o I -G Ey |z, (51)
0 0o 0 0 Y0 -Gy Fyk
I, o o I 0 0 0 0
0 I, 0 -GI -GL, 0o o | |0

which yields and (49). We approximate A by A ~ 3y, for some 3 > 1, to sidestep
additional computational effort as discussed in Section As such, we attain X :=
(Bu) Ly, and ® = ' (1 — 7)1,y In general, by choosing 3 € (1, 2] leads to adequate
results. The mappings presented in imply @ > 0, since both P, and Ry are positive
definite. The convexity of problem is, therefore, ensured by Remark[2.1] and the solution
(48)—(49) is in fact unique. Finally, the block matrix % is nonsingular according to Lemma

(see Appendix [A). O

Theorem[3.1] brings up to light some interesting aspects. At each instant, a single matrix
equation is solved considering all vertices of the polytope in a unified manner. The method
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accommodates time-varying uncertainties without further online parameter tuning. Instead,
approaches such as in Boyd et al.|(1994) and Hosoe, Hagiwara and Peaucelle| (2018) require
the solution of optimization problems subject to coupled LMI constraints and, for a higher
number of vertices, the region of feasible solutions becomes more restrained to satisfy all
inequalities. The RLQR for systems subject to polytopic uncertainties is, therefore, also
suitable for online applications, which is its main advantage. Finally, computes the future
state as zp,1 = Lixy and, in turn, L, is equivalent to the closed-loop matrix of system
when u, = Kxy.

In the following statement, we extend the result from Theorem 3.1]and provide a manner
to compute matrices { L, K, P} in an equivalent reduced form. As we will see in the
subsequent section, the reduced forms will be useful for convergence and stability analysis.

Theorem 3.2. Consider the optimization problem (43). For a fixed 1. > 0, the solution
given by (49) is equivalent to

ﬂAj‘k_;'_l .[n O 0 Lk;
Uy, =10 [, O K| o, k=0,...,N—1, (52)
i (Tpy1, Ur) 0 0 xf P
with
Ly = Py P Fe — Py Pea Gy (I + Gg@kﬂék)_l G P Fi, (53)
Kk = —RkVGg(p]ngl + VGkRsz)ilfk + (E + GV’lezléak)ilﬁV’k, (54)

Py = Qi + Fff ProirFio — Fif Proi1Gro (I + Gg@k—&-lék)ilé?@k—klﬁka (55)

fork=N—1,...,0, where

_ ) ) N

Fi = Fy— GRy\GT, (2 + GV,kR,;lGaO Py,

_ R ) N

Ry =R (Im ~ar, (2 + GV,kR,;lGCQk) GWR,;l) ,

A T A 1ar \ g

Qr = Qr + Fvyk (Z + GV,kR;; Gng) FV,ku

2= (Bp) Ly, Gyr=GyR"?

P =VP\, Pu1=9+ VP,

e=p (1=, B>1



Proof. From Theorem we see that holds since the system of equations

(Pe)™ 00 0 0 I, O a 0
0 R' 0 0 0o 0 I, b 0
0 0 Q. O 0 0 0 c ~1,
0 o 0 @ 0 I =Gp.l|d|=]|F
0 0 0 0 Y0 —Guel| e Fyp
I, o o I7T 0 0 0 Ly 0
0 L, 0 =GI -G%, 0 0 [[KJ L[0]

o o O

00 ... ¢

with ¢ = p~1(1 — 1) 1,. Let us expand to get the following set of equations:

( Prla+ Ly =0,
R0+ K, =0,
lelc = _I’rw

®d+ 1L, — Gy K}, = F},
Se — GyipKy = Fyy,

La+I1"d =0,

| Inb— Gld = Gpe =0,
An additional equation results from the combination of and (49):

Pk:—C+ﬁEJ+F$k€,

Po=—c+ |Ff . FF| || + Pl
d

P,=—c+VFld+ Fle.
By manipulating (58a) and (58c), respectively, we have:

a = _Pk+1Lk‘a

Cc = _Qk

47

(58a)
(58b)
(58c)
(58d)
(58e)
(58f)

(589)

(60)
(61)
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Meanwhile, the development of results in

e 0 0 d 1, Gy, Fy
0 0 d I, G F;
. <,0 At Le— .k Ky = .k
o 0 : : : :
0 0 vl |d I, Gy F,

From (58f),
d
La+ |1, .. L] |i] =0,
d
Vd=—1,a,
and substituting a from yields
d=V=P L.
From (58b),
b= —RyKy,
and by placing into results
d
In(~FeKy) = |GE . GE| 1] = Glye =0,
d

—RyK), — VGld — GY e =0,
Ky =—-R;'VGld — R;'GY e
By joining and produces
Ye+ GAVJCR];l (VGZd + G@,lﬁ) = Fv,k,
Ye + GV,kR,jVG{d + CA}’v,lezléxT/,ke = FV,Im
CvaB VG + (S + Guaki 6L, ) e = Fiy.
By substituting K, from into and isolating matrix Ly:
od + Ly + Gy (R,;lvc:f d+ R,;léake) -
pd + Ly + GyR;'VGLd + GyR; ' G e = Fy,

Ly = F, — (¢ + Gy R;'VGE) d — GhR; ' G e,

(67)
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and by placing into yields
A=V Pt [Fi = (¢ + GeBVGE) d = GeRp Glye]
d=V P Fy — V' Py (o + GR'WVGE) d — V7 P Gy R; Gl pe,
(L + V' Pt (0 + GLR'WVG) | d+ VT P Gh R Gl e = VI P B (89)
By isolating e in results
e = (S+ G ) (Fox— Guul'VGTd) (70)
and placing it into yields
V P Fy =1, + V' Py (0 + GuR'VGE) | d
+ VT P GL R GE, (z v G*V,kR,;lG"T,,k) - (ﬁv,k — GyrR'VGE d) ,
V ' Py =L+ V' P (0 + GuR'VGE) ] d
+ VT P GhRyGE, (2 + C:V,kR,;léak) By

~ ~ ~ -1 .
— VP Gy RyGE, (2 + GV,kR;IGak) CvaRIWVGTd,

L, +V'P, (SO + GkRIQIVGg)
~ ~ ~ -1 .
— PenGhB O (S 4 Cru RO Guay GFJd =

~ ~ R -1 .
V_1Pk+1Fk — V_lpk_HGkR,;lG%;’k (2 + GV,kR;1G€7k> FV,ka

~ Ja A -1 4
{In + VT P+ P Ge Ry {Im =G (E + GV’kR’;lG:‘C’O GW{R;] GZ} =

VP [Fk — Gy Ry GY, (2 + GV,kR,;léiQk) - Fv,k} . (71)
We define

Fi = Fy— GRyGL, (2 + év,kR,;lé:aQ " B (72)

R = R [zm (T4 GuaR6h,) év,kR,;l} . (73)
Therefore,

(In + V1 Pp+ Pk+1GkRkGZ) d =V "' P Fi,
d= (I, + Perr (Vo + GuRWGT)) T V7 P F,
d= (V71Pk+1(VP,;+11 + 2 + VGkRng))_l VﬁlPkJrlﬁka

d= (VP + ¢+ VG.RG]) ' Fi.
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Considering Py = ¢ + VP!, then,
d = (Poi1 + VGLR.GE) .
By placing in (64), we obtain
L, =VP\d,
Ly = VP (Pop1 + VG RGL) T Fy,
Ly = VP ((In+ VG RGIPIL)  Peyy) ™ F,

L, = VP P L (1L, + VG RGE P ) 7 o,
with G = GLR,/?, then

Ly =VP P (L, + VGG Pl ) ' Fi,

Ly =VP P (1, = VGy(In + GLV P Gy) ' GLP ) Fi,
Ly = VP L P L F — VP PELVGL(Ly, + GEV P L Gy P GE P Fi,
and, by defining 2., = VP, |, we have
L = PoLPenFi — P Piea Gy (I + GEPnGk) ™ G Py Fo,

which corresponds to (53). Now, substitute and into (66), so that

Ky = —R;'VG{d - R'GY, (-(E + Gy R G, TV Gy R G +

(2 + GV,kRI;IGaQ_lFV,k) ,

K, = —Rlzl (]m — G‘@,k(Z + kaRI;lG\T/’k)_lév’lezl) Vng—F
(54 GvaRy "Gy Fug,
Ky = —RyVG] + (2 + Gy Ry 'GL ) ™ By,

Ky = —R\VGE(Peir + VGLRYGE) 7 Fi + (2 + Gy Ry G L) T o,

which is the same as (54). Next, we substitute (61), and into (59), thus we have:

Po= Qi+ VE d+ Bl (S+ GuaR Gl ) (B — G 'VGLA)

ng(E + é\ékRizlé\ak)ilﬁV%

Py = Qi+ FVd+ FL(S + Gvy Ry ' GT) 7 .
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We define
Q= Qi + FL (2 + G R GL ) T B, (79)

then,
P, = Q.+ FlVd,
Py = Qr + FLV (Pey1 + VGrRiGY) ™ .,
Pe= Qi+ FLV (I + VG L, GE P Pyt )™ F,
Py = Qy + FLVEZL (I, + VG L,GE P ) L F,
P =Qu+ FLVPY (1, = VGi(I, + GLV P L Gr) 'GEPY) T,
D= Q.+ F VP L F — FIVPLG.(I, + GiVP LG, 'GIV P L F,
Py = Qi+ Fl PrirFi — ﬁgc@kﬂék([m + Ggf@kﬂék)_lé?@ml]}k,

which corresponds to (55).
O]

Remark 3.2. Bearing in mind the set of equations in (56), we are able to clarify why the
optimization problem is solved over both variables {uy, xx.1}. This selection of
variables allows us to provide, in a unified manner, both stability and robustness to the
control system by solving the following equations:

IL, = (Fp + GyKy) — @d,
Ye = (FVk + GV,kKk),

which involve all polytope vertices of (34). Meanwhile, if ;1 — oo, we have ® — 0 and > — 0,
hence (Fm + Gv,kKk) — 0 and (Fk + GkKk) — ILy. As such, we achieve the optimal
RLQR. If it is not possible to tune ;1 — oo, we adjust ' — € in order to obtain a sub-optimal
robust recursive regulator.

Remark 3.3. For any penalty parameter . > 0, if 3 — 17, then o — 0 and P;.1 — Pj1.
As such, becomes a standard Riccati equation given by

Py = Qi + Fl Pes1Fi — Fi Proia G (I + Gka+1@k)_1@ZPk+1fk. (76)

The penalty 1 can be interpreted as a weighting parameter and is closely related to the
optimality of the solution. In fact, (as well as (52)) converges to the optimal solution of
the original constrained problem as 1 — oo. Nonetheless, although a finite positive penalty
parameter yields a sub-optimal solution, the resulting feedback gain still stabilizes system
(34) when u, = Kjxy. In the following section, we elaborate on this aspect based on the
reduced forms introduced in Theorem
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3.3 Convergence and Stability

To perform the analysis, let us consider invariant system parameters while allowing
coefficients oy, to be time-varying, and 3 — 17. As such, we have the following discrete-time
system realization:

v v
Tpy1 = (F + Z ap Fxy 4+ (G + Z Gy, ay, € Ay

=1 =1

We are now in a position to establish conditions for convergence and stability of the
RLQR for systems subject to polytopic uncertainties.

Theorem 3.3. Assume that {F,G} is controllable, {Q'/?, F} is observable and consider

(76) with initial condition Py > 0. Then, there exists P > 0 symmetric such that klim P, =P.
—00

Moreover, P is the unique stabilizing solution for (55) and the closed-loop system matrix

L=F-G(L,+G"PG) " GTPF,
such that x;., = Lxy, is stable.
Proof. Notice that conforms to the standard Riccati recursive equation (30), namely
Po=Q+A"PyA—A"P B(R+ BTPkHB)il BTPy 1A,

through the identifications A «+ F, Q < Q, R < I,,, and B < G. Therefore, as thoroughly
discussed in (BERTSEKAS, 2005, Chapter 4) and (LANCASTER; RODMAN, 1995, Chapter
12) and given the above equivalences, it follows that I|m Pk P, where P > 0 is the
unique solution for (55). In addition, the feedback gain K such that u, = Kz, makes the
eigenvalues of L lie within the open unit disc. O

3.4 lllustrative Examples

We present two illustrative examples to validate the proposed robust recursive regulator.
For comparison purposes, we adopt the robust controller presented in Oliveira, Bernussou
and Geromel (1999) computed with the YALMIP Toolbox (LOFBERG), 2004). The first
example focuses on the computational efficiency and behavior of closed-loop eigenvalues,
while the second example is an application of the RLQR on a commercial quadrotor model.

Example 3.1. Consider the discrete-time system, based on Oliveira, Bernussou and Geromel
(1999), with state-space matrices and initial conditions given by

0.8 —-025 0 1 0.5 1.0
1.0 0 0 0 0 3.0

F = ’ G - ) To = )
0 0 0.2 0.03 0.5 —0.5

0 0 1.0 O 0 —1.0
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subject to polytopic uncertainties with parameterized vertices (pF'"), G™),i = 1,2, p € R,
where

0 00 —0.5
P | 0 005 g (1) RO _p) o) = 005 e e O B
0 0 00 0

We search for the maximum values {pr.ar, pret} for which the closed-loop system is
stable with the robust recursive regulator for any p < prior, and with the controller from
Oliveira, Bernussou and Geromel (1999, Theorem 3) for any p < pre. To this end, we set up
a horizon N = 100, u = 10*?, 8 = 1.2 and weighting matrices Py = I, Q. = I, and R;, = 1
for the quadratic cost function (43). The feedback gain and the Riccati solution obtained with
Lemma|3.7| converged to

K = [—0.6901 0.4589 —0.2739 —0.9830] ,

3.5861 —2.1681 —0.8085  4.2750
—2.1681  1.3437  0.1812 —2.7604
—0.8085  0.1812  3.16561  0.6119

4.2750 —2.7604 0.6119  6.1168

P=10%

The robust controller adopted for comparison purposes yielded feedback gain
K,ep = (0.0233 0.0668 —0.8731 —0.2706] .

We perform an iterative search procedure and attain pr or = 1.9130 and p.es = 1.0511.
Such a result indicates that the robust recursive regulator is able to handle a wider range
of uncertainties. We show the eigenvalues of the closed-loop system, denoted by v, in
Figs. [1 and |3 Observe that, when p = pr, both approaches are capable of stabilizing
the closed-loop system, while only the robust recursive regulator ensures stability when
P = PRLQR-

Now, let us assume different values of ;. and, for each of them, we search for the
maximum ppr;or for which the closed-loop system is stable with the robust recursive regulator
for any p < prigr- We summarize the results in Table [1. Observe that pr.or converges
to 1.9130 as u increases. It is noteworthy, moreover, that pr.ar > prer @nd the closed-loop
system remains stable even for small values of (.

Finally, we examine the computational effort demanded to calculate the feedback gains.
The average elapsed time to compute the gain with Lemma was 1.7 ms, whilst the
controller from|Oliveira, Bernussou and Geromel (1999, Theorem 3) required 149.7 ms on
average. As such, the diminished computational effort indicates that the proposed robust
recursive approach is also adequate for online applications.
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Figure 1 — Eigenvalues of the closed-loop system with p = pres: max{||v||r.qr} = 0.937381,

Imaginary

max{||v||res} = 0.999707.
1 T - .

Real

(a) Robust regulator.

Real
(b) Robust controller for comparison.

Source: author.

Figure 2 — Eigenvalues of the closed-loop system with p = prior: max{||V|| .o} =
0.999980, max{||v||rf} = 1.296115.

Imaginary

1

0.5

—0.5F

0 0.5 1
Real

—0.5

(a) Robust recursive regulator.

15

1

0.5

0 &

~05

1

s 0 05 1 15
Real

(b) Robust controller for comparison.

Source: author

Example 3.2. The following 4-DOF system is based on|Rosales et al. (2017) and describes
a trajectory tracking model of a commercial quadrotor, more specifically, a Parrot AR 2.0:

—_—
—
—

x e
ta [0.0114

0.0114
T + Uk,
1, 0
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Table 1 — Effects of i over pr.gr @and maximum norms of closed-loop eigenvalues with the
robust recursive regulator.

I PRLQR 4]

1 1.20730 0.999966
10 1.75800 0.999970
10° 1.91290 0.999973

1010 1.91300 0.999980
1012 1.91300 0.999980

Source: author.

with
0.9985 0.0003 0 0
_|0.0003 0.9970 0 0
N 0 09755 0 |’
0 0 0  0.9893

T

T
where ), = [6‘7,; egk} € R® represents the error state vector, with e, = |e, e,y ey, €y .

and e, = [ex ey ez ed,}T, in which {e, ex}, {ew,€,}, and {e,, e} are the velocity and
position errors along the global z, y and = axes, in this order, and {e,,, e} are the angular
velocity and orientation errors, respectively. The commands are computed via Vgyone, =
Uref, — Uk, Where u,.y, is the reference control input and vy, is calculated with the selected
control law. To design the reference signal u,.r,, we used the Parrot’s official simulator
Sphinx to perform flight with the desired trajectory.

For this example, the main task is to control the quadrotor so as to track an 8-shaped
reference trajectory beginning at the origin of the global coordinate frame. Polytopic un-
certainties 6 F), and 6G), represent variations on elements of F), and G, that could result
from unmodeled dynamics, nonlinearities and disturbances. In this manner, we consider two
polytope vertices to compose ¢ F, and 6G,, such that

; 1072E=. 0 ) 10_3Ti
FO = = . GO = . i=1,2,
0 0 0
where
1.37 599 0 0 0.1 0 0 0
464 682 0 0 1.1 03 0 0
EElz_ s le_ )
0 0 129 0 0 0 01 0

0 0 0 3.12 0O 0 0 20
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0.80 2.66 0 0 65 74 0 O
3.10 6.21 0 0 0.8 43 0 0
EEQ = , TQ =
0 0 104 0 0 0 01 O
0 0 0 5.13 0 0 0 1.9

For the quadratic cost function (43), we select u = 10'°, 3 = 1.00001, and weights
Py = 10213, Qp = diag{0.5 - 10'°I,, 10'°1,}, and Ry, = I,. Therefore, the feedback gain K
attained with Theorem(3.1l is

—60.7374  22.3468 0 0 —82.7444  31.6448 0 0
K- 23.1583 —48.7937 0 0 33.4338 —64.1943 0 0
0 0 —99.4591 0 0 0 —140.2319 0 7
0 0 0 —74.5335 0 0 0 —102.0202

while Oliveira, Bernussou and Geromel (1999, Theorem 3) returned, for comparison,

—72.3857 25.2426 0 0 —41.1403 13.8486 0 0
Koy = 2.6812 —78.7751 0 0 1.7914 —43.3649 0 0
0 0 —96.8010 0 0 0 —56.3373 0

0 0 0 —97.2112 0 0 0 —54.8025

We carried out 1000 Monte Carlo experiments, each with time horizon equal to N = 3000,
meaning flights with duration of 30 seconds. For both controllers, the initial condition is
2o = [0.40 0.33 —0.64 0.01 0 0 0.01 0} T. The resulting motion of the quadrotor and the
reference trajectory in the global coordinate frame are presented in Fig.[3, while the norms
of errors and input vectors are shown in Figs.|4a and|4b, respectively. Additionally, the norms
and standard deviations of velocity and position tracking errors, ||e,||z,, ov. |lepllz,» @and op,
respectively, and of the control input, ||u|| ., and o.,, in this order, are summarized in Table[2
The results show that the robust recursive regulator was able to successfully minimize the
errors while consuming less energy to perform trajectory tracking, as can be seen in Fig.
and Table[2.

Let us now assume parameterized vertices (pF'"), G and search for the maxima
{PRLar, pret} Such that the closed-loop system is stable with the RLQR for p < prLor and
with the robust controller adopted for comparison for ppes. We find pror = 11.5002 and
pret = 11.4967, and in this case that both approaches provide similar levels of robustness.
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Figure 3 — Resulting trajectory of the quadrotor in the global coordinate frame.

0.2
0.1
g
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[
-0.1
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Source: author.

Figure 4 — Norms of tracking errors and control inputs obtained with the robust recursive
regulator and the robust controller adopted for comparison.

0.8} b | —‘ iv (‘r‘n ‘cror‘n ‘ ..
me= Oliv., Bern., Gerom., 1999, Th.3 80 : . glm;;]fg_l" ¢ o 1999, Th3 )
----- Lemma 2.1 %
0.6 } 1 60 [+
i 04+t i 40
0.2 E 1 20
-‘:\'.\ ™
0 LTI T 0 L L L - - -
0 1 2 3 4 5 6 7 0 5.107201 015 0.2 025 03 035 04
t (s) t(s)
(a) Norms of tracking errors. (b) Norms of control inputs.

Source: author.

Table 2 — Averages and standard deviations of trajectory tracking errors and control inputs
for Example

Controller levllz, oy lepllc. Tp [[ulle, Oy

Lemma|3.1 1.8996 || 0.0347 || 0.3366 || 0.0060 || 152.8521 || 2.7864
Oliv., Bern., Gerom.,

1999, Th. 3 1.8503 || 0.0338 || 0.4185 || 0.0073 || 155.3303 || 2.8313

Source: author.
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4 ROBUST REGULATOR FOR MARKOV JUMP SYSTEMS SUBJECT TO POLYTOPIC
UNCERTAINTIES

Discrete-time Markov jump linear systems (DMJLS, for short) subject to polytopic uncer-
tainties have attracted growing attention from researchers in recent decades. In fact, there
is a vast amount of available literature enveloping robust control methods for this class of
systems, and remarkable examples include, but are not limited to, |Park and Kwon| (2002),
Ma, Zhang and Liu| (2008), |Zou et al.|(2015), |Lu, Li and Xi| (2013), Gabriel, Goncalves and
Geromel (2018), Lopes et al.| (2019), and Zhang, Song and Cai (2022). In such works, the
synthesis of controllers relies on LMI-based problems, which grow in complexity according
to the number of possible Markov modes and of vertices in each of these modes. Moreover,
most of the available solutions require dedicated software packages, which might increase
the computational burden and prohibit application in low-cost hardware. In this scenario, the
literature lacks robust recursive approaches that can circumvent the drawbacks.

In the present chapter, we aim to find a recursive solution for the linear quadratic regula-
tion problem regarding DMJLS with polytopic uncertainties affecting the system matrices to
fill this gap. We formulate a min-max optimization problem subject to equality constraints
whose solution yields the recursive regulator for this class of systems. The constraints are
composed of subsystems defined on each vertex of the uncertainties. Then, by using the
penalty functions method, we attain an unconstrained problem after incorporating this set
into the cost function. The conditions for convergence and stability are well established
based on coupled algebraic equations derived from the proposed solution. As such, once
we know the parameters matrices, it is enough to check the stabilizability and detectability
of the system. Furthermore, we provide numerical examples to verify the proposed robust
recursive solution’s effectiveness in regulation and computational effort and compare the
results with the performance obtained with a robust controller borrowed from the specialized
literature (GONCALVES; FIORAVANTI; GEROMEL, 2012). We also show the results of the
recursive regulator applied to an autonomous heavy-duty truck whose mathematical model
was borrowed from (KIENCKE, 2005) and (RAJAMANI, 2012). The model matrices, polytope
vertices, and transition probability matrix were identified based on experimental data (see
details in Appendix B).

It is worth mentioning that in this chapter, we consider the transition probability matrix
wholly known. The case where polytopic uncertainties affect the transition probabilities will
be dealt with in Chapter |5

4.1 Problem Formulation
A DMJLS subject to uncertainties is described by

Tpy1 = (Fop o + 0Fp 1) i + (Gop i + 0Glo, i) Uk, (78)
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where k =0, ..., N — 1, z;, € R" is the state vector, u;, € R™ is the control input, F}, , € R"*"
and Gy, . € R"*™ are nominal system and input matrices, respectively, § = {6y, ...,On_1} is
a Markov chain with modes 6, € © = {1, ..., s}. The known transition probability matrix for
the DMJLS is defined by P = [p;;] € R*** with

Prob(@kﬂ = j|9k = Z) = Dij, Prob(90 = Z) = Di,0,

sz’j =1, 0<p; <1 (79)
—1

Uncertainty matrices {0 Fy, r, 0Gy, 1} are modeled as
14
[5F9k,k (Sng,k] == Zal’k [Fe(,i),k Gélk),k] 5 (80)
=1

with known matrices (vertices) Fe(i)k € R™" and Gélk)k € R™™, and the coefficients «;, =

T
[osz e av,k] belong to the unit simplex

v
AV: {OékERV : O-/l,kZOa Zal,kzl}. (81)
=1

Suppose all states x;, and modes 6, are observed at every instant £ and the system
evolves from {z, 6y }. Then, the objective is to determine K; = (Kiy,...,Ksx) € H™"
such that uy = Ky, rxy, 0 € O, regulates the DMJLS subject to uncertainties (80).
With this in mind, let us define the following optimization problem:

N—-1
. 2 2
s, E{ Il 3 (s, s IS ) 2
subject to

I, Fy o+ VOEY, Gope + VIGS),
Thy1 = : Ty + : U, (83)

I F vsrY) G veag\V)

n O,k + 0,k O,k + 0,k

where S; = {6,, x;}. Based on Bellman’s Principle of Optimality, we can separate into
N one-step problems of the form

min max j($k+l7 Uk, 6F0k,k? 5G9k,k>7 (84)
U, 41 6F6kvk’6G9k’k
subject to (83),

fork=N —1,...,0, and quadratic cost function

T T T
Ti(Trg1, ug, 0L, 1, 0Go, k) = T 1 Vo, kr1Trr1 + Ty Qo xTr + Uy Ro, g, (85)
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with )
‘I’i,kﬂ = E{Pi,k+1|8k} = Zpijpj,k+17
j=1
here P, 0 0,and R 0, 6F", = aieFyY,, and 6GY = a, .G

where Fy, 11> 0, Qo > 0,and Ry, > 0, 0F, " = cupFy 'y, and 6Gy = ay Gy, .

By using the penalty functions method, we include the set of constraints into the
cost function and comprise all vertices of uncertainties at once for the actual mode at each
instant k. To this end, we rewrite the constraints under the form of

Tr+1 Fo, x VaFe(kl,)k Gk V(SGE)?,I«
S - C| : T) — o+ E u = 0, (86)
Tkl Fg}mk V5F0(;:/,l)€ Gek,k V(SGé‘;:}’c
and define the functions

X
9(Tps1, ug, Of) = : : + | : [Z“]— Do+ : T
k
L —Gox| [0 —ViGY), Fo| |VOE))

and C(xp11, Uk, Ok) = g(Tps1, ug, Op) T g (zp 41, u, Ox), where > 0 is the penalty parameter.
Then we add C (x4 1, ug, 0x) to and, with some algebraic manipulation, we redefine
the optimization problem as

min max  Ji(Thg1, Wi, 0F; 1, 0G5 1), 88
Uy Thi1 OF; 1, 0Gik k( k+1, Uk k ,k) (88)
foreachi =6, € ©, where k = N — 1,...,0, with one-step cost function given by
T v 0
Je(Trt1, uk, 0Fp, 1, 0Go, k) = Thtl ik+1 Th+1
Uk 0 Ri,k U,
T
L, -G 0 —V(;G(.l) F, V5F.(1) . 0
* : S L TR Ry Lk Ty, i {‘}
- : = u ; 0 pluy
I, —Gix| [0 ~VvG) Fix| verd)

(89)

The following sections present the recursive solution for the established optimization
problem and provide conditions for convergence and stability of the closed-loop system
subject to polytopic uncertainties.

4.2 RLQR for DMJLS Subject to Polytopic Uncertainties

As the optimization problem (88)—(89) is a particular case of the robust regularized
least-squares problem, its structure identifies with the framework outlined in Section as
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follows:
J Jk(xk-i—l)uk) 5E,k7 5Gi,k)> T < et 3 Q — ot ; Q * ’
(7 0 Rig 0 plny
0 0 0 0
0 I, —G, 0 VoG
M [[ Ay« “l6A TR AW [o —VGE?J . (90)
nVv : ’
I, —Giy 0 —VG!,
-1, 0
N Fi,k Vo i(? ) 0)
I'—ap® I, by < . Tk, 0b + o Tk, b (—Vﬂkfﬂk, lzl,,‘/,
Fip VO,

where &, = diag{«a1,...,ay,}. From (90), observe that W > 0. As such, the pseudo-
inverse in becomes an actual inverse operation, i.e., W(\) = (W' — A'MM”) ™.
Bearing in mind that A ~ Sy for 3 > 1, as discussed in Section , we have the following

relation:

Qir O
W(A) « [ 0 @1] : (91)

where ® = (1 — 871y .
Let us now establish the main result of this chapter through the following lemma:

Lemma 4.1. The recursive solution for the optimization problem (88)—@89), for n > 0,
1=0L,eO©andk =N —1,...,0, is provided by:

Tpp I, 0 0 L
n =0 I, 0| |Kixl| s (92)
Ji(Trg1, Uk, 1) 0 0 zf| [Pg
with
00 0] e, 0 0 0 0 L, 0 ] [o0]
00 0 0 Ry, 0 0 0 0 In 0
Liy 00 —I, 0 0 @, O 0 0 0 ~1,
K 00 Fy o 0 0 @ 0 I —Gix Ey |, (93)
Py 00 Eg, o 0 0 0 % 0-FEg, Er,,
I, 0 0 L, 0 0 I 0 0 0 0
0L, o] [ 0 I, 0 -GL-EL 0 o0 | [0 |
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where Pi,k > 0, Qi,k > 0, Ri,k >0, .= u‘l(l — 5_1)[71‘/, > o= (ﬁﬂ)_lfnv, Wlthﬂ > 1,

Fa G
ﬁ’i,k = c Rann’ éi,k = c RTLVXm’
Fik Gix
1 1
F@',k) Gz(,k) I,
Ep, =V | i | eRY*" Eg =V | : | eRY*™ [:=|:|eR"™"
v |4

Proof. After performing the identifications showed in and (91), by applying Lemma[2.4]
produces the recursive solution for (88)—(89) as follows:

Tt 00 0 0 0 I, 0
iy =00 0 0 0 0 I,|x
Je(Zps1, i, 1) 0 0 —afl, ofFY% «lEL, 0 0
(Wips)™ 00 0 o I, 0o 1 [ o ]
0 R, 0 0 0 0 Iy 0
0 0 Qp O 0o 0 0 — Ly,
0 0 0 d 0 I -Gy Fipap |, (94)
0 0 0 0 S 0 —Eg, Er, v
I, o o I o 0 0
0 L, 0 =GI, —EL 0 0 | | |
Th1 I, 0 0o]Jfoo o o o0 I, O
n =10 I, 0[]0 0 0O 0 0 0 I,|x
Je(Zps1, g, 1) 0 0 af] [0 0 —I, Fi Ef, 0 0
(Wips)™t 00 0 o I, 0 ] [o]
0 R, 0 0 0 0 Iy 0
0 0 Q) 0 o 0 0 —1I,
0 o 0 @ 0 I —Gix E | v, (95)
0 0o 0 0 S 0 -Eg, Ep,,
I, o o IT o 0 0 0
0 I, 0 -GI, —EL 0 0 | [0

Here we adopt the approximation A ~ Bu, 8 > 1, so that & := (Bu)~ 'L,y and & =
pw (1 — B~ 1,y. Then, for each mode i € O, the closed-loop matrix L; , the feedback gain
K, and the weight matrix P, ; are computed from by defining

Zi’k_;,_l In 0 0 Li,k
i (Tg1, Uy 7) 0 0 a| |Pg
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]

In the sequence, we provide a reduced formulation of the solution presented by Lemma

for problem (88)—(89).

Theorem 4.1. For a fixed . > 0, the solution for problem (88)—([89), which is given by

(93), is equivalent to:

Lix = Xip1Fix — Xig1Gi ( + g@ Wi 1Ga k) ggkﬁi,k+1z,k7 (96)

A . . -1 .
Kin = ~R\ G, (S+ Bo RMES ) Er,
- Rz kGl k ( + \Ijz k+1gz kgl k;) _z k+1‘f'i,k7 (97)

z k — Qz k + kqu k+1‘F‘z k — f kqu k+1gz k ( + g@ ]f\pz k+1gz k) g_gkai,kJrlf.i,ka (98)
where
_ -1,
Fik = Fia = GurRLEE (S + Boy VB, ) By
-1
sz_Q1k+EFk(E+EG kR EG ) EFi,k’
_ -1,
Rix = R} {I —BS, (4 Be, REL, ) EGi_ykRi,,i],
Ui =V (1A= YL+ VL), B>,
Xiky1 = ‘I’;Hl‘lfi,kﬂ, g_zk = szl/Q

Proof. Note that matrices K, ; and L;  in compose the solution for the following linear
system:

Uipy 000 0 0 I, 0 13
0 Ry 0 0 0 0 In &
0 0 @ O 0 0 0 & —I,
0 o 0 @ 0 I G| |=|=]|F], (99)
0 0 0 0 S0 —EBa,l | & Ep,
L, o0 o I 0o 0 0 Lix 0
| 0 I, 0 =G -EL. 0 0 | |[Kil [0

with=, =1y ® 54, 64 € R™" and

=y 1=y =1y, (100)
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where p = (1 — 371)1I,,. By developing we have the set of equations

Wb+ Lip =0, (101)

Ri_,kléé + K, =0, (102)

Qinés = —1y, (103)

O=y 4 Ly — Gi,sz‘,k = Fy, (104)
65 — EAGi,sz',k = EA'Fi,k; (105)

L& +172, =0, (106)

| T2 — G4 Ea — B, & =0, (107)

and substitute into to produce

Pu=0 0 -1, FL EL, 0 0| =],

Py =&+ VEL &+ EF & (108)

Assume that holds, which implies a unique solution for the set of equations from

(101) to (108). Thence, from (101) and (103) we have

&1 = —Vikr1Lik, (109)
§3=—Qip- (110)
Next, expand (104) to yield
©&u + Ly — Gy K ), = Fi . (111)
From (106),
&=V, (112)

and by combining it with (109) results in
Lig =VV & (113)

Now, (102) implies
§o = —RipKip, (114)
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and place it into (107) to obtain
Kix = =R VG & — R\ B, & (115)

By substituting (115) into (105) produces:

Ea RiVGh&+ (S + o RAES ) &= E (116)
Now, substitute (113) and (115) into (111):
(0 +VUh + GiR VG &a+ GinRi L EE, & = (117)

Therefore, let us combine (116) and (117) to obtain the following linear system:

EGi,kRi’,jVGZ:k Y+ EG kR EG ARk Ep,,
Define
p+ VUL + G R VGE G kR;,jET A B (119)
EGi’ R VGE, Y + Fg, iy EG C D|
Then,
F;
Sl g | fe (120)
&s Er,,

where U~ is given by the Banachiewicz formula (see LemmalA.5) as

U= (121)

/D)~ —(U/D)~*BD™
_D-l¢(U/D)"t D'+ DIC(U/D)BD!

in which U/D = A — BD~'C is the Schur Complement of D in U. Thus,
—1
U/D =+ VU, + GuuR \VGE, — GiuR EL | (2 + B, R\ EL ) Eq, R;IVGE,
U/D=¢+ VU, +VGirR;) <Im - EG,, (2 + Eg, R EL ) Eg,, R;, k) Gl

Define .
Ri, = R} [lm —Ef (2 + Eg, R  EG, ) EGZ.,,CR;,}} : (122)

sothat U/D = ¢ + V¥, | + VG, R GT,. Now define
Qi1 =@ + V‘I’z b1
such that i/ /D = Q; p1 + VGixRi kG, and

(Z/{/D) Qz k{-i-l Qz li—&-lVGZ k(R + GT Qz Ii—i-lVGi’k) GT QZ /i—l—l'
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Also,

D4 DC(U/D) BD = (S Ea RUEE,,)
A A 71 - R
+ (B Bo, REES, )V Eo, ROGH (k- %LV Gul R

-1

+GLO L VG) GRQ) GuR L (2 n EGL,CR;;E&J ,

A A -1 A
Dl+Dc(U/D)IBD ! = (E + B, Ry, ;Egk) [Inv +VEg, R .G} (Q;Ig1+1

_ ~ ~ ~ -1
~O VG(RT + GLO VG) T IO, ) G R EE, (S + Bo BLES, ) .

From (120)—(121),
&= (U/D) ' Fyp — (U/D)'BD'Ep,,,
§a = (Qi_,liJrl - Qi_,lierGi,k(Ri_l + GZin_,leVGLk)_IGZin_,klﬂ)
X (Fk — G R \EL (z + EGi,kR;gEg@ -1 Epk) ,

and define

Fua=Fop— GuBi BS54+ B RUEE,) Br,.
such that
& = (Qi_,lirl - Qi_,1€1+1VGi7k(Ri_1 + GZin_,li+1VGi7k>_1GZin_,lcl+1) ]‘_—i,ka
&= (Qijy1 + VGi,kRi,ng:k)il Fik- (123)
From (120)—-(121),
& =D 'C(U/D)'F,y. + (D' + D 'C(U/D)'BD ) B, ,,
& =—D'c(U/D) ! (B — BD B, ) + D' B,
&=—(T+ EAG@,CR;;E(EM)l VEq, , RMG,
X (ks = U VGR(BT + GLOL VG CRO L) (Fu
G EL, (S Be, B ES,) Br)+ (S+Be REL,) En,.

1

~ ~ -1 /4 A~ _ 1 =
&= (B+ BBt BL, ) (Bry = VEo, RifGh Qg + VGirRinGL) ™ Fir)

~ R -1, .
& = (2 + Eq, R, éEgk) (EFk - VEGi,kR;leZ:k@) . (124)
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Now substitute (110), (123) and (124) into (108):

P =&+ VFL&+ B (S+ B, R EG, ) (Br. = VEa, R 1GLE).

Py = Qi+ fok@ + E}Q (E + EG iy EG ) o Epk
Define
Qo = Quet BE, (S Ba B E5,) En,
gz‘,k = Gi,kRi,k1/27
then,
P = sz + VJEZT;.C (Qi,kJrl + Vg_i,kfm _;‘Fk)_l «7:_i,k,
Pk = Qix+VF (In + Vi 11GiklnG, k) Qo1 Fiks
P =Qir+F k‘I’z k1 Fik — }—Z W isr1Gig (Im + QZ WVirt1Gir) Q_Z-T,k@,kﬂﬁma

-1

which corresponds to (98), where W, .1 = VO =V (0 ' (1= L+ VI, ,)
Now, place (123) into (113) to obtain
1

Lip,=VV. k1+1 (Qi,kJrl + VGi,kRz‘,kGiTk)_ Fiks
Lijy =V (In+ VGl InGly ) 1 Fis
Lig = VU (I = VO Gon (I + RV LG T G 9L, i
Liy = Xip1Fir — Xig1Gix ( + Ql WG k) ' C;Zkai,kﬂﬁi,k,

which corresponds to (96), with X; .1 = ¥, W; 4. Finally, substitute (123) and ({24)
into (115), such that

Ky = R IVGH& — RGBS (S+ Bo R EE, ) (Bry— VEe, BlGhL&)
. -1 .
Kix = =R ES, (T4 Ba REL,)  Er,
~VR;} (Im — B, (S + Ea, BB, ) Ea,, k) T,

A -1 . _
K. = —R\EL, (2 + B, RAEL ) B, — VR G,

-1 .
Kip = =R B, (S+ Bo RMES,)  Br,
— RiGly (In + ¥, 411GinG, k) U, k1 Fiks

which corresponds to (97).
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Remark 4.1. For any positive penalty 1., when 3 — 1T we have
Lik= fzk — sz (Im + g_gklpi,k-i—lg_i,k)il g_gklpi,k-i-lf?i,ka
and also
P = Qik + FrViri1Fie — FirVini1Gip (In + gfiT,k\I/z’,kHin,k)il GLVini1 Fig,

which is a standard coupled Riccati equation (COSTA; FRAGOSO; MARQUES, 2005).

4.3 Convergence and Stability

At this point, we can provide the conditions for convergence and stability of the closed-
loop system with the recursive regulator for DMJLS subject to polytopic uncertainties. We
consider the DMJLS with time-invariant parameters, time-varying polytope coefficients
ay, and 3 — 17. Moreover, we define F = (Fy,..., F,) € H"", G = (G1,...,G,) € H»™,
Q=(Q1,...,Q,) € H"", and assume Q; > 0, R; > 0, and constant p,;, for i, j € ©.

Theorem 4.2. Consider with initial condition Py > 0, fixed . > 0, and a priori known F,
G and Q). Assume the matrix pair { F, G} is stabilizable and {Q'/?, F} is detectable. Then,
P, € H} generated by converges to a unique P = (P, ..., P;) € H" for which the
closed-loop matrix

Li=F —G; (Im + Q_ZT\I’zg_z)_l g_lT\Ijrﬁ‘z
of the DMJLS is mean square stable, with W; = 3", pi; P;.

Proof. The reduced form of P, ;, achieved in Theorem has the structure of the coupled
algebraic Riccati equations when 3 — 17, as we mentioned in Remark[4.1] As such,
we make the following identifications:

Ai+—Fi, Bi+Gi, Ri< I, Qi+ Qi, &1+ Vipn.

We also have that (I,, + GI'¥,,,,G;) is positive definite for any x> 0. Then, by the
fundamental arguments presented in |Costa, Fragoso and Marques| (2005) and assuming
detectability and stabilizability of the pairs {Q'/2, F} and {F, G}, respectively, it follows that
P, € HY converges to P € H.. In this case, V; .1 — V;, L;, — L;, K; — K;, and the
solution P ensures stability of the closed-loop matrix L; of when u;, = K;xy. O

4.4 lllustrative Examples

We provide two examples to illustrate the performance of the proposed solution for
the robust regulation problem of DMJLS subject to polytopic uncertainties. For the sake of
comparison, we also apply a robust Markovian H, controller (GONCALVES; FIORAVANTI;
GEROMEL, 2012), which is based on an optimization problem with LMI constraints and
computed via the YALMIP Toolbox (LOFBERG, 2004).
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Example 4.1. Consider the following unstable two-mode DMJLS subject to polytopic uncer-
tainties with randomly generated vertices:

* Mode 1:
1.0 1.0 1.0 101
Fie=|-25 32 12|, Gu.=10 1 2|,
14 16 2.0 11
[0.3268 —0.0938 0 —0.3148 0 0
F)=1 o 0.7264  0.0758|, GV} = 0  0.2660 —0.3699] ,
0 0  —0.8579 0  0.3623 0
[0.3107 0 0 —0.1067 0 0
F& =1 0 —08650 00511|, GV} = 0  —0.0500 0
| 0 —07575 0 0 0.0090 0
« Mode 2:
1.0 1.0 1.0 01
Fop=|-27 04 21|, Gar=10 1 2|,
—34 25 48 11
[0.0367 0 0.2137] (0.2 0 0
F)=1 0 01028 —01753|, GY)=1]0 0 07893,
1.5460 0.2421 0 | [0 0 —0.1926
[0 0  0.2688] [—0.1681 0  —0.2984
Fy)=1-08273 00794 0 |, G¥) = 0 0.0159 —0.5264
1.0264 02747 0 | | 0.1500 —0.0500 0

Assume that the initial condition and the transition probability matrix are, respectively,

0.024
0.60 0.40
ro= (0244, P= .
0.25 0.75
0.556

We choose the following parameters for to set up the penalized cost function:

[10 0 0 1074 0 0
Qir=102 0|, Ryp=1|0 01 0],
[0 0 20 0 0 0.1
[16 0 0 10 0 0
Q2r=10 20 0|, Rop =] 0 0.1 0 [,
|0 0 20 0 0 0.1

Po=Pyoy=13 p= 10, p=1.1.
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With the above configuration, Lemmal4.1| provided the state feedback gains K; and the
solutions for the coupled Riccati equations as follows:

[—2.0607 0.0745 —0.7042] [ 7.0137 —2.5253 1.4391]
Ki=| 01209 —1.1493 —0.3461|, P =10 [-2.5253 9.5378 1.2458]| ,

| 1.0366 —0.9135 —0.4782 | 1.4391  1.2458 5.5096 ]

[—0.5555 —1.2694 —1.4926 [ 1.6759 0.1355 —0.0572]
Ky=| 39370 —1.1469 —3.3779|, P, =10 0.1355 0.1354 0.0965

| —0.4086  0.2399  0.4694 | —0.0572 0.0965 0.1787]

In addition, the robust Markovian H ., state feedback gains are

—2.4500 0.3001 —0.9001 —0.1500 —1.5505 —1.8495
Ky g, = |—0.4000 —0.6001 —0.9998] , Koy, = | 4.3999 —1.5013 —3.7985
1.4500 —1.3000 —0.1000 —0.8499 0.5510 0.8488

The simulation results were averaged over 5000 Monte Carlo experiments performed on
a 2.50 GHz i5-3210M CPU with 8 GB of RAM. We chose, for each experiment, a time horizon
of N = 100, and the coefficients o, changed randomly at every iteration. In Fig.[5, we present
the norms of the states vector obtained with the robust recursive regulator and averaged
over all experiments. Fig.|6 shows the maximum spectral radii r, of the open-loop system
and of the closed-loop system subject to polytopic uncertainties with the recursive regulator
for different values of penalty parameter 1. It is worth pointing out that the proposed solution
stabilizes the system even for small values of p, since all the spectral radii remain lower
than 1 in all experiments. As we can verify in Table[3, both the robust recursive regulator
for polytopic DMJLS (PMRR for short) and the robust Markovian H, controller presented
equivalent performances in terms of norms of states and input vectors, denoted by ||z || .,
and ||i|c, respectively. Nevertheless, the computational time T, required to compute the
feedback gains of the recursive regulator is, on average, two orders of magnitude lower when
compared with the robust H., controller borrowed from Goncgalves, Fioravanti and Geromel
(2012).

Table 3 — Simulation results for Example [4.1]

Controller 1% 2, o T, (ms) oz (ms) || ||a]lz, o
PMRR 1.3772 || 0.1375 3.8695 0.3694 || 3.1035 || 0.3101

Markovian H., || 1.5175 || 0.1513 || 548.6110 || 57.6667 || 3.9510 || 0.3952
Source: author.
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Figure 5 — Averaged norms of system states with the robust recursive regulator for DMJLS.

2

[kl
—_

Source: author.

Figure 6 — Open-loop and closed-loop spectral radii, r,,, of 5000 experiments with randomly
selected coefficients «; j.

1 1000 2000 3000 4000 5000 0‘81 1000 2000 3000 4000 5000
Experiment Experiment
(a) Open-loop. (b) Closed-loop, 11 = 1.
0.7 ‘ ‘ ‘ ‘ 0.7

0.4 : : : ‘ 0.4 : : : :
1 1000 2000 3000 4000 5000 1 1000 2000 3000 4000 5000
Experiment Experiment
(c) Closed-loop, i = 107. (d) Closed-loop, 1 = 10'°.

Source: author.
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Example 4.2. The following DMJLS represents the drivetrain model of an autonomous
heavy-duty G 360 CB6x4HSZ Scania truck. The model matrices, polytope vertices, and
transition probability matrix were identified based on experimental data acquired while driving
the truck around the University of Sdo Paulo campus at Sdo Carlos. For this example, the
model captures the drivetrain behavior regarding only the throttle inputs and has 7 Markov
modes related to the transmission rates from 4th to 10th gears, hence 0, € {1,....7}.
Each mode has three polytopic vertices to compose the uncertainties {J F; i, 0G; x }, which
represent different road slopes (uphill, downhill and flat). The reader can find further details
about the identification process in Appendix|[B.

The state errors are represented by z;, = q, — qi', where g, = [ql G2 qg] ! is composed
of driveshatft torsion, engine speed, and wheel speed, respectively, and control input u; =
. — 71, in which 7, is the throttle pedal position. Also, ¢/ and 7/¢' are the reference values
for states and throttle pedal positions. The longitudinal control task consists of tracking the

T
experimentally collected reference trajectories " = [q{ef gt qgef} via torques delivered

T
by the engine of the autonomous truck, with initial condition x, = [0.01 0.05 0.07} . Thus,

we set up all modes of the robust recursive regulator for polytopic DMJLS (PMRR for short)
with the parameters

Qir=10"I;, Ripy=10"° Pyo=1I3, p=10% pJ=101,

so Lemma4.1| provided the following state feedback gains and solutions for the coupled
algebraic Riccati equations:

23111 0.6433 —3.4075
K, = [—0.6865 1.2587 —1.9331] , P =10°%| 0.6433 2.3121 —1.4776],
—3.4075 —1.4776  5.8408

[ 29142  1.2187 —3.6208]
Koy = [—0.5946 2.0856 —3.7260], P,=10%| 1.2187 24324 —2.0820|,
| —3.6208 —2.0820  5.3026]

[ 26205  0.9629 —3.4112]
ng[—l.1787 2.7242 —4.9167], P;=10%| 0.9629 1.5256 —1.2244],
| —3.4112 —1.2244  4.8664 ]

[ 0.1687  0.2244 —0.3969]
K4:[—1.8830 —1.6333 —1.6257], Py =10°| 0.2244 05736 —0.6772]|,
| —0.3969 —0.6772  1.1323]

1.8769  1.7349 —3.6534]
Ks = [—3.1022 2.2056 —7.8284], P;=10%| 1.7349 2.6935 —3.6689] ,
| —3.6534 —3.6689  7.9961 |
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[ 0.1784  0.2142 —0.3951]
K¢ = [—2.6115 2.3310 —7.6846], Ps=10°| 0.2142 0.7585 —0.7262| ,
| —0.3951 —0.7262  1.1118]

[ 0.1510  0.2679 —0.4306 ]
K, = [—2.4008 8.9769 —14.2961}, Pr=10°| 0.2679 1.4666 —1.3874
| —0.4306 —1.3874  1.8013]

We adopted the robust Markovian H . controller proposed by Goncgalves, Fioravanti and
Geromel (2012) for comparison purposes, which produced the state feedback gains

Kip. = |—5.9045 —8.3354 5.4019}, Kop. = [—0.5789 —11.4083 —5.9273],
Koy, = |-3.3750 —8.9377 —3.5108], Kin. = [—20.4683 —45.3066 30.4169],

Ksp. = |—8.5321 —21.7993 —3.3409}, Ko, = [—48.3065 —114.8764 53.3493],

[oe]

Krp. = |—88.6635 —214.5633 168.4129}.

Notably, the robust Markovian H . controller resulted in 42 LMI constraints to be satisfied to
compute the state feedback gains.

We carried out a total of 1000 Monte Carlo experiments, and during each experiment,
coefficients o, changed randomly a few times to emulate a more realistic scenario. Table |4
shows the averaged results regarding the norms of trajectory tracking errors and required
throttle pedal position. Fig.[7] and Fig. 8 display the system states and the throttle pedal
positions, respectively. Even though the LMI constraints were satisfied, the robust Markovian
H, strategy yielded gains that could not properly track the reference trajectories in this
specific application, as seen in Fig.[9. In contrast, the proposed recursive regulator for
DMJLS successfully tracked the reference trajectories with minor errors and feasible engine
torques even when the system is subject to polytopic uncertainties.

Table 4 — Simulation results for Example

Controller |1z 2, 0z 17l 2o o
PMRR 2.5992 0.0454 || 8.9117 | 0.1427
H 180.8734 || 4.1442 || 42.9357 || 1.0703

Source: author.



Figure 7 — Heavy duty vehicle states with the robust recursive regulator for DMJLS.
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Figure 8 — Throttle pedal position with the robust recursive regulator for DMJLS.
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Figure 9 — Norms of the state errors with the Markovian robust H ., controller.
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5 ROBUST REGULATOR FOR DMJLS WITH POLYTOPIC UNCERTAIN TRANSITION
PROBABILITIES

In this chapter, we focus on the class of DMJLS in which polytopic uncertainties affect not
only the state space matrices but also the transition probabilities. Besides the aspects men-
tioned in Chapter [4] uncertain transition probabilities bring forth a higher level of complexity.
A plethora of articles reported in the literature on robust control for DMJLS assume complete
knowledge of these quantities; however, the transition probabilities are often estimated
from experimental data and belong to an interval of uncertainties. Robust approaches are
thus necessary as estimation errors might lead the systems to unstable regions or at least
degrade performance (XIONG et al., [2005). There are various ways to specifically model
uncertainties affecting transition probabilities. For instance, in [Tzortzis, Charalambous and
Hadjicostis| (2021), the transition probabilities are limited by a ball.|Zacchia Lun, D’Innocenzo
and Di Benedetto (2019), Park and Kwon| (2002), |Costa, Fragoso and Todorov, (2015), and
Lun, Abate and D’Innocenzo|(2019), to name a few, modeled the transition probabilities as
quantities lying within a polytope. Li et al.| (2020), and |Sun, Zhang and Wu| (2020) consider
that some elements in the transition probabilities matrix are unknown. This approach was
also found in the earlier notable works by Zhang and Boukas (2009), and |Zhang and Lam
(2010). It is worth mentioning that the case of unknown elements in the transition probabilities
matrix can be equivalently handled by a convex combination of vertices (GONCALVES;
FIORAVANTI; GEROMEL, 2011).

That said, our main contribution in this chapter is a recursive solution for the regulation
problem of DMJLS subject to polytopic uncertainties on state space matrices and transition
probabilities. Our first step is to verify how the uncertain probabilities affect the expectations
appearing in the cost function. We express these portions in a more suitable manner for
our purposes. We formulate an optimization problem with a penalized cost function whose
solution recursively returns the robust state-feedback gains, hence the name robust recur-
sive regulator. Provided that certain positivity, stabilizability, and detectability conditions are
satisfied, the associated closed-loop system is stable despite the presence of uncertain-
ties. Finally, we validate our results in numerical and application examples, assessing the
performance regarding regulation and computational burden.

5.1 Problem Formulation
Consider the following realization of a DMJLS:
Tpy1 = (Fok + 0Fy, )Tk + (Goy i + 6Glo, 1), (125)

where z;, € R" is the state vector, u;, € R™ is the input vector, Fy, , € R™*™ and Gy, , € R™*™
are system and input matrices, respectively, whereas ¢, € © = {1,...,s} is the actual
active Markov mode. 0 F},  and 6Gy, . are convex polytopic uncertainties that depend on



78
T
the time-varying coefficients oy, = [al,k ozvmk} € Ay, such that
[6F9k,k 5G9k,k] = Zal,k [Fe(,i)k ng),k] ’

Vn
AVn:{aeRV" Zalzl, ogalg1}.

=1

The transition probability matrix P, € R**® is assumed to be uncertain and is defined as

Pk = Po + (5Pk, PI’Ob(@Q) ( ) + (57‘(’1,
Pk = [pg)) + (5]?1']'74 = Prob(@kﬂ = j | Hk = 2),

pr +0pyx) =1, 0<p +opyr <1, 0<pl) <1, (126)

where the uncertainty 6P, is also polytopic and depends on the time-varying coefficients
T
&k = [élk e fvp,k] € Ay, such that

5Pk— 5ngk = [Zflkpz]]

Ay, = {5 € R

Z&zl, 0g§,g1}. (127)
=1

Remark 5.1. We assume 0 < p@ < 1. Also, from (126), we have ijl(pg?) +0pijr) = 1,

v
and 0 < pﬁ?) + dpij e < 1. Therefore, the portion dp;; . is allowed to assume negative values

fo ensure that Py, is a transition probability matrix.

Before investigating the robust regulation of the DMJLS (125), let us first define the s-
sequences Qk: = (Ql,/ﬁ ceey Qs,k‘) € H:L-a Rk = (Rl,k‘a s ,stk;) € HT! Pk = (Pl,ka s 7P8,k> €
H?, 7 € ©, where Q, and R, are known. Then, set the following optimization problem:

N-1

i E 2 2 2|7 } 128
ok (sFi,k,rpc?Z(k,apk{ {lzn Iz, x + ;(\thQm +llullr, ) | F2} ¢ (128)
subject to
I, Fyjo + VadFEL) Gik + VadGLY)
D g1 = : T + U, (129)
I, Fii+ VadF Gy + VnéG%")

where 5F(k = sz’ 5le = alkle, i €0, 9N € 0, and information ., = {6;,z;}. By
applying Bellman’s Principle of Optimality to (128), we yield

min max J. —E
$k+1l,uk 6Fi,k75&’k,5pk{ k {ka-i-l

subject to (129),
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and taking the expectations in J; we obtain:

i _ 2 2 2
xmllrilm 5Fi,k7r?&)§m5pk{Jk N ||xk+1| Wi k1 + ka‘ Qik + ”uk| Rz‘,k}’
subject to (129), (130)

where ¥, 1 = E{P; | #}. Observe that the uncertainties JP,. will reflect upon the expec-
tation W, .11, given by

S

Wik1 = Z(Pz(% + 0pijk) Pjer1,

j=1
U,y =09 150,
1,k+1 ik+1 i,k+1;

with

\DE,O]g-l—l - Zpl('?)Pj,k—&-l, and 6\Iji,k’+l = Z 5pij,k‘P'7k+1- (131)

j=1 j=1
Remark 5.2. The constraints (129) actually represent the DMJLS (125). Pre-multiplying
both sides of (T29) by [In 1| yields

Vn Vn
Vi1 = Vo (Fm +) al’kFéQ) zr + Vi (Gi,k +) 041,ng2> (s
=1

=1

which corresponds to (125).

In (131), observe that

0Wipsr =Y (Z & kp,j) kA1

J=1
S

OV, py1 = Z(fl,kpgjl') +...t fvp,kpgp))Pj,kH,

=1
5T = (61 D Vo p ) %) p
ik = (Cppy + .. F €vp7kp11 JPrgir + oo+ (Surbis’ + - EvkPis” ) Ps gt
OV 1 = fl,kpg)PLkH +...+ 5Vp,kpi1p)P1,k+1 + .
+& kpzs sk+1 oot fvp,kpz(';/p)Ps,k+17

OWi k1 =/ 51,kp1(-i)P1,k+1\/ Sl,kpﬁ) +... .+ fvp,kpgp)Pl,kH\/ ﬁvp,kpg/p) +...
+1/& kpzs skt 1/ fl,kpﬁi) +. 1 fvp,kpz('s s k+1\/ fvp,kpzs

Let us group the above equation in terms of vertices | = 1, ..., V}, such that

OV =/ €1,kpﬁ)P1,k+1 \/ fl,kpﬁ) +.. o+ /& kpzs s k+11/ 51,1495? + ...
+ Svp,kpgp)PLkH\/ ﬁvp,kpgp) +... 4y 5Vp,kpg/p)Ps,k+l\/ fvp,kpl(';/p)>

0U; i1 = 0P, 1 Prs10Di s (132)
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where ;.1 = Iy, ® diag(P, j41, ..., Psx11), and

5])@k = : . : : 5
0 s fig,klén IéV%)
T
with vertices p(-l) = (I)In (l)In ,fori=1,...,V,. Let us now define some auxiliary
1 Pir Z%s p

matrices which we will use throughout this chapter:

Fi,=1, @ Fi Gip=1y, @Gy, I, =1y, ®I,,

1) (1)
0F; 0G;,
51?Lk = : s 5(;@k = : ,
(Vn) (Vi)
5}1}k 5(;@k
ol/2
eh a B
Fy G )

That said, we are able to map the problem (130) into an unconstrained problem. We show
this procedure in the following lemma.

Lemma 5.1. For a given fixed penalty parameter ;. > 0, the constrained optimization problem
(130) is equivalent to the unconstrained problem

min  max  J} (41, ug, 0p), (133)
Tp41,Uk Ok

fork =N—1,...,0,whereé,; := {0F;x,0G;x, 0P}, i € © :={1,..., s}, and cost function
J!(.) given by

T @(m 0 0 0 0 0
X . X X
j]ii(xk:—i-l) Uk, 6]{:) = FH Lk+1 il + 0 0 + 5pz 0 h
Uk 0 }%ik U U
' I, -G, 0 —V,WoG;y
T
—I 0 Qir 0 0
— 0 |+ 0 Tp 0 P11 O { ° } (134)

IFLk Lﬁl517@k 0 0 /LInL%

Proof. Let us reformulate the constraints in (129) as f(z1,ux, 8;x) = 0, such that

f(@rtrsu, 0ik) = Lnwppr — (Fig + Voo Fip)og — (Gig + V0 G k) ug,

which is equivalent to

T, 6ix) = ([T, 0]+ [0 ~v,0G1,]) hj] —(Fip + VioF i)y
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Let us introduce a positive penalty parameter i € R, which we shall keep fixed throughout
the algorithm, and use it to design the penalty function ps(zy41, ux, 8, %) € R as

Pr(Thgr we, Oig) = || (@, wny 8ii) |12,

Note that i penalizes any violation of (129). Therefore, we formulate the unconstrained
problem by defining the penalized cost

T (s un, 0x) = lwnally, ., + eallsy,, + Nuallz,, + pr(r uk, dig),
Th+1 ' ‘11(0) 0 Ll+1
j;;u(szrl; ug, O0)) = it + Ig+15\1/i,k+1$k+l + IZQ@-,m
U 0 Ri,k U
T
Tht1
(e o+ o —vse]) 20| = e vamie) e
Uk,
Tht1 o 0 || Zk+1
T (Thy1, U, Op) = LR +‘xg;l(épZ?épk+15p@k)$k+14‘1%19@k$k
UL 0 R@k UL
T
T Tht1
+ <<|:In 0:| + |:O —VnCSGZ"k ) [ ] - (Fz‘,k + Vn(SFl,k)l“k /L[n<0),
m uk
Lo g (/([0 0 0 0 ]
x . x x
T (Trgr, Uk, Of) = e S i 0 0 [+|op; 0 e
U 0 Ri,k U U
\ In _Gi,k 0 _VnéGi,k_
T
-1, 0 Qir 0 0
— 0 |+ 0 T 0 £, 0 ° },
Fi,k Vn5F17k 0 0 ,u[nvn
which is identical to (134). O

At this point, it is convenient to restate the main goal of this chapter. Given the optimization
problem with & = N —1,...,0, we search for a recursive solution {Z, 1, i}, such that
uy, = K, yx;. Moreover, the state-feedback gains K, € Ky, where K\, = (K4, ..., Kq) €
H™" must stabilize the closed-loop DMJLS in the mean-square sense regardless of
uncertainties 4§, ;. We outline the procedure to yield the recursive solution in the next section.

5.2 RLAQR for Polytopic DMJLS with Uncertain Transition Probabilities

Based upon Lemmal5.1]and Lemma[2.4] let us make the following identifications:

0 0 -1,
, Ag—= |0 0 |, bo+| O |,
In _Gi,k Fi,k

Tp41

J TV, x(—[
ug,
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0 0 0 0 0
0A — 6pi,k 0 s O0b + 0 Tk, M <+ Ianp 0 5

0 —V9WéGiy VidF g, 0 Iy,

. [Ep. 0 . 0 g® 0

A |TP . b TE, Q< | bR ,
0 —Eg,, EF,, ik

Qix 0 .
’ I 0
W — O gk_;’_l 0 9 F — gk ® o _ ’ (135)
0 ag ® I,

0 0 ply,

where a; = diag(ay,), and &, = diag(&).
We also have W()\) = (W~ — A"'HHT)~! by the Sherman-Morrison-Woodbury inver-

sion formula (see Lemma[A.6]in Appendix[A), where \ = 3| HTW H || for some scalar 3 > 1,
as discussed in Section Therefore, we attain

9

Qi 00

b P 0
W\ =1]0 I, 0|, )\:ﬁH[ (’)‘““ ; ]

0 OHQ Hiny,

IL =2 — AN gy, Ih=@"'"=A"Ly,. (136)

We are now in a position to present the main result of this chapter, which is a recursive
solution for the problem (133).

Theorem 5.1. Consider known weights Q,. € H, R, € H}, Py € HY}, fixed . > 0, and
i € ©. The solution for the optimization problem (133) is given by

ﬁk =10 Im 0 Ki,k T, k2077N_ 1a (137)
Ti(Try1, Ug) 0 0 af] [P

where

L= ([n — H(Qi,k—i—l + Vnéi,kég:k)_l>%k (138)
— Gy ([m + ng{f]i,kJrlGi,k)_lézk{fji,k+1<§i,k7
K, = —Vm@i,kGZk (Qi,kﬂ + Vnéi,kéfk)_lc%,k

15T -1 1T 1 (139)
—- R Eg,, (A Loy, + EGMRMEGM) Er

ik

_ ~ o~ — ~ o~ _ _ ~ _ 1 = ~ —
P =Qip+ F Vi1 i — FiuVini1Gig (I + GLViki1Gik)  GLaVipr1:F ik,
(140)

fork=N—1,...,0, with
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=~ ~_ ~ -1 _ _
Ui = VaQitir, Quarr = 6Ly + V(W) Bpwe k= (u7t = A7),

By =1, — E5 (A 'Ly, , + Ep, (V)

_ -1 0 _
z,k—i—l) IEIZZ) Epi<\llz(',k)+1) 17

o — _ _ -1
Fik = Fir — Gix R EG, (A 'L, + Eg, R Eg,,) Er

ik?

R = Ryt (I — Egi’k()\‘llnvn + EGMR;klEgi’k)‘lEGi,kR;’,i),

= _ _ —1
Qik = Qix + Egk (A Ly, + EGkRZ,iEZ,C) Er,,,

P 0
0 M[nVn

Proof. Notice that the unconstrained problem is a special case of the regularized least-
squares with uncertain data. With the mappings given in (135), along with W (\) and X as
shown in (136), we design the solution based upon Lemma , with {L; , K, P, i}
initially obtained through the recursion

@i,kIGi,k@if, A=p , B>1

- T

=
1
|
—
1
1

00 0 (9. )0 0 0 0 0 0o I, 0 0
00 0 0 Ry 0 0 0 0 0 0 In 0
00 —I, 0 0 Qi 0 0 0 0o 0 0 —I,
Ly 00 0 0 0 0 I, 0 0 0o 0 0 0
Kix| =10 0 Fyy 0 0 0 0 IbL 0 0 I, -Gy Fip |,
Py, 00 0 0 0 0 0 0 AUy, 0 Ep 0 0
0 0 Ep,, 0 0 0 0 O 0 X'y, 0 —Eg,| |Er,
I, 0 0 I, 0o 0 0 I} Ep 0 0 0 0
0L, 0 | [ 0O I, 0 0-G/, 0 —Eg, 0 0 | 0
M
(141)

fork=N-—1,...,0,withi € ©, and {II;, II,, A} as in (136). Notice that LemmalA.3|ensures
M > 0, thus M~ exists for any 1. > 0. Now, from (741) we see that

T 0 T 0

T, 0 T, 0

Ts -1, Ts -1,

Ty 0 T, 0

Ts | =M | Fip | = M| Y5 | =|Fi:|, (142)
Ts 0 Ts 0

T, Er,, T, Er,,

L 0 iy 0

| k| | 0] | Kk | | 0]

T

where Y5 := [Ug . UST] , Vs € R™*". Therefore, the system of simultaneous equations
given by (142), namely
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(T, )Ty + Ly = 0,
R;lez + Kix =0,
QinYs=—1I,
H1T4 = 07
S o Ys + 1,1 — G 1 K = Fi,
AN Ly, Yo+ Ep,Liy = 0,
ANy, Ty — Eg,, K, = EF
Y1+ I, Ys+ Ep Tg =0,
Ty - G} Ts — Eg, T7r =0,

i,k

has {L,, K, } as elements of its unique solution. Also, combine (142) and (141) to yield

Py=[0 0 -1, 0 FI, 0 B}, 0 0

Pip=-Ts+ FZk;TS + E;MTW
Pr=-"T3+ Van;g% + ElTwi’kT%

(152)

Let us proceed to solve (143)—(152) to finally obtain matrices L, », K, and P, ;, i € ©. First,

from (143), (144), and (145), respectively, we have

T =0, Lik,

i,k+1
Yo =—Ri K,
Ts = —Qix

Then, from (147),

ILYs +I1,L;; — G K = Fip,
Iovs + Ly — Gip K ) = Fig,
Liy=Fir+ G K — kvs,

(153)
(154)
(155)

(156)
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where k = u~! — A7!, hence x € R, and substitute (153) and (156) into (150) to get

~ W) Lo+ I0T5 + EL 16 =0,
~ 0 Lige + Vavs + EL Yo =0,
‘I’Ek)ﬂ( ik T GipKi, — kus) + Vyus +E,§ Te =0,
U Fik = U Gi K+ (R0, + Vada)vs + g Y = 0. (157)

From (154) and (151) we get
—RiKix — G, Y5 — EG, Y7 =0,
—Ri 1 Kip = VoGiyvs — Eg, T7 =0,
K = =R, (VaGlvs + Eg, 7). (158)

Place (158) into (149) to obtain

Ailfnvnfr7 + EszR;k}<Vnsz:kU5 -+ Egszﬂ = EFz’,k7
VnEGi,kR;;GZM + (AN My, + EGiykR;,iEgi Y7 =Ep,. (159)

Substitute (158) into (157), such that

_‘IJEOk)HF \Ijz(,(/)’c)HGi,kKi,k + (“\Ijg?k)ﬂ + Vn[n)vf) + EIZZ-Tﬁ =0,
— ) Fi+ U G R (VaGhvs + BG, T7) + (w015, + Vi) us + BE Yo =0,

and multiply both of its sides to the left by (¥ k—i—l) ! to yield

—Fig+ Gig R (VaGlovs + BG Yo) + (K1, + Va(T5 ) ™ us + (019,) L EE T =0,

i,k+1
— Fop + (VaGir R GTy + KLy + Vo (W, )™ + (01, ) T EE T
+ VoGixR L EG, T7=0.

Define Q41 = kI, + V,, (\I/Z k+1) !, and the above equation becomes
(VaGin R Gl + Qg )vs + (U )T EE Yo+ Giu R EG, 7 = Fiy. (160)

Now, place (156) and (158) into (148) to produce

Ail[anpTG + Ep,(Fip+ Gip K — kvs) =0,
ANy, Yo+ Ep, Fyp + Ep, G K,y — Ep,rvs = 0,
Ay, Yo + Ep, Fij. — Ep, Gy Ry (VuGlyvs + Eg, T7) — Epkvs = 0,
—(VuEp,Gi kR (G} + kEp,)vs + A\ 'T6 — Ep,Gi xR, B V7 = —Ep Fij.  (161)
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Multiply both sides of (160) to the left by Ep, and add into (161) to yield

(VuEp,Gis R Gl + Bp Qg1 )vs + Bp (V1)) Ef Yo+ Ep Gy R Eg  Tr
— (VaBp,Gix R Gy + kEp,)us + X' — Ep,Gi 1R, Eg, T+
= FEp I — Ep, F},

(Ep, i1 — kEp,)vs + (A Ly, + Ep, (0! ,QH) LEL )Y = 0. (162)

Observe that

EPiQiJH-l - REpi = EPi(ﬁIn + Vo (\115(2+1)_1) - HEPN
Ep Qi1 — kEp, = Ep (1" = X)L, + Vo (U, )™ = (n™' = A ) Ep
Ep Qiju1 — iBp, = (u™ = X" Ep, + V,Ep (117, )7 — (' =\ Ep,,

Ep, Qi1 — kEp, = V, Ep, (U1, )7\,
Therefore, (162) becomes

Vo Ep, (U8, ) 0s + (A Ly, + Ep, (01, )T ES )Y = 0. (163)

i,k+1 i,k+1

Let us now take (159), (160) and (163) to compose the following set of equations:

VnEszRz_,k%GZ:kU5 + (A_lann + EGMR;gEng)T7 - EFi,k7
(VaGin R GT + Qg )vs + (U ) T ER Yo + G R EG, Y7 = Fiy,
Vo Bp, (U9, )" s + (A" Ly, + Ep, (V%)

ik+1 zk+1) lEgi)Tﬁ =0.
From (163),

To = —(A\" Ly, + Bp (V) 1) B ) VB, (115,,) v, (164)

i,k+1 i,k+1
Substitute into (160), then
(VnGi,kR;leZk + Q k11)Us
— (U3 B (N L, + Be (V3) T B ) WVaEe, (V1) v
+ Gi,kR;klEgi’kT7 = Fi,

(VaGin R G+ Qi

0
— (Y,

) B (N L, + Be (WY, ) B VB (1) s

i,k+1 i,k+1
+ szR;,iEE kT7 = Fip,
(V leRz le +K“] +V (\Ijszrl)_l

— (W) ) LEL (A Ly, + Ep, (0

) ) VB, (W) ) vs

+GinR EG, Y7 = Fi,
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(VnGiﬁkR;leZk + k1,
Vu©® V-l BT (Al Eo (0O V1ETV1Ey (p© -1
+ n( i,k+1) (n Pi( snV, T Pi( i,k+1) Pi) Pi( z’,k+1) ) Us
+GipREG, 7= Fip.

Define

E

bi,

_ _ —1 _
g =1In — Egl ()\ 1[anp + EPi<\Ijz(,012+1) 1ID:FCZ) EPi<\Ijz(',0k)+1) 17
then

(VnG%k’RZkl:GZ:k ‘I— K/]n + Vn(\ljz('?k)+l)_1Epi7k>U5 + szkR;]iEg%kT? —= E,k’a
vs = (VaGinRi Gl + 5L, + V(WS )T By i) ™ (Fik — GiaRif BG Y7).  (165)

We have, from ({{59),
7= ("L, + Eq,, R E¢,,) (Er,, — VaEaq, R G]vs), (166)
and substitute Y- into (165) to get

vs = (ViGir R GEy + kI + V(W) )7 B ) ™ (Fk

~

Define Q1 = w1, + V,, (V%)) E,, 1, then the above equation becomes

Us = (VnGz,kR;lezjjk + ﬁi,k—i—l)_l
% (Fux = GirR A EG, (O0 Luv, + Ba, R EG, ) (Br,, — VaBa, JAGhws) ).

Us = (VnGi,kRz‘_,leZk + ﬁi,kJrl)_lFi,k
— (VaGiwRih Gl + Qi) 'Gin R EG, (A Ly, + Eg, R EG, )™
X (Esz - VnEGi,kRz‘TleZkUE))a

Us = (VnGi,kR;éGZk + Q1) Fi
— (VaGigo Ry G + ﬁz’,k+1>71Gi,kRi_,klEgi,k(Ail[nVn +Eg, R \EG, ) 'Er,,
+ (VaGin R\ Gl + Qipn) ' Gin R EG, (N 'Ly, + Eg, R EG, ) ' VaEag, R\ Glyvs,

vs = (VaGinRi g Gli + Qins1) ' (Fir — Gia R L EG, (A 'Ly, + Eq, R, EG,,) 'Er, )

+ (VaGinR LGl + Qigsn) ' Gin R EG, (N 'Ly, + Eg, R EG, ) 'VaEag, R | Glyvs.

Now, define

_ _ _ -1
yi k= ‘Fiivk - GlakR’L,kl:Eglyk (A IInVn + EGz,kR’L,k}Egz’k) EFi,k’

)
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such that (5.2) turns into

= (V, szRzle +sz+1) YTk
+(VnGLkRi’kIGi’k+Qi,k+1)_1Gi7kR;k1Eaﬂk()\ 'Ly, + Eg, R EG, ) 'VaEq, RG] yvs,

(1 = VaGin R Gl + Q) " Gin R EG, (A v, + B, Ri L BE, ) VaBa, R fGly ) vs

= (VaGip R} Gh + Qi) ™ T
Multiply both sides of the above equation to the left by (VnGi,kR;leZk + §~2Lk+1) to yield

(VaGir R G+ Qipor = GinBo L EG (v, + Ba RAEG,, ) VaEe, R /Gl )vs = Fog,

(Qi,kﬂ + VoG Ry (I — Egm(x "I, + Ea, R L EG ) 1VnEGi7kR;,3)GZk)U5 = Fip.
Define
Zij. = Ry} (In — Eg,,(\ 'L, + Eq, Ry Eg,,) ' Eq, R},
hence (5.2) becomes

(ﬁi,kﬂ + VnGi,k@i,ngk)Us =Zik,

)

Us = (ﬁi,k—&-l + VnGi,k«@i,kGZk)_I%k- (167)

)

Next, substitute Y- from (766) into (158), such that
Kip = =R (VaGlvs + EG, (A 'L, + Eq, R EG, ) (EF,, — VaEag, R Gl}5)),

K= =R (VuGlvs + EG, (A 'Ly, + Eg, R, E¢, ) ' Er,,

Kk = _Ri_,li (V”Gz:k o Egi,ko\_ljnvn + EGi,kRi_,k}Egiyk>_1vnEGi,kRi_7leZk)U5
~ R EG, (N 'Ly, + B, R EG,, )" Er

ik
Ki k= _V”Ri_,li ([m B Egi,ko\il[nvn + EGi,kR;]i-Egi,k)ilEGi,le k)Gz kUs
B Rl_,liEgz k()\_ljnvn + EszRz_,klch;’z k)_lEF

ik
Kip = =VairGlos — Ry EG, (A ', + Eg, R EG, ) 'Er,,,
and by substituting v5 from (167) we obtain

Kix = ~VaZikGTy(Qiger + VaGininGT) ™ i

Define C_}@k =G, k%ﬂ/? then the above equation becomes

-1

K, = —Vn«@i,kGZk (ﬁi,kJrl + Vnéi,kéz:k) %k
B R;klEgzk (A_llnvn + EszRz_,klEgzk) _1EFz‘,k7
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which matches (139). Next, place (139) and (166) into (156) to produce

—1 T T
Li,k = EJC — Gi,kRi,k (VnGiij5 -+ EGi,kT7) — RUs,
Liy=Fip— GiprR 2V, G vs — G R IEL Y7 —
ik = ik — Gikdty p Vnlay pUs ikl p Eg,, 17— KUs.

By using Y7 from we have

Liy=F— Gi’kR;éVnngkvg) — KUs
— GixR EG, (AN 'Ly, + Eg, R EG, ) (Erp,, — VuEg, R, ;Glvs),
Lix = Fix = Gix R EG, (A 'Ly, + Eg, R Eg, ) 'Er,,
~(VaGin R Gy + kL, — Gip R Eg, (A 'Ly, + Eq, R EG, ) 'VaEg, R .G} )vs,
Lij = Fiye — (6, + V,GisR; LG,
—VaGir R Eg, (A 'Ly, + Eg, R EG, ) 'Eg, R, ;G vs,
Lz’,k = ézvzk - (F&In
+ VaGixRot (In — G R} BE (N 'Ly, + B, R} EL ) 'Eq, R })GT k) vs,
L= ;J:z/k — (k1 + VnGi,kf%?i,sz:k)USa

and with v5 from (167) we produce

L= L;O;:k — (kI + VnGi,k@i,kGZk)(ﬁi,kH + VnGi,k@i,kGZk)_lc%m
Ly = (In - H(Qi,kﬂ + VnGi,kc@i,ngk)il)%k
— VnGi,kt@i,kGZk(ﬁi,k—‘rl + VnGi,kz@z',kGZk)_lc%m
Ly = (In — :‘i(ﬁz‘,kﬂ + Vnéi,kég:k)_l)%k — Vnéi,kézk(ﬁi,k-i—l + Vnéi,k(;gﬁ_l%b
(168)

Based upon LemmalA.7] we have that

]mézjk(ﬁi,k—i-l + Vnéi,kégk)_l = (Im + G_(z:kvnﬁ._l G, k)_légkﬁ._l

i,k+1~"1, i,k+1>

and combining with (168) we obtain

Ly = ([n — H(Qi,kﬂ + Vnéi,kégk)il)%k
- G%k(Im + ézkvn§;é+léi’k)71@3:]{‘/”@;;_’_1?1%,

Liy= (In - ff(ﬁz‘,kﬂ + Vnéi,kézk)il)gi,k
— Gip(Ly + (;Zk\ii,kﬂéi,k)_lézk‘f’i,kﬂc%,m
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which corresponds to (138), with ¥, ;. = V,Q; .1- Now, substitute 15 and 17 from (155)
and (166), respectlvely, into (152] - to yield

P = Qi + VuFyvs + Ex, (N 'Ly, + Eg, R, B¢, ) (Er,, — VaEg, Ry G])05),
Pix = Qix+ VuFl s + Ef, AT oy, EGkRz_klEgk)_lEFk
— En, (V' + Eg, R EG, ) 'VaEg, R Gl vs.
(169)
Define
Qi = Qix+ Ef (A 'Ly, + Eg, R}'EG, ) 'Er,,,

then (169) turns into

Pig = Qip + VaFihvs — Ep (A 'Ly, + Eq, R Eg, ) ' VaEg, R Gl yvs,
Py = Qis+ Va(Fly — Ep, (N 'Ly, + Eg, R EG,,) 'Eg, R ;G s,
Pip=Qip+ Vnﬁzk%-

Finally, substitute v5 from (167) to obtain

Pz'k::Qik‘l'vi;o;z‘/k(ﬁzk—&—l+Vsz:f%szzk;) ' e
Zkalk—l—V o (Qks = O VGl + GLOLAVaGin) "GRG ) T
Pp=Qix+ 7, V Qz /§+1§

FEV L ViGin (L + GTLVAO L G T GV F,

i,k+1 A k-‘,—l

P = sz + g[g;g{i}zk+1g[z k— /l k‘Ifz k+1Gz k( + Gl k\I’z k+1Gz k) ngkiji,k+1g[i,ka
which matches (140) and completes the proof. ]

By means of Theorem |5.1], we can compute the robust state-feedback gains K, =
(K1, ..., Ksx) € H™ in a recursive fashion, whereby the polytope vertices are accounted
for altogether in each Markov mode. Furthermore, observe that x;.; = L, ;zx, thus we
say that L, in is the correspondent closed-loop matrix associated to when
up = K; pxy.

Remark 5.3. By applying the Sherman—Morrison—-Woodbury formula (see LemmalA.6), we
get E, ;. = (I, + \Ep Ep,(¥5), )7)"". If A — oo, then E,, ;. — 0 and P, is a constant
matrix fork = 0,..., N — 1. That said, we adopt some fixed u > 0 and 8 > 1 for which
Ephk > 0 to ensure the convergence to a stabilizing solution. Moreover, as discussed in
(ROCHA; TERRA,|2021), § € (1, 2] returns adequate numerical results regarding stability
and fits as an initial candidate for any search method.
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5.2.1 Convergence and stability

Let us now consider the DMJLS described by and the cost function with fixed
parameters, whilst allowing coefficients oy, and &, to be time-varying. Thus, we analyze the
realization

Vi Vi
Tpt1 = (E + Z Ozz,kFi(l)> Ty + (Gi + Z aakGy)) Ug, (170)
=1 =1
where v, = K, ,xy, with gains K, ;, © € ©, given by Theorem Moreover, we assume

~

E,. > 0 and restate (138) and (140) with time-invariant parameters as
Ly = (fn — "f(ﬁi,k—i-l + Vnéz’@?>_l)§i — Gi(lm + quji,k+1@i)_léqui,k+1%7 (171)
-Pi,k = Qz + %T@i,k—i-l% - %qui,k—&-léi(lm + G;Eli,k+1éi)_lé?i’i,k+1%~ (172)

Notice that fits into the well-known class of coupled algebraic Riccati equations
(COSTA; FRAGOSO; MARQUES, 2005). Thus, the conditions for convergence and stability
are established based on the classic regulation problem for DMJLS, as we outline in the
following statement.

Proposition 5.1. Assume the pairs (Qi/ 2, ,%) and (%, G;), are mean square detectable

and mean square stabilizable, respectively, and Epi,k > 0, for alli € ©. Consider fixed 1. > 0,
f > 1, and initial condition Py = (P n,...,Psn) € H. Then, P, € H'. generated by
converges to its unique solution P = (Py,. .., P;) € H'.. Moreover, the closed-loop
system matrix associated with is mean-square stable.

Proof. Given the resemblance between (172) and the coupled algebraic Riccati equations,
the proof follows based on the fundamental arguments presented in (COSTA; FRAGOSO;
MARQUES, 2005) for detectability and stabilizability of DMJLS. O

In the next section, we verify the performance of the robust regulator presented in this
chapter in numerical and application examples.

5.3 lllustrative Examples

We present three examples: the first two are numerical, and we investigate the regulation
performance of the recursive regulator; in the third example, we assess the effectiveness of
the regulator when applied to the estimated powertrain model of the autonomous Scania
truck (see Appendix [Bl We perform the simulations in a 2.3 GHz i7-11800H CPU with 16
GB of RAM. The results are compared with those obtained with the robust H, controller
borrowed from (COSTA; FRAGOSO; TODOROQV, 2015) to verify the competitiveness and
potential of our approach. For shortness, throughout the examples, we denote the robust
recursive regulator for polytopic MJLS with uncertain transition probabilities by M3R.
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Remark 5.4. Without loss of generality, in the following examples, we produce oy, € Ay, and
& € Ay, from a uniform distribution, at each time step k.

Example 5.1. Let us consider the DMJLS based on (ZHANG,; BOUKAS, |2009) described
by the following parameters:

2 1
R = H

K 10.160 —0.160

0
, GY = .
B0

0.32 —0.4] 0.064 —0.080
Fip= [ F1(1) - [

o J0.2
Can-

e Mode 2:

0.08 —0.26 0.016 —0.052
FQ,k:[ ]7F(1)_[

0.80 —1.12 0.160 —0.224
1 s Joa ) 0
e R S -

e Mode 3:

16 —0. 032 —0.01
3,k=[0 6 008]’ Fm_lom 0.016] R —

0.8 —0.96 510,160 —0.192

]_ 1 O]. 2 0
el an=[0] en-[1]
 Mode 4
0.48 —0.18 @ [0.096 —0.036 @ @
Fy, = - P — _pt)
b [O.S —0.88] 4k [0.160 —0.176 Lk Aok
0.8 o [0.08 ) 0
| O] an= ) e[

The transition probabilities are assumed to be subject to uncertainties and defined by a
known portion P, and vertices {P") P} given by

0.3 0 01 0O 0 06 0 O 0 0 0 06
= 0 0 030.2 . pW— 05 0 0 O PO 0 050 O
0 01 0 0.3 0 006 0 06 0 0 O
02 0 0 O 0 00404 0 0404 O

T
Also, we adopt initial conditions xy = [1 1] ,andmy = 10.25 0.25 0.25 0.25|.
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We consider N = 50 and compose the cost function (134) with weight matrices Q); ;, = I,
Rix =1,i € {1,2,3,4}, and n = 10'2. Then, we compute the robust feedback gains with
Theorem[5.1| with P, y = I, # = 1.001, hence obtaining

K, — [—0.2282 0.2655] , K, = [0.1603 —0.1386] ,

Ky = [_0_2956 0_2896] , K, = [—0.0149 —0.1803] :

whilst the robust H, gains are

Ky = [—0.5957 0.5138} , Ko = [0.3647 —0.4337} ,

K,z = [—0.4152 0.4576} , Kiya = [0.2314 —0.4063} .

We take 5000 realizations of the Markov chain and allow coefficients oy, and &, to change
in each iteration of each experiment, which makes uncertainties 6 F; j,, G, and 6Py, to
be time-varying. We summarize the averaged results in Table[5. We present, in Fig.[10
and Fig. respectively, the averaged norms of the state vector and the spectral radius of
the closed-loop system with the robust recursive regulator. As can be seen, the regulator
ensured the stability of the closed-loop system despite the effects of polytopic uncertainties
on the system and transition probability matrices. Even though the results were competitive
with respect to regulation, the proposed regulator demanded substantially smaller averaged
computational time to return the feedback gains when compared to the robust H, controller.

Table 5 — Averaged results of Example

Controller | [lzxl| | oyer | Nkl | Ofpug tc[ms] | oy [ms]
M3R 1.4337 | 0.2009 | 0.0374 | 0.0053 | 0.9635 0.0976

Robust H, | 1.4403 | 0.2008 | 0.0704 | 0.0099 | 108.2582 | 44.397
Source: author.

Example 5.2. Consider now the DMJLS with parameters based on (COSTA et all, 1 1999),
namely

« Mode 1:
0 1 , 0 0.150 ) .
_ P PO g0
bk [—2.5 32| "Lk [—0.375 0.480| b Lk
0 1 0 2 1
GMZL , (;g;:[m e
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Figure 10 — Averaged norms of system state vector with the robust recursive regulator in

Example[5.1]

1.5 I I
— \ean
/1 S N N Max
=== Min
— 0.9H =
~ 3
8 1
— 0.6 l. N
0.3 N
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

k
Source: author.

Figure 11 — Spectral radii of the closed-loop system with the robust recursive regulator in

Example @
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* Mode 2:
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’ 43457 P |—06450675] " 2k

CGox = Gip, Gyl =G, Gy =GP,

e Mode 3:
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T
We consider xy = [1 1] ,andmy = 10.16 0.30 0.54|, whereas the uncertain transition

probability matrix is defined by the following known Py and vertices {P"), P(2) P3)1

[0.67 0.17 0.16 -0.12 0 0.12

Po= 030 047 0.23|, PW= 0 0.07 —0.07],
10.26 0.10 0.64 —0.09 0 0.09

[ 0.12 -0.12 0 0 —0.120.12
P@ =1-007 007 o0 |,P®=]-007 0 007
0 0.09—0.09 —0.09 0.09 0

We carry out a total of 5000 in realizations of the Markov chain. Again, the coeffi-
cients oy, and &, change from one iteration to another, as mentioned in Remark|5.4, hence
{0F;k,0G; 1, 0Py} are time-varying matrices. We consider N = 30 and set up with
Qix = I, Rix = 1,and = 10'2. Then, with P, y = I, and 8 = 1.01, Theoremproduces
the feedback gains

K, = [2.7034 —3.4232] L Ky — [4.6743 —4.8162] K= [—5.3000 5.2271} .

In Fig. we show the averaged norms of the closed-loop state vector with the robust
recursive regulator. In Fig. observe that the DMJLS with u;, = 0 is highly unstable.
Regardless, the proposed robust recursive regulator ensured closed-loop stability, as we
depict in Fig.[138 Furthermore, the mean computational time required to compute K =
(K1, Ks, K3) was 0.8974 ms, with standard deviation of 67.87 us. The robust H, controller,
however, required on average 61.8440 ms, with a standard deviation of 21.7730 ms.

Figure 12 — Averaged norms of system state vector with the robust recursive regulator in
Example @
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[l |
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k

Source: author.

Example 5.3. Let us address the powertrain control problem for the autonomous heavy-
duty vehicle, whose model is described in Appendix [B. The DMJLS has 14 operation
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Figure 13 — Spectral radii of the DMJLS in Example
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1
0.8
6 00 CipaP '\:fi:;:t.;..""l':;. IR A T I L A ER P i L
N AL, ', :x"’”‘ S o ‘_‘_,_-\y 2a h‘?_, 3 v .;. }.-3_.
[ N ST B SIS W / ‘ f{'.%);‘ R ,""r"‘_‘\"’“‘,"‘_:, y
04 RIS R
A 2 o S e TR e s AT R A
0.2 B A SRR R NS R R IR O E:fé‘?‘f-"i%?r:'-.
0 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Experiments

(b) Spectral radii of the closed-loop system with the robust recursive regulator in

Example[5.2]

Source: author.

modes, and state-space and transition probability matrices are subject to polytopic un-
certainties. We recorded the Markov jumps and the reference signals for accelerator and
brake pedals positions whilst driving the vehicle inside the campus of the University of Sao
Paulo, in the city of Sdo Carlos. To improve the controllability of the powertrain model, we

must split each matrix G;, i € {1,...,14}, into two columns, hence G; < |0.5G; O.BGi],

T T
Uy [O.Emf O.5uﬂ , and 1, < [0.57,? 0.57;" ] . We retrieve the original required pedal

positions by adding up the entries in the newly defined vector 1,. We assume initial conditions
Ty = [0.10 —0.50 —0.07]T, and 6, = 3. Therefore, the truck starts the simulation with the
6th gear engaged and accelerating. The recorded data comprises a time horizon N = 1591,
meaning about 5 minutes driving.

We select high values for (); to weight the norm of tracking errors x;,. Meanwhile,
high values for R; have the purpose of diminishing energy consumption and minimizing
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acceleration and deceleration jerks, since R; weights the norm of input u;. That said, we
build the cost function (134) with the parameters

Qi =101, Ry =10"1, ic{1,...,7},
Qi = 10", Ry =10"1, ic{8,... 14},
Pin=13, i€{l,...,14}, u=10°, B =1.00001.

Given the above configuration, Theorem 5.1 returns the feedback gains

o _ | 700744 —0.5561 0.5460 . |00 00066
" [-0.0744 —05561 0.5460) * 1o 0 0.0066]
[0.0139  0.0351 —0.0773] (0 0 —0.1283
K2: 3 K9: 3
0.0139 00351 —0.0773] 0 0 —0.1283
[0.1025 0.4456 —0.5648] (0 0 0.1284]
K3: ) KIOZ )
0.1025 0.4456  —0.5648 | 0 0 0.1284)
[—0.0552 2.1204 —2.0373] (0 0 0.0241]
K,= ) K = )
00552 2.1204 —2.0373) 0 0 0.0241)
[—0.0347 1.1205 —1.1562] (0 0 0.0989)]
K5: ) K12_ )
00347 11205 —1.1562 0 0 0.0989)
[0.0020 0.0642 —0.0676 0 0 —0.0217]
K6: ) K13: )
0.0020 0.0642 —0.0676 0 0 —0.0217]
[—0.0294 0.6454 —0.6334 (0 0 —0.0782]
K7: 5 K14: .
00294 0.6454 —0.6334 0 0 —0.0782]

We performed 1000 simulations, and allowed coefficients «;, and &, to vary throughout
each run conditioned by Remark[5.4. In Table[6 we summarize the results for the robust
recursive regulator (M3R) and the robust H, controller, averaged over all runs. In Fig.
we depict the closed-loop trajectories of the states and the recorded references, while in
Fig.|15 we show the computed accelerator and brake pedals position signals. Even affected
by uncertainties §,, the robust recursive regulator maintained closed-loop stability and
adequately tracked the reference trajectories. Under the same conditions, the robust H,
gains could not ensure the stability of the closed-loop system.

It is worth mentioning that the computational times required by the proposed recursive
method are acceptable for application on the autonomous truck. In fact, we havet. < Ty,m, =
0.2s, where T, is the sampling period defined for the model identification procedure (see
Appendix|B). Therefore, it is possible to evaluate the feedback gains within the sampling
period.
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Table 6 — Averaged results of the longitudinal control for the autonomous truck.

Controller | |lzx|| | Oy 7%l |yl t. [ms] o1, [ms]
M3R 3.5302 | 0.0825 | 0.8775 | 0.0217 | 17.5976 0.5690
Robust H, Inf Inf Inf Inf 4155.2019 | 588.9904

Source: author.

Figure 14 — Resulting closed-loop states trajectories with the robust recursive regulator for
the shown Markov chain realization.
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Source: author.
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Figure 15 — Resulting positions of accelerator and brake pedals with the robust recursive
regulator.
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Source: author.
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6 ROBUST REGULATOR FOR UNCERTAIN DMJLS WITH UNOBSERVED CHAIN

The motivation behind this chapter is related to the difficulty in detecting how Markov
mode describes the dynamics of the system at a given instant. In many practical situations,
the Markov chain is partially observed if the information about the jump parameter is
intermittent; or totally unobserved if the information about the jump parameter is never
available. Examples of physical systems with such characteristics encompass cyber security
of microgrids (LIU; SIANO; WANG, 2020), robot manipulators (CHE; ZHU; ZHOU, [2021),
cruise control for unmanned aerial vehicles (LI et al., 2021), and so forth. We are interested,
therefore, in developing mode-independent recursive control approaches for DMJLS subject
to polytopic uncertainties. Valuable results were reported in the literature to solve this class
of problems. We can cite, for instance, (COSTA; FRAGOSO; TODOROQOV, 2015) regarding
detector-based H, controller synthesis; (TODOROV; FRAGOSO, [2016) for mixed Hy/H
synthesis; (SHEN et al., 2014) concerning the dissipative control problem; and (SOUZA,
2005) discussing the H, control approach.

That said, we focus on the regulation of DMJLS with totally unobserved Markov chain
and polytopic uncertainties affecting the matrices of the state-space model. We use auxiliary
variables to build an augmented system and formulate a regularized least-squares problem.
The related cost function is penalized to include all vertices of the DMJLS at once. We achieve
a robust recursive solution, from which we obtain the feedback gains that stabilize the closed-
loop augmented system. Furthermore, we assess the performance of the proposed solution
in two numerical examples.

6.1 Augmented System - Problem Formulation

Let us again consider the DMJLS
Thp1 = (Foop + 0Fy, k) 2 + (Gop ik + 0Go, i) Uk, (173)

where k = 0,...,.N — 1, z;, € R", u;, € R™, Fy, , € R"™" and Gy, , € R™"™ are nominal
system and input matrices, respectively, = {6y, ...,0n_1} is @ Markov chain with modes
0, € © = {1, ..., s}. The transition probability matrix is known and defined by P = [p;;] € R***
such that

PrOb(9k+1 = j‘ek = ’L) = Dijs PI’Ob(@O = ’L) = Di,0,
Y opi=1, 0<p; <1, (174)
j=1

whereas the uncertainties {J Fy, x, 0Gy, 1} are defined as

(6F0.i 8Go,s) :zv:% FDe ay). (175)
=1

k
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T
with known vertices Fe(]?k € R™" and G((fk)k € RV and o, = [al,k o avjk] belong to the

unit simplex
v
AV:{OékGRV : O./LkZO,ZOéLk:l}. (176)
=1

Suppose all states x; are observed at every instant k£ and the system evolves from
{z0, 0o }. However, now we assume that modes 6;, k = 1,..., N, are not available to the
controller. Hence we say the Markov chain is totally unobserved. That being said, the
optimization problem

N-1
min - max {EﬂuwH@Nw%—Ej(mw@ﬁj+nmwam)l&}}, (177)

Uk, Thy1 0Fp, k,0Ge, K P
subject to (173),

where S; = {0, = i, x,}, with i € ©, cannot be used to design a regulator for since
it requires the information regarding the active Markov mode through &;. Therefore, in the
next section, we describe how to yield an augmented version of the DMJLS suitable to
approach the robust regulation problem.

Let us consider the Dirac measure, Zy, —;; defined by

1, ifve),
Zovy(v) = ,
0, otherwise,

which, in our specific case, we rewrite as

1, if6, =1,

Tio— = (178)

0, otherwise.

A similar deterministic approach was proposed by |Costal (1994) to deal with the minimum
mean-square error estimation problem. We introduce now the following auxiliary variables

Zik = Lio—iyrr € R", v = Lyg—iyup € R™,
21,k U1,k
2 = : e R, vy = : e R*™. (179)
Zs,k Vs, k

Notice that we recover the original variables x; and v, from z; and vy, respectively, by doing

S S

Ty = Z Zi ks and Uy = ZUNC. (180)

=1 i=1

From (179) and (173) we have

S

Tht1 = Z(Fm +6F; )2k + Z(sz +0G, 1) Vi k- (181)

i=1 i=1
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Given that z; .1 = Zyg,,,—j}Tr+1, Dased on (181) we also have

Zjk41 = (Z(Fl’k + (&Fi’k)z,;’k) I{9k+1:j} + (Z(Gl’k + (5Gi,k)vl-7k> I{ng:j}. (182)

i=1 i=1
To simplify the notation of the Dirac measure, from now on we denote Zyy, ., —;; as Zy;;. Then,
by adding

S S
E piiFirzin + § PijGikVik
=1 i=1

to both sides of (182), we have

S S
Zjkt1 = ZpijFi,kzi,k + Z ((Zgjy — pij) Fir + T 0 Fi k) i+

i=1 i=1
ZpijGi,kUz',k + Z ((Zgjy — pij)Gie + T3 0Gi i) vig.  (183)
i=1 i=1
T
Since 2,1 = [szH zikﬂ} , by combining (183) with (179) we obtain
21 k1 Yoi P Figzik S (Tay — pi)Fog + Z(y0Fik) zi
: = : + :
Zs,k+1 Zle pisFi,kzi,k 2;1 ((I{s} - pis)Fi,k’ + I{s}(SFi,kz) Zik
Zle Pi1Gi Vi Zj:l ((I{l} —pi)Gig + 1{1}5Gi,k) Vs k

+ : + : . (184)

D i1 PisGi ik S (Tisy = pis) G + T4 0Gi ) vik

Observe that

5 I puifir pator .. paler| |21k

i=1 Pill'i k2 k
. P12F1,k p22F2,k ce psQFs,k 22,k

: = . ) . . . )
S

Zizl pisFi,kzi,k

_plsFl,k p2sF2,k s psst,k Zs,k
- Akzka

where A, = (PT @ I,)diag{Fi, ..., Fsx}, Ax € R¥*". Similarly, we have

S
> iy PinGipVige
: - Bkvk7

Zle pisGi,kUi,k
where By, = (PT ® I,,) diag{G1, . .., Gs 1}, Bx € R***™. Moreover, we can make
S (Tay — i) Fig + Ly 0 Fik) 2i
Zle ((I{s} - pis)Fi,k + I{s}(SFz,k) Zik
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and

Zle ((1{1} —pa)Gig + 1{1}5Gi,k) Uik
= 5Bk'0k
Zle ((I{s} — pis)Gig + I{s}5Gi,k) Vi k

Therefore, we can write (184) as the augmented version of the DMJLS (173) in terms of the
auxiliary variables z; and vy, in the following way:

2kr1 = (A + 0 AL) 2 + (By, + By v, (185)

with {6.Ay, 6B, } modeled as

1%
A o8] =HY @ [AY 8P, (186)
=1
where
. Fi Fop) O 4 Gk Gs
A,(f):dlag{[ ’],..., ’ }, B,’ = diag Dl ! ;
) FY G\ G
diag{yu, Voi, oo 0, ysl}
— . . R232n><2sn R (I{J} - pZJ)]’ﬂ O
Qpp = Qg : € ;o Vij = 0 o7 |
dlag{ylsay257 R yss}_ ’

H =diag{/L, ..., [} e RZ>"",

We assume that Z;;, and the polytope coefficients «;; are unknown, and we grouped
them into @; ;.. As we will describe in the next sections, the proposed solution is independent
of oy ;. It is possible, therefore, to compute the feedback gains and stabilize the closed-loop
system irrespective of the Markov chain being unobserved.

Let us consider the min-max problem

N—-1
i 2 2 2 187
min - max. {HzNHxN + ; (lzeld, + vl } (187)
subject to
Ap + VoAV By + VéBY
ly @ 2441 = : Zk + : Uk, (188)

Ai + VALY By, + VB

where 5A,(f) = Hal,kA”), and (56,&” = ’Hal,kB,Ef). Based upon the Principle of Optimality
(BERTSEKAS, 2005), we then divide (187) into NV — 1 one-step problems of the form
i _ 2 2 2
min - max (= lewl%,, el + ol ) (189)
subjectto (188), k=N —1,...,0,
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with
Qk = diag{Ql,ky SRR Qs,k}v Rk = diag{Rl,lm AR Rs,k}7

Xirr = diag{¥ py1, ..., Yo}, iy = Zpijpj,k:-i-l-
j=1

Remark 6.1. Notice that
(o1 (Zay — pi) Fiwzi) (S cuse) + 300y Ty (0 cunF) 2o

bl

1%
> VoAV =V :
=1 s 1% s \% (1)

(Zizl(z{s} - pz’s)Fz’,kzi,k) (21:1 Oéz,k) + Zz’:l I{s}(Zl:l Oél,kFi,k)Zi,k

Yoii(Zoy —pi)Fipzie + >y Zry O F kzig

. ,
_Ele(z{s} — Pis) Fikzig + Ele L) 0F; 12k
-Zle (Zgy — pi) Fop + T 6 Fik) zik

=V : ;
| > (Zgsy — pis) Fik + Ly 0 Fik) zie

= ViALz.

Similarly, we have Y, , V6B, = VByuy. Therefore, it is possible to retrieve (185)
from the constraints (188). We multiply both sides of (188) on the left by f$ to obtain
Vzpr1 = V(A + 0Ax) 2k + V(B + By )vg, which corresponds to (185).

Let us now define the following penalty function based on (188):

C(zra1, k) = G(zr1, vr)" pd G201, 08), (190)
with fixed penalty . > 0, and
A + VALY By + VéBY
9(zr1,0k) = Ly @ 241 — : 2k — : Vk.
Ay + VALY B, +VéBY

By adding (190) and J;, we attain a new penalized cost function and yield the following
unconstrained counterpart of (189):

i 191
i, e {hleen, 58} (191

where
T X 0
jk(zk.H, (™ 6-’41@7 6Bk) _ [@H—l] k41 ] [Zk+1]
Vg 0 Rk Vi
T
0 0 0 0 _Isn 0
Sl 0 _V(SB’(;) Zk+1 Ay V(SAE:) Qr 0
+ ) A e } - ) + i 2k { . }
: : : : Uk . . 0 ,uIsVn

(192)
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The penalty parameter 1 > 0 can be seen as a weight related to the equality constraints
(188). We shall design a recursive solution for (191), from which we extract the signals
v = Kpzp to minimize (192) and, thus, ensure the closed-loop stability of the DMJLS in
(185).

Remark 6.2. Even though (191) relates to the auxiliary variables z.., and vy, we obtain
xrr+1 and uy, of the original system through (180). Therefore, if ICy. is such that vy, = Kyzy
makes z, — 0, then we expect that x;, — 0. In this case, the closed-loop DMJLS is
stable.

In the following section, we present the designed recursive solution for problem (191)),
from which it is possible to compute the feedback gains /Cx.

6.2 RLQR for DMJLS Subject to Polytopic Uncertainties and Unobserved Chain

We present the robust recursive solution for the optimization problem (191)—(192) in the
next lemma.

Lemma 6.1. Consider the problem (191)—<192) and assume known matrices (); > 0,
Ry, >0,and P,y > 0,i€ ©. Fork =N —1, ..., 0, and known fixed scalar ;. > 0, the
solution is recursively computed by

2 I, 0 07 /[cLs
v =10 Iy, O |Kk]| 2z, (193)
NACENS 0 0 zI'| |%
with
Ly, 00 0 0 0 I, 0
Kel=100 0 0 0 0 Ignl|x
Py 00 —I, Al E% 0 0
— - —1 - -
XX, 0 0 0 0 I, O
0 R;' 0 0 0 0 Iy
0o 0 9 0 0 0 0 Lon
o 0 0 @ 0 I, —B A, |, (194)
o 0 0 0 Y 0 —Ejp Ey,
I, 0 0 I 0 0 0 0
| 0 I, 0 -BI' —Ef 0 1 1 o]




107

where &, = diag{ P\, ..., P}, ® = w1 = 87 Ly, Ak =1y ® A, Bkz =1y ® By,
Y= (23/8/1)71]25‘/7’“ ﬂ > 1,

1 1
op Eg) L,
EAk =V , EBk =V ) ]sn — c RVsnXsn'
V) V)
FE AL EBk I,

Proof. We used the penalty parameter 1 to translate (189) into its unconstrained counterpart
(191). As (191) is a special case of the regularized least-squares problem outlined in Section
[2.1.3] it is possible to make the correspondences

X 0
J < Ti(zks1, Vg, 0 AR, 0By), x [Zk+1] 9 [ k41 7(;] o [Qk ] |
k

Uk 0 0 plsvn
0 0 0 0
g |Bn 7Bl sa |0 VOB 40 o -vsl],
I, —By 0 —voB
—I,, 0
by “‘:"“ 2, b V‘S:A;fl) 2 O —vAl =1,V
Ay VALY
M « [diag{%o H}] , I' < diag{ais,...,ay.}

This matching allows us to base our solution upon the matrix arrangement shown in Lemma
2.4, which yields with £y, K, and &, expressed as in (194). The uniqueness of the
solution is guaranteed for any positive 1, given that X;.; > 0 and R, > 0. We also use the
reasonable approximation \ A 20su, for some scalar g > 1, to avoid solving an additional
optimization problem, by the arguments given in [2.1.3] Finally, Lemma ensures the
existence of the central block matrix in (194). O

By defining a set of simultaneous equations based upon (193)—(194) and item (iii) of
Lemma , we produce an equivalent reduced form for Ly, K, &} given in Lemma|6.1]
We outline this procedure in the next result.

Theorem 6.1. Consider the problem (191)—<192) and assume Q);, > 0, R;, > 0, P, y > 0,
t€0O,u>0,andp >1.Fork=N —1,...,0, the solution in Lemma (6.1) can be equally
expressed with matrices Ly, Ky, and &, computed by

Ly, = VX QL A — VI L By (L — VBIO L B T BEOL Ay, (195)
Ky = —VRBE (Lgw + VL BB QL A, — REL (S + Eg, Ry EL ) ' Ea,, (196)

Py, = Q, + vzlg@k+1/_lk — Ang+1Bk([sm + BngJrlBk)ilBngJrlAka (197)
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where

Q=0+ VX, o=p 1=V ne Qe =V,
Ay = Ay — ByR;'EL (S + Eg, Ry 'E ) ' Ea,,

Ry =Ry (Lyn — B (S + B, R, EL ) ' Ep Ry,

Qr= Qs+ EY (S + Es,R;'\E ) ' Ea,, By = B.R)?.

Proof. Based upon (194), define the matrix .4 such that

- -1 - - - -

(X, 0 0 0 0 I, O 0 W,
0 R," 0 0 0 0 Iy 0 W
0o 0 o' o 0 0 0 —I, Wi
o 0 0 @ 0 Ia B Ay | = [Wy|,  (198)
o 0 0 0 Y 0 —Ep, B, Wi
I, 0 0 I 0 0 0 0 Ly,
0 I, 0 B -Ef o0 0 | [0] [K]

N
with auxiliary variables Wi, W, W5, Wy, and W, where W, = 1y ® Wy, W, € R,

We multiply both sides of (198) on the left by .4 to yield the following set of simultaneous
equations:

Xy Wi + Ly, =0, (
Ry 'Wa + Ky, = 0, (
QO 'Wy = — I, (199¢
Wy + I Ly — BuKy = Ay, (
SWs — Ep Ky = Ea,, (
Wi+ ITW, =0, (199f
Wy — BfW, — Ef W5 =0. (199g

Additionally, we substitute (198) into (194) to produce

Py = — L Wy + AW, + EL W,
Py = —I, Wy + VAW, + EL W (200)

Let us now solve (199)—(200) for {W, Wy, W5, Wy, W5, Ly, Kk, P}, to ultimately attain
(195), (196) and (197). First, from (199a)), (199b) and (199c), we have, respectively,

Wi = —Xy41 Lk, (201)
Wy = —RiKy, (202)
Wy = — 0. (203)



Moreover, by combining (1991) and (201) we yield

—Xk+1£k+[15n...lsn] | —o,
Wy

—Xgi1 L + VW, =0,
,Ck = VX,;LWZL

Define o = (1 — 8711, such that from ([T99d) we have
@ ... 0 W4 [sn Bk Ak
0 e (p W4 Isn Bk Ak,
oWy + Ly, — BpKy, = Ay,
and substitute (204) into (205) such that

QDWZL + VX];i1W4 - Bk’Ck = Ak?
(o + VX )Wy — BpKy = Ay,
Qi Wy — BiKy, = Ay,

where Q11 = (¢ + VX;},). Now, combine (T99g) and (202) to produce

Wy
Wy |Bf B | | - BEWs =0,
Wy
~RiKr — VBIW,y — Ef Wi = 0,
Ky = -VR,'BiWy— R 'EL Ws,

and substitute (207) into (206) such that

QWi+ BRI B{Wy + ByR, 'Ef Ws = Ay,
(U1 + VBREBL) Wy + By Ry EL Wi = Ay,

Place (207) into (199¢) and yield

SWs + E, VR 'BIWi + Es, R\ Ef, Ws = Ea,,
(S + Ep, Ry 'EE )Ws + Eg VR, BL W, = E,,

Ws = (X + Eg, Ry Ef ) (Ba, — Es VR 'BLWy).

109

(204)

(205)

(2086)

(207)

(208)

(209)
(210)
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Substitute (210) into (208) to obtain
(i1 + VBRS' BLOWy + ByREL (S + Ep, Ry 'EL ) (Ea, — VEs Ry BEWy) = Ay,

(Uir + VBR B — VBR,'EL (S + Eg, Ry 'EL ) ' Ep, Ry ' B )Wy =
Ay — BRI EL (2 + Eg, Ry EL ) B,

(i1 + VBRI — EL (2 + B, Ry EL ) "B Ry )BL) Wy =
Ap = BREg (S + Eg Ry 'Ef ) ' Ea,,
and define the auxiliary matrices
Ay = Ay — BWR;'EL (S + Eg, Ry 'E ) ' Ea,,
Ry =Ry (Iym — EL (S + B, R;'EL ) ' Ep Ry,
B, = ByR)?,
such that
(1 + VB RBOW, = Ay,
(1 + VBLBOW, = Ay,
Wy = (i1 + VBLBL) ' Ay (211)

Now, substitute (210) and (211) into (207) to produce

Ki=-VR'B{Wy—R;'EL (S + Ep, Ry 'Ef ) (Ea, — VEs Ry BLWy),
K= —VR (Iyn — B (X + B, R;'EL ) Ep, R BEW,
~ R'EE (S + Ep, Ry Ef ) ' Ea,,
K= -VRiBIWy — R'EE (S + Ep, Ry Ef ) ' E,,
Ky = ~VRBE (Qusr + VBBL) Ay — REL (S + B, Ry 'EL ) Ea,.

Note that
1

(i1 + VBB ™ = (U1 (Lo + VUL BRBL))
= (Lon + VO BBL) T s
Therefore,

Ky = —VRBL (Lon + VL BBE) QL A — ROVEE (S + Es, Ry VEE ) 'y,

which corresponds to (196). Next, substitute into and yield

Ly, = VX1 (i1 + VBB Ay,
Ly, = VX (L + VU BB T L A,
Ly = VXt Tan + (VO B L BY) T L A,
Ly = VXt (I — VO L B (I — BEVOQ L By) ' BE) Qi A,
L = VX Qi A — VX QL Br(L — VB L Be) ' BLQG L A,
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which matches (195). Place now (203), and into (200), such that
Py = Qu+ VAW, + E (S + Eg, Ry 'EL) ™ (Ea, — VEg, R B{Wy),
D= Qu+ L% (S + Eg, R'EE ) By,
+ (VAL — E% (S + Ep, R\ ES ) 'VEs Ry ' B )W
Define Q;, = Qi + E% (X + Ep, R, EL ) ' Ea,, then

Py = Qu+ (VAL — EY (S + Ep, Ry 'EE ) 'V Es, R, BE) Wi,

/

Py, = Qp + VAT WY,
Py = Qi+ VAL (i1 + VBB AL,
Py = O + VAL (s (I + VO L BLBE)) AT,
Py, = O + VAL I + VO L BB AL,
Py = O + VAL (I — VL B + BEVOQ L B B Q5L A,
Py = Qp + VAL Ay — VATV Bul + BIVOL B BI O Ay,

and define Q1 = VQ, !}, such that

P = O + AF 1 Ay, — AL Q1 Bi (L + BEQu 1 Br) L BE Q1 Ay,
which corresponds to (197). O

In Lemma we have that z;.; = Lyz;. Therefore, £, as in either or
expresses an equivalent form of the closed-loop system matrix with the recursive regulator.
It is also noteworthy that the solution exists for any o > 0.

Observe that, whenever § — 17, conforms with (32), since Q.1 — Xi41. There-
fore, in Theorem|[6.7] we show that it is possible to write the solution for problem (191)—(192)
in terms of recursive algebraic Riccati equations. We then consider time-invariant parameters
and make the connections

H,k — (@k, Az — ./Zt, Bz — B, QZ — Q, Rz — Ism, and gk—i—l — Qk-ﬁ-l'

That said, the convergence of &, to the unique stabilizing solution for (197) is guaranteed
based upon the paramount concepts outlined in (COSTA; FRAGOSO; MARQUES), 2005),
(BERTSEKAS, [2005), and reproduced in Section

6.3 lllustrative Examples

We present two examples to verify the performance of the solution proposed in this
chapter. For comparison purposes, we adopt a robust H, controller (TODOROV; FRAGOSO,
2016) and compute the feedback gain with the YALMIP Toolbox (LOFBERG, 2004). We
executed the experiments on a 2.50 GHz i5-3210M CPU with 8 GB of RAM.
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Example 6.1. Consider the longitudinal model of the G 360 CB6x4HSZ truck examined in
Example[4.3 (see details in Appendix[B). In this case, we account only for the acceleration
modes, thus 0, € {1,...,7}, and each mode captures the dynamics according to the
transmission rates of gears from 4th to 10th. However, now we assume it is not possible

T
to detect the actual active mode 0,,. The states are g, = [qlT qr q?)T] , where ¢, is the
driveshaft torsion, qs is the engine speed, and q; is the wheel speed. The control input is
u, = 73, — 7%, with 7, € [0, 1] being the throttle pedal position. We define the tracking error

as z, = q, — q¥'. Moreover, ¢ is the reference trajectories for states, 7/¢' € [0, 1] is the
T

reference throttle pedal position, and initial conditions are {z, 0y} = { _0.1 0.02 0.02} , 1}.
We select the following parameters to compose the cost function @ and to make use of
Theorem[6.1: Q; = I, R; = 10'°, P,y = I3, p = 10", B = 1.001. In this case, the system
evolves according to

Qo1 = (Fip +0F, 1) qe + (Gig + 0G i) Tk,

where 1, = uy, + T]:ef, up = Z:Zl Uik, @and v, = Kz, with {2z, v, } defined as in (179). For
the robust H . controller, we adopted v = 450. We executed 1000 simulations with oy, € A3
varying randomly in each iteration according to a uniform distribution. In Table[7] we show the
resulting norms of tracking errors ||z ||, of throttle pedal positions || 7 ||, and the computational
times T, all averaged over the 1000 simulations, along with the standard deviations o .
We denote the robust recursive regulator for polytopic DMJLS with an unobserved chain as
PMRRU for conciseness. In Fig.|16 we show the trajectories of the states q;. with the PMRRU,
whereas in Fig. |17 we present the throttle pedal positions. Both approaches were capable of
ensuring the stability of the closed-loop system and tracked the reference trajectories with
success. Nonetheless, the computation of the recursive regulator gains was, on average,
three orders of magnitude faster than the robust H, controller.

Table 7 — Simulation results for Example [4.2]

Controller I1Z|| 2, Oz 17z, o T. (ms) or, (Ms)
PMRRU 2.3084 || 0.0455 || 9.2593 || 0.1461 4178 0.6583
Robust H, || 2.7715 || 0.0394 || 8.8008 || 0.1409 || 6.5678 x103 || 1.1280 x103

Source: author.

Example 6.2. We consider the following DMJLS with three modes of an operation whose
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Figure 16 — Trajectories of the closed-loop system states with the PMRRU.

= Reference ===« PMRRU ||

| | |
0 20 40 60 80 100 120 140 160

| | |
0 20 40 60 80 100 120 140 160

OO 20 40 60 80 100 120 140 160

t (s)
Source: author.

Figure 17 — Throttle pedal positions of the closed-loop system.

0.8

=== Robust H,
— PMRRU

0.6

0.4

Tk

0.2

‘\ |
120 140 160

Source: author.

parameters were adapted from|Boukas and Liu (2001):
1 0 1.13 0 0.3 0.13
Fip = , Fop = , I3 = ,
b [o 1.2] 2k [0.16 0.478] o [0.16 1.14]

01 0 02 0.1 0 0.1
Gy = , Gop = . Gsp = :
b [0.1 0] 2k [0 —0.1] K [0 —0.1]



114

with vertices

1) 0 0 @) (1 ( 2 1)
Fl(k = [ ] ) Fl,k = _Fl,k)’ Gu)f = 0-1G1,k, Ggl)c = _Gg,k’

0.1 0.1
1) 0 0 @) (1 ( 2 1)
F2(k = [_0 1 ol” FZ,k = _F2,k)7 Gz,l)f = 0-1G2,k, Gél)c = _Gé,lw

1) 0 0 @ 1 1 2 1)
S R A

and transition probabilities given by

02 08 0
P=|0 05 05
0 03 0.7

We computed the feedback gains IC,. of the recursive regulator, denoted by PMRRU
for shortness, considering P x = I, Qi;n = Is, Rin = I, i € {1, 2, 3}, p = 10", and
B = 1.01 for Lemmal6.1] In this case, we evolve z.1 = (Ay + 0.Ay) 2k, + (Bi + Bk)vi, and
recover the original variables {xy.1,u;} according to (180), namely x)., = Z?:1 Zi k+1 and
Up = Zf’zl v; 1, where v, = Kyz. For the robust H,, controller, we tuned v = 1073. We
executed 1000 experiments with time horizon N = 20. In Fig.|18 we show the averaged norms
of states for both approaches. Table[8 summarizes the overall results of the experiments,
where T, and or, are the averaged time required to compute the feedback gains and its
standard deviation, respectively. The performances were similar in terms of norms of states
and control inputs, but the proposed solution required substantially lower computational
effort.

Let us consider now xyy1 = (Fi; + 0F; 1)y, + (Gig + 0Gyx)up, where u, = 30 vig,
and v, = Kyzy. Performing 1000 experiments under the same conditions mentioned above,
but with N = 100 instead, we obtain the averaged norms of the state vector shown in Fig.
[79 Observed that, even though the closed-loop system is stable, the performance degrades.
Therefore, the stabilizing solution for the augmented systems might not be the most adequate
solution for the original system in this example.

Table 8 — Results averaged over 1000 experiments.

Controller ||k || ||k || T. (ms) || o, (ms)
PMRRU 2.4071 || 16.7466 4.4355 0.6702

Robust H, || 2.4172 || 21.9698 || 208.0839 || 32.4024
Source: author.
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Figure 18 — Averaged norms of states.
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Source: author.

Figure 19 — Averaged norms of states.
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7 CONCLUSION

In this thesis, we presented and discussed the overall results achieved throughout the
author’s Doctorate Degree Program in Electrical Engineering, as a requirement to earn the
title of Doctor of Science. The theoretical contributions comprise a set of robust recursive
solutions for the regulation problem of linear and Markov jump linear systems subject to
polytopic uncertainties.

We began by presenting a literature review and summarizing important results on
the stability and stabilizability of polytopic systems. Among these, it is noteworthy that a
remarkable collection was provided by Brazilian researchers, especially regarding LMI-based
optimization. Nonetheless, the number of reported recursive solutions for the regulation
problem of discrete-time linear polytopic systems is scarce, which motivated our research
efforts toward filling this gap. That said, this thesis also highlighted the potential of recursive
methods from both theoretical and practical perspectives. We proceeded to the background
theory on robust regularized least-squares with uncertain data and penalty functions method,
which are bases for our approach. The first contribution of this thesis is the solution for the
robust regulation problem of polytopic discrete-time linear systems. It enabled us to move
forward to the regulation problem of discrete-time Markov jump linear systems subject to
polytopic uncertainties on state space matrices, which is our second contribution. The third
contribution involves Markov jump linear systems whose transition probabilities are also
affected by polytopic uncertainties. In this case, we separated the uncertain portions in the
cost function whilst keeping its quadratic structure. The fourth contribution relates to the
regulation problem of polytopic DMJLS with an unobserved Markov chain, based on an
augmented system where we express the information about active modes as uncertainties.

Our formulation takes all vertices of the polytopes into account in a unified manner, thus
allowing us to design unconstrained min-max optimization problems in the least-squares
framework. In all the aforementioned cases, the convexity of the cost functions ensured
unique solutions given a selected fixed penalty parameter. The resulting state feedback
gains are such that the associated closed-loop systems are stable despite the uncertainties.
Furthermore, convergence and stability conditions were established in terms of algebraic
Riccati equations. We provided various examples to assess the effectiveness of the robust
regulators under different scenarios and adopted several robust controllers available in the
literature for comparison purposes. More specifically, in the application examples we focused
on trajectory tracking for unmanned aerial and ground vehicles. Our results were promising
and we verified faster computation of gains without requiring any further parameter tuning
during operation.

The recursive regulation of discrete-time linear systems with input saturation and state
constraints are possible subjects of future research. At first, one should design solutions for
the case without uncertainties, mostly to find ways of incorporating the inequality constraints
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into the recursive framework. Once this intermediate but nevertheless essential step is done,
it would be possible to address the related robust control problems. Up to this moment,
we have found several interesting approaches to address this class of problems, such as
the polytopic representation of the input saturation (KIM, 2017), (HU; DUAN; TAN, 2018);
approximation by saturated sine function (MRACEK; CLOUTIER) 1998); and state-dependent
Riccati equations (KIM; KWON;, 2017), (LIN, 2021).
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APPENDIX A - MATRIX ANALYSIS

The purpose of this appendix is to present a compilation of results well known in the
specialized literature. The reader, assumed to be familiar with the basics of Linear Algebra,
might find this appendix convenient for consultation during the reading. Here we omit the
demonstrations, which can be found in the presented references.

A.1 Positive (Semi)Definite Matrices

Definition A.1. (HORN; JOHNSON, 2013) A symmetric matrix A € R™*" is positive definite,
e, A>0,ifxT Az > 0 for all nonzero x € R® and z" Ax = 0 ifx = 0.

Definition A.2. (HORN; JOHNSON,|2013) A symmetric matrix A € R"*" s positive semidef-
inite, i.e., A >0, if ¥ Ax > 0 for all nonzero x € R™.

Definition A.3. (HORN; JOHNSON,|2013) A symmetric matrix A € R™*™ is negative definite,
e, A<0,ifxT Az < 0 for all nonzero x € R® and T Ax = 0 ifx = 0.

Definition A.4. (HORN; JOHNSON, 2013) A symmetric matrix A € R"*" js negative
semidefinite, i.e., A < 0, if T Ax < 0 for all nonzero x € R".

Proposition A.1. (HORN,; JOHNSON, 2013) Each eigenvalue of a positive definite matrix is
a positive number. Each eigenvalue of a negative definite matrix is a negative number.

Lemma A.1. (HORN; JOHNSON, 2013) Consider matrices A € R"*"™ symmetric positive
definite and C € R™*™. Then,

(i) CT AC is positive semidefinite and rank(CT AC) = rank(AC).

(i) rank(CTAC) = rank(C) and CT AC is positive definite if and only if matrix C' has full
column rank.

Lemma A.2. (ABADIR; MAGNUS, |2005) Let A € R"*" be a positive semidefinite matrix.
Then,

() A+ B>0ifB>0.
(i) A+ B> 0ifB > 0.

Lemma A.3 ((LUENBERGER; YE, 2010)). Consider matrices ¢ € RP*? and % € RP*..
Assume % has rank p and ¢ > 0. Then, the matrix

s

is nonsingular.
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A.2 Matrix Inversion

Lemma A.4. (HORN; JOHNSON, 2013) A matrix A € R™*" js nonsingular if and only if 0 is
not an eigenvalue of A.

Lemma A.5. ((ZHANG, |2005) - Banachiewicz inversion formula) Consider a nonsingular
square matrix M and a nonsingular matrix S such that

P Q
R S

Then, the Schur complement (M/S) = P — QSR is nonsingular and

-1 _

—STIR(M/S)™t S7t+ STIR(M/S)tQS

(a/8)™ ~(M/8)1Qs ™ ] |

Lemma A.6. ((HORN; JOHNSON, |2013) - Sherman—Morrison—Woodbury formula) Assume
A € R™™ a nonsingular matrix, B € R™*", C' € R™*" a nonsingular matrix and D € R™*". If
the inverse of (C~! + DA™ B) exists, then

(A+ BCD) ' =A"1'—A'B(C'+ DA 'B)"'DA™ . (212)

Lemma A.7. (CAMPOS, 2009) Assume A € R™*™ a nonsingular matrix, B € R"*", C' € R™*"
a nonsingular matrix and D € R™", If the inverse of (C~! + DA~'B) exists, then

(A+BC'D)'BC'=A'B(C+ DA'B)™. (213)

A.3 Spectral Radius

Definition A.5. (HORN; JOHNSON, 2013) The spectral radius of a matrix A € R™*" is
p(A) = max{|A| : A € a(A)}, where o(A) is the set of eigenvalues of A.
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APPENDIX B - IDENTIFICATION OF POLYTOPIC POWERTRAIN MODEL FOR
HEAVY-DUTY VEHICLES

In this appendix, we detail the identification procedure carried out to estimate the polytopic
powertrain model for the Scania G 360 CB6x4HSZ truck shown in Fig.[20] The vehicle has

a 14-speed automatic gearbox and an external circuit that acquires accelerator and brake
signals.

Figure 20 — Scania G 360 CB6x4HSZ vehicle.

SIS S

.

Source: author.

B.1 General Setup

Gear shifts provoke sudden changes in the powertrain dynamics. Indeed, the literature
on automotive systems, for instance (KIENCKE, [2005) and (RAJAMANI, 2012), introduce
vehicle longitudinal dynamics as parameter varying models which depend on final drive and
gear ratios, and on the exact knowledge of structural parameters. However, these parameters
and the policies orchestrating the gear shifts are are classified as trade secrets and, therefore,

usually unavailable to the general public. That said, it is reasonable to comprehend the
powertrain as a DMJLS of the form

Qi1 = (F; +0F)qp + (G + 0G) 1, €O ={1,...,s}. (214)

T
The state vector is ¢, = [quk Qo q37k] , Wwhere ¢, ;, is the driveshaft torsion in rad, g2 1, is
the engine angular speed in rad/s, and ¢ . is the wheel angular speed in rad/s. The input
signal 7, is the required normalized accelerator or brake pedal positions, such that ||| < 1.
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The system is subject to polytopic uncertainties {0 F;, dG; }, such that

T Vn
Avnz{a:[al,k am} ER™ | Y o =1, ogal§1}.

The transition probability matrix P, € R**® is defined by

Py = Py 0Py, Probi(f) = ¥ ¢ om,
Py = [pg-]) + 5pij,k} = Prob(fp1 =7 | O = 1),

S

Z(pz(_?) +opya) =1, 0<pl) + dpya < 1,
j=1

where

VP
oPy, = [5pij,k] = [Z&,kpg-)],
=1
Vp
doa=1, osslgl}.
=1

Remark B.1. Throughout the identification method presented in this appendix, we assume
that brake and throttle pedals are never excited simultaneously. In addition, the related

Ay, = {5 = [fug gvp’k]T cR%

signals assume values from 0 to 1, meaning 0 to 100% of the pedal position range.

We limited the longitudinal speed at 50 km/h while driving the truck inside the university
campus, and there was no extra payload connected to the bodywork. As we approach the
model identification problem from a Markovian perspective, we relate each gear to two
Markov modes: one for active acceleration and one for active braking. The vehicle engages
gears from 4th to 10th (i.e., 7 gears) since gears 3rd and lower are used for additional
payloads and gears 11th and 12th in higher speeds. That said, 14 Markov modes compose
the DMJLS that describes the powertrain behavior, namely

« i€{l,...,7} = accelerating in gears 4th to 10th;
« i€ {8,...,14} = braking in gears 4th to 10th.

Let us now define the tracking error x, = qr — qrerr, Where g..r ) is the reference
trajectory generated via accelerator/brake signals. Then, based on (214), we yield the
following trajectory tracking error dynamics:

Tpy1 = (Fy + 0F)wp + (G + 6Gy)ug, i€ {1,..., 14},

where u, = 7, — Tk € R, such that 7,.r . is the reference command signal obtained from
CAN readings, and u, is the controller signal.

To acquire the real-time vehicle variables to compose ¢, we read the CAN bus at a
sampling period of T,,,, = 0.2 s, hence fump, = 5 Hz.
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B.2 Mode Detection

An acceleration mode is detected whenever 7,.;, > 0, and a braking mode whenever
Trefk < 0. We then compute the signals to be sent to the vehicle in the following way:

Tk, If Trepr 2> 0,
Tace,k =

0, otherwise.
- —Tk, ”’D?fk <10,
brakek — .
e 0, otherwise,

where T,..r and Ty.qkc 1 @re acceleration and brake pedals positions, respectively. Observe
that, at this point, we are able to determine the active Markov mode based on the engaged
gear, which we access via CAN bus, and on 7.

Although the road slope also affects the powertrain dynamics, the changes tend to be
much slower than those caused by gear shifts. Thus, we relate the vertices {FéQ, Gfl,l}
[l =1,2,3,1 € O, to the steepest downhill, steepest uphill, and flat terrains, respectively.

B.3 State-Space Model Identification

In this section, we adapt the least-squares identification approach presented by (YOUNG;
GARNIER; GILSON, 2008) to fit our purposes. Consider a system of the form z, = ¢rn +
wyg, Where z; and ¢, are known vectors, 7 is the unknown vector with parameters that
characterize the model, k =1, ..., Ng, and Ny is the number of available samples. Define
also the related noise-free process z, = 1. Then, the identification problem can be stated

as
2

7 = arg min
n

1 & 1 &
[F Z 901%0%] n—= [F Z PRz
S j=1 S k=1
The solution 7 is given by (see the detailed demonstration in (YOUNG; GARNIER; GILSON,
2008))

A o r| 1 o 2T
7= [Zwk%] N—SZ¢kzk- (215)
k=1 k=1
To ensure numerical stability of the algorithm, we normalize the states ¢, based upon
constants ¢; = [cml Ci22 Ci’33i|T € R®, where ¢; 11, ¢i29, Ciz3, i € {1,...,7}, refer to the
maximum values of the elements in ¢, acquired via CAN bus while accelerating with the i-th
gear engaged.
Meanwhile, for the braking modes, i.e. i = {8, ..., 14}, we have ¢; = [0 Ci 22 Ci,33:| , Wwhere
ci 33 1s the maximum value of g3 ;. Observe that ¢; 1, is set to zero because the clutch relieves

all driveshaft torsion as it disengages during braking. As mentioned in (KIENCKE, 2005),
the relation between the angular velocities of the engine and wheels depends only on the
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engaged gear when the vehicle operates in a steady state. That said, we compute ¢; o, for
the braking modes proportionally to the acceleration mode in the same gear:
Ciop = 3302 i cqg  14), j=i—T,
C4,33

where c; 33 is the maximum value read for g; ;. The original values are then recovered simply
by multiplying ¢, and ;. by ¢; element-wise, for any i € {1,...,14}. Moreover, {c¢; 22, ¢; 33}
can differ from {c; 22, ¢; 33} as they normalize distinct batches of data, which generally have
their own specific maximum values.

Remark B.2. We consider a powertrain model in which the driveshaft torsion is neglected
while the truck brakes. This assumption is valid because c; s, is relevant for control purposes
when the clutch is re-engaged, while an effective clutch control must be able to re-engage
the clutch with practically no torsion. This mechanical aspect is discussed with further details
in (KIENCKE, 2005).

We separate the collected batches of data with respect to engaged gears, acceleration,

deceleration, and road slope. For accelerator modes, hence i € {1,...,7}, we make the
following mappings to apply (215) so as to yield the set {Fi(l), Ggl)}, [=1,2,3:
2l
(F)" R
n < AT ) Pr [Qk Tk:| ) Z Qak+1,
(Ga,i>
where Fa(ll) fo)z and ¢, r+1, are the a-th rows Fi(l), égl), and g1, respectively. In this case,
observe that £ = F; + F", and G\ = G, + GV
For the brake modes, thus i € {8, .. ., 14}, we shall consider /" and G built as
00 0 0
EV=1o0 1],GY=10
00 s g

for [ = 1,2, 3. We do so due to some mechanical characteristics that arise when the vehicle
activates the braking modes. First, the driveshaft and engine disengage during the braking
action, therefore there is no torsion in the driveshaft and we have ¢; ;, = 0. Second, since
we assume normalized variables and both driveshaft and engine are disengaged, we have
g2,k = g3, to guarantee safe re-engagement of the clutch. That said, for the braking modes
we make the relations

o ol" r 1]l s
77<_[fz gi:| ) 9016<_[Q3,k Tk]7 Z = q3,k+1;

and apply to obtain matrices {Fi(l), GE”}, l=1,2,3.

To yield a DMJLS in the form of system (214), we consider the nominal model matrices
{F;,G;} as the mean of the extreme matrices {13}(”, GZ@}, whereas the vertices are given
by £V = EY — F, and GY = GV — Gy, i € {1,...,14}, 1 € {1,2,3}. The procedure

ultimately returns the following matrices to compose (214):
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* Mode 1 (4th gear, accelerator):

1.0000 0.9449 —0.9347 0 0.0000 0
Fi=| 00129 04938 04688, FY = |-0.0125 0.0085 —0.0043] ,
|—0.0003 0.6135  0.3918 ~0.0002 0.0275 —0.0276
[0 0.0000 0 0 0 0
F® = 1200030 0.0646 —0.0586|, F® = | 00155 —0.0731  0.0630] ,
| 0.0023 —0.0506  0.0504 ~0.0020  0.0231 —0.0227
0 0 0 0
Gi= 01757, G\ = |—0.0149], G®P = | 00142|, G¥ = | 0.0006],
0.0040 0.0062 —0.0043 ~0.0020

T
o = [0.9415 200.6431 8.0915| .

* Mode 2 (5th gear, accelerator):

[1.0000 0.7998 —0.7978 0 0 —0.0000
Fy= 100051 04666 0.5092|, FY = [-0.0029 —0.0277 0.0230] ,
0.0002 0.5520  0.4452 ~0.0022 —0.0332  0.0298
[0 0 0 0 0 0
FP =1 00005 00860 —0.0772|, F¥ = [0.0025 —0.0582 0.0542] ,
|—0.0014 —0.0494  0.0497 0.0036  0.0825 —0.0796
[0 0 0 0
Gy = [0.1110] , GV = | —0.0134], G = | o0.0128], G = | 0.0005],
0.0233 0.0136 —0.0004 —0.0132

T
Cy = [0.8484 206.7168 10.4782] .

* Mode 3 (6th gear, accelerator):

[1.0000 1.1013 —1.1001 0 0 0
Fy= 00113 0.3334  0.6405|, F\" = [0.0130 —0.0428 0.0406] ,
0.0036 0.6502  0.3457 0.0043 —0.0324 0.0295
[0 0 0 0 0 0
F® = 1200220 —0.0090 0.0248], F® = | 00091 0.0517 —0.0655] ,
|—0.0036  0.0140 —0.0104 ~0.0008 0.0184 —0.0191
[0 0 0 0
Gy = [0.0870|, G = [0.0020], GP = | 0.0064|, G = |—0.0085] ,
0.0115 0.0031 —0.0038 0.0008

T
Cy = [2.2380 911.7433 13.2687] .
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* Mode 4 (7th gear, accelerator):

[1.0000 0.8374 —0.8363 0 0 0
Fy= 100056 0.8110 0.1729], F" = [ —0.0046 0.1542 —0.1483
0.0043 0.2319  0.7620 0 0.0437 —0.0413
[0 0 0 0 0 0
FP =1 00022 —0.0437 0.0342|, F® = 0.0023 —0.1105 0.1142
| —0.0006 —0.0134 0.0098 0.0005 —0.0304 0.0316]
[0 0 0 0
Gy= 00475, GV = |-0.0154|, G = |0.0078|, G = [0.0077
0.0180 —0.0075 0.0032 0.0043
T
cy = |2.0827 197.7109 15.3775| .
* Mode 5 (8th gear, accelerator):
[1.0000 1.8169 —1.8106 0 0 0
Fs = {0.0033 02818 0.7060| , F\" = |-0.0048 0.1694 —0.1726
10.0009 0.5876  0.4104 —0.0017 —0.0723  0.0713
[0 0 0 0 0 0
F® = 100061 —0.0363 0.0344|, F¥ = [-0.0014 —0.1330  0.1382
10.0019  0.0567 —0.0577 —0.0003  0.0155 —0.0135
[0 0 0 0
Gs = [0.0386|, GV = |—0.0081|, G® = [0.0023], G = [0.0059
0.0158 —0.0038 0.0026 0.0013
T
cs = |1.8243 198.2345 19.1594] .
* Mode 6 (9th gear, accelerator):
[1.0000 0.8161 —0.8134 0 0 0
Fe = {0.0083 0.7927  0.1951|, F{" = |-0.0069 0.0573 —0.0489] ,
0.0047 0.2391  0.7563 —0.0030 0.0260 —0.0226
[0 0 0 0 0 0
FP = -0.0013 —0.0546 0.0567|, F.¥ = 0.0081 —0.0028 —0.0079
| —0.0008 —0.0373 0.0383 0.0037 0.0112 —0.0156
[0 0 0 0
Gs= [0.0233], GV = [-0.0003| , G = |0.0007|, G = | -0.0004
0.0095 —0.0004 0.0007 —0.0004

T
s = |3.2577 205.5649 25.1076] .

Y

I

Y

Y

?

Y



* Mode 7 (10th gear, accelerator):

[1.0000 0.9507 —0.9469] 0 0 0
Fr= (00112 0.7144  0.2700], F" = [0.0041 —0.0349 0.0352] ,
0.0085 0.1217  0.8701] 0.0022 —0.0574 0.0565
[0 0 0 | [0 0 0
F® = 100020 —0.1244 0.1230| , F® = | -0.0062 0.1593 —0.1583
0.0037 —0.0367 0.0341 ] |—0.0059 0.0942 —0.0906
[0 0 0 0
Gr= [0.0190|, G = |0.0007|, G¥ = |0.0013|, G¥ = | —0.0021
0.0094 0.0024 0.0007 —0.0030
T
o7 = [3.2495 191.4277 28.9388}
* Mode 8 (4th gear, brake):
[0 0 0 ] 00 0 00 0
F=1loo 1 |, EY=10o0 o |, FY=1]0o0 o0
0 0 0.9823] 0 0 —0.0054 0 0 0.0048
[0 0 0 0 0
F¥=1oo0 o |,G=1| o |,c"=] o |,
0 0 0.0007] 0.0329 0.0275
[0 0 0
=1 o |, cP= 0 |, es= |213.5746
0.0320 —0.0595 8.6130
* Mode 9 (5th gear, brake):
[0 0 0 | 00 0 0 0 0
FF=oo 1 |,F"=loo0 o |, F?=1o0o0 0
0 0 0.9803] 0 0 0.0111 0 0 —0.0149
[0 0 0 ] 0 0
FY9=1o00 o0 |, Gy= o |,c"=1 o |,
0 0 0.0039] —0.0998 0.0109
[0 0 0
GP = 0 |, GP =1 0 |, co= [192.8803
| —0.0853 0.0745 9.7773

Y

Y
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* Mode 10 (6th gear, brake):

* Mode 11 (7th gear, brake):

* Mode 12 (8th gear, brake):

F12:

3
Fyy

2
G\

00 0 00 0 00
0o 1 |, FP=10o0 o |, FP=10 o0
0 0 0.9915 0 0 0.0088 00
[0 0 0 0 0
0 0 0 |, Gio= o |, Gl = 0
0 0 —0.0066 —0.0802 —0.0511

0 0 0

0 |, P =1 0 |, cio=|194.6410
| —0.0089 0.0600 12.1970
00 0 00 0 0 0
oo 1 |, FP=lo0 o |, F?=10o0
0 0 0.9995 0 0 0.0021 00
[0 0 0 0 0
0 0 0 |, Gu= 0o |, GY= 0
0 0 —0.0065 —0.0772 —0.0796
[0 0 0

0 |, W= 0 |, en=|191.5138
0.0416 0.0380 14.8955
[0 0 0 00 0 0 0
oo 1 |,FY=lo0 o |, F2=10 o0
0 0 0.9983 0 0 0.0114 0 0
[0 0 0 0 0
0 0 0 |, Gpn= 0o |, Gl = 0
0 0 —0.0062 ~0.0950 —0.1071
[0 0 0

0 |, G =1 0 |, cio= [197.0664
0.0267 0.0803 19.0465

0
0
—0.0023

0
0
0.0044
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Qref.k

Tref,k Tk | Powertrain Markov| 9k - Tk
jump model

C

U State feedback ’
gain K i

Figure 21 — Block diagram of the powertrain control loop.

* Mode 13 (9th gear, brake):

00 0 00 0 00 0
Fa={00 1 |, FY=]o0o o |,F)=]o0 0o |,
0 0 0.9890 0 0 0.0013 0 0 —0.0064
[0 0 0 ] 0 0
F2=1o00 0 |, Gs= 0o |, Gl = 0o |,
0 0 0.0050 —0.0671 —0.0613
[0 0 0
GP=1 0o |.dP=1] 0 |, cs= 2010889
0.0066 0.0548 24.5609
* Mode 14 (10th gear, brake):
[0 0 0 0 0 0 00 0
Fu=loo 1 |, FO=10 o o |, FY=10o0 o0 |,
0 0 1.0004 0 0 —0.0065 0 0 0.0068
[0 0 0 0 0
F® =10 o 0 |, Gu= o |, cll= 0o |.
0 0 —0.0003 —0.0766 —0.0637
0 0 0
=1 0o |,¥=1| 0 |, cu= 1689912
0.0177 0.0460 25.5470

In Fig. [21], we show the powertrain control scheme. The controller signal is u, = Kjxy,
the reference input is 7,1 i, the reference trajectory is ¢, x, and 7 is the control signal sent
to the powertrain.
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B.4 Transition Probabilities Identification

To estimate the elements of the transition probability matrix Py, we drove the Scania truck
inside the campus of the university of Sdo Paulo at Sdo Carlos. We ensured that the vehicle
went through enough gear changes, altitude variations, and transitions between acceleration
and deceleration while recording the data from the CAN bus. Then, we calculated the nominal
portions pl(-?) of P, as

0 _ ki - 1 14
p@]_ 14 ) Zvje{v'”a }7

> et Kir
where r;; is the number of jumps from mode ¢ to mode j, and ;. is number of jumps from
mode ¢ to mode r. Therefore, we captured the expected behavior of the Markov process and
obtained the following nominal transition probability matrix P:

[0.9891 0.0027 0 0.0055 0 0 0 0.0027 0 0 0 0 0 0
0.0070 0.9789 0.0141 0 0 0 0 0 0 0 0 0 0 0
0 0.0003 0.9956 0.0015 0.0017 0.0003 0 0 0 0.0006 0 0 0 0
0 0 0.0040 0.9907 0.0040 0.0013 0 0 0 0 0 0 0 0
0 0 0.0013 0.0009 0.9940 0.0013 0.0022 0 0 0 0 0.0003 0 0
0 0 0.0007 0.0007 0.0013 0.9940 0.0007 0 0 0 0 0 0.0027 0

Py — 0 0 0 0.0008 0.0024 0.0008 0.9927 0 0 0 0 0 0 0.0033
0.0174 0 0 0 0 0 0 0.9739 0.0087 0 0 0 0 0
0 0.2500 0 0 0 0 0 0 0.7500 0 0 0 0 0
0 0 0.0169 0 0 0 0 0.0169 0 0.9661 0 0 0 0
0 0 0 0.0217 0 0 0 0 0 0 0.9783 0 0 0
0 0 0 0 0.0085 0 0 0.0042 0 0.0042 0.0042 0.9788 0 0
0 0 0 0 0 0.0034 0 0 0 0.0034 0.0034 0.0034 0.9864 0

0 0 0 0 0 0 0.0044 0 0 0 0 0.0132 0 0.9825 |

Let us now assume a deviation of up to =30% affecting the elements in the main diagonal
of Py to produce a more realistic model. This assumption is rather reasonable as different
road scenarios, such as traveling in distinct regions of a country, provoke changes in the
behavior of the Markov process. That said, the vertices pg), [ = 1,2, of the transition
probability matrix were built in the following manner:

(
—0.3pl), ifj =i,

oV = 0.3p\), if (i< 14)and (j =i+ 1),

’ 0.3p), if (i =14)and (j = i — 1),
0, otherwise.

~0.3p, i j =i,

o) 03, (> 1and (=i 1)

D] 0 = nand =i+ 1),

0, otherwise.

At this point, a couple of remarks are adequate to close the appendix.
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Remark B.3. We considered accelerator and brake pedal positions as control signals of
the powertrain so as to design a more general framework. Indeed, the values of 7, and
Thrake,; CAN be translated into voltages or CAN bus signals to be transmitted to the related
electronic modules on different ground vehicles.

Remark B.4. The identification procedure presented in this appendix also applies if we
consider additional payloads and higher longitudinal velocities for the vehicle. If this is the
case, we account for gears crawler-1, crawler-2, 1st, 2nd, 3rd, 11th, and 12th for both
acceleration and brake actions. As such, the DMJLS would have 14 additional Markov
modes. Additionally, we would need at least three more vertices per mode to encompass the
payload variations.
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