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ABSTRACT

VIMIEIRO, Rodrigo de Barros Model-based deep learning to restore low-dose
digital breast tomosynthesis images. 2023. 144p. Thesis - São Carlos School of
Engineering, University of São Paulo, São Carlos, 2023.

Digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) are the
most commonly used exams for breast cancer screening. In these systems, achieving high
image quality is crucial for radiologists to detect the earliest signs of breast cancer and
improve the patient’s prognosis. The radiation dose is also a concern, given that these
systems employ ionizing radiation. While current systems operate within safe radiation
margins, there is a growing desire to minimize radiation dose without compromising
image quality. To address this challenge, image restoration techniques have emerged as
valuable tools to enhance image quality from low-dose (LD) acquisitions. Traditional
restoration methods rely on mathematical models that represent the underlying physics of
the acquisition system. Convolutional neural networks (CNN), employing modern deep
learning (DL) techniques, are capable of learning the image restoration task from data
and have exhibited substantial progress in recent years. This work proposes a hybrid
model-based deep learning (MBDL) framework for the restoration of DBT images acquired
with reduced radiation doses, benefiting from the advantages of both fields. Specifically, our
hypothesis is that the combination of known mathematical models with data-based (DB)
models can improve the results of purely MB or DB approaches. First, we investigate the
application of a CNN architecture to restore FFDM images, also evaluating the influence
of various loss functions and diverse training strategies. Second, we introduce an MBDL
approach inspired by a pipeline designed to restore LD mammographic images. We use
a variance stabilization transformation (VST) and known system-related parameters to
introduce priors implemented as neural network layers. Considering a Poisson-Gaussian
noise model, this framework operates within a VST domain, where the noise becomes
approximately Gaussian, signal-independent, and with unity variance, enhancing the
stability and simplicity of the learning process. Moreover, we propose a bias-residual noise
loss function to control the final noise characteristics. Three different CNN architectures
were tested and resulted in better performance compared with solely DB approaches.
Finally, we also propose an MBDL method to restore mammographic images corrupted
with spatially correlated noise. Although further validation is necessary, preliminary results
indicate that the MBDL may be suitable for this task. In conclusion, the synergy of MB
methods and DB approaches has great potential to be explored within the DL domain,
demonstrated by the improved results over models that do not benefit from those priors.

Keywords: Digital breast tomosynthesis. Convolutional neural networks. Deep Learning.
Artificial neural networks. Model-based deep learning. Image restoration.





RESUMO

VIMIEIRO, Rodrigo de Barros Aprendizagem profunda baseada em modelo para
restauração de imagens de tomossíntese digital mamária de baixa dose. 2023.
144p. Tese (Doutorado) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2023.

A tomossíntese digital da mama (DBT) e a mamografia digital de campo total (FFDM)
são os exames mais utilizados para rastreamento do câncer de mama. A dose de radiação
é uma preocupação, visto que estes sistemas utilizam radiação ionizante. Embora os
sistemas atuais operem dentro de margens seguras de radiação, há um desejo crescente
de minimizar a dose de radiação sem comprometer a qualidade da imagem. As técnicas
de restauração de imagens surgiram como ferramentas para melhorar a qualidade da
imagem a partir de aquisições de baixa dose. Os métodos tradicionais de restauração
baseiam-se em modelos matemáticos que representam a física de aquisição do sistema.
As redes neurais convolucionais (CNN) são capazes de aprender a partir de dados e têm
apresentado progresso substancial nos últimos anos. Este trabalho propõe uma estrutura
híbrida de aprendizagem profunda baseada em modelo (MBDL) para a restauração de
imagens DBT adquiridas com doses reduzidas de radiação, beneficiando-se das vantagens
de ambos os campos. Especificamente, nossa hipótese é que a combinação de modelos
matemáticos conhecidos com modelos baseados em dados (DB) pode melhorar os resultados
de abordagens puramente MB ou DB. Primeiramente, investigamos a aplicação de uma
arquitetura CNN para restaurar imagens FFDM, avaliando também a influência de diversas
funções de custo e diversas estratégias de treinamento. Em segundo lugar, apresentamos
uma abordagem MBDL inspirada em um framework projetado para restaurar imagens
mamográficas de baixa dose. Usamos um transformada de estabilização de variância (VST)
e parâmetros conhecidos relacionados ao sistema para introduzir conhecimentos a priori
implementados como camadas da rede neural. Três arquiteturas diferentes foram testadas
e resultaram em um melhor desempenho em comparação com abordagens exclusivamente
baseadas em dados. Finalmente, também propomos um método MBDL para restaurar
imagens mamográficas corrompidas com ruído correlacionado espacialmente. Embora seja
necessária uma validação adicional, os resultados preliminares indicam que o MBDL pode
ser adequado para esta tarefa. Em conclusão, a sinergia entre métodos MB e abordagens
de DB tem grande potencial a ser explorada, demonstrado pelos melhores resultados em
relação aos modelos que não se beneficiam desses conhecimentos a priori.

Palavras-chave: Tomossíntese digital mamária. Redes neurais convolucionais. Apren-
dizado profundo. Redes neurais artificiais. Aprendizado profundo baseado em modelo.
Restauração de imagens.
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1 INTRODUCTION

1.1 Motivation

Artificial intelligence (AI), and more specifically the machine learning (ML) area,
has been substantially improved in the field of medicine (TOPOL, 2019; RAJKOMAR;
DEAN; KOHANE, 2019), mainly in medical imaging (LEE; FUJITA, 2020). This advance
for medical imaging applications is explained due to the excellent results of these techniques
in computer vision (CV) tasks not related to health, such as in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).
Even more recently, the usage of large language models (LLM) has revolutionized the
general area of AI (RADFORD et al., 2018; RADFORD et al., 2019; BROWN et al., 2020;
DEVLIN et al., 2018).

With the advent of deep learning (DL) techniques, which have been replacing
conventional CV techniques, numerous applications are being developed for diagnostic
imaging systems, such as computed tomography (CT), magnetic resonance imaging (MRI),
ultrasound, mammography, etc. These applications cover areas such as medical image clas-
sification (CIOMPI et al., 2017; SHEN et al., 2019a; MCKINNEY et al., 2020), computer-
aided diagnosis (CAD) (HUA et al., 2015; AL-MASNI et al., 2018; CHAN; SAMALA;
HADJIISKI, 2019), tomographic image reconstruction (WU et al., 2017; ADLER; ÖK-
TEM, 2018), image segmentation (RONNEBERGER; FISCHER; BROX, 2015), noise
filtering (RAN et al., 2019), artifact reduction (ZHANG; YU, 2018), radiation dose reduc-
tion (CHEN et al., 2017a; YANG et al., 2018a), among many others (LANGLOTZ et al.,
2019).

In the CT field, a large number of works have been published in the area of DL
exploring the recent capabilities of convolutional neural network (CNN) (CHEN et al.,
2017a; CHEN et al., 2017b; SHAN et al., 2018; YANG et al., 2018a; SHAN et al., 2019;
MAN et al., 2019; YOU et al., 2019; WU et al., 2021). Similarly, in mammography systems,
these tools are also being applied (SAMALA et al., 2018; SHEN et al., 2019b; CHAN;
SAMALA; HADJIISKI, 2019; HARVEY et al., 2019; AREFAN et al., 2020).

Breast cancer kills approximately 685,000 women annually around the world and
this disease is the leading cause of cancer-related deaths for women (WHO, 2023). Screening
procedures aim to examine a certain asymptomatic population to detect cancer at an early
stage. According to the WHO (2023), the five-year survival rate1 is 80% when screening
procedures and basic treatments are taken.
1 “The percentage of people in a study or treatment group who are alive five years after they

were diagnosed with or started treatment for a disease, such as cancer. The disease may or
may not have come back.” Source: National Cancer Institute Dictionaries.

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/five-year-survival-rate
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Full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT)
are the preferred exam for breast cancer screening (SKAANE et al., 2013; FRIEDEWALD
et al., 2014). While the former generates a two-dimensional (2D) projection image of the
breast, the latter produces several projections at different angles and uses a reconstruction
algorithm to obtain slices of a three-dimensional (3D) volume of the breast. (VEDANTHAM
et al., 2015; HOOLEY; DURAND; PHILPOTTS, 2017). Both systems use ionizing radiation
at approximately the same radiation dose. Historically, several applications have been
applied to these systems to improve image quality and consequently the diagnosis precision.
Moreover, both require a compromise to keep the radiation dose at lower levels while
keeping satisfactory image quality.

Among the various applications of deep neural networks (DNNs), from image
generation to feature extraction, image restoration and tomographic reconstruction are
extremely important (WANG et al., 2018; RAVISHANKAR; YE; FESSLER, 2019; WANG;
YE; MAN, 2020). In the context of medical image restoration, these problems have been
solved by traditional methods like iterative reconstruction (DAS et al., 2010; XU et al.,
2015; ZHENG; FESSLER; CHAN, 2017) and denoising techniques (WU; MAINPRIZE;
YAFFE, 2012a; BORGES et al., 2017; BORGES et al., 2018). However, data-based (DB)
methods have been successfully applied in the field achieving excellent results (WU et al.,
2017; KANG; MIN; YE, 2017; CHEN et al., 2017a; WOLTERINK et al., 2017; CHEN et
al., 2017b; KANG et al., 2018; SHAN et al., 2018; SHAN et al., 2019; YIN et al., 2019;
WU et al., 2021).

The motivation of image processing techniques in both CT and DBT systems, in
general, is related to the improvement of image quality for a better diagnosis or to mitigate
patient health risks such as in applications to reduce radiation dose. Several works based
on domain-specific mathematical models have been proposed to achieve these purposes in
areas such as model-based iterative reconstruction (MBIR) methods (LEVAKHINA et al.,
2013; XU et al., 2015; ZHENG; FESSLER; CHAN, 2017; GARRETT et al., 2018), radiation
dose reduction techniques (WANG et al., 2006; MANDUCA et al., 2009; BORGES et al.,
2018) and so on. DL techniques have emerged in the image processing area because they
can learn different tasks directly from the data in a supervised or unsupervised manner.
Although there are neural networks (NNs) that were applied several years ago, it was not
until recently that they achieved promising results and became popular. This overwhelming
interest is partially explained due to the increase in computational power, allowing deeper
networks and also the greater availability of data. Although recently we have more access
to data, in the medical imaging scenario, data availability is still a concern (WANG; YE;
MAN, 2020).

More specifically in areas with DB applications, Liu et al. (2018), Sahu et al.
(2019) and Gao, Fessler and Chan (2021) proposed DL methods to restore low-dose (LD)
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DBT images. These works mainly focused on the projection domain, i.e., applying those
techniques to restore projection images. Similarly, Green et al. (2019) proposed a CNN
to restore LD FFDM images. Although they reached very promising results for DBT
compared to traditional methods, some limitations include the fact that the networks
were trained with breast specimens or physical/simulated phantoms. Different from the
other, for FFDM, Green et al. (2019) adapted a noise injection technique from digital
chest radiography. Although the restoration process in these works depends mainly on
the provided data for network learning, incorporating prior knowledge into the network’s
architecture could potentially enhance its performance.

This field is known as model-based deep learning (MBDL), where according to
Shlezinger et al. (2023), this area takes advantage of known mathematical models and DB
methods. Several works have been investigating this strategy (WU et al., 2017; KANG et
al., 2018; CHEN et al., 2018; WÜRFL et al., 2018; ADLER; ÖKTEM, 2018; GONG et al.,
2018; ZHANG et al., 2019; WU et al., 2021). Xia et al. (XIA et al., 2023) recently have
done an extensive review of MBDL for LD CT, comparing methods and demonstrating
the advantages of both DB and model-based (MB) approaches.

To train DL architectures for some specific task, like image restoration, usually
it is necessary to have access to a large amount of data. As previously mentioned, the
medical imaging field has limitations in terms of data availability. Also, data diversity is
expected so that the DB models can generalize well for different cohorts. Since MBDL
accounts with specific domain knowledge, due to the availability of precise mathematical
formulations proposed for specific tasks, the learning space is reduced and then the ML
algorithms can learn the data representation with less data (SHLEZINGER et al., 2023).
Moreover, pure CNNs are known as black boxes, making their application to the clinical
routine more difficult. The combination of DB models and physics/MB methods takes
advantage of both approaches enabling MBDL methods to be safer, more robust, and
more interpretable (XIA et al., 2023).

1.2 Objectives

1.2.1 General objectives

The objective of this work is to propose a framework to restore LD DBT images
using an MBDL approach. This framework is composed of well-known DB methods, e.g.,
a CNN, and takes advantage of popular mathematical formulations for image restoration.

The specific objectives of this thesis are:

1.2.2 Specific objectives

1. Create a dataset of mammography images to train a DB model for image restoration;



34

2. Investigate the influence of different loss functions in the task of restoration of LD
digital mammography;

3. Investigate the influence of dataset size, cross-validation and early stop for DBT
image restoration;

4. Demonstrate the importance of noise modeling in simulated images for good image
restoration using DB models;

5. Investigate the image restoration results in the frequency domain;

6. Propose image restoration techniques to reduce noise spatial correlation through DL
models;

7. Propose a MBDL framework to restore LD DBT images;

8. Compare the proposed framework with solely DB methods;

9. Propose a framework to restore LD DBT images corrupted with spatially correlated
noise;

10. Create a method to artificially insert clusters of microcalcifications (MC) in DBT
images;

1.3 Main contributions

In this section, I correlate the previously stated general and specific objectives with
the main contributions of this work. A general overview of each published manuscript is
made and it shows the respective association with the objectives.

Since DL methods are strongly dependent on the network architecture, loss function
and training strategies, in the first part of this thesis we used a commonly known residual
network (ResNet) to investigate the impact of several loss functions for the restoration of
FFDM images acquired with reduced radiation dose. In this work, Paper 1, we proposed
a DL framework to restore LD FFDM images which are meant to learn solely from the
provided data. Loss functions for image restoration have been previously investigated for
natural images but to the best of our knowledge not for medical images in the field of
mammography.

As the first step, we built a dataset with pairs of LD and full-dose (FD) images.
We used an in-house method to simulate the LD acquisitions in 400 retrospective clinical
images. Such dataset contains a great diversity of radiographic factors such as kVp and
mAs and different breast thicknesses. This is important for ML algorithms in the sense of
generalization capacity.
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A total of 11 losses were investigated in terms of two objective metrics. First, we
used the signal-to-noise ratio (SNR) and second the decomposition of mean normalized
squared error (MNSE) in bias and residual noise (RN). Such decomposition was able to
show that image-fidelity losses such as mean squared error (MSE) and mean absolute
error (MAE) had strong denoising properties, decreasing the noise at the cost of increasing
the bias. On the other hand, it was shown that visual content losses such as perceptual
loss (PL), adversarial, Fréchet inception distance (FID) and structural similarity index
measure (SSIM) had a good trade-off in terms of RN matching with the FD, keeping low
levels of bias.

This first part was an important step to show the importance of loss functions for
DL methods so when we compare standard data-based deep learning (DBDL) approaches,
we can choose a relevant method in this framework. This work was published by Artificial
Intelligence in Medicine journal. This journal is internationally recognized (Impact Factor:
7.5) and is classified as A1 by CAPES Qualis rank. Chapter 2 shows the complete work
that was published. Code is available on GitHub 2.

Since we have limited access to clinical data, some important training designs
are difficult to investigate. In Paper 2, we investigated the impact of dataset size, early
stop and cross-validation on the restoration of DBT projections. We used virtual clinical
trials (VCT) software to simulate 500 breast phantoms, yielding a total of 1 million
patches used for training. Even though we used simulated data for training, a physical
anthropomorphic breast phantom was used to measure the denoising properties through
the MNSE decomposition in bias and RN. We also showed in this work the importance of
accurate noise modeling for virtual images when DB models are used.

Through objective metrics, we observed that training the model several times leads
to distinct results. Depending on the task, the model can match the RN of the target or
achieve low bias values. Early stops are feasible, especially in cases where low bias values
are desired. Also, the largest dataset, with 1 million patches, did not improve the results
overall, and the model was able to get good results with approximately a quarter of this
amount.

All those findings were extremely important for further comparison between DBDL
and MBDL methods. Since the ML field has many hyper-parameters, investigation and
an extensive search for the best configuration are important. Then, we can perform a
fair comparison between DBDL and MBDL methods, using the correct loss function,
dataset size, and training strategy in general. Chapter 3 shows the complete work that
was published in the conference proceedings. This paper was published and presented at
the SPIE Medical Imaging conference, in 2023. Code is available on GitHub 2.

In Paper 1 and Paper 2, we observed some artifacts related to the PL. Those
artifacts resemble a chessboard pattern and were recently stated by Xia et al. (2023)

https://github.com/WANG-AXIS/LdDMDenoising
https://github.com/LAVI-USP/SPIE2022
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as well. This artifact is a consequence of the noise spatial correlation that the CNN
generates in the convolution process and can be observed in the frequency domain. Such
fact motivated the development of Paper 3, which proposed a method to restore LD
DBT projections and imposes noise properties fidelity in the frequency domain between
the original FD and restored images. The method consists of a power spectrum (PS) loss
combined with the PL. We built a dataset, following the same procedure stated in Paper 1,
with pairs of LD and FD images. We found that the combination of both losses yields good
results in terms of PS fidelity with respect to the FD target image, also achieving good
results of RN and bias. This paper was published and presented at the 16th International
Workshop on Breast Imaging 2022. Chapter 4 shows the complete work that was published
in the conference proceedings. Code is available on GitHub 2.

In the MBDL scenario, Paper 4 proposes a new approach to restore LD DBT
projections. We hypothesize that priors added to the network, in terms of layers, improve
the stability and final results. In this framework, we use precise mathematical formulations
developed over the years in combination with recent DB approaches such as neural networks,
as presented in the previous works. With the best of the two approaches, i.e., the specific
domain knowledge and stability for the MB approaches, and the great learning capacity
from DB models, the combination of both yields excellent results.

Since the proposed framework is agnostic to network architecture, we used three
different neural network architectures to perform a comparison between the DB and MB
approaches. We used the commonly known ResNet, residual encoder-decoder (RED) and
U-Net. For all architectures, we introduced new specialized layers to perform the variance
stabilization through the generalized Anscombe transformation (GAT), the inverse GAT,
and a residual layer with calculated weights. All those layers were inspired by a MB
pipeline proposed by Borges et al. (2017).

In general, there are two steps in the restoration framework. The first one, the
networks are trained with data in the variance stabilization transformation (VST) domain
in a self-learning fashion. In this domain, the noise becomes approximately Gaussian,
signal-independent, and with unity variance, making the NN learning procedure much
easier compared with conventional methods. This is done since we do not have noise-free
images to use as ground-truth (GT) and the MB pipeline was designed in such a way that
the filtering method completely removes the noise of the image. Second, the networks are
fine-tuned end-to-end with a novel bias-RN loss function, proposed in this work, to adjust
the trade-off between noise suppression and signal blur.

For each step, we used a specific dataset. First, in the self-learning mode, we used
a clinical dataset with simulated LD images. For the fine-tuning, we used synthetic images
from a VCT software, similar to Paper 2. Lastly, we used a real anthropomorphic phantom
to evaluate all the proposed models, similar to Paper 1.

https://github.com/LAVI-USP/IWBI2022-PSloss
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For comparison, we used the DBDL approach similar to what we presented in
Paper 1, using a combination of a MAE and PL, since it achieved the best results. For the
training strategy, we followed Paper 2, where we trained the DB approach for 60 epochs
for each loss, since we are targeting a RN match between the restored image and the FD.

We also used the MNSE decomposition, as in the other papers, and the proposed
MBDL approach had superior results when compared to models trained solely with data
without any priors. Still in objective metrics, the hybrid approach also achieved superior
results in terms of SSIM and SNR. The new framework was also superior in terms of
training time, graphics processing unit (GPU) memory utilization and it was demonstrated
to be more stable. The stability of MBDL was visualized when different architectures
produced objective metrics very similar to each other. This contrasts with what we stated
in Paper 2 for DBDL methods that achieved different results for different realizations even
for the same architecture.

This work was submitted to IEEE Transactions on Medical Imaging journal and it
is currently under review. Chapter 5 shows the complete work that was submitted. Code
is available on GitHub 2.

As stated in Paper 3, noise spatial correlation has to be considered in mammography
systems. Especially for indirect detectors that are affected by pixel cross-talk. Different
from the previous papers, which were proposed on a system with direct x-ray detection,
known to have white-noise properties, in Paper 5, we proposed a framework to restore
DBT projections that were degraded by frequency-dependent (correlated) noise. We also
consider this work as part of an MBDL field. With the mathematical models that estimate
and simulate noise correlation on those images, we can train a network to restore images
that were degraded in this scenario. Training with data acquired only in the equipment
itself would not be sufficient for such a task.

Using a cycle generative adversarial network (cycle-GAN) framework, we trained
two networks to perform a domain transform between correlated and independent images.
We followed all the mathematical models developed in the work of Borges et al. (2019) to
estimate and simulate the noise correlation kernel so we could apply it to the simulated
images on the VCT software. Since we have the target PS curves, this work shows that
the CNN was able to perform both denoising and decorrelation with noise frequency
components very close to the target image. We also illustrated some results for clinical
images, showing the potential of the framework, however, further clinical studies must
be performed to evaluate the real impact of the restoration on object localization and
detection. This paper was published and presented at the 16th International Workshop
on Breast Imaging 2022. Chapter 6 shows the complete work that was published in the
conference proceedings. Code is available on GitHub 2.

As discussed in Paper 5, it is necessary to clinically evaluate the proposed restoration

https://github.com/LAVI-USP/CNNonVST
https://github.com/LAVI-USP/NoiseDecorrelation-DBT
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through human perception studies. In Paper 6, we presented a method to artificially
insert MC clusters in normal exams of DBT. Such a tool is important as a first step in
the human perception study since only a small fraction of clinical images have positive
cases and the exact location of the lesion is not always known.

In this method, the user can control the size contrast and location of all MCs. The
MC dataset was obtained by segmenting the 3D structures from clinical cases acquired in
a prone stereotactic breast biopsy system. We used our in-house reconstruction toolbox2

to both project and back-project the data. A two-alternative forced-choice (2-AFC) study3

showed a success rate was 53.8%, suggesting that readers, on average, could not distinguish
between real and simulated MCs. Such work is extremely important since all the previous
works have as one of the objectives improving cancer detection or not decreasing it. This
paper was published and presented at the SPIE Medical Imaging conference, in 2023.
Chapter 7 shows the complete work that was published in the conference proceedings.
Code is available on GitHub 2.

1.4 Thesis organization

This document is organized in 8 chapters. Chapters 2 to 7 present the published or
submitted scientific publications. The selected manuscripts were:

1. Hongming Shan† , Rodrigo de Barros Vimieiro†, Lucas Rodrigues Borges, Marcelo
Andrade da Costa Vieira, and Ge Wang. “Impact of loss functions on the perfor-
mance of a deep neural network designed to restore low-dose digital mammogra-
phy.” Artificial Intelligence in Medicine, vol. 142, p. 102555, 2023. Available at:
https://doi.org/10.1016/j.artmed.2023.102555.

2. Rodrigo de Barros Vimieiro, Lucas Rodrigues Borges, Bruno Barufaldi, Andrew
Douglas Arnold Maidment, Ge Wang, and Marcelo Andrade da Costa Vieira. “Assess-
ment of training strategies for convolutional neural network to restore low-dose digital
breast tomosynthesis projections.” In Medical Imaging 2022: Physics of Medical Imag-
ing, vol. 12031, p. 470-479. SPIE, 2022. Available at: https://doi.org/10.1117/12.2609
945.

3. Rodrigo de Barros Vimieiro, Lucas Rodrigues Borges, Ge Wang, and Marcelo
Andrade da Costa Vieira. “Imposing noise correlation fidelity on digital breast
tomosynthesis restoration through deep learning techniques.” In 16th International
Workshop on Breast Imaging (IWBI2022), vol. 122861, p. 13. SPIE, 2022. Available
at: https://doi.org/10.1117/12.2626634.

2 www.github.com/LAVI-USP/pyDBT
3 www.github.com/LAVI-USP/2AFC_Interface

†Shared first authorship.

https://github.com/LAVI-USP/MCInsertionPackage-DBT
https://doi.org/10.1016/j.artmed.2023.102555
 https://doi.org/10.1117/12.2609945
 https://doi.org/10.1117/12.2609945
https://doi.org/10.1117/12.2626634
www.github.com/LAVI-USP/pyDBT
www.github.com/LAVI-USP/2AFC_Interface
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4. Rodrigo de Barros Vimieiro, Chuang Niu, Hongming Shan, Lucas Rodrigues
Borges, Ge Wang, and Marcelo Andrade da Costa Vieira. “Learning in a variance
stabilization domain to restore low-dose digital breast tomosynthesis projections.”
(Submitted to IEEE Transactions on Medical Imaging journal and it is currently
under review).

5. Rodrigo de Barros Vimieiro, Lucas Rodrigues Borges, Renato França Caron,
Bruno Barufaldi, Andrew Douglas Arnold Maidment, Ge Wang, and Marcelo Andrade
da Costa Vieira. “Suppressing noise correlation in digital breast tomosynthesis
using convolutional neural network and virtual clinical trials.” In 16th International
Workshop on Breast Imaging (IWBI2022), vol. 12286, p. 314-320. SPIE, 2022.
Available at: https://doi.org/10.1117/12.2625357.

6. Rodrigo de Barros Vimieiro, Lucas Rodrigues Borges, Bruno Barufaldi, Andrew
Douglas Arnold Maidment, Renato França Caron, Silvia Maria Prioli De Souza
Sabino, Ge Wang, and Marcelo Andrade da Costa Vieira. “Computational method
to artificially insert clusters of microcalcifications in digital breast tomosynthesis.”
In Medical Imaging 2023: Physics of Medical Imaging, vol. 12463, p. 572-578. SPIE,
2023. Available at: https://doi.org/10.1117/12.2653857.

Chapter 8 offers general and specific conclusions. In this chapter, I also present the
proposed future work.

1.5 Other contributions

During the period of this work, other contributions, beyond the main ones previously
stated, were also proposed. The manuscripts are:

1. Arthur Chaves da Costa, Rodrigo de Barros Vimieiro, Lucas Rodrigues Borges,
Bruno Barufaldi, Andrew Douglas Arnold Maidment, and Marcelo Andrade da
Costa Vieira. “Assessment of video frame interpolation network to generate digital
breast tomosynthesis projections.” In 16th International Workshop on Breast Imaging
(IWBI2022), vol. 12286, p. 329-336. SPIE, 2022. Available at: https://doi.org/10.1117/
12.2625748.

2. Denis Henrique Pinheiro Salvadeo, Rodrigo de Barros Vimieiro, Marcelo Andrade
da Costa Vieira, and Andrew Douglas Arnold Maidment. “Bayesian reconstruction
for digital breast tomosynthesis using a non-local Gaussian Markov random field a
priori model.” In Medical Imaging 2019: Physics of Medical Imaging, vol. 10948, p.
1246-1251. SPIE, 2019. Available at: https://doi.org/10.1117/12.2513140.

https://doi.org/10.1117/12.2625357
https://doi.org/10.1117/12.2653857
https://doi.org/10.1117/12.2625748
https://doi.org/10.1117/12.2625748
https://doi.org/10.1117/12.2513140
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3. Renann de Faria Brandão, Rodrigo de Barros Vimieiro, Lucas Rodrigues Borges,
Renato França Caron, and Marcelo Andrade da Costa Vieira. “Evaluating the simu-
lation of radiation dose reduction in a digital breast tomosynthesis system featuring
an amorphous silicon (a-Si) detector.” Revista Brasileira de Física Médica, vol. 13, no.
2, p. 30-34, 2019. Available at: https://doi.org/10.29384/rbfm.2019.v13.n2.p30-34.

https://doi.org/10.29384/rbfm.2019.v13.n2.p30-34
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2 PAPER 1: IMPACT OF LOSS FUNCTIONS ON THE PERFORMANCE OF A
DEEP NEURAL NETWORK DESIGNED TO RESTORE LOW-DOSE DIGITAL
MAMMOGRAPHY

The material presented in this chapter was published in: Shan, Hongming† , Rodrigo
de Barros Vimieiro†, Lucas Rodrigues Borges, Marcelo Andrade da Costa Vieira, and Ge
Wang. “Impact of loss functions on the performance of a deep neural network designed
to restore low-dose digital mammography.” Artificial Intelligence in Medicine, vol. 142,
p. 102555, 2023. Available at: https://doi.org/10.1016/j.artmed.2023.102555. The author
obtained permission for total and/or partial reproduction of the content from the publisher
Elsevier.

2.1 Abstract

Digital mammography is currently the most common imaging tool for breast cancer
screening. Although the benefits of using digital mammography for cancer screening
outweigh the risks associated with the x-ray exposure, the radiation dose must be kept
as low as possible while maintaining the diagnostic utility of the generated images, thus
minimizing patient risks. Many studies investigated the feasibility of dose reduction
by restoring low-dose images using deep neural networks. In these cases, choosing the
appropriate training database and loss function is crucial and impacts the quality of the
results. In this work, we used a standard residual network (ResNet) to restore low-dose
digital mammography images and evaluated the performance of several loss functions. For
training purposes, we extracted 256,000 image patches from a dataset of 400 images of
retrospective clinical mammography exams, where dose reduction factors of 75% and 50%
were simulated to generate low and standard-dose pairs. We validated the network in a
real scenario by using a physical anthropomorphic breast phantom to acquire real low-dose
and standard full-dose images in a commercially available mammography system, which
were then processed through our trained model. We benchmarked our results against an
analytical restoration model for low-dose digital mammography. Objective assessment was
performed through the signal-to-noise ratio (SNR) and the mean normalized squared error
(MNSE), decomposed into residual noise and bias. Statistical tests revealed that the use of
the perceptual loss (PL4) resulted in statistically significant differences when compared to
all other loss functions. Additionally, images restored using the PL4 achieved the closest
residual noise to the standard dose. On the other hand, perceptual loss PL3, structural
similarity index (SSIM) and one of the adversarial losses achieved the lowest bias for
both dose reduction factors. The source code of our deep neural network is available at
https://github.com/WANG-AXIS/LdDMDenoising.

†Shared first authorship.

https://doi.org/10.1016/j.artmed.2023.102555
https://github.com/WANG-AXIS/LdDMDenoising
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2.2 Introduction

Early diagnosis of breast cancer is crucial to improve the survival rate. The expansion
of breast screening programs contributed to improve this rate, which has been significantly
increased in the last years (SAADATMAND et al., 2015). This disease is still the main
cause of cancer-related deaths among women and screening mammography is the primary
tool for detecting tumors at early stages, especially for women at the age of 50-69 (WHO,
2023).

Full-field digital mammography and digital breast tomosynthesis are the most
common imaging tools for breast cancer screening (MICHELL; BATOHI, 2018). In these
systems a small dose of x-ray radiation is used to generate projections of the breast, which
are then interpreted by a radiologist (VEDANTHAM et al., 2015). Although the radiation
dose levels are kept within a safe margin, it is desirable to keep the dose as low as possible
while maintaining satisfied image quality to fulfill the clinical screening purposes (IAEA,
2018). However, reducing radiation doses can degrade image quality, limiting the perfor-
mance of the radiologist on searching and characterizing subtle lesions (HAUS; YAFFE,
2000; HUDA et al., 2003; JR et al., 2007; CHAN et al., 2020).

Several works in the field of medical imaging investigate the potential of reducing
radiation dose by restoring low-dose (LD) exams to achieve image quality comparable to the
ones at the clinical routine. Some proposals, in the field of computed tomography (KALRA
et al., 2003; MANDUCA et al., 2009; LI et al., 2014) and digital mammography (WU;
MAINPRIZE; YAFFE, 2012a; BORGES et al., 2017; BORGES et al., 2018), evaluated this
technique in a model-based (MB) approach, using restoration methods through denoising
techniques to improve image quality. In Borges et al. (2017) and Borges et al. (2018), the
authors proposed a pipeline to restore LD mammography through a variance stabilizing
transformation (VST). Recently, it was shown that the denoising method may improve
the localization of microcalcifications (MC) in these exams (BORGES et al., 2020).

With the rapid development of deep learning techniques, in particular the con-
volutional neural networks (CNNs), many studies have proposed algorithms to improve
the quality of LD images and achieved comparable, or even better results, than the MB
ones (WU et al., 2017; KANG; MIN; YE, 2017; CHEN et al., 2017a; WOLTERINK et
al., 2017; CHEN et al., 2017b; YANG et al., 2018a; KANG et al., 2018; SHAN et al.,
2018; YANG et al., 2018b; SHAN et al., 2019; YIN et al., 2019). This new data-based
approach takes advantage of learning features directly from a dataset rather than explicitly
applying advanced feature extraction techniques or modeling the system mathematically.
One important constraint of data-based techniques is the necessity of a great number
of images and a diverse dataset for the training process (SUN et al., 2017). In the field
of medical imaging, access to large datasets is limited and some techniques, such as
data augmentation and transfer learning, have been applied to increase the size of the
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dataset (LEE; FUJITA, 2020; COSTA et al., 2020). Moreover, when it comes to LD image
restoration using supervised learning, acquisitions at different dose levels are required in
the training process. Although it may be possible to create experimental LD/FD imaging
protocols, such as in Wolterink et al. (2017), exposing the patient multiple times increases
the risks of induced cancer.

Thus, in the field of computed tomography, a common approach is to train these
deep networks using clinical data (MCCOLLOUGH et al., 2017), where LD images are
obtained by injecting extra noise into the standard full-dose (FD) projections (SHAN
et al., 2019). In the field of mammography, it is common to use breast specimen Liu
et al. (2018), physical phantoms Gao, Fessler and Chan (2021) or virtual clinical trials
(VCT) software (SAHU et al., 2019) to generate low-dose and full-dose image pairs for
the training process of these deep networks. In Green et al. (2019) the authors adapted
a noise injection technique from digital chest radiography to simulate ultra-low-dose
mammography acquisitions and thus trained a CNN for denoising.

When it comes to the deep neural network (DNN) structure and the training step
for the restoration process, there are two key components: the network architecture and
loss function. The former determines the complexity of the denoising model, while the
latter controls the learning process. Thus, the loss function has a direct impact on image
quality and it is relatively more important than the network architecture for the task of
image restoration (SHAN et al., 2018).

As the restoration of LD mammography is composed of a denoising process, most
image translation models can be adapted to this task, such as residual encoder-decoder con-
volutional neural networks (RED-CNN) (CHEN et al., 2017a), U-net (RONNEBERGER;
FISCHER; BROX, 2015) and dense networks (HUANG et al., 2017). Even though the
denoising process is part of the restoration process, the main goal of such a task is to map
LD images to standard FD. That is where the loss function plays an important role in
measuring the similarity between the image pair. Commonly-used loss functions include
error visibility methods, such as mean squared error (MSE) and mean absolute error
(MAE); structural similarity methods, such as structural similarity index (SSIM) (WANG
et al., 2004) and complex Wavelet SSIM index (CW-SSIM) (WANG; SIMONCELLI, 2005);
information-theoretical methods, such as IFC (SHEIKH; BOVIK; VECIANA, 2005) and
VIF Sheikh and Bovik (2006); and DNN methods, such as perceptual loss (PL) (JOHN-
SON; ALAHI; FEI-FEI, 2016), adversarial loss (GOODFELLOW et al., 2014), Fréchet
inception distance (FID) (MATHIASEN; HVILSHØJ, 2020), and image quality trans-
former (IQT) (CHEON et al., 2021). In (ZHAO et al., 2016), the authors investigated
commonly-used losses for image restoration with neural networks for natural images.
In (DING et al., 2021), the authors also investigated several image quality assessment
methods as loss function for low-level computer vision tasks on natural images.
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However, in contrast with natural images, image restoration for medical images,
more specifically for mammography, is a meticulous task, where subtle structures such as
MC are extremely important and must be preserved in the restoration process. Moreover,
it is desired that the noise properties of the restored image match the FD ones, which is
also important for radiologists in the clinical routine. This was demonstrated in (NAGARE
et al., 2021), where the authors proposed a loss function that takes into account the bias
and noise variance for the restoration algorithm.

The objective of this work is to investigate different loss functions of the DNN and
their impact on the performance of the restoration of LD mammography images. We assess
the efficiency of each loss function measuring the signal-to-noise ratio (SNR) and the mean
normalized squared error (MNSE), decomposed into residual noise and bias, after the
restoration process. To this end, we used a commonly known residual convolutional neural
network (ResNet) He et al. (2016), illustrated on Fig. 1. The reasons why we used this
model are two-fold: (1) it has been extensively used for image restoration, and (2) we could
avoid any potential bias of a new network for evaluating the impact of loss functions. For
the learning process, we build a clinical dataset from retrospective mammography exams,
combined with a computational method to simulate LD acquisitions pairs (BORGES
et al., 2016; BORGES et al., 2017). The adopted method performs noise injection in a
variance-stabilizing domain, avoiding assumptions about the unknown noise-free signal.
Furthermore, the spatial dependence of the quantum noise, the electronic noise and the
noise spatial correlation were taken into account in the simulation, which enabled the
generation of accurate clinical image samples for each patient, as if they had been acquired
with lower radiation doses. At the end, the assessment of the trained model was performed
on real LD mammography acquisitions using a physical anthropomorphic breast phantom.

The main contributions of this paper are summarized as follows.

• A comprehensive evaluation of common loss functions specifically to the field of
medical imaging with an emphasis on digital mammography.

• A new training strategy using 400 LD clinical data from retrospective mammography
examinations was proposed. This enables the model to have contact with a diverse
dataset, with different tissue structures, densities, signal and noise levels, etc.

• Validation of each loss function with an objective metric that can evaluate blurring
and noise individually.

The remainder of the paper is organized as follows. Section 2.3 introduces the
theoretical background for the image degradation model and for the restoration model
including both the MB and data-based, and the loss functions used in this study. Section 2.4
presents the datasets used in this work, all the implementation details and the metrics
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used for the evaluation. In Section 2.5, the quantitative results and also some regions of
interest (ROIs) are shown for all the loss functions, followed by a concluding summary in
Section 2.6.

2.3 Theoretical background

The image restoration methods can be approached on several fronts. A common
practice, which has been extensively presented in the literature, is to model the x-ray
acquisition system and create mathematical formulations to perform the desired restoration.
Although this was a common procedure in the past few years, new deep learning techniques
have shown a great capacity of learning from the data, through supervised learning. This
section presents the background information behind the image degradation model for
mammography systems, the basics of the MB approach to restore the LD images and the
used model.

2.3.1 Degradation model

Considering X ∈ Rw×h an observed X-ray mammography image of size w × h at
standard FD, following (BORGES et al., 2018), we can model an acquisition as follows:

X = Y + η, s.t. [η]ij ∼ N
(
0, λY ij + σ2

e

)
, (2.1)

where Y is the noise-free image, and η is the corresponding noise at standard FD. Note
that [η]ij represents the element at the i-th row and j-th column of the noise matrix η, and
follows a Gaussian distribution with zero mean and variance equal to λY ij + σ2

e ; here, λ is
the quantum noise gain and σ2

e is the variance of the electronic noise. Although in x-ray
images the noise is often modeled through a Poisson-Gaussian distribution, the energy
ranges at which digital mammography operates allow the assumption of a signal-dependent
Gaussian distribution, as done in Eq. (2.1), thanks to the Central Limit Theorem (AZZARI;
BORGES; FOI, 2018). Now let us consider another raw mammogram Xγ , acquired using
the same radiographic factors as X except for a reduction in current-time product (mAs),
resulting in lower dose. The mammogram Xγ can be described as a function of the
noise-free signal in Eq. (2.1) as follows:

Xγ = γY + ηγ, s.t. [ηγ]ij ∼ N
(
0, γλY ij + σ2

e

)
, (2.2)

where 0 < γ < 1 is the mAs scaling factor, and thus the dose reduction factor.

The goal of this work is to investigate appropriate loss-functions capable of training
a CNN to achieve Eq. (2.1) starting from Eq. (2.2), while keeping the noise-free signal Y

as preserved as possible, with minimal blur and smear caused by the restoration process,
i.e.:

X̂ = Ψ(Xγ), (2.3)

where X̂ is the restored image and Ψ(·) is the non-linear restoration operator.
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Figure 1 – Architecture of the network used in this study.

2.3.2 Restoration model

From Eqs. (2.1) and (2.2), the restoration task may be approached as a mathematical
operator, which we will refer to as MB approaches. Alternatively, taking advantage of the
great capacity of DNN, it is also possible to train a model to perform the whole restoration
process avoiding the estimation of noise parameters. In this section we discuss both the
model- and data-based approaches.

2.3.2.1 Model-based

In (BORGES et al., 2017; BORGES et al., 2018), our group proposed a MB pipeline
to restore LD mammography images, leveraging a variance stabilization technique, namely
the generalized Anscombe transformation (GAT) (STARCK; MURTAGH; BIJAOUI,
1998). With this technique, it is possible to use any denoising technique designed to
treat signal-independent Gaussian-distributed data. The pipeline involves modeling the
equipment’s noise parameters, such as quantum noise gain, electronic noise variance, and
the detector offset. These components are used in the GAT to bring the image to the
domain where the noise model is signal-independent and approximately Gaussian. In the
GAT domain, the block-matching and 3D filtering (BM3D) (DABOV et al., 2007) is used
to suppress noise and the exact unbiased inverse of the generalized Anscombe transform is
applied (MAKITALO; FOI, 2012). Finally, the denoised image is blended with the LD
image through a weighted average. We refer to Borges et al. (2018) for more details about
the MB restoration process.

2.3.2.2 Data-based

This subsection presents the deep learning-based denoising model for restoration of
LD digital mammography. Despite the high dimensionality of the Euclidean space in medical
images, it is known that these images lie in low-dimensional manifolds (WU et al., 2017;
YANG et al., 2018a). As DNNs, given sufficient trainable parameters, can approximate any
non-linear transformation functions, one can model the non-linear transformation Ψ, from
Eq. (2.3), using deep neural-networks with the appropriate architecture and loss-function.

Inspired by the success of residual skip connection in various tasks such as image
classification (HE et al., 2016), image denoising (WOLTERINK et al., 2017; CHEN et al.,
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2017a), reinforcement learning (SILVER et al., 2017), we used the ResNet to better model
the noise distribution of the LD digital mammography.

The network has four residual blocks, each of them has a skip connection and
serves as basic units. Each residual block contains four layers: two convolutional layers
and two batch-normalization layers (IOFFE; SZEGEDY, 2015). The batch normalization
layer has been proved to accelerate deep network training by reducing internal covariate
shift. Rectified linear unit (ReLU) activation function is used after batch normalization
layer or addition operation.

Specifically, all convolutional layers have 64 convolutional filters of size 3 × 3 with
a stride of 1 and a zero-padding of 1 except for the final convolutional layer that has only
one convolutional filter. Throughout the network, the feature-maps have the same size as
the input image.

2.3.3 Loss functions

The loss function plays an important role in training a restoration model and can
determine the visual aspect of the generated images. In Zhao et al. (2016), the authors
investigated the effects of several commonly-used losses for image restoration with neural
networks. The difference between this study and theirs lies in two aspects. First, we
study the effects of different losses for image restoration of LD digital mammography,
while Zhao et al. (2016) focused on natural images. In digital mammography, as opposed
to natural images, specific high-frequency and low-contrast features of the exams, such
as MC and small masses, are vital for the successful clinical use of the data. Thus, in
this scenario, it is preferable to retain some residual noise and keep those subtle features
intact instead of aggressively filtering the data at the risk of masking lesions. Second,
in addition to those metrics studied in Zhao et al. (2016), we also studied adversarial
loss, the PL (JOHNSON; ALAHI; FEI-FEI, 2016), which is based on a pretrained VGG
model (SIMONYAN; ZISSERMAN, 2014) and the FID (MATHIASEN; HVILSHØJ, 2020;
HEUSEL et al., 2017), which is based on the Inception model (SZEGEDY et al., 2015).

Different losses compute the similarity between the generated and GT images in
different ways. We denote the generated and GT images as X̂ ∈ Rw×h and X ∈ Rw×h,
respectively.

2.3.3.1 Mean squared error

MSE is the most widely used metric to measure the pixel-wise difference between
generated and GT images. It can be formally defined as:

LMSE = 1
wh

w∑
i=1

h∑
j=1

(
[X̂]ij − [X]ij

)2
, (2.4)

where X ij indicates the element at i-th row and j-th column in X.
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2.3.3.2 Mean absolute error or ℓ1

Slightly different from MSE, MAE computes the ℓ1 loss between the generated and
GT image. As a result, MAE does not over-penalize larger errors and can overcome the
smoothness caused by MSE. It can be defined as:

LMAE = 1
wh

w∑
i=1

h∑
j=1

∣∣∣[X̂]ij − [X]ij
∣∣∣ . (2.5)

(a) (b) (c)

Figure 2 – Histograms showing the variability of (a) kVp, (b) mAs and (c) breast thickness
in the clinical images from the training dataset.

2.3.3.3 Structural similarity index

SSIM is a widely-used image quality evaluation metric (WANG et al., 2004). SSIM
can measure the visual similarity between two images in terms of their structures and
textures. The SSIM index is computed based on various windows of an image. The measure
between the window x̂ over X̂ and the window x over X, based on a common window
size k × k, can be defined as:

SSIM(x̂, x) = 2µx̂µx + c1

µ2
x̂

+ µ2
x + c1

2σx̂x + c2

σ2
x̂

+ σ2
x + c2

, (2.6)

where µx̂ and µx are the averages of x̂ and x respectively, σx̂ and σx are the variances
of x̂ and x respectively, and σx̂x is the covariance of x̂ and x. Also, c1 = 1 × 10−4 and
c2 = 9 × 10−4 are two constants, which are used to stabilize the division with a weak
denominator. The window size k is 11, as suggested in Wang et al. (2004). The MSSIM
between two images X̂ and X, MSSIM(X̂, X), refers to the average of the SSIM index
over all windows. The SSIM loss is defined as:

LSSIM = 1 − MSSIM
(
X̂, X

)
. (2.7)

2.3.3.4 Perceptual loss

PL attempts to compare the similarity between two images in a high-level feature
space (JOHNSON; ALAHI; FEI-FEI, 2016). A pretrained VGG model is widely used to
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extract features from an image to form such a high-level feature space, which is expected
to mimic the human visual system. PL is similar to MSE, but in a feature space instead
of pixel space. It can be defined as:

LPL = 1
w′h′c′

w′∑
i=1

h′∑
j=1

c′∑
k=1

(
[Φ(X̂)]ijk − [Φ(X)]ijk

)2
, (2.8)

where Φ represents the feature extractor, whose output is a tensor of size w′ × h′ × c′.
The PL can be computed on early or later layers of the VGG network. Each layer is
commonly denominated as a block of convolutions and activation functions, e.g. ReLU,
before the max-pooling. For example, PL1 contains the first two convolution layers and
their respective activation function.

2.3.3.5 Adversarial loss

Adversarial loss was first presented in (GOODFELLOW et al., 2014) to train a
model to generate realistic synthetic images. The GAN framework contains two networks:
a generator (G) to create the images and a discriminator (D) to evaluate the created
image. In this work, we used the Wasserstein GANs with gradient penalty (WGAN-
GP) (GULRAJANI et al., 2017). The generator loss is given by:

LGAN = LMAE + λadv ∗ Ladv(G), (2.9)

and
Ladv(G) = −E{D(X̂)}, (2.10)

where LMAE is the pixel-wise previously stated, λadv is weighting factor, and Ladv(G) the
adversarial loss for the generator. We followed the the discriminator loss is given by the
original paper (GULRAJANI et al., 2017).

2.3.3.6 Fréchet inception distance

FID was first proposed to measure the image quality of images generated by
GANs (HEUSEL et al., 2017). The metric is calculated as:

LFID = ||µx̂ − µx||2 + Tr(Σx̂ + Σx − 2 ∗
√

Σx̂ ∗ Σx), (2.11)

where Tr(·) is the trace of a matrix, µ is the mean vector, and Σ the covariance matrix.
Both µ and Σ are calculated over feature map vectors acquired after a batch of images are
forwarded through a Inception-v3 model.

2.4 Materials & methods

For reliable training and validation, we created two distinct sets of images: the
first with clinical cases and the second with anthropomorphic breast phantom images. We
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used a hybrid dataset of clinical images with simulated LD/FD pairs and later restricted
testing the trained model in the phantom data, with LD acquisitions acquired directly in
the mammography equipment. Doing so, we avoid the so-called “inverse crime”, which is
to test and train the model with the same fabricated synthetic data (ZHAO et al., 2016).
In this section, we specify how both datasets used in this study were constructed. Also, in
this section we present the DNN implementation details and the evaluation metrics used
in this study.

2.4.1 Training dataset

The training dataset consists of 400 clinical mammography acquired at the Barretos
Cancer Hospital (Brazil). These data were obtained retrospectively from breast cancer
screening examinations, after approval by the institutional review board. This dataset
is relative to 100 patients with their respective images from the craniocaudal (CC) and
mediolateral oblique (MLO) views of the left and right breast. All images were acquired
using a Hologic Selenia Dimensions Mammography System (Hologic, Bedford, MA) and
all the images were saved as raw data, i.e., DICOM “for processing”. Fig. 2 shows the
occurrence of different values of kVp, mAs, and breast thickness in the training dataset.
All clinical images were fully anonymized to preserve patients’ medical records.

As previously discussed, exposing patients to x-ray radiation several times to build
an image dataset with LD acquisitions can be dangerous and impractical in the clinical
routine. In order to acquire clinical images at lower doses, we used a previous work to
simulate dose reduction in these data (BORGES et al., 2016; BORGES et al., 2017). The
method injects quantum and electronic noise in the VST domain and also accounts for the
detector crosstalk. We refer to both these works for further details about this technique.
We applied this technique to all clinical images to simulate acquisitions of 75% and 50%
of the standard FD, in which the image was originally obtained (γ = 0.75 and γ = 0.50,
respectively). After the simulation, we reached a total of 1,200 images among full and
reduced doses.

2.4.2 Testing dataset

To validate the restoration methods that were trained on the clinical dataset, we
acquired images of a physical anthropomorphic breast phantom at the Hospital of the
University of Pennsylvania. We also used a Hologic Selenia Dimensions Mammography
System, as for the training dataset. The phantom has six slabs, with total thickness of 51
mm. It consists of a material that mimics the breast tissue and was prototyped by CIRS,
Inc. (Reston, VA), under the license from the University of Pennsylvania (CARTON et
al., 2011). Small pieces of calcium oxalate (99%, Alfa Aesar, Ward Hill, MA) were placed
between the six slabs to simulate MCs, as illustrated in Fig. 3.
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Figure 3 – Image of the physical anthropomorphic breast phantom used in this study. The
red arrow points to the pieces of calcium oxalate that were placed between the
slabs to simulate a cluster of microcalcifications.

We acquired a total of 25 images of the anthropomorphic breast phantom. Firstly,
for the FD, the automatic exposure control (AEC) was used to select the standard
radiographic factors, which yielded a combination of 29 kVp and 160 mAs. Without
physically moving the phantom, the system was set to manual mode and 15 exposures
at the standard radiographic factors were performed to generate a set of FD images. For
reduction factors of 75% and 50%, 10 images were acquired by reducing the current-time
product from 160 mAs to 120 mAs and 80 mAs respectively. It is important to note that
all these images were saved as raw data.

2.4.3 Figures of merit

To take advantage of being capable of exposing the physical anthropomorphic breast
phantom several times, we generated a pseudo-GT and compared all the restored images
with this GT through an assessment of the signal-to-noise ratio (SNR) and the mean
normalized squared error (MNSE) decomposed into residual noise (RN ) and bias squared
(B2). This metric was previously presented in Borges et al. (2018) for the assessment of
digital breast tomosynthesis images.

We first measured the signal-to-noise ratio (SNR) in all phantom images and its
restorations as the ratio of the mean pixel value and its standard deviation along the five
realizations. The metric was calculated only inside the breast region and an average filter
of size 15×15 was used to smooth both the mean signal value and the standard deviation
after their calculation.

Considering X ⊂ Rw×h a subspace of FD mammography acquisitions, suppose
we have a set of N realizations X∗ ∈ X for the the GT estimation, and a set of P

realizations X
′ ∈ X for MNSE assessment. Here we refer to the GT as the expectation of
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Full-dose (FD) 100% Low-dose (LD) 75% Low-dose (LD) 50%

RestorationGround-Truth set FD 100% LD 75% Restored 75% LD 50% Restored 50%

Figure 4 – Illustration of how the anthropomorphic breast phantom dataset was subdivided
for the assessment of the MNSE and its decomposition. The metrics were
evaluated on all different colored sub-groups of FD, LD and restored images.

the acquisitions on this subspace X̂GT = E{X∗}. Also, after breast phantom segmentation,
we denote (i, j) as a pair of 2D indices running inside a set I ∈ X+ of size I < w × h. The
set I represents the collection of pixel coordinates after the segmentation. The MNSE can
be calculated as:

MNSE = 1
P

P∑
p=1

1
I

∑
(i,j) ∈ I

(
[X ′

p]ij − [X̂GT ]ij
)2

[X̂GT ]ij︸ ︷︷ ︸
NQE

− 1
IN

∑
(i,j) ∈ I

V ([X∗]ij)
[X̂GT ]ij︸ ︷︷ ︸

ϕ1

, (2.12)

where ϕ1 is accounting for the error associated with the limited number of images used
for the GT estimation and V (X∗) is a point-wise variance among this set of images. It is
possible to decompose the MNSE into RN and B2 portions, such that:

MNSE =

 1
I

∑
(i,j) ∈ I

(
E{[X ′ ]ij}−[X̂GT ]ij

)2

[X̂GT ]ij

−ϕ1− RN

P︸ ︷︷ ︸
B2

+ 1
I

∑
(i,j) ∈ I

V
(
[X ′ ]ij

)
[X̂GT ]ij︸ ︷︷ ︸

RN

. (2.13)

For the practical evaluation, we first manually segmented the phantom image to
avoid calculating the metric outside the breast tissue. From the 15 images at the FD,
10 were used to generate the GT (N = 10) and 5 to calculate the metric (P = 5). As
previously mentioned, 5 images of each reduced dose (Pγ = 5) were used to calculate
the metric as well. The scheme shown in Fig. 4 illustrates how we separated all the
phantom images. The MNSE and its decomposition were evaluated on all different colored
sub-groups of LD and restored images.

To avoid error on the B2 due to differences in the mean value from different
acquisitions, we used a technique of fitting a first-order polynomial to correct the image
mean value. First, the GT was calculated following the previous equations, and then all
the images used to generate the GT itself were adjusted based on the calculated GT, as
done in Borges et al. (2018). After this correction, the GT was calculated again and all the
non-GT FD acquisitions were also adjusted through the fitting technique. All the restored
images and the LD acquisitions had their mean value adjusted through this method. This
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overall process guarantees that the B2 error measurement is due to the smearing/blurring
imposed by the restoration process and not small changes in the mean value of the images.

We also compared the time spent to run the restoration process on the model based
approach and in the deep network.

2.4.4 Implementation details

Overall, we trained 22 models in this study: 11 dedicated to restore 75%-dose
images and 11 dedicated to 50%-dose. Each of these 11 models refer to the mentioned
loss functions from Section 2.3.3. We also performed 3-fold cross-validation for each loss,
leading to a total of 66 models. Although there is a range of different loss functions for
image restoration, as shown in (DING et al., 2021), we used in this work examples of
error visibility methods, e.g., the MAE; structural similarity method, e.g., the SSIM; and
DNN method, e.g., the PL, FID, and adversarial loss. These losses are commonly used
by previous work in the field of medical imaging restoration (CHEN et al., 2017a; CHEN
et al., 2017b; YANG et al., 2018a; KANG et al., 2018; SHAN et al., 2018; YANG et al.,
2018b; SHAN et al., 2019). For the PL, following Johnson, Alahi and Fei-Fei (2016), we
used the VGG-16 network (SIMONYAN; ZISSERMAN, 2014), which was pretrained on
the ImageNet dataset and publicly available at the PyTorch official website. Since different
layers of the VGG-16 networks can form different feature spaces, we used the feature-maps
right before the first four max-pooling layers to form four different feature spaces, and then
obtain four corresponding PLs from shallow to deep. We denote these four PLs as LPL1,
LPL2, LPL3, and LPL4. We found that too many max-pooling layers involved in PL largely
affect pixel-wise comparison, therefore, we removed all max-pooling layers in PL4. For the
FID loss, we used a pre-trained Inception v3 model and followed the work of Mathiasen
and Hvilshøj (MATHIASEN; HVILSHØJ, 2020) for implementing the algorithm1. In the
adversarial loss, we use three candidate values for λadv to illustrate the different impacts
of this parameter. We used the ResNet as architecture for the generator and the same
architecture described in the original paper for the discriminator (also called critic).

For all neural networks with different losses, the initial learning rate λ was set
as 1.0 × 10−4 and was reduced to half every 10 epochs. The trainable parameters in
the network were optimized using the Adam optimization (KINGMA; BA, 2014), whose
coefficients used for computing running averages of gradients and its square were set as 0.5
and 0.999, respectively. The network was implemented with PyTorch DL library (PASZKE
et al., 2017) and trained within 60 epochs using a NVIDIA GeForce GTX 1080 Ti GPU.
The batch size was set as 256 during the training; however, it was reduced accordingly
for the training with PL since VGG network also needs to be in the GPU. To make the
training for non-pixel-wise losses easier, we used a pre-trained MAE network as the starting

1 Available at www.github.com/AlexanderMath/FastFID

www.github.com/AlexanderMath/FastFID
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Figure 5 – Schematic explaining the training process of the models.
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Figure 6 – Schematic explaining the test procedure for the models.

To train the restoration model, a total of 256,000 patches of size 64×64 were
randomly selected from the breast regions of the 400 clinical images available in this study.
These patches include pairs of LD and FD images, i.e., we trained one neural network for
each reduction factor.

After the training process, which is illustrated in Fig. 5, the model was quantitatively
tested on the anthropomorphic breast phantom dataset to validate the effects of different
loss functions. The testing stage, illustrated in Fig. 6, involved measuring the MNSE
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between the GT against the LD, FD and restored images. The value from the LD×GT
gives us the starting point of RN and B2. At this stage, RN is usually high and B2 low.
The FD×GT guide us to the goal of the restoration regarding the lowest B2 and the desired
RN level. When evaluating the Restored×GT, it is possible to see how the restoration
performed, i.e., how much blurring was imposed, measuring through the B2, and how close
the RN is to the FD value. Implementation details of how this metric was calculated on
each of these groups are presented in Section 2.4.3.

2.5 Results & discussions

In this section, we present and discuss the quantitative assessment performed on the
phantom images and also the ROIs for both clinical and phantom images. We compared
the LD and FD acquisitions to the images restored by the model using the following loss
functions: MSE, MAE, SSIM, PL1, PL2, PL3, PL4, GAN, and FID. Also, for comparison
with an analytical method previously published in the literature, we used the model-based
(MB) approach proposed in (BORGES et al., 2018) as a benchmark for all different loss
functions.

2.5.1 Visual analysis

Figs. 7 and 8 display a magnified ROI of a patient image acquired at the standard
radiation dose and at the simulated dose reduction factors of 75% and 50%, respectively.
For all visual analysis results, we show the results of each loss function that achieved the
closest RN to the FD within all training realizations. As expected, the LD mammography
presents more perceived noise as compared with the FD mammography. The restored
results of LD mammography are shown in (c)-(j). We chose an ROI with a MC cluster,
which is an important feature for cancer diagnosis. As expected, for the reduction factor of
50% (Fig. 8), we can see that the loss functions MSE and MAE yield an overall smoothing
in the image. For the SSIM, there is a subtle difference in the noise level when compared
with MAE and MSE. Again, when we go from PL1 to PL4, it is visually noticeable that
the blurring effect decreases and the fine details are preserved. Moreover, we can recognize
that PL3 has slightly more noise compared with PL4, which can be confirmed in the
objective metrics, specifically in the RN in the MNSE decomposition. We can see that
FID also achieves good results with more overall noise compared with PL3 and PL4. This
is also observed in the objective metrics as expected since this loss uses a pre-trained
network to extract image features. The adversarial losses could also restore the image with
less noise compared with the losses that use DNN as image quality metric. It is important
to note the visual similarity between the DNN with FID, PL3 and PL4 loss functions
and the MB method. All the visual analysis discussed agree with the quantitative results
presented in the next section. The same discussion can be done for the 75% case, in Fig. 7;
however, the differences are more subtle when compared with the 50%.
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(a) LD (b) FD

(c) LMSE (d) LMAE (e) LSSIM (f) LPL1

(g) LPL2 (h) LPL3 (i) LPL4 (j) LGAN−0.1

(k) LGAN−0.9 (l) LGAN−1.5 (m) LFID (n) MB

Figure 7 – Illustration of a magnified ROI of a clinical image focusing a small cluster of
MC. (a) LD acquisition for a dose reduction factor of 75%; (b) FD acquisition;
restored images generated by the neural network with the loss function: (c)
MSE, (d) MAE, (e) SSIM, (f)-(i) PL1 to PL4, respectively, (j)-(l) adversarial
loss with different λadv and (m) FID. (n) model-based restoration method. All
the images were normalized based on the FD and are displayed in the same
dynamic range.

Figs. 9 and 10 display a magnified ROI from the mammography image of the
anthropomorphic breast phantom at dose reduction factors of 75% and 50%, respectively.
In this case, it is important to note that the radiation dose reduction was performed on the
equipment itself, changing the mAs with each acquisition. The same discussion previously
mentioned for the clinical images can be used here as the images have the same visual
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(a) LD (b) FD

(c) LMSE (d) LMAE (e) LSSIM (f) LPL1

(g) LPL2 (h) LPL3 (i) LPL4 (j) LGAN−0.1

(k) LGAN−0.9 (l) LGAN−1.5 (m) LFID (n) MB

Figure 8 – Illustration of a magnified ROI of a clinical image focusing a small cluster of
MC. (a) LD acquisition for a dose reduction factor of 50%; (b) FD acquisition;
restored images generated by the neural network with the loss function: (c)
MSE, (d) MAE, (e) SSIM, (f)-(i) PL1 to PL4, respectively, (j)-(l) adversarial
loss with different λadv and (m) FID. (n) model-based restoration method. All
the images were normalized based on the FD and are displayed in the same
dynamic range.

properties. From the results of the anthropomorphic phantom we can infer that the neural
network is generalizing well even for cases with slightly different noise properties, i.e., even
with a careful simulation as used in this work some discrepancies are expected between
the simulated LD image and the actual LD image; and the trained model was able to
overcome such small discrepancies. Also, it reinforces the fact that the model might be



58

(a) LD (b) FD

(c) LMSE (d) LMAE (e) LSSIM (f) LPL1

(g) LPL2 (h) LPL3 (i) LPL4 (j) LGAN−0.1

(k) LGAN−0.9 (l) LGAN−1.5 (m) LFID (n) MB

Figure 9 – Illustration of a magnified ROI of an anthropomorphic breast phantom image
focusing a simulated cluster of MC. (a) LD acquisition for a dose reduction
factor of 75%; (b) FD acquisition; restored images generated by the neural
network with the loss function: (c) MSE, (d) MAE, (e) SSIM, (f)-(i) PL1 to
PL4, respectively, (j)-(l) adversarial loss with different λadv, (m) FID and (n)
model-based (MB) restoration method. All the images were normalized based
on the FD and are displayed in the same dynamic range.

tested in real cases where the mammography is acquired at a reduced dose, even though it
was trained with the simulated injection of noise, since anthropomorphic phantoms are
designed to match clinical images as close as possible (CARTON et al., 2011).
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(a) LD (b) FD

(c) LMSE (d) LMAE (e) LSSIM (f) LPL1

(g) LPL2 (h) LPL3 (i) LPL4 (j) LGAN−0.1

(k) LGAN−0.9 (l) LGAN−1.5 (m) LFID (n) MB

Figure 10 – Illustration of a magnified ROI of an anthropomorphic breast phantom image
focusing a simulated cluster of MC. (a) LD acquisition for a dose reduction
factor of 50%; (b) FD acquisition; restored images generated by the neural
network with the loss function: (c) MSE, (d) MAE, (e) SSIM, (f)-(i) PL1 to
PL4, respectively, (j)-(l) adversarial loss with different λadv, (m) FID and (n)
model-based (MB) restoration method. All the images were normalized based
on the FD and are displayed in the same dynamic range.

2.5.2 Quantitative evaluation

Figs. 11 and 12 illustrate the SNR map inside the breast region of the anthro-
pomorphic breast phantom image. Through a visual inspection, we can see that all the
restorations were able to increase the SNR value from the LD. Also, the maps indicate
that the restorations with MSE, MAE, SSIM, and adversarial loss achieved the greatest
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(a) LD (b) FD (c) LMSE (d) LMAE (e) LSSIM (f) LPL1 (g) LPL2

(h) LPL3 (i) LPL4 (j) LGAN−0.1(k) LGAN−0.9 (l) LGAN−1.5 (m) LFID (n) MB

Figure 11 – Illustration of the SNR map of the anthropomorphic breast phantom images.
(a) LD acquisition for a dose reduction factor of 75%; (b) FD acquisition;
restored images generated by the neural network with the loss function: (c)
MSE, (d) MAE, (e) SSIM, (f)-(i) PL1 to PL4, respectively, (j)-(l) adversarial
loss with different λadv, (m) FID and (n) model-based (MB) restoration method.
All the maps were adjusted and clipped in the range of 47-120, based on the
SNR of the FD image.

values throughout the breast. Table 1 presents the mean SNR value, demonstrating the
aforementioned statements. The observance of higher SNR values for these loss functions is
explained as they remove more noise compared with the other restorations, thus achieving
a lower standard deviation.

From Table 1 it is observable that pixel-wise losses and the adversarial loss yielded
the highest SNR, even higher than the SNR of the FD image, thus indicating the best
image quality. However, a quick inspection of Fig. 10(d) shows that these loss functions
result in some signal smearing/blurring, especially compared to the FD image in Fig. 10(a).
This emphasizes the need for a metric sensitive to signal smoothing and residual noise
separately. To that end, we adopted the decomposition of the NMSE into B2 and RN .

As our primary goal is to restore the LD images to achieve the quality of the
standard FD images, we desire a resulting image which has the overall characteristics of
the standard FD. Thus, we seek a restoration method that yields an image with similar
RN compared with the FD and as low B2 error as possible. This intuition comes from the
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(a) LD (b) FD (c) LMSE (d) LMAE (e) LSSIM (f) LPL1 (g) LPL2

(h) LPL3 (i) LPL4 (j) LGAN−0.1(k) LGAN−0.9 (l) LGAN−1.5 (m) LFID (n) MB

Figure 12 – Illustration of the SNR map of the anthropomorphic breast phantom images.
(a) LD acquisition for a dose reduction factor of 50%; (b) FD acquisition;
restored images generated by the neural network with the loss function: (c)
MSE, (d) MAE, (e) SSIM, (f)-(i) PL1 to PL4, respectively, (j)-(l) adversarial
loss with different λadv, (m) FID and (n) model-based (MB) restoration method.
All the maps were adjusted and clipped in the range of 47-120, based on the
SNR of the FD image.

fact that our goal is to generate restored images that have similar noise properties to the
FD images, and also that we want to keep the underlying signal characteristics as close as
the original image, as radiologists tend to dislike overly smoothed images.

To this end, the total MNSE was measured against the pseudo-GT and decomposed
into B2 and RN for the FD and for both the radiation dose reduction factors, considering
all different loss functions.

Here, we slightly modified how we calculated the MNSE, from Eq. (2.12), so that it
could take into account the three folds in the cross-validation and generate enough samples
for statistical testing. Instead of computing the mean over the pixels as the first step, as
shown in Eq. (2.12), now we calculate the normalized quadratic error (NQE), compute
the pixel-wise average over the three folds, and calculated the mean over the pixels as:

MNSE = 1
I

∑
(i,j) ∈ I

1
K

K∑
k=1

1
P

P∑
p=1

NQE. (2.14)

For paired t-tests, we obtained the samples after the average over K folds. Note that we
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Table 1 – Mean SNR values for the anthropomorphic breast phantom images acquired
at the LD (for a dose reduction factors of 75% and 50%) and FD. Results for
the restored images generated by neural network with the loss function: MSE,
MAE, SSIM, PL1 to PL4, adversarial loss with different λadv, FID and for the
model-based (MB) restoration method.

75% 50%
LD 69.18 56.41
DL-LMSE 84.84±0.74 94.78±1.47
DL-LMAE 85.05±0.48 95.44±0.46
DL-LSSIM 84.67±0.24 95.51±1.09
DL-LPL1 83.90±0.19 93.08±0.63
DL-LPL2 81.56±0.22 86.07±0.29
DL-LPL3 76.97±0.10 77.73±0.38
DL-LPL4 79.85±0.11 81.45±0.37
DL-LGAN−0.1 84.72±0.13 96.39±0.61
DL-LGAN−0.9 84.91±0.14 95.62±0.35
DL-LGAN−1.5 85.00±0.38 95.61±0.72
DL-LFID 77.22±0.66 74.94±0.20
MB 78.39 77.53
FD 78.11

Table 2 – Quantitative analysis of the total MNSE, decomposed into RN and B2, for
the anthropomorphic breast phantom images acquired at the LD (at a dose
reduction factor of 75%) and at the FD. Also, the results for the restored images
generated by neural network with the loss function: MSE, MAE, SSIM, PL1 to
PL4, adversarial loss with different λadv, FID and for the model-based (MB)
restoration method. Confidence interval is shown for p-value=0.05.

Total MNSE(%) RN (%) B2(%)
LD 14.06 [14.04, 14.08] 13.95 [13.93, 13.97] 0.11 [0.10, 0.12]
FD 10.47 [10.46, 10.49] 10.40 [10.38, 10.41] 0.07 [0.07, 0.08]
DL-LMSE 9.46 [9.45, 9.48] 9.13 [9.11, 9.14] 0.33 [0.32, 0.34]
DL-LMAE 9.30 [9.29, 9.31] 9.09 [9.07, 9.10] 0.21 [0.20, 0.22]
DL-LSSIM 9.35 [9.33, 9.36] 9.16 [9.15, 9.17] 0.19 [0.18, 0.20]
DL-LPL1 9.54 [9.52, 9.55] 9.32 [9.31, 9.34] 0.21 [0.20, 0.22]
DL-LPL2 10.10 [10.08, 10.11] 9.89 [9.87, 9.90] 0.21 [0.20, 0.22]
DL-LPL3 11.45 [11.43, 11.46] 11.23 [11.21, 11.24] 0.22 [0.21, 0.23]
DL-LPL4 10.56 [10.55, 10.58] 10.33 [10.32, 10.35] 0.23 [0.22, 0.24]
DL-LGAN−0.1 9.35 [9.34, 9.37] 9.16 [9.15, 9.18] 0.19 [0.18, 0.20]
DL-LGAN−0.9 9.35 [9.34, 9.37] 9.11 [9.10, 9.13] 0.24 [0.23, 0.25]
DL-LGAN−1.5 9.32 [9.31, 9.34] 9.09 [9.08, 9.10] 0.23 [0.22, 0.24]
DL-LFID 11.10 [11.09, 11.12] 10.84 [10.83, 10.86] 0.26 [0.25, 0.27]
MB 10.93 [10.92, 10.95] 10.81 [10.80, 10.83] 0.12 [0.11, 0.13]

performed this step for the MNSE and its decomposition. Tables 2 and 3 present the mean
values of MNSE results for the dose reduction factors of 75% and 50%, respectively.
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Table 3 – Quantitative analysis of the total MNSE, decomposed into RN and B2, for
the anthropomorphic breast phantom images acquired at the LD (at a dose
reduction factor of 50%) and at the FD. Also, the results for the restored images
generated by neural network with the loss function: MSE, MAE, SSIM, PL1 to
PL4, adversarial loss with different λadv, FID and for the model-based (MB)
restoration method. Confidence interval is shown for p-value=0.05.

Total MNSE(%) RN (%) B2(%)
LD 21.79 [21.76, 21.82] 21.64 [21.61, 21.67] 0.15 [0.13, 0.16]
FD 10.47 [10.46, 10.49] 10.40 [10.38, 10.41] 0.07 [0.07, 0.08]
DL-LMSE 8.27 [8.25, 8.29] 7.54 [7.53, 7.55] 0.73 [0.71, 0.75]
DL-LMAE 8.16 [8.13, 8.18] 7.48 [7.46, 7.49] 0.68 [0.66, 0.70]
DL-LSSIM 8.16 [8.14, 8.18] 7.49 [7.48, 7.50] 0.67 [0.65, 0.69]
DL-LPL1 8.58 [8.56, 8.60] 7.93 [7.92, 7.95] 0.65 [0.63, 0.67]
DL-LPL2 9.79 [9.77, 9.81] 9.16 [9.14, 9.17] 0.63 [0.62, 0.65]
DL-LPL3 11.73 [11.71, 11.75] 11.31 [11.30, 11.33] 0.42 [0.40, 0.43]
DL-LPL4 10.94 [10.92, 10.96] 10.39 [10.37, 10.40]* 0.55 [0.54, 0.57]
DL-LGAN−0.1 8.05 [8.03, 8.07] 7.38 [7.37, 7.39] 0.67 [0.65, 0.68]
DL-LGAN−0.9 8.20 [8.18, 8.22] 7.50 [7.49, 7.51] 0.70 [0.69, 0.72]
DL-LGAN−1.5 8.27 [8.25, 8.28] 7.50 [7.49, 7.51] 0.77 [0.76, 0.78]
DL-LFID 12.28 [12.26, 12.30] 11.77 [11.75, 11.79] 0.51 [0.50, 0.52]
MB 11.88 [11.86, 11.89] 11.60 [11.59, 11.62] 0.28 [0.26, 0.29]
* No statistical difference to the FD (p-values>0.31).

Changing loss functions directly affects the behavior of the deep network in terms
of signal preservation and noise suppression. As we can see in Tables 2 and 3, the MSE
loss function tends to decrease the RN values lower than the standard FD (goal), at the
cost of excessively blurring the image, thus increasing the B2 error. Although this loss
function is extensively used in most applications, this blurring behavior is well known in
the literature (ZHAO et al., 2016). The MAE loss function (ℓ1), when compared to the
MSE, leads to more image details preservation, observed by lower B2 values but has a
strong denoising effect, noted in the lower RN values. For the SSIM loss function case,
the model performed better compared to the MSE and MAE, reporting sightly lower B2

at similar RN .

The PL function brings an interesting case. There is a tendency to increasing image
detail preservation coming from the PL1 to the PL4, where the RN slightly increases
whereas the B2 decreases. This behavior is explained by the fact that the deeper neural
network layers are responsible for general image characteristics, whereas the initial layers are
responsible for local fine details of the image, i.e., primitive information like edges (ERHAN
et al., 2009; GU et al., 2018; ZHANG; WU; ZHU, 2018). When looking at the essential
properties of the images, in the case of deep layers, the network tends to penalize errors
on the underlying signal which causes a decrease in B2. The opposite happened with the
initial layers, where they are trying to match the fine details, thus performing a more
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aggressive local denoising, decreasing the RN and increasing the B2 error. The previous
discussion brings a consequence that the deeper in the network the loss function analysis
is done, less aggressive the denoising and more image details are preserved overall.

FID achieved results close to PL3 and PL4, with higher B2 in the 75% restoration
case. The adversarial loss yields results very similar to the pixel-wise loss functions, i.e.,
MSE, MAE and SSIM. This is expected since this loss is a combination of an image fidelity
loss with an image distribution loss. Looking at the λadv parameters, increasing its value
also increases the mean and standard deviation of B2. This behavior can be explained
by the total loss being more weighed to the adversarial loss, which look at the image as
an overall. An extreme case, where just the adversarial loss is used, i.e., λadv = ∞ the
CNN is very hard to train and could lead to results where the network hallucinate some
objects, as known in generative models (SAHARIA et al., 2021). Similar behavior was
expected with the PL and FID, since they all use DNN to extract features and optimize
the distance between them. However, both FID and PL use pre-trained networks that
were trained on very large dataset with natural images. Although pre-trained networks
are very good feature extractors, the domain shift from nature images to medical images
may cause negative impacts. Therefore, it is suggested to carefully check the quality of
restored images in clinical routine.

It is important to note the great similarity that the neural networks with PL4
and PL3 have with the FD in terms of RN both for restorations of 75% and 50%. We
highlighted in bold the closest RN to the FD and the lowest B2. Although the B2 is higher
for the deep network compared to the mathematical model, the data-based approach
benefits from the fact that it does not need to know any previous information about the
equipment and its physics acquisition process.
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Figure 13 – p-value results among all DL losses, for 75% dose reduction, by paired t-test
in terms of (a) MNSE, (b) RN , and (c) B2.

Here, we also examine whether any two DL losses have statistically significant
differences. The null hypothesis is that the estimated metrics obtained from two losses
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Figure 14 – p-value results among all DL losses, for 50% dose reduction, by paired t-test
in terms of (a) MNSE, (b) RN , and (c) B2.

have identical average. We perform the paired t-test for any two different DL losses and
provided the p-values on MNSE and its decomposition in Figs. 13 and 14 for 75% and 50%
dose levels respectively. In Fig. 13, when looking at the decomposition of MNSE, PL4 RN

is statistically different for all other loss functions. Moreover, images restored using the
PL4 achieved the closest RN to the standard dose; however, it is still statistically different
(p-values<0.01). For B2, there is no statistical difference between GAN-0.1 and SSIM
and they have the lowest values within all losses. We also notice that many losses have
statistically the same B2. It is interesting to note that even though some losses achieved
equal RN , B2 was not the same, suggesting the importance of the decomposition of MNSE.
The only exception is GAN-0.1 with SSIM which produced equal values for all metrics. In
Fig. 14, PL4 is again statistically different from all other losses and achieved the closest
RN to the FD. In this case, there is no statistical difference to the FD (p-values>0.31).
For B2, PL3 is also statistically different for all other losses and generated the lowest value
among them.

Table 4 – Average processing time to run a full restoration on a single raw clinical mam-
mography.

Method Time (s)
DL-based 9.0
MB 16.5

Finally, Table 4 demonstrates the average time spent by the neural network and
also by the MB to restore a single raw clinical image of size 4096 × 3328. Although the
deep network takes a very long time for training, for example, roughly 7 hours with MSE
and 32 hours with PL4 (respectively the minimum and maximum training time for all loss
functions), the restoration process has a processing time of the same order of magnitude
as the MB method. Note that we do not intend to compare processing times, as the DL
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runs on a GPU under Python language while the MB runs on a CPU using a MATLAB
code. However, both methods have room for code optimization as fast processing time is
especially important for clinical use.

2.6 Conclusion

In this work, we investigated the impact of various loss functions on the quality of
LD mammograms restored by deep networks. We used a standard CNN architecture to
evaluate such loss functions.

In terms of loss functions, the MSE and MAE had strong denoising properties
yielding excessive smoothness in the restored image, while the PL functions preserved
images details as we go deeply in the VGG-16 network, i.e., PL3 and PL4 functions
preserved more details compared to the PL1. This behavior was observed both in the
quantitative results and also in the visual analysis. Furthermore, it is possible to note
with both quantitative results and visually the similarity between PL3, PL4 functions and
the MB method. The adversarial loss yielded results close to pixel-wise losses, since this
function contains one of these losses. It is worth to explore more combinations of λadv to
achieve desired properties and also different training strategies, since GANs are known to
be hard to train and susceptible to mode collapse. FID as a loss was demonstrated to be a
good alternative as well, achieving visual and objective results close to PLs, MB and FD
images.

The fact that we used a physical anthropomorphic breast phantom to validate
the proposed methodology reinforces that the neural network is able to restore real LD
mammography images. This also implies that the model did not overfit to the training
dataset and it is generalizing well for other images with slightly different noise properties.

With this work, we showed the potential of DNNs for digital mammography image
restoration and evaluated some well-known loss functions, presenting the strength and
weaknesses of each one so we may choose which one is appropriated for each task. Also,
with the new training strategy proposed, it is possible to use clinical images and the
networks can learn and benefit from a great variability of data and their radiographic
factors, as illustrated in Fig. 2.

The limitations of this work are presented as follows. First, since we focused
on the comparison among different loss functions, the comparison of different network
architectures for the restoration was not considered in this paper. As argued in Shan et al.
(2018), loss function is relatively more important than network architecture as the loss
function has a direct impact on the image quality of the restored images. Second, we did
not consider the a combination of different loss functions in this paper, besides the ones
used for GAN. Although the combination of several loss functions could improve the results,
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it will bring extra balancing hyper-parameters to be carefully tuned and exponentially
more combinations. We can see this difficulty on choosing λadv values for GAN. Third,
the model was not tested on real patient images as there will be no GT to evaluate the
performance of different loss functions. Forth, to achieve a meaningful significant test,
we slightly modified the order of mean operations in the MNSE equation so we could
get many samples in terms of pixels. In future, one should perform cross-validation with
more folds to further analyze the significant tests for each dose level if computational
resources permit. Finally, we restricted the training to the dataset representing a local
and specific woman population. For future works, real LD mammography images should
be tested through the model and cancer detectability evaluations should be performed
with radiologists to analyze the relevance of the proposed method in the clinical routine.
It is important to test the model with other datasets to see if the model is generalizing
well for other populations as the dataset used in the current study is limited to certain
characteristics of some population. Also, it is important to evaluate different network
architecture and measure the impact of them on the restoration performance.
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3 PAPER 2:ASSESSMENT OF TRAINING STRATEGIES FOR CONVOLU-
TIONAL NEURAL NETWORK TO RESTORE LOW-DOSE DIGITAL BREAST
TOMOSYNTHESIS PROJECTIONS

The material presented in this chapter was published in: Vimieiro, Rodrigo de
Barros, Lucas Rodrigues Borges, Bruno Barufaldi, Andrew Douglas Arnold Maidment,
Ge Wang, and Marcelo Andrade da Costa Vieira. “Assessment of training strategies for
convolutional neural network to restore low-dose digital breast tomosynthesis projections.”
In Medical Imaging 2022: Physics of Medical Imaging, vol. 12031, p. 470-479. SPIE, 2022.
Available at: https://doi.org/10.1117/12.2609945. The author obtained permission for
total and/or partial reproduction of the content from the publisher SPIE.

3.1 Abstract

Convolutional neural networks (CNNs) have been used for image processing tasks
such as denoising, deraining, super-resolution and deblurring. It is known that deep models
require a large amount of data for the training process. In medical X-ray imaging, data
availability is a concern due to patient privacy and radiation exposure. To optimize
the training process, here we investigate the effects of training strategies, such as the
dataset size, early stop and cross-validation, on the performance of deep neural network.
We used the residual network (ResNet) architecture, dedicated to restore low-dose (LD)
digital breast tomosynthesis (DBT) raw projections. For this assessment, we generated 500
synthetic breast phantoms through virtual clinical trials software (OpenVCT) and validated
them in terms of noise and signal properties. We acquired real raw DBT projections on a
commercially available DBT system using a physical anthropomorphic breast phantom
and restored the LD projections after training the CNN. Our goal is to restore the LD
projections to achieve the same characteristics as the full-dose acquisitions. We found that
early stop can be applied in the training process depending on the denoising strength
desired for the network. Also, different training realizations are necessary to achieve good
results. Furthermore, the training sample size may be smaller compared to other computer
vision tasks using deep learning algorithms. Clearly, the amount of data is not the only
factor in medical image restoration and other aspects such as network architecture, loss
function and data variability must be investigated. The source code developed in this
study is available at www.github.com/LAVI-USP/SPIE2022.

3.2 Introduction

In addition to the great success of deep learning (DL) techniques in the computer
vision area, DL has been greatly explored in the image processing field (TIAN et al., 2020).
Deblurring, deraining, super-resolution and denoising problems have been addressed using

https://doi.org/10.1117/12.2609945
www.github.com/LAVI-USP/SPIE2022
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neural networks (ARAÚJO; SALVADEO; PAULA, 2021; HAN; BAEK, 2021; PRABHAT
et al., 2021; GAO et al., 2020; MARROCCO et al., 2018). However, in areas such as
medical imaging, data availability is a concern since DL is known to require a large number
of images for the training process (WANG et al., 2018).

Virtual clinical trials (VCTs) have been used to validate medical devices, new tech-
niques, algorithms, and imaging protocols because real clinical trials are time-consuming
and expensive. VCTs are capable of simulating different anatomical structures, the physics
of the acquisition process and also human interpretation. Using VCT for DL training is a
feasible alternative as it is possible to generate as much data as possible with a certain
diversity (BARUFALDI et al., 2018). Sahu et al. (SAHU et al., 2019) used a VCT software
to generate low and high-dose digital breast tomosynthesis (DBT) projections which were
used to train a generative adversarial network (GAN) for image denoising. Their network
outperformed classical denoising algorithms, such as the block-matching and 3D filtering
(BM3D) (DABOV et al., 2007) and K-SVD in terms of the HaarPSI metric. In the work
presented by Gao, Fessler and Chan (GAO; FESSLER; CHAN, 2021), virtual phantoms
were used as part of the training process of a network designed to denoise DBT slices. They
also evaluated the impact of the training dataset size by extracting 400,000 patches from
eight physical phantoms and analyzing the contrast to noise ratio (CNR) for 100%, 80%,
65%, 50%, 35% and 20% of the dataset size. Their work reported a large CNR variations
for 20% and 35% of the dataset, but some stabilization for greater percentages.

In this work, we investigated different training strategies to restore low-dose DBT
projections. The effect of the dataset size in the performance of a deep neural network,
was evaluated. Also, approaches such as early stop and cross-validation were also explored.
The training dataset was generated using a VCT system. The network was tested using a
dataset composed of real DBT projections acquired at a commercially available DBT unit
using a physical phantom.

3.3 Materials & methods

3.3.1 Training and testing datasets

Different from object localization and image classification with DL, low-level image
processing tasks, such as denoising, rely on learning the relationship between the input
and the target in terms of noise and signal characteristics. To investigate the hypothesis
that DL approach for image restoration, specifically denoising, does not rely on extremely
large datasets as other high-level tasks, we generated training datasets with different sizes
using the OpenVCT1 system developed by the University of Pennsylvania (BAKIC et al.,
2017). At the end, we tested the networks using low-dose (LD) DBT projections acquired

1 www.sourceforge.net/p/openvct

www.sourceforge.net/p/openvct
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using a physical anthropomorphic breast phantom, at a Selenia Dimensions (Hologic, Inc.)
DBT unit, available at the Hospital of the University of Pennsylvania.

3.3.1.1 Training

We used the VCT software to generate the training samples. First, we simulated 500
breast phantoms with different anatomical structures. Then, we configured the software to
generate raw DBT projections following the acquisition geometry of the Selenia Dimensions
DBT system. To generate pairs of LD and full-dose (FD) projections, we generated noise-
free projections from all breast volumes. Then, we inserted quantum and electronic noise
using an in-house software package developed by our group in previous work (BORGES
et al., 2019). For the FD acquisition, we simulated noise and signal characteristics to
achieve signal-to-noise ratio (SNR) equivalent to the standard-dose acquisitions of a real
anthropomorphic breast phantom generated using the automatic exposure control (AEC)
mode. In addition, we simulated LD acquisitions correspondent to a dose-reduction of 50%
of the standard-dose.

When working with virtual images, the image restoration success is dependent
on the realism of the simulated images in comparison with the clinical ones. In the
work by Bakic et al. (BAKIC et al., 2013), the authors validated the virtual breast
phantoms simulated with the OpenVCT software through tissue texture analyses. They
observed a good similarity with clinical images. In this work, we also validated the noise
characteristics of the virtual phantom through SNR and normalized noise power spectrum
(NNPS) measurements, as done previously in the work of Borges et al. (BORGES et
al., 2019). In the breast phantom projections, we measured the point-wise SNR as the
mean over the standard deviation (STD) for both real and virtual images. We generated 5
realizations of one virtual phantom so we could measure the point-wise mean and STD.
To investigate the noise properties in the frequency domain, we followed the work by Wu,
Mainprize and Yaffe (WU; MAINPRIZE; YAFFE, 2012b) to measure the NNPS using a
uniform polymethyl methacrylate (PMMA) physical phantom, calculated as follows:

NPS(u, v) = p2
s

nr np

nr∑
k

|FFT {h(x, y) × uk(x, y)}|2 (3.1)

NNPS(u, v) = NPS

LAS2 , (3.2)

where (x, y) and (u, v) are 2D spatial coordinates for image and Fourier domain, respectively,
ps is the pixel size in mm, nr is the number of extracted ROIs, np is the ROI total number
of pixels, h is a Hanning window, FFT indicates the discrete Fourier transform and LAS

stands for large are signal, which is the mean pixel value squared in the breast region. The
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1D plot was calculated as a radially mean of the 2D spectrum. We normalized the NPS
through (3.2) by the squared mean pixel values inside the breast.

Our training dataset consists of 256,000 patches, of size 64×64, extracted randomly
from the raw DBT projection images of 500 breast phantoms. Indeed, we did not use all
the projections since each image generates usually 185 patches. For the training sample
size evaluation, we used 100%, 75%, 50% and 25% of the total number of patches. Also, we
evaluated an oversized dataset with 1 million patches, approximately 400% of the original
dataset. We limited the ROI extraction to the breast tissue region.

3.3.1.2 Testing

Testing samples were generated at the Selenia Dimensions (Hologic, Inc.) DBT
system, using the anthropomorphic breast phantom developed at the University of Penn-
sylvania (CARTON et al., 2011). Such experiments were desirable since it is not feasible
to expose patients to X-rays several times (YAFFE; MAINPRIZE, 2011). The testing
dataset consists of 20 images at the FD (31kVp and 60mAs) and 10 LD images (31kVp
and 30mAs). The FD images were acquired using the AEC mode of the DBT system and
the manual mode to yield the LD acquisitions at 50% of the full-dose.

3.3.2 Network and implementation details

We used the commonly known residual network (ResNet) (HE et al., 2016) to
perform the image restoration. Besides the popular skip connections, we added a residual
layer that goes from the input to the output, as our transformation function is close to
the identity matrix. Fig 15 illustrates the utilized network architecture. The CNN was
implemented using the PyTorch Deep Learning library2, trained and tested using an
NVIDIA Quadro M5000 GPU with 8GB of RAM. We used Adam optimization (KINGMA;
BA, 2014) in all experiments. All implementations details such as learning rate, optimizer
parameters and batch size can be found in our code available on GitHub3.
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Figure 15 – Illustration of the deep neural network architecture utilized in this work.

We trained the network first with the L1 loss for 60 epochs, so it learns how
to reproduce an image without noise. This procedure is similar to the self-supervised
learning method presented previously named Noisier2Noise (MORAN et al., 2020). In this
2 www.pytorch.org
3 www.github.com/LAVI-USP/SPIE2022

www.pytorch.org
www.github.com/LAVI-USP/SPIE2022
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work, the authors injected noise in the image to create a pair of images and trained the
network towards the noise-free image. Many other self-supervised methods were proposed
and can be applied with real clinical data that have no labels (HENDRIKSEN; PELT;
BATENBURG, 2020; BATSON; ROYER, 2019; KRULL; BUCHHOLZ; JUG, 2019; NIU
et al., 2022). Although true labels are available to us, since we are using simulated images
with the VCT software, the adopted methodology is appropriate considering that our goal
it to reach the FD image and not a noise-free image. After training with this fidelity loss
function, we introduced the perceptual loss (PL) (JOHNSON; ALAHI; FEI-FEI, 2016)
also for 60 epochs to retrieve the noise properties of the FD images. In our case, this
detail retriever loss function uses the VGG-16 (SIMONYAN; ZISSERMAN, 2014) network
pre-trained on the ImageNet dataset. We used the fourth block of this architecture to
compute the loss as follow:

LPL = 1
w × h × c

w∑
i=1

h∑
j=1

c∑
k=1

(Φ(x̂)ijk − Φ(x)ijk)2 , (3.3)

where Φ represents the VGG-16 fourth block output, x the LD input image, x̂ the estimated
FD image and w×h×c the patch size. This training approach was also done in our previous
work with 2D digital mammography (SHAN et al., 2023). All networks were trained 3
times so that we could compare the results for each realization in terms of objective metrics.
For that, we randomly initialized both the weight and bias in the beginning of the training.
We performed a testing step for every 10 epochs of the training procedure.

(a) (b) (c) (d)

Figure 16 – SNR maps for (a) central DBT projection acquired with the physical anthro-
pomorphic breast phantom at the FD; (b) central projection for the virtual
phantom using the OpenVCT software; (c) and (d) are the SNR maps of the
same physical and virtual phantoms, respectively, acquired at 50% of the FD.
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3.3.3 Objective metrics

To investigate the effectiveness of the restoration method, we used the mean
normalized squared error (MNSE) decomposed into two parts: bias squared (B2) and
residual noise (RN ), as in Borges et al. (BORGES et al., 2018). In simple words, the
metric measures, independently, how a group of images is similar to the ground-truth
(GT) in terms of signal and noise. The B2 value indicates how the underlying signal was
impacted in comparison to the GT. In other words, it measures how much blurring and
smearing was involved in the denoising process. On the other hand, RN measures the
noise variance of the restored image. Both are first calculated as a point-wise metric and
then the mean value is taken over the breast region of all the projections.

In previous work, our group presented and validated a model-based (MB) denoising
pipeline to restore LD DBT projections (BORGES et al., 2017; BORGES et al., 2018).
The pipeline uses a variance stabilizing transformation (VST) and the BM3D (DABOV et
al., 2007) algorithm to denoise the images. We also measured the MNSE for this method
so we could have a benchmark for our networks.

3.4 Results & discussions

In this section, we present and discuss the results related to the restoration of
networks trained considering all dataset sizes. First, we illustrate the virtual phantom
validation, in terms of noise properties, since the success of the denoising by CNNs is close
related to that.

3.4.1 Virtual phantom validation

Figure 16 shows the SNR maps for the central DBT raw projection measured using
physical and virtual phantoms at the FD and LD. Although the virtual breast phantoms
do not correspond physically to the real one, we can notice that both synthetic and real
images approximate well in terms of SNR.

Table 5 – SNR values for the real and virtual phantoms. The third column gives the
relative errors from the virtual phantom compared to the real acquisition.

Phantom SNR Error
VCT (60mAs) 76.91 ± 19.81 2.29%
VCT (30mAs) 57.77 ± 13.55 0.19%
Physical (60mAs) 78.71 ± 11.53
Physical (30mAs) 57.66 ± 9.13

To quantitatively analyze the SNR, we calculated the mean SNR value inside the
breast tissue over the 15 projections. Table 5 contains these values for all the images in
Fig. 16. We segmented the breast to compute the metric and did not consider the region
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next to the breast boundaries. The reported error is less than 3%, suggesting that the
projections are a good approximation to the real images in terms of signal and noise.

Figure 17 – Normalized noise power spectrum (NNPS) for the physical and virtual PMMA
phantoms at the LD and FD.

As different DBT system have distinct method to acquire signals, the noise charac-
teristics is particular for each vendor. As an example, amorphous silicon (a-Si) coupled
with a thallium-doped cesium iodide (CsI:Tl) and amorphous selenium (a-Se) detectors
commonly report distinct noise properties in the frequency domain (BORGES et al., 2019).
Figure 17 illustrates the noise behavior in the frequency domain for both virtual and
physical PMMA phantoms. This frequency characterization is important since it validates
the estimated noise correlation kernel, which is particular for each DBT system. We can
note that the NNPS curves approximates well when comparing real and synthetic images.

3.4.2 Visual analysis

Figure 18 shows regions-of-interest (ROIs) extracted from real central DBT pro-
jections acquired with the physical phantom at FD and LD. Also, it shows the results
of the restoration for the DL model when trained with different dataset sizes. The MB
restoration is illustrated as a benchmark. These ROIs were selected from the realization
that resulted in the closest RN at the last epoch.

Visually, it is perceptible that the proposed DL approach, trained with 100% of
the database, was able to restore the LD acquisitions and generated images with noise
characteristics very similar to the FD image. The result for this dataset is also very similar
to the MB. For the largest dataset, i.e., 400%, the ROI has less contrast when compared
to the 100% and also some noise correlation is visually perceptible. As the amount of
training data decreases to 50% and 25% of the database, the restored images gradually
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(a) LD (b) FD (c) DL-400% (d) DL-100%

(e) DL-75% (f) DL-50% (g) DL-25% (h) MB

Figure 18 – ROIs extracted from central DBT projections of the physical phantom: (a) LD
acquisition; (b) FD acquisition; (c) to (g) DL restoration results for different
amounts of training data; (h) restored using the MB pipeline.

presents image artifacts. There are no visually noticeable differences between the 75% and
100% datasets.

3.4.3 Quantitative evaluation

In this section, we show the objective results in the testing dataset for different
sizes of training datasets and also on different epochs of the training stage. Although
Fig. 19 shows that all datasets reached close values of loss for both L1 and PL training,
their MNSE metrics are distinct. Also, in Fig. 19 we can observe that in the L1 training,
the network achieved an SSIM close to 1, measured between the input and the output.
However, the PL to retrieve the noise characteristics reduces the SSIM value.

In the MNSE assessment, we evaluated it in five different ways. First, as shown in
Tab. 6, we choose within all realizations the results that achieved the closest RN regarding
the value of the FD acquisition. From this table, we can observe that DL-75% achieved
the closest RN value. The other training datasets also achieved comparable results, but
with higher B2 value. The largest dataset achieved the lowest B2 within all networks.

The second evaluation was done concerning the lowest B2 within the last epoch
of all realizations. Table 7 illustrates those results. For this assessment, we can see that
the largest dataset achieve the lowest value. Through Tab. 6 and 7 we can observe that
different realizations yielded different MNSE values. In some cases, the network achieves
good results in terms of B2 and others in terms of RN . From these results, we can analyze
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(a) (b)

(c) (d)

Figure 19 – Illustration of the losses for the (a) L1 and (b) PL for each training step. Also,
SSIM calculated at each training step for both (c) L1 and (d) PL losses.

the importance of performing cross-validation also for the assesement of image restoration.

The third and fourth assessments were performed to illustrate the possibility of
early stop when training deep CNNs for image restoration depending on the desired task.
Analyzing Tab. 8, it is possible to see that, different from Tab. 6, here, the 100% dataset
achieved the closest RN with only 50 epochs. Nonetheless, we can see that for 75% and
50%, the closest values were achieved at the end of the training, i.e., at 60 epochs. From
that, we can observe that the network slowly converges to the RN of the FD through the
optimization of the PL.

From Tab. 9, we can clearly see that an early stop can be made when low B2 values
are desirable. None of the networks had to train up to the end to achieve the lowest B2. For
400% and 75%, only 10 epochs were needed. Perhaps with fewer epochs, the network could
achieve even lower B2 values. For the sake of simplicity, we only evaluated the MNSE at
every 10 epochs. This table shows an interesting case, where DL-75%, with approximately
one-fifth of the data, could achieve a B2 value very close to the largest dataset.

The fifth assessment was performed because some networks could not deal effectively
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Table 6 – Total MNSE (%) and its decomposition on residual noise (RN ) and squared bias
(B2) for DBT projections acquired with the physical anthropomorphic breast
phantom at LD and FD in addition to the restoration results using the DL
model trained with different amounts of data. The MB results are illustrated
as a benchmark. The confidence interval is displayed inside the brackets. The
results are regarding the network realization that achieved the closest RN to
the FD on the last epoch.

Total MNSE(%) RN (%) B2(%) Epoch# Rlz#
LD (30mAs) 25.02 [24.90, 25.13] 24.86 [24.86, 24.87] 0.15 [0.15, 0.16] - -
FD (60mAs) 11.95 [11.71, 12.20] 11.86 [11.86, 11.87] 0.09 [0.09, 0.09] - -

DL-400% 13.76 [13.69, 13.82] 12.69 [12.69, 12.70] 1.06 [1.05, 1.07] 60 1
DL-100% 14.66 [14.60, 14.73] 11.74 [11.74, 11.75] 2.92 [2.89, 2.94] 60 1
DL-75% 13.07 [13.04, 13.10] 11.90 [11.90, 11.90] 1.17 [1.16, 1.18] 60 3
DL-50% 16.63 [16.50, 16.76] 11.60 [11.59, 11.60] 5.03 [4.97, 5.09] 60 3
DL-25% 45.94 [45.73, 46.15] 12.19 [12.18, 12.19] 33.75 [33.43, 34.08] 60 1

MB 13.50 [13.44, 13.55] 13.23 [13.23, 13.24] 0.26 [0.26, 0.27] - -

Table 7 – Total MNSE (%) and its decomposition on residual noise (RN ) and squared bias
(B2) for DBT projections acquired with the physical anthropomorphic breast
phantom at LD and FD in addition to the restoration results using the DL
model trained with different amounts of data. The MB results are illustrated
as a benchmark. The confidence interval is displayed inside the brackets. The
results are regarding the network realization that achieved the lowest B2 on the
last epoch.

Total MNSE(%) RN (%) B2(%) Epoch# Rlz#
LD (30mAs) 25.02 [24.90, 25.13] 24.86 [24.86, 24.87] 0.15 [0.15, 0.16] - -
FD (60mAs) 11.95 [11.71, 12.20] 11.86 [11.86, 11.87] 0.09 [0.09, 0.09] - -

DL-400% 13.76 [13.69, 13.82] 12.69 [12.69, 12.70] 1.06 [1.05, 1.07] 60 1
DL-100% 14.67 [14.61, 14.74] 12.97 [12.96, 12.97] 1.71 [1.69, 1.72] 60 2
DL-75% 13.07 [13.04, 13.10] 11.90 [11.90, 11.90] 1.17 [1.16, 1.18] 60 3
DL-50% 12.41 [12.36, 12.45] 9.63 [9.63, 9.63] 2.78 [2.75, 2.81] 60 2
DL-25% 16.88 [16.84, 16.93] 9.03 [9.02, 9.03] 7.86 [7.75, 7.96] 60 3

MB 13.50 [13.44, 13.55] 13.23 [13.23, 13.24] 0.26 [0.26, 0.27] - -

with the breast regions next to the skin. So we used a morphological operation to perform
an erosion on the breast mask and remove the region close to the borders. Then, we
re-calculated the objective metrics for the same realizations of Tab. 7 with this new breast
mask. Table 10 illustrates these results. We can observe that in general, the B2 decreased
significantly, confirming that the networks do not effectively treat the boarders very well.
Also, the dataset with the lowest B2 changed. Instead of the largest dataset, now the
DL-100% achieved the lowest B2 value. Moreover, now all DL restorations could achieve
values closer to the MB. In this table, we can clearly see that the B2 slightly increased as
the dataset size decreased. Indeed, these results are in conformity with the visual analysis
done in Fig. 18, where the largest dataset was not very effectively, and the DL-100%
had the best result. The MNSE results for all realizations, dataset sizes and epochs are
available on the GitHub web page.
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Table 8 – Total MNSE (%) and its decomposition on residual noise (RN ) and squared bias
(B2) for DBT projections acquired with the physical anthropomorphic breast
phantom at LD and FD in addition to the restoration results using the DL
model trained with different amounts of data. The MB results are illustrated
as a benchmark. The confidence interval is displayed inside the brackets. The
results are regarding the network realization that achieved the closest RN to
the FD one on all evaluated epochs.

Total MNSE(%) RN (%) B2(%) Epoch# Rlz#
LD (30mAs) 25.02 [24.90, 25.13] 24.86 [24.86, 24.87] 0.15 [0.15, 0.16] - -
FD (60mAs) 11.95 [11.71, 12.20] 11.86 [11.86, 11.87] 0.09 [0.09, 0.09] - -

DL-400% 12.75 [12.69, 12.81] 11.75 [11.74, 11.75] 1.01 [1.00, 1.02] 10 1
DL-100% 14.44 [14.39, 14.49] 11.87 [11.87, 11.87] 2.57 [2.54, 2.59] 50 1
DL-75% 13.07 [13.04, 13.10] 11.90 [11.90, 11.90] 1.17 [1.16, 1.18] 60 3
DL-50% 16.63 [16.50, 16.76] 11.60 [11.59, 11.60] 5.03 [4.97, 5.09] 60 3
DL-25% 43.95 [43.76, 44.13] 11.93 [11.92, 11.94] 32.01 [31.69, 32.34] 20 1

MB 13.50 [13.44, 13.55] 13.23 [13.23, 13.24] 0.26 [0.26, 0.27] - -

Table 9 – Total MNSE (%) and its decomposition on residual noise (RN ) and squared bias
(B2) for DBT projections acquired with the physical anthropomorphic breast
phantom at LD and FD in addition to the restoration results using the DL
model trained with different amounts of data. The MB results are illustrated
as a benchmark. The confidence interval is displayed inside the brackets. The
results are regarding the network realization that achieved the lowest B2 on all
evaluated epochs.

Total MNSE(%) RN (%) B2(%) Epoch# Rlz#
LD (30mAs) 25.02 [24.90, 25.13] 24.86 [24.86, 24.87] 0.15 [0.15, 0.16] - -
FD (60mAs) 11.95 [11.71, 12.20] 11.86 [11.86, 11.87] 0.09 [0.09, 0.09] - -

DL-400% 12.75 [12.69, 12.81] 11.75 [11.74, 11.75] 1.01 [1.00, 1.02] 10 1
DL-100% 14.69 [14.61, 14.76] 13.20 [13.19, 13.20] 1.49 [1.47, 1.51] 30 3
DL-75% 11.61 [11.58, 11.64] 10.52 [10.52, 10.53] 1.09 [1.08, 1.09] 10 3
DL-50% 12.23 [12.18, 12.28] 9.59 [9.59, 9.59] 2.64 [2.61, 2.67] 50 2
DL-25% 16.64 [16.60, 16.67] 8.92 [8.92, 8.92] 7.72 [7.62, 7.82] 50 3

MB 13.50 [13.44, 13.55] 13.23 [13.23, 13.24] 0.26 [0.26, 0.27] - -

3.5 Conclusions

In this work, we analyzed different training techniques to improve the effectiveness
of DBT restoration through CNNs. First, we observed that different network training
realizations lead to distinct results in terms of objective metrics. Depending on the task,
the network can achieve good results to match the residual noise of the target or to achieve
low bias values. It is still not clear which approach is better when it comes to diagnoses by
radiologists. Second, an early stop can be done especially in the cases when low bias values
are desired. Third, we could observe that the largest dataset, with 1 million patches, did
not improve the results overall, achieving lower performance in some cases. This suggests
that the amount of data is not the most important factor in medical image restoration,
such as in other areas, where it plays an important role. The training sample size may be
smaller compared to that needed for other computer vision tasks using DL algorithms.
Other aspects such as loss functions, network architecture, diversity of training dataset
and training strategies may be as important as the dataset size. In fact, this works has its
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Table 10 – Total MNSE (%) and its decomposition on residual noise (RN ) and squared
bias (B2) for DBT projections acquired with the physical anthropomorphic
breast phantom at LD and FD in addition to the restoration results using
the DL model trained with different amounts of data. The MB results are
illustrated as a benchmark. The confidence interval is displayed inside the
brackets. The results are regarding the network realization that achieved the
lowest B2 on the last epoch and were calculated using the new breast mask.

Total MNSE(%) RN (%) B2(%) Epoch# Rlz#
LD (30mAs) 24.87 [24.76, 24.98] 24.83 [24.82, 24.84] 0.04 [0.04, 0.05] - -
FD (60mAs) 11.71 [11.66, 11.77] 11.70 [11.69, 11.70] 0.02 [0.01, 0.02] - -

DL-400% 12.73 [12.68, 12.79] 12.38 [12.38, 12.39] 0.35 [0.35, 0.35] 60 1
DL-100% 12.96 [12.91, 13.01] 12.69 [12.69, 12.70] 0.27 [0.27, 0.27] 60 2
DL-75% 11.76 [11.71, 11.80] 11.40 [11.39, 11.40] 0.36 [0.36, 0.36] 60 3
DL-50% 9.62 [9.59, 9.66] 9.17 [9.16, 9.17] 0.46 [0.45, 0.46] 60 2
DL-25% 9.04 [9.01, 9.07] 8.50 [8.49, 8.50] 0.55 [0.54, 0.55] 60 3

MB 13.25 [13.20, 13.31] 13.11 [13.11, 13.12] 0.14 [0.14, 0.14] - -

limitations. The VCT software has its limitation for simulating real data. On the other
hand, the results indicate that the VCT is a good alternative to train such models, as
it achieved results very close to the networks trained on real clinical images. To further
improve the results, a fine-tuning method could be done with real images, such as the ones
we used in the testing dataset or real clinical images. Another limitation of this work is
that we did not test different network architectures and losses.
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4 PAPER 3:IMPOSING NOISE CORRELATION FIDELITY ON DIGITAL BREAST
TOMOSYNTHESIS RESTORATION THROUGH DEEP LEARNING TECH-
NIQUES

The material presented in this chapter was published in: Vimieiro, Rodrigo de Barros,
Lucas Rodrigues Borges, Ge Wang, and Marcelo Andrade da Costa Vieira. “Imposing
noise correlation fidelity on digital breast tomosynthesis restoration through deep learning
techniques.” In 16th International Workshop on Breast Imaging (IWBI2022), vol. 122861,
p. 13. SPIE, 2022. Available at: https://doi.org/10.1117/12.2626634. The author obtained
permission for total and/or partial reproduction of the content from the publisher SPIE.

4.1 Abstract

Digital breast tomosynthesis (DBT) is an important imaging modality for breast
cancer screening. The morphology of breast masses and the shape of the microcalcifications
are important factors to detect and determine the malignancy of breast cancer. Recently,
convolutional neural networks (CNNs) have been used for denoising in medical imaging
and have shown potential to improve the performance of radiologists. However, they can
impose noise spatial correlation in the restoration process. Noise correlation can negatively
impact radiologists’ performance, creating image signals that can resemble breast lesions.
In this work, we propose a deep CNN that restores low-dose DBT projections by partially
filtering out the noise, but imposes fidelity of the noise correlation between the original
and restored images, avoiding artifacts that may resemble signs of breast cancer. The
combination of a loss function that calculates the difference in the power spectra (PS)
of the input and output images and another one that seeks image visual perception is
proposed. We compared the performance of the proposed neural network with traditional
denoising methods that do not consider the noise correlation in the restoration process
and found superior results in terms of PS for our approach. Our code is available at
www.github.com/LAVI-USP/IWBI2022-PSloss.

4.2 Introduction

Digital breast tomosynthesis (DBT) is a powerful imaging modality to help radiol-
ogists on early detection of breast cancer on screening programs. Signs of breast cancer
are generally related to four mammography findings: morphological characteristics of the
tumor mass, cluster of microcalcifications, architectural distortions and breast asymme-
try (YAFFE, 2000). Several studies have been done to investigate how the image quality
impacts the detection of breast cancer by radiologists (JR et al., 2007; CHAN et al., 2020;
BOITA et al., 2021). Image quality issues are commonly associated with spatial resolution,
contrast, pixel cross-talk, image blur and noise (BOITA et al., 2021). Methods to improve

https://doi.org/10.1117/12.2626634
www.github.com/LAVI-USP/IWBI2022-PSloss
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the quality of an image that has been degraded by one of the aforementioned issues have
been extensively investigated. Some studies have investigated the use of model-based (MB)
methods in the field of image reconstruction (ZHENG; FESSLER; CHAN, 2017) and
image restoration (BORGES et al., 2018), and, more recently, data-driven methods, with
artificial neural networks (GAO et al., 2020; SHAN et al., 2023; VIMIEIRO et al., 2022),
which also have been achieving good results.

When it comes to noise spatial correlation, Boita et al. (BOITA et al., 2021) argue
that this degradation “have a high impact on the radiologists’ perceived ability to interpret
mammograms” and also can “introduce simulated signals that could resemble calcifications”.
Indeed, recent works were proposed to deal with correlated noise to restore or reconstruct
images, with MB approaches (ZHENG; FESSLER; CHAN, 2017; MÄKINEN; AZZARI;
FOI, 2020). It is known that denoising methods can introduce noise correlation in the
restored image, especially for convolutional neural networks (CNNs). The objective of
this work is to propose a deep CNN that restores low-dose (LD) DBT projections and
preserves the noise characteristics in terms of noise correlation, avoiding artifacts that
may resemble signs of breast cancer.

4.3 Materials & methods

4.3.1 Training and testing datasets

4.3.1.1 Training

Our training dataset consists of 1,982 retrospective clinical DBT exams, with
a total of 29,730 projections, acquired at the Institute of Radiology (InRad), Faculty
of Medicine, University of São Paulo (Brazil) under IRB approval1. We used a Hologic
Selenia Dimensions DBT system (Hologic, Bedford, MA). All the images were used as
raw data, i.e., DICOM “for processing”. All clinical images were carefully anonymized to
preserve patients’ medical records. The method proposed by Borges et al. (BORGES et
al., 2017) was used to inject quantum and electronic noise on the projections to simulate
LD acquisitions of 50% of the standard radiation dose (VIMIEIRO et al., 2022).

4.3.1.2 Testing

We tested the proposed neural networks with an anthropomorphic physical breast
phantom designed by the University of Pennsylvania (CARTON et al., 2011) and produced
by CIRS, Inc. (Reston, VA). The phantom was exposed 20 times with radiographic factors
(31 kVp and 60 mAs) determined by automatic exposure control (AEC). We then halved
the mAs value in manual mode (30mAs) and acquired 10 exposures, at the same position,
to obtain samples with a 50% radiation dose reduction rate. For image quality assessment,
we used the mean normalized squared error (MNSE), decomposed into residual noise
1 CAAE #56699016.7.0000.0065
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(RN ) and bias squared (B2). This decomposition allows the evaluation of the restoration
methods in terms of signal smoothing and residual noise separately. This metric was
proposed by Borges et al. (BORGES et al., 2018) and further information is available
in Shan et al. (SHAN et al., 2023). We also measured the power spectrum (PS) of the
restored images (WU; MAINPRIZE; YAFFE, 2012b; KAVURI; DAS, 2020).

4.3.2 Network and implementation details

We used a new enhanced ResNet architecture, with hierarchical skip connections,
proposed by Shan et al. (SHAN et al., 2023), for all training schemes. The CNN was
implemented using the PyTorch Deep Learning library2, trained and tested using an
NVIDIA TITAN Xp with 12GB of RAM. Overall, five networks were trained to compare
their performance in terms of objective metrics. We first pre-trained the networks with an
L1 loss function for 60 epochs. We halved the initial learning rate (LR) each 10 epochs.
After that, we set the LR to 100 times smaller, i.e., 1e−5, and trained the networks with
different strategies for a single epoch (1880 steps). We considered three different strategies
to impose noise correlation fidelity on the network output. First, we adopted the mean
normalized absolute error (MNAE) between the 2D PS of the input and the output.
Second, we considered the MNAE between the PS 1D. Third, we made a combination of
the perceptual loss (PL) (JOHNSON; ALAHI; FEI-FEI, 2016) and the PS 2D. For this
third method, we assessed different weight values to scale the PS loss contribution, with
the following equation:

LP L+P S = LP L4 + λ ∗ LP S2D. (4.1)

These values were sampled from a uniform distribution. Also, we trained two different
networks, with PL on the third and fourth block, i.e., PL3 and PL4 respectively, for
comparison. During training we evaluated the structural similarity index (SSIM) (WANG
et al., 2004) and the PS. We used 256,000 patches, randomly extracted from the training
dataset. Patches that were outside the breast region and also next to the breast skin were
removed. This step was done to avoid abrupt changes in the PS and to facilitate the
training procedure. For cross-validation, we performed the network fine-tuning 10 times.
We used the model-based (MB) restoration, proposed by Borges et al. (BORGES et al.,
2018), as a reference for the proposed networks.

4.4 Results & discussions

Figure 20 illustrates the PL, PS loss, total loss and SSIM during the training
procedure of one realization, for all the proposed networks. In the PL case, we can see
that PL3 and PL4 converge and stabilize very fast. However, for the PS networks, the
perceptual metric increases along with the training (Fig. 20 (a)). For the PS loss, we can
2 www.pytorch.org

www.pytorch.org
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observe that although the PL networks are not directly optimizing the PS loss, they slowly
decrease the PS loss value. This is explained by the fact that the PL is approximating
the RN of the input and the output, but not considering the noise correlation itself. On
the other hand, the PS networks and the network with the combined loss decreased and
stabilized the PS values faster than the PL networks (Fig. 20 (b)). The combined loss
benefits from both characteristics, i.e., it optimizes the PS while keeping the PL values.
Fig. 20 (c) illustrates the total loss, i.e., the combination of the PL and the PS loss. In the
cases where either the PL or the PS is optimized, the total loss would be the same. Only in
the case of the combination of both of them, the total loss result will be different. We can
see in this figure that all losses decrease as the network is trained. Fig. 20 (d) illustrates the
SSIM measurement between the input and the target along with the training for all losses.
This graphic illustrates a similar behavior as the PL, where PS networks tend to decrease
the SSIM value along with the training steps. On the other hand, the PL networks and
the combined loss slightly decrease the SSIM values compared to the PS ones.

(a) (b)

(c) (d)

Figure 20 – Illustration of (a) PL, (b) PS loss, (c) total loss and (d) SSIM on the training
stage of all the proposed neural networks.

Figure 21 shows regions of interest (ROIs) extracted from the central projection
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of DBT acquisitions of the physical breast phantom at LD, FD, and the restored images
generated from all the networks and from the MB restoration method. In general, visually,
all networks were able to successfully restore LD DBT acquisitions, achieving similar
results to the MB.

(a) 50% (b) 100% (c) PL3 (d) PL4

(e) PS-1D (f) PS-2D (g) Combined Loss (h) MB

Figure 21 – ROIs extracted from the central projection of DBT acquisitions of the physical
breast phantom at (a) LD; (b) FD; CNN output with (c) PL3, (d) PL4, (e)
PS-1D, (f) PS-2D, (g) the combined loss (PL+PS) and (h) the Model-based
(MB) restoration.

Table 11 shows the MNAE values from each PS curve to the FD one, i.e., the
distance between the curves. As discussed before, we evaluated several weights in the
combined loss function to tune this hyper-parameter. Within all realizations, we show
the lowest value for each restoration method. In bold, we can see that the combined loss
with λ = 0.037 has the lowest MNAE value, i.e., its PS curve is the closest to the FD one.
Then, throughout the paper we restricted all the results regarding the combined loss to
this specific weight.

Figure 22 illustrates the values from Tab. 11, where λ = 0 means only PL4 and
λ = 1 PS-2D loss only. We can see that the chosen value (λ = 0.037) achieved lower
MNAE compared to the PL4 itself.

Figure 23 (a) illustrates the PS measurements for the DBT central projection
acquired with the anthropomorphic breast phantom at the testing stage. According
to Kavuri and Das (KAVURI; DAS, 2020), anatomical noise dominates in the PS on
frequencies bellow 1 mm−1, while quantum noise prevails on higher frequencies. Then,
Fig. 23 (b) zooms the PS region above 1 mm−1 for better visualization. These curves
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Table 11 – MNAE metric between the PS curves (Fig. 24 (b)) of different DL losses and
the FD acquisition. Hyper-parameter tuning of the combined loss function
weight.

Loss MNAE Rlz#
LD 0.775
PL3 0.060 6
PL4 0.057 1

Combined-0.003 0.041 7
Combined-0.023 0.031 6
Combined-0.027 0.034 1
Combined-0.037 0.027 7
Combined-0.044 0.032 3
Combined-0.143 0.050 6
Combined-0.212 0.072 10
Combined-0.375 0.096 2
Combined-0.624 0.131 10
Combined-0.939 0.101 5

PS-2D 0.109 10
PS-1D 0.051 5

MB 0.038

Figure 22 – Visual representation of the relation between the weighting factor (λ) and the
MNAE metric between the PS curves.

represent the mean PS measurement with the respective standard deviation (SD) for all
training realizations, i.e., the cross-validation process. We can see through the graphics
that optimizing the PS only, either the 1D or the 2D, is an unstable process in the testing
phase. The SD for each point is relatively high in comparison with the PLs. For the PL
curves, although they have lower SD, for higher frequencies the PS deviate from the FD one.
Combining both losses can benefit from the properties of each of them, i.e., constraining
the PS while stabilizing the training process. To facilitate the visualization of the SD of
each zoomed PS of the DL methods, we plotted them separately from (c) to (g).
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 23 – Illustration of (a) the mean PS measurement for the DBT central projection
acquired with the physical breast phantom at the testing stage for all training
realizations and (b) zoom on PS high frequencies (above 1 mm−1) along with
the standard deviation (SD). To facilitate the visualization of the SD of each
zoomed PS of the DL methods, we plotted them separately from (c) to (g).

While we can see the behavior of the PS curves throughout different training
realizations, it is important to inspect the results of a certain realization. In Fig. 24 we
show the PS that achieved the lowest MNAE for each restoration method within all training
realizations. We can see in the zoomed PS curve that the combined loss approximates well
to the FD one (Fig. 24 (b)).

As our primary goal is to restore the LD DBT projections to achieve the same
characteristics of the FD images. Thus, we seek a restoration method that yields an image
with similar PS, MNSE and RN compared with the FD, with the lowest B2 error. Table 12
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(a) (b)

Figure 24 – Illustration of (a) PS on the physical breast phantom that achieved the lowest
MNAE for each restoration method within all training realizations; (b) a zoom
on PS high frequencies.

shows the mean value of the MNSE, decomposed into RN and B2, calculated for the FD
and LD acquisition and also for the proposed networks with the loss function PL3, PL4,
PS-2D, PS-1D and combined loss (PL4+PS-2D), considering all projections acquired with
the physical anthropomorphic breast phantom. The values correspond to the training
realization (Rlz#) that achieved the best PS in terms of MNAE, as illustrated on Tab. 11.
We also measured the MNSE for the MB as a benchmark.

Table 12 – Mean value of the total MNSE, RN and B2 calculated for all DBT projections
acquired with the physical breast phantom at the FD and the LD. Also, the
results for the restored images generated by the proposed neural networks
and the MB method. These results correspond to the realization (Rlz#) that
achieved the best PS in terms of MNAE, described in the last column. The
confidence interval is displayed inside the brackets.

Total MNSE(%) RN (%) B2(%) Rlz#
LD (30mAs) 24.87 [24.76, 24.98] 24.83 [24.82, 24.84] 0.04 [0.04, 0.05]
FD (60mAs) 11.71 [11.66, 11.77] 11.70 [11.69, 11.70] 0.02 [0.01, 0.02]

PL3 12.30 [12.26, 12.35] 11.97 [11.96, 11.97] 0.33 [0.33, 0.34] 6
PL4 12.25 [12.20, 12.29] 11.93 [11.93, 11.94] 0.32 [0.31, 0.32] 1

PS-2D 15.72 [15.65, 15.79] 15.37 [15.36, 15.37] 0.35 [0.34, 0.35] 10
PS-1D 12.61 [12.56, 12.65] 12.31 [12.30, 12.31] 0.30 [0.29, 0.30] 5

PL4 & PS-2D 13.11 [13.06, 13.16] 12.83 [12.82, 12.83] 0.28 [0.28, 0.28] 7
MB 13.25 [13.20, 13.31] 13.11 [13.11, 13.12] 0.14 [0.14, 0.14]

We can observe that optimizing the PS-1D as a loss function is a good surrogate
for the PL as they achieved similar results in terms of B2 and RN . As mentioned before,
optimizing the PS-2D is not a stable process, as we can also see in the MNSE values,
where the RN value is greater than the other methods. For the combined loss, the method
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achieved better results, with B2 slightly lower than the PL and slightly higher RN , but
lower than the MB. Also, there is a trade-off between B2 and RN , where networks with
low B2 values have relatively higher RN and vice-versa.

We show in Tab. 13 and 14 the MNSE values for the realization that achieved the
closest RN and the lowest B2, respectively. Such results illustrate that different training
realization result in different images properties. Depending on the application, some
realization might be preferable to others. In general, we can realize that the proposed
combined loss can achieve good results for all applications. Such cross-validation was
presented before by our group on virtual clinical images (VIMIEIRO et al., 2022).

Table 13 – Mean value of the total MNSE, RN and B2 calculated for all DBT projections
acquired with the physical breast phantom at the FD and the LD. Also, the
results for the restored images generated by the proposed neural networks
and the MB method. These results correspond to the realization (Rlz#) that
achieved the closest RN to the FD values, described in the last column. The
confidence interval is displayed inside the brackets.

Total MNSE(%) RN (%) B2(%) Rlz#
LD (30mAs) 24.87 [24.76, 24.98] 24.83 [24.82, 24.84] 0.04 [0.04, 0.05]
FD (60mAs) 11.71 [11.66, 11.77] 11.70 [11.69, 11.70] 0.02 [0.01, 0.02]

PL3 12.04 [11.99, 12.08] 11.67 [11.66, 11.67] 0.37 [0.36, 0.37] 4
PL4 11.97 [11.93, 12.01] 11.65 [11.65, 11.66] 0.32 [0.31, 0.32] 2

PS-2D 15.97 [15.89, 16.05] 15.53 [15.53, 15.54] 0.44 [0.43, 0.44] 1
PS-1D 11.88 [11.83, 11.92] 11.44 [11.43, 11.44] 0.44 [0.44, 0.44] 3

PL4 & PS-2D 12.50 [12.46, 12.55] 12.18 [12.18, 12.19] 0.32 [0.32, 0.33] 2
MB 13.25 [13.20, 13.31] 13.11 [13.11, 13.12] 0.14 [0.14, 0.14]

Table 14 – Mean value of the total MNSE, RN and B2 calculated for all DBT projections
acquired with the physical breast phantom at the FD and the LD. Also, the
results for the restored images generated by the proposed neural networks
and the MB method. These results correspond to the realization (Rlz#) that
achieved the lowest B2, described in the last column. The confidence interval
is displayed inside the brackets.

Total MNSE(%) RN (%) B2(%) Rlz#
LD (30mAs) 24.87 [24.76, 24.98] 24.83 [24.82, 24.84] 0.04 [0.04, 0.05]
FD (60mAs) 11.71 [11.66, 11.77] 11.70 [11.69, 11.70] 0.02 [0.01, 0.02]

PL3 12.36 [12.31, 12.40] 12.04 [12.04, 12.05] 0.32 [0.31, 0.32] 3
PL4 11.97 [11.93, 12.01] 11.65 [11.65, 11.66] 0.32 [0.31, 0.32] 2

PS-2D 16.57 [16.49, 16.65] 16.39 [16.38, 16.39] 0.18 [0.18, 0.19] 9
PS-1D 12.21 [12.16, 12.26] 11.93 [11.92, 11.93] 0.28 [0.28, 0.29] 9

PL4 & PS-2D 12.91 [12.87, 12.96] 12.64 [12.64, 12.65] 0.27 [0.27, 0.27] 10
MB 13.25 [13.20, 13.31] 13.11 [13.11, 13.12] 0.14 [0.14, 0.14]
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4.5 Conclusions

In this work, we were able to observe that training CNNs with a combination of
two loss functions, one that imposes fidelity in the noise correlation (PS) and another
that optimizes the visual perception (PL), can generate restored images that maintain
the shape of the PS of the input image. The network trained with the combination of
loss functions generated restored images whose PS was very close to the FD, in addition
to generating close values of RN and B2. Optimizing only the PS does not guarantee a
successful restoration, since in this case high values of RN and MNAE were observed for
the PS-2D loss function. The PS-1D generated good results in terms of MNSE, but not
for the MNAE. Furthermore, the PS-1D loss function could be used as a substitute for
PL, due to its ability to preserve image details in the restored image. For future work, the
PS-1D can also be used in combined loss, the same way we did for the PS-2D.
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5 PAPER 4:LEARNING IN A VARIANCE STABILIZATION DOMAIN TO RE-
STORE LOW-DOSE DIGITAL BREAST TOMOSYNTHESIS PROJECTIONS

The material presented in this chapter was submitted to IEEE Transactions on
Medical Imaging journal and it is currently under review. The authors are: Rodrigo de
Barros Vimieiro, Chuang Niu, Hongming Shan, Lucas Rodrigues Borges, Ge Wang, and
Marcelo Andrade da Costa Vieira.

5.1 Abstract

Digital breast tomosynthesis (DBT) exams should utilize the lowest possible radia-
tion dose while maintaining sufficiently good image quality for accurate medical diagnosis.
In this work, we propose a model-based deep-learning framework to restore low-dose (LD)
raw DBT projections to achieve an image quality equivalent to a standard full-dose (FD)
acquisition. The proposed framework benefits from priors in terms of layers that were
inspired by traditional model-based restoration methods. Considering a Poisson-Gaussian
noise model, the model is trained in a variance-stabilizing domain, implemented as a
layer, where the noise becomes approximately Gaussian, signal-independent, and with
unity variance. Additionally, we propose employing a combined bias-residual noise loss
function to control the final noise characteristics, potentially enhancing its suitability for
clinical applications by allowing the network to be adjusted to attain the desired image
quality. The training dataset was composed of clinical data acquired at the standard FD
and LD pairs obtained by the injection of quantum noise. The network was tested using
real DBT projections acquired with a physical anthropomorphic breast phantom. The
proposed framework achieved superior results in terms of mean normalized squared error,
structural similarity index, signal-to-noise ratio, and training time compared with models
trained with traditional data-driven methods. We observed improvement in restoration for
all three architectures that we used, reinforcing the fact that the proposed framework is
agnostic to the network architecture. The proposed approach can be extended for other
medical imaging application that requires LD acquisitions. The source code is available
online.

5.2 Introduction

Digital breast tomosynthesis (DBT) is a pseudo-3D imaging modality in which
X-ray projections of the breast are acquired along an arc, allowing the reconstruction of a
volume that minimizes tissue overlap and thus improves lesion detection if compared to
standard 2D mammography (HOOLEY; DURAND; PHILPOTTS, 2017; LAI et al., 2020).

DBT is emerging as a highly important tool for population-based breast cancer

https://github.com/LAVI-USP/CNNonVST
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screening programs. Since DBT exams utilize X-rays during image acquisition, the radiation
dose must be kept as low as possible, while preserving image quality for clinical utility.
In this context, image restoration methods can play a significant role, as they enable the
enhancement of image quality while maintaining the radiation dose at an acceptable level
for the patient.

The restoration of low-dose (LD) x-ray images is an active research topic and it
has been approached using different methods, such as traditional iterative reconstruc-
tions (DAS et al., 2010; XU et al., 2015; ZHENG; FESSLER; CHAN, 2017) and denoising
techniques (WU; MAINPRIZE; YAFFE, 2012a; BORGES et al., 2017; BORGES et al.,
2018). More recently, data-driven methods using neural networks were investigated, achiev-
ing promising results (KANG; MIN; YE, 2017; CHEN et al., 2017a; WOLTERINK et al.,
2017; CHEN et al., 2017b; KANG et al., 2018; SHAN et al., 2018; SHAN et al., 2019; YIN
et al., 2019; WU et al., 2021).

Particularly for DBT, Liu et al. (LIU et al., 2018) used two breast specimens
to train a convolutional neural network (CNN) for the restoration of DBT images. The
LD and full-dose (FD) image pairs were both acquired using a DBT system and the
network was trained in the projection domain. Sahu et al. (SAHU et al., 2019) trained
a generative adversarial network (GAN) to perform denoising using LD and FD pairs
of digital phantoms. Gao, Fessler and Chan (GAO; FESSLER; CHAN, 2021) proposed
a Wasserstein generative adversarial network (WGAN) for denoising DBT slices. The
network was trained on digital and physical phantoms and tested on clinical images. Both
mean squared error (MSE) and adversarial loss were used in the training step.

The works mentioned above rely solely on the data available for training and do not
include any prior knowledge about signal or noise characteristics. However, recent work
showed evidence that adding priors to the CNN architecture may improve performance (WU
et al., 2017; KANG et al., 2018; CHEN et al., 2018; WÜRFL et al., 2018; ADLER;
ÖKTEM, 2018; GONG et al., 2018; ZHANG et al., 2019; WU et al., 2021). Machine-
learning techniques that incorporate such priors are known as model-based deep learning
(MBDL) (XIA et al., 2023). Because MBDL accounts for specific domain knowledge, thanks
to the availability of precise mathematical formulations proposed for specific tasks, the
learning space is reduced and the CNNs can learn the data representation with fewer
samples (SHLEZINGER et al., 2023).

Inspired by an analytical model-based (MB) denoising pipeline proposed by our
group (BORGES et al., 2018), in this work we present an MBDL framework to restore
low-dose DBT projections leveraging a signal-dependent Poisson-Gaussian noise model.
The CNN is trained in a variance-stabilizing domain (VST) (STARCK; MURTAGH;
BIJAOUI, 1998) where the noise is converted into approximately signal-independent,
Gaussian-distributed, with unity variance. Furthermore, we explore a post-denoising image
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blending step which re-injects noisy data into the filtered one to recover part of the
high-frequency components that are suppressed during denoising. Lastly, the approach
of adding priors to the framework allowed the inclusion of a combined bias and residual
variance loss function, which is used to adjust the trade-off between noise suppression and
signal smearing in the restored image.

We hypothesize that the conversion of signal-dependent noise into signal-independent
noise with fixed and known variance facilitates denoising as learning the local noise char-
acteristics is no longer required. Furthermore, we conjecture that the image blending step
may minimize excessive blurring and smearing from the noise suppression scheme. Lastly,
we expect that having the ability to control the final noise characteristics through the
combined bias-residual noise loss function may facilitate the potential clinical use as the
network can be tuned to achieve a target image quality.

Considering the use of VST for denoising in a CNN context, Zhang et al. (ZHANG
et al., 2019) proposed a VST-Net to denoise natural images corrupted by Poisson noise.
The network performs variance stabilization by adding a trainable layer to the CNN that
converts signal-dependent Poisson noise into signal-independent noise. Compared to the
work by Zhang et al., our contributions include the use of an analytical form of the VST
as opposed to a CNN-learned VST. Because we assume that the noise model is a prior, we
can achieve reliable variance-stabilization using the Generalized Anscombe Transformation
(GAT) (STARCK; MURTAGH; BIJAOUI, 1998), as well as reliable inverse transformation
using the exact unbiased inverse transform (MAKITALO; FOI, 2012).

Moreover, the design of a bias-reducing form of the MSE using the concepts of bias
and residual noise was explored by Narage et al. (NAGARE et al., 2021). In their work,
they use two independent samples of the same signal to back-propagate the bias-weighted
MSE during the training of a denoising CNN. In our work, we use digital phantoms to
perform fine-tuning of our CNN using the actual analytically estimated bias and residual
noise. This is only possible because the fine-tuning step was performed using phantom
images.

The remainder of this work is divided as follows. Section 5.3 gives a general
overview of the image formation, the transformations, and a general overview of the
proposed framework and its relation with the conventional mathematical formulations.
Section 5.4 describes the network architectures, how the networks were trained, the loss
functions used, the datasets, implementation details and finally the objective metrics.
Section 5.5 presents and discusses the results and finally, Section 5.6 concludes the work,
states the limitations of the work, and shows future works.
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5.3 Theoretical background

Noise in DBT raw projections is typically described by a Poisson-Gaussian model (DOB-
BINS, 2000). The Poisson portion describes the quantum noise, which arises from the
counting nature of X-ray generation and detection, whereas the Gaussian portion describes
the electronic noise caused by thermal agitation (DOBBINS, 2000). Given a reference FD
projection ż, each pixel of ż can be formulated as

żi = αipi + ni + τ, (5.1)

where i indicates the pixel spatial coordinate, pi ∼ P(α−1
i yi) is a random variable with

Poisson distribution, αi is the spatially-dependent quantum gain, yi is the (unknown)
noise-free image, ni ∼ N (0, σ2

e) is independent and identically distributed (i.i.d.) Gaussian
noise, σ2

e is the variance of the electronic noise, and τ is the pixel offset. To facilitate the
next mathematical steps, let us consider z as the linearized version of ż, which for this
particular model translates into z = ż − τ .

One can model an LD projection zγ by fixing the radiographic factors as in z except
for a reduction in the current-time product (mAs)

zγ
i = αip

γ
i + ni, (5.2)

where pγ
i ∼ P(γα−1

i yi) and 0 < γ < 1 is the corresponding dose reduction factor.

Such dose reduction directly impacts the signal-to-noise ratio (SNR), such as, for z

SNR = E{zi | yi}2

var{zi | yi}
= y2

i

α−1
i yi + σ2

e

, (5.3)

and for zγ

SNRγ = E{zγ
i | yi}2

var{zγ
i | yi}

= y2
i

γ−1α−1
i yi + σ2

eγ−2 , (5.4)

given that 0 < γ < 1, thus SNRγ < SNR, indicating that indeed the dose reduction
causes a degradation in SNR.

In general, denoising frameworks are designed to achieve as low as possible residual
noise variance, with the SNR being as high as possible. Thus, given a denoising framework
D, ideally

var{D{zγ
i } | yi} → 0 (5.5)

SNRD → ∞ (5.6)

whereas in this work, inspired by the restoration framework proposed in Borges et
al. (BORGES et al., 2018), we aim to achieve

var{D{zγ
i } | yi} → var{zi | yi} (5.7)

SNRD → SNR (5.8)
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i.e., the image quality of our target denoised image should match the one of a standard FD
acquisition instead of the quality of a noise-free signal y. The rationale for having the FD
as the target is that aiming at a noise-free image might impose excessive smoothing and
smearing to the underlying signal, which may negatively impact radiologists readings. Thus,
having the FD as the target allows for a more conservative image denoising preserving
relevant details.

The restoration process can be treated modularly, starting with a variance-stabilization
module that converts the Poisson-Gaussian signal-dependent noise into approximately
signal-independent Gaussian noise with unity variance. In the case of Poisson-Gaussian
distributions, the GAT (STARCK; MURTAGH; BIJAOUI, 1998) is commonly used

f(zi) =

2
√

z̊i + 3
8 + σ̊2

e , if z̊i > −3
8 − σ̊2

e

0 if z̊i ≤ −3
8 − σ̊2

e ,
(5.9)

where
z̊i = z

αi

σ̊e = σe

αi

. (5.10)

As the GAT is a non-linear transformation, noise removal may introduce bias if
the inappropriate inverse transform is used (MAKITALO; FOI, 2012). Thus, the next
denoising module consists of the closed-form approximation of the exact unbiased in-
verse (MAKITALO; FOI, 2012)

ŷγ
i

α
= 1

4d
2 + 1

4

√
3
2d

−1 − 11
8 d−2 + 5

8

√
3
2d

−3 − 1
8 − σ̊2

e , (5.11)

where d is the denoised image in the GAT domain.

As our primary goal is to match the signal and noise properties of the restored and
FD images, it is desirable that their expected mean and variance match. To that end, after
denoising the image in the VST domain, the last denoising module consists of a weighted
sum between the LD image zγ

i and the denoised one ŷγ
i with weights defined by

ẑ = wiz
γ
i + w̄iŷ

γ
i + τ, (5.12)

where
wi =

√
αiyi + σe

γαiyi + σe

, (5.13)

and
w̄i = 1

αi

− wi, (5.14)

are sufficient to make the restored image’s expected mean and variance match the FD,
considering the denoising was successful (BORGES et al., 2018). As we do not have access
to y, we approximate it to

ŷi = ŷγ
i

γ
. (5.15)
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In this work, the denoising modules defined by (5.9), (5.11) and (5.12) are imple-
mented as layers of the CNN architecture. Note that even though they are implemented
as layers, all their parameters are fixed, i.e., they do not have any trainable weights.

Fig. 25 provides a general overview the proposed framework, where the GAT
block implements (5.9), BS normalizes the signal, iGAT implements (5.11) and wAdd
implements (5.12) and (5.13) with a residual layer.
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Standard denoising CNN

Figure 25 – Illustration of the proposed framework. Note that the framework can be
applied independently of the network architecture and the illustrated standard
denoising CNN is a generic architecture. GAT is the Generalized Anscombe
Transformation layer, BS is a layer that normalizes the signal based on fixed
values calculated from the entire dataset, Conv is a generic convolutional
layer, BN is the commonly known batch normalization, ReLU is the activation
function, Add is a generic residual layer, I-GAT the inverse of the GAT and
wAdd is a layer similar to the residual layer but with calculated weights.

5.4 Materials & methods

5.4.1 Architecture

The denoising framework investigated in this work requires a “standard denoising
CNN”, as shown in Fig. 25. Because our framework is agnostic to the denoising CNN, we
tested three popular CNNs that are suitable for the denoising task: the Residual Network
(ResNet) (HE et al., 2016), the Residual Encoder-Decoder (RED) CNN (CHEN et al.,
2017a), and the U-Net (RONNEBERGER; FISCHER; BROX, 2015).

The ResNet contains 4 blocks and each block has 2 convolutional layers. The
U-Net is composed of 3 encoder blocks and 3 decoders. Each encoder and decoder has
2 convolutional layers and the decoder has an additional convolutional transpose. The
RED consists of 5 encoder blocks and 5 decoders with one convolutional and convolutional
transpose, respectively for each block.

As a benchmark, we also performed the same denoising tasks using the three
“standard denoising CNNs” without layers that implement (5.9), (5.11) and (5.12). Because
those layers are not included in the benchmark, the standard denoising CNNs are not
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considered MBDL (model-based DL) pipelines, as they rely solely on the training data
with no a priori. We address this class of CNNs as data-based deep learning (DBDL).
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Figure 26 – Scheme illustrating the conventional data-based deep learning framework for
image restoration, where the model is meant to learn only from data. Also,
the proposed model-based deep learning is separated into two steps. First (1),
the model learns in a self-learning framework how to completely remove noise
from an image in the VST domain. Here, the target images are simulated
using the Noise2Sim framework. Second (2), the pre-trained network is used
in the pipeline and can be fine-tuned using the proposed LBR loss function to
adjust the denoising properties.

5.4.2 Training

For the training of the MBDL models, we adopted a two-stage strategy. In the first
stage, the network was trained to estimate the noise-free signal in the VST domain using
patient DBT data. Because we do not have access to noise-free patient images, we used a
self-learning approach (LEHTINEN et al., 2018), in particular, we chose the Noise2Sim
(N2S) framework (NIU et al., 2022). The N2S uses non-local image information to estimate
a noise-free image in an unsupervised manner. Many other self-supervised methods are
available and may be used as an alternative to N2S (HENDRIKSEN; PELT; BATENBURG,
2020; BATSON; ROYER, 2019; KRULL; BUCHHOLZ; JUG, 2019; MORAN et al., 2020).
It is important to emphasize that at this stage the CNN was trained to achieve a noise-free
approximation of the stabilized signal, which is not the final goal of this paper, as defined
in (5.12).
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In the next stage, the pre-trained network is fine-tuned using a bias × residual-noise
loss function. The final steps of inverse GAT (5.11) and image blending (5.12) are applied.
Because bias and residual noise require several realizations of the same signal for reliable
estimation, we used synthetic breast images for this training stage, which were simulated
using a virtual clinical trial framework.

The benchmark DBDL methods were trained using raw DBT patient data. Because
the final goal is to achieve FD images and not noise-free ones, we generated LD/FD
pairs using a simulation framework (BORGES et al., 2016; BORGES et al., 2017). The
training was done in two steps: in the first step, the L1 loss-function was used followed by
fine-tuning using a perceptual-loss (JOHNSON; ALAHI; FEI-FEI, 2016) in the second step.
This strategy showed superior performance if compared to other training strategies in a
previous investigation from our group (SHAN et al., 2023). In this scenario, self-supervised
learning is not an appropriate approach as the CNN would be trained to achieve noise-free
images.

Because the DBDL were trained with no extra layers, no a priori information was
added to the denoising process, and thus the CNNs are expected to learn the restoration
from the provided data only.

5.4.2.1 Loss functions

The importance of the loss function for natural image restoration was previously
presented in (ZHAO et al., 2016) and in (SHAN et al., 2023) the authors explore the same
subject in the field of medical imaging. In this work, we used different loss functions at
different stages of the restoration, and below we list and define each of them and explain
the rationale for its use.

• LMSE : the mean of the squared error. We adopted this loss in the first stage of the
training of our proposed framework, which aims at achieving a noise-free image.

• LBR: this loss function explores the noise suppression versus blurring trade-off. The
noise suppression is weighted by the residual noise variance while signal blurring and
smearing are weighted by the signal bias. It is defined as

LBR = B2 + λR|RF D − RRI |, (5.16)

where λR is a weighting factor that controls the noise suppression versus blurring
trade-off, R and B are the average local residual variance and average local bias
estimated as described in (SHAN et al., 2023). Higher λR will give higher importance
to the residual noise matching between target and restored images, at the expense
of a higher signal bias. Lower λR values will cause minimization of the signal bias
while the mismatch between the target and restored residual noise might increase.
This loss was used in the second stage of our proposed framework.
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• LL1: the mean of the absolute error. This loss tends to minimize the noise at the
expense of signal blurring (SHAN et al., 2023). We used this loss in the first stage of
the DBDL training.

• LP L4: the fourth layer of the perceptual loss CNN (JOHNSON; ALAHI; FEI-FEI,
2016). We used this loss in the second stage of the DBDL training aiming to retrieve
image details that were lost during the first training stage.

5.4.3 Dataset

Because our methods require different datasets depending on the training strategies,
we prepared three distinct datasets that are used at different stages of the experiments.
Below we detail each of them.

5.4.3.1 Patient FD/LD pairs

The dataset consists of 1,982 retrospective exams (29,730 raw DBT projections)
acquired at the Institute of Radiology (InRad), Faculty of Medicine, University of São
Paulo (Brazil) under IRB approval (CAAE #56699016.7.0000.0065). The dataset contains
patient cases acquired using the Hologic Selenia Dimensions equipment (Hologic, Bedford,
MA). All images were carefully anonymized to preserve patients’ medical records. The
1,982 exams were randomly selected from the hospital’s PACS system to represent the
screening population of that region.

We simulated the corresponding LD acquisitions using the method proposed
at (BORGES et al., 2016; BORGES et al., 2017), which injects quantum and electronic
noise in the VST domain. The LD images were simulated to mimic an acquisition with
50% of the exposure time, and thus 50% of the FD.

Because all the deep-leaning methods explored in this work are patch-based, we
extracted 64 × 64 pixels ROIs from the full-size images. ROIs containing air were excluded,
and 256,000 LD/FD ROI pairs were randomly selected from the remaining ones.

This dataset was used at two points of this work: the LD patches were used
in the first training stage of our proposed pipeline, where the self-supervised approach
was adopted. The FD/LD pairs were used in the training stages of the benchmark DL
approaches (DBDL).

5.4.3.2 Synthetic FD/LD pairs

Synthetic DBT projections were generated using the OpenVCT virtual clinical trial
framework, developed at the University of Pennsylvania (BARUFALDI et al., 2018). Seven
anatomies were simulated and the corresponding noise-free CC projections were created.



100

Note that, even though it is possible to simulate as many anatomies as desired, seven
anatomies yielded a sufficient number of patches for this experiment.

We simulated five noise realizations of each projection set at FD and five realizations
at LD using the method presented at (BORGES et al., 2019). The FD radiographic factors
were selected using the AEC table implemented in the OpenVCT pipeline, and the
corresponding LD was defined as a 50% reduction in exposure time.

The geometry of the Hologic Selenia Dimensions system was used and the noise
simulation accounts for the quantum and electronic noise as well as pixel cross-talk. A
collection of 90,650 LD/FD ROI pairs, extracted from the VCT projections, was used
in the second training stage of our proposed method so that we could generate several
realizations of the same anatomy with different noise seeds and thus accurately estimate
the residual variance and bias.

5.4.3.3 Phantom FD/LD pairs

As the goal of this work is to investigate noise suppression, the validation step
should be performed using data with noise statistics that are as close as possible to what
is found in a real clinical scenario. To that end, we acquired a dataset of anthropomorphic
phantom DBT images using a Hologic Selenia Dimensions system installed at the Hospital
of the University of Pennsylvania. The anthropomorphic phantom was designed at the
University of Pennsylvania (CARTON et al., 2011) and produced by CIRS, Inc. (Reston,
VA).

We performed a total of 29 DBT acquisitions, split into 19 FD image sets and
10 image sets at 50% of the FD. The radiographic factors of the FD acquisitions were
obtained using the automatic exposure control (AEC), which yielded 31 kVp and 60 mAs.
We generated the corresponding LD projections by setting the system to manual mode
and replicating the FD radiographic factors except for a reduction of 50% in the mAs.

This dataset was used as the testing sample for all methods investigated in this
work, and thus all the results presented in the results section originated from this dataset.
It is important to note that none of the data in this dataset was used by any of the
methods during the training stages.

5.4.3.4 Uniform phantoms

Since we used several conventional mathematical equations as network layers,
all necessary parameters such as σ̊e, α, τ and γ were estimated. We followed the same
procedure and used the same uniform images as stated in (BORGES et al., 2018). The
same parameters were used for MBDL and MB restorations.
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5.4.4 Experimental setup

All neural networks were implemented using the PyTorch Deep Learning library,
trained and tested using an NVIDIA TITAN Xp with 12GB of RAM. Below we specify
the experimental details for each of the frameworks.

Because our networks were trained using patches, the inference phase during the
testing must also be performed using patches. To avoid border artifacts during image
stitching, patches of size 192 × 192 were generated with overlap in all directions. After
inference, the 64 × 64 central patch was used to reconstruct the full-resolution image.

5.4.4.1 MBDL

In the first training stage (self-supervised learning) the N2S was used in the VST
domain as illustrated in Fig. 26, i.e., the GAT shown in (5.9) was applied to the data
before training. In this stage, we set the number of epochs to 70, with a batch size of 128,
MSE loss function, 8 simulated images for the N2S and we maintained the default learning
rate of the N2S, which starts at 0, goes up to 1 × 10−4 and returns to 0 following a cosine
ramp. The dataset used to train the networks was the 256, 000 LD patches taken from
patient cases, as described in 5.4.3.1.

In the second learning stage of the MBDL, we used the CNNs trained in the
previous step and performed fine-tuning with the LBR loss function. The training was
done for 5 epochs with a learning rate of 1 × 10−5. At this stage, the MBDL model has the
GAT, iGAT and wAdd layers incorporated into each architecture. Thus the loss function
is now evaluated in the image domain and no longer calculated in the GAT domain as in
the first training stage.

To estimate the LBR loss, we stacked the five noise realizations and set the batch
size to 60. Note that we do not shuffle the batch after an epoch as we want to calculate
the loss for patches with the same underlying signal. The loss was then calculated between
the LD stack of patches and the corresponding FD stack, after the iGAT was applied, i.e.,
in the projection domain. At this learning stage, as we need to estimate bias and residual
noise variance, we adopted the synthetic FD/LD pairs dataset described in 5.4.3.2. We
used the Adam optimizer with running averages of gradient and its square equal 0.5 and
0.999, respectively, in both training stages.

The proposed framework also relies on the appropriate selection of λR, which
controls the signal blurring versus noise suppression trade-off. To better understand the
role of λR we performed a grid search investigation with the following setup:

• The three MBDL architectures were trained using 20 linearly spaced values of λR

ranging from 0 to 2;
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• The range of interest was detected (0 to 0.105) and a finer grid was created using 20
new linearly spaced λR values within the range of interest

5.4.4.2 DBDL

We trained the standard models as done in (SHAN et al., 2023), i.e., the first
training stage used LL1 as loss function, with 60 epochs, batch size of 256 and learning
rate starting at 1 × 10−4, halved every 10 epochs.

In the second training stage the LPL4 loss was used for 60 epochs, batch size of
64, the learning rate started at 1 × 10−5, also halved every 10 epochs. We used the Adam
optimizer with running averages of gradient and its square equal 0.5 and 0.999, respectively,
in both training stages.

All DBDL networks were trained, in both stages, with 256, 000 LD/HD pairs of
patches taken from the patient dataset described in 5.4.3.1.

5.4.4.3 MB

We also used the MB restoration technique presented in (BORGES et al., 2018) as
a benchmark. The algorithm relies on the accurate estimation of the noise parameters of a
system to perform denoising in the VST domain. The denoiser used for this task was the
block-matching and 3D filtering (BM3D) (DABOV et al., 2007), and the GAT was the
selected VST.

5.4.5 Figures of merit

In general, denoising methods involve a trade-off between noise suppression and
signal blurring/smearing. One way to assess both aspects is through the estimation of
bias and residual noise, by decomposing the MNSE, where bias quantifies the negative
impact on the underlying signal while the residual noise measures the effectiveness of noise
removal. When a noise-free image is the final goal of a denoising method, the residual
noise is reduced as much as possible even if it involves extra penalties to the bias. On the
other hand, in dose restoration, the aim is to achieve the same residual noise as the FD
while keeping the bias as low as possible. In this work, we estimate bias (B) and residual
noise (R) analytically, as done before in (BORGES et al., 2018; SHAN et al., 2023)

R = 1
m × n
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where m is the number of rows, n is the number of columns, V indicates the pixel-wise
variance along the set of z

′ image realizations, E indicates the pixel-wise expectation, y is
the noise-free image and p is the number of realizations in the z

′ set.

We evaluated the MNSE, as well as its decomposition into bias and residual noise,
using the anthropomorphic phantom images described in 5.4.3.3. To generate the pseudo-
ground-truth, we averaged 9 images acquired at FD. To estimate MNSE, (B) and (R) we
used a separate, independent set of 10 realizations at FD and a set of 10 realizations at
50% of the dose. All metrics were evaluated inside the breast phantom region to avoid
overestimation due to the uniform background. We adjusted the mean value of all images
and restorations using an affine transformation between the input image and the pseudo-
ground-truth to avoid errors due to small differences in DC level caused by aspects such
as x-ray tube throughput and flat-fielding.

Since we are optimizing the MNSE decomposition in the proposed loss function,
we also measured the structural similarity index (SSIM) (WANG et al., 2004) and the
SNR. We measured the SNR in all phantom images and its restorations as the ratio of the
mean pixel value and its standard deviation along the five realizations. The metric was
calculated only inside the breast region and an average filter of size 15×15 was used to
smooth both the mean signal value and the standard deviation after their calculation. We
used Scikit-image (WALT et al., 2014) implementation of SSIM and calculated only inside
the breast region. Note that we measured the SSIM of all images against the generated
pseudo-ground-truth mentioned before.

For the sake of cross-validation, we measured all the metrics for each projection,
i.e., we first measured the metric for each projection and then calculate the statistics
across the 15 projections. For both SNR and MNSE, we used different image realizations
to calculate the metric, while in SSIM all realizations were used for statistics.

5.5 Results & discussions

In this section, we present the visual comparisons and the quantitative results for
both MBDL and DBDL approaches. We show the results as an ablation study, i.e., first,
the DBDL models are presented such that no priors are added and the network only learns
from data. We also present intermediate results of the MBDL before the fine-tuning, i.e.,
the VST is applied, introducing the a priori on the noise model, however, the bias versus
residual noise fine-tuning was not done at this stage. We refer to the intermediate results
as MBDL. Finally, we present the MBDLλ results with both the VST and the λ tuning.
For the sake of simplicity, we only show results related to the selected point for λ.
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5.5.1 λR Optimization

As previously mentioned, the impact of λR was investigated using a grid search
approach. Fig. 27 shows the results of B and R for different λR values. In these plots we
can observe the trade-off between bias and residual noise, i.e., as the λR increases, more
importance is given to the matching of R, causing an extra penalty to the bias. On the
other hand, at low λR the network prioritizes the underlying signal, resulting in lower bias
and higher noise variance. In DBT image restoration, we seek a match between the R of
FD and restored images, with bias as low as possible. The choice of λR in which the CNN
should operate is quite dependent on the task at hand. In this work, we chose the λRthat
yields a R within a 6% margin of the FD R. This condition was met at λR = 0.025 for
the RED architecture, at λR = 0.421 for the ResNet architecture and at λR = 0.035 for
the U-Net architecture.

5.5.2 Visual comparison

Fig. 28 illustrates the restoration of LD projections by different approaches. The first
row shows an ROI of the input image, the MB restoration and the target FD, respectively.
The following rows show the DL methods for each architecture. Column (a) illustrates the
restoration through the DBDL approach, i.e., using both LL1 and LPL4 losses. Column
(b) shows the proposed MBDL using self-supervised learning and column (c) MBDLλ

for the selected point discussed in Section 5.5.1. Note, this ROI was extracted from the
central projection of the anthropomorphic breast phantom and they are plotted in the
same window and level.

In terms of DBDL restoration, LL1 loss is first used and removes almost all the noise,
smoothing the underlying signal as well. This is not desirable since important features can
be removed in the process. The LPL4 is then used trying to retrieve the image details. It
is possible to note in Fig. 28 (a) that the network can reduce the noise while keeping the
high-frequency components of the underlying signal. However, some artifacts can be seen
in the results. In special, RED architecture is visually less noisy than the others.

For the proposed framework, i.e., MBDL, it is possible to notice the network trained
with the self-supervised learning approach (b) with the GAT layers was able to successfully
reduce the noise from the input and keep the image details. N2S by itself benefited from
training in the VST domain, where noise has approximately unit variance and already
achieved good results. Although we used this framework for training the network, it is
possible to use any other architecture and framework for denoising. The limitation of this
method is that it is not possible to control the network operation point in terms of bias
and R. It is even noticeable in the ROIs that all architectures have higher residual noise
compared to the MB and the FD ones.

In MBDLλ, since we selected a point that is within 5% of the FD residual noise, it
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Figure 27 – λR tuning plot on the last epoch. The graphic illustrates the network operation
points in terms of bias and R for each λR value.

is possible to see that for all architectures the noise visual aspect is very close to the FD, at
the expense of slightly increasing the artifacts. All architectures were able to successfully
reduce the noise from the input since their starting point was the self-supervised model.
This point makes the network compromised in terms of preservation of the underlying
signal and R matching, i.e., the loss is balanced between error and noise variance matching.
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Figure 28 – Visualization of an ROI for a visual comparison of the DBDL and MBDL
restorations for different architectures. Where (a) represents the LD image, (b)
the corresponding FD image and (c) the MB method restoration. Figures (d) to
(f) illustrate DBDL, MBDL and MBDLλ, respectively, for the RED architecture.
Figures (g) to (i) illustrate DBDL, MBDL and MBDLλ, respectively, for the
ResNet architecture. Figures (j) to (l) illustrate DBDL, MBDL and MBDLλ,
respectively, for the U-Net architecture. Note that each line represents a
different architecture.
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We also plotted the MB restoration as a benchmark for all the proposed restoration
methods.

5.5.3 Quantitative analysis

Table 15 provides an objective analysis, in terms of MNSE and its decomposition
on bias and residual noise, for LD and FD acquisitions, DL restorations and also the
MB method. We highlighted, within the DL methods, the lowest value of bias and the
closest R to the FD value. Again, our goal is to compare different training strategies and
frameworks and not different CNN architectures.

Table 15 – MNSE analysis with its decomposition on bias and R for the DBDL and MBDL
approaches and comparison with LD, FD and MB results. Values highlighted
mean the lowest bias for each architecture. We also highlighted the closest R
to the value from FD images.

MNSE R B2(10−3)
LD 0.250 ± 0.002 0.2485 ± 0.0010 1.7 ± 1.8
FD 0.118 ± 0.001 0.1178 ± 0.0006 0.7 ± 0.5
MB 0.135 ± 0.002 0.1322 ± 0.0006 2.9 ± 1.8

DBDL
RED 0.108 ± 0.002 0.1039 ± 0.0003 4.4 ± 1.9
U-Net 0.120 ± 0.002 0.1123 ± 0.0003 7.2 ± 1.9
ResNet 0.120 ± 0.002 0.1111 ± 0.0004 8.5 ± 1.9

MBDL
RED 0.144 ± 0.002 0.1414 ± 0.0006 2.9 ± 1.8
U-Net 0.145 ± 0.002 0.1414 ± 0.0006 3.3 ± 1.8
ResNet 0.145 ± 0.002 0.1419 ± 0.0005 3.5 ± 1.8

MBDLλ

RED 0.123 ± 0.001 0.1200 ± 0.0004 3.3 ± 1.6
U-Net 0.128 ± 0.002 0.1243 ± 0.0007 3.2 ± 1.9
ResNet 0.128 ± 0.002 0.1243 ± 0.0005 3.8 ± 2.0

Looking only at the MNSE, one could say that the RED architecture in DBDL
mode achieved the best result. This is not what we see in the ROIs above, since the results
were over-smoothed for this specific architecture. Looking at the bias and the residual
noise, in general, MB performed better compared with the DL method in the DBDL
framework. We also can see that in this mode, there is no control over how the network
behaves regarding denoising properties since the B and R have great variability within
different architectures.

In the MBDL framework, we can notice that all architectures achieved the same
residual noise. This demonstrated the stability of the training process in the VST domain
even with different architectures. However, compared to the FD, those values are within
a 20% margin of the residual noise. When we look at the benchmark, its residual noise
is within a 12.2% margin. Even though residual noise was virtually the same, different
architectures yielded different biases, illustrating the different characteristics of distinct
architectures.
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For MBDLλ, as a consequence of the selected point, all residuals are within the
6% margin. The closest value, highlighted in bold, is present in this framework. We can
notice a slight increase in bias for both RED and ResNet. For the U-Net, the bias was kept
virtually the same. These facts demonstrate the effectiveness of the LBR loss function to
fine-tune the network. Also, as shown in Fig. 27, with this loss it is possible to control the
network operation concerning denoising strength, accomplishing the specific results, unlike
the DBDL mode. Moreover, adding prior knowledge to the training process enhanced the
restoration quantitative results, as shown by MBDL with self-supervised learning, using
the N2S framework.

One can notice that the bias standard deviation is high compared to the mean
value, however, this high value is also present in the LD acquisition, suggesting a high
variance in the bias within different DBT projections.

Fig. 29 illustrates the B and R relation for all restoration methods. The dashed
gray lines indicate points where the MNSE has the same value. Even though the DBDL
method with ResNet and U-Net have approximately the same MNSE to the FD image,
i.e., they are almost in the same line, these restorations are not desirable in the clinical
routine since they have high values of bias. It is worth noting that MBDL with self-learning
(lozenge) all live very close to each other, confirming the stability of the framework across
different architectures, and they are also close to the MB restoration, demonstrating
the effectiveness of the method. When looking at the MBDLλ, they were all capable of
decreasing the residual noise, without the expense of highly increasing the bias term.
Ideally, we want a point to be as close as possible to the FD one. However, is still not clear
the relation between residual noise and bias.

Since were are optimizing the MNSE decomposition, it is worth exploring different
objective metrics. Table 16 shows the assessment of SSIM and SNR for all different methods.
We can notice that DBDL has higher SSIM and SNR values compared to the FD. In terms
of SNR, we can argue that they are performing more denoising, decreasing the standard
deviation and consequently increasing the SNR. For the MBDL, both SSIM and SNR are
smaller than the FD one. For the SNR, since their residual noise is higher, it is expected
to have a smaller SNR due to the high standard deviation. Again, it is worth noting the
similarity of the metrics within different architectures, reinforcing the framework stability.
When it comes to MBDLλ, this framework was able to increase both SSIM and SNR,
compared to the MBDL without fine-tuning. However, with levels close to the FD reference
and also to the MB one.

Another advantage of MBDL mode is the training time, as illustrated by Table 17.
For DBDL, the fastest model, i.e., the ResNet, more than 86h were spent for training
purposes, among 7.5h for pre-training with LL1 and 79 for training with LPL4. MBDL only
takes approximately 9 hours for training in the self-supervised framework, as it uses the
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Figure 29 – Illustration of bias and residual noise for each restoration method. The gray
dashed lines show points where the MNSE is the same. The green is related
to the U-Net architecture, red with the RED and black with the ResNet.

Table 16 – SSIM and SNR objective metrics for the DBDL and MBDL approaches and
comparison with LD, FD and MB results. We highlighted the closest SSIM
and SNR to the FD value.

SSIM SNR
LD 0.9684 ± 0.0004 55.4 ± 0.4
FD 0.9839 ± 0.0002 78.7 ± 0.5
MB 0.9824 ± 0.0002 75.6 ± 0.5

DBDL
RED 0.9851 ± 0.0002 85.2 ± 0.5
U-Net 0.9837 ± 0.0002 82.0 ± 0.5
ResNet 0.9848 ± 0.0002 82.3 ± 0.5

MBDL
RED 0.9812 ± 0.0002 73.2 ± 0.5
U-Net 0.9812 ± 0.0002 73.2 ± 0.5
ResNet 0.9811 ± 0.0002 73.0 ± 0.5

MBDLλ

RED 0.9845 ± 0.0002 79.2 ± 0.5
U-Net 0.9838 ± 0.0002 77.9 ± 0.5
ResNet 0.9836 ± 0.0002 77.8 ± 0.5

low-time cost MSE loss function. Finally, the fine-tuning process with LBR loss only takes
at the most half an hour, totalizing 10h at the most. When it comes to inference time,
both DBDL and MBDL are generally the same, since only the GAT, its inverse and the
weighted sum are added to the framework It is also worth noting that LPL4 requires the
VGG network to be loaded in GPU memory, demanding more memory and, consequently
decreasing image batch size.
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Table 17 – Training time, in hours, for DBDL, MBDL and MBDLλ modes. Inference time
for all frameworks, in seconds

Framework Architecture Training (h) Inference (s)

DBDL
RED 92 5.21
U-Net 115 4.99
ResNet 86.5 2.22

MBDL
RED 9.6 5.23
U-Net 9.1 5.08
ResNet 8.5 2.22

MBDLλ

RED 9.9 5.23
U-Net 9.7 5.08
ResNet 8.7 2.22

5.6 Conclusion

In conclusion, CNNs that incorporate prior knowledge on its architecture derive
advantages from it, yielding superior results compared to those that lack such knowledge.
When MBDL was evaluated against DBDL mode, it achieved superior results in training
time, bias, and residual noise and also required less GPU memory. Also, all objective
metrics were comparable to our benchmark, demonstrating the effectiveness of the proposed
framework.

This work has some limitations. We restricted the network architecture to common
models. We reinforce that the proposed framework does not depend on the architecture
itself so the better the architecture the better the results are. Further evaluation with
state-of-the-art architectures such as Transformers is valid. Also, different self-learning
methods can be used for training the network in the VST domain. Another limitation
respects the equipment parameters estimation necessity for the GAT and weighted sum
layers. Future works could investigate performing the GAT, its inverse and the wSum
as trainable layers and compare the results. Also, there is a necessity to inspect the λR

parameter in terms of lesion diagnosis with radiologists. This would answer the question
of whether a low B image with a slightly high R is preferred or an R match between the
restored image and FD, with a loss of B.

Finally, we claim that the presented framework for training networks for image
restoration can be expanded for other areas in the medical image field and also for different
areas such as natural images and video processing.
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6 PAPER 5:SUPPRESSING NOISE CORRELATION IN DIGITAL BREAST TO-
MOSYNTHESIS USING CONVOLUTIONAL NEURAL NETWORK AND VIR-
TUAL CLINICAL TRIALS

The material presented in this chapter was published in: Vimieiro, Rodrigo de
Barros, Lucas Rodrigues Borges, Renato França Caron, Bruno Barufaldi, Andrew Douglas
Arnold Maidment, Ge Wang, and Marcelo Andrade da Costa Vieira. “Suppressing noise
correlation in digital breast tomosynthesis using convolutional neural network and virtual
clinical trials.” In 16th International Workshop on Breast Imaging (IWBI2022), vol. 12286,
p. 314-320. SPIE, 2022. Available at: https://doi.org/10.1117/12.2625357. The author
obtained permission for total and/or partial reproduction of the content from the publisher
SPIE.

6.1 Abstract

It is well-known that x-ray systems featuring indirect detectors are affected by noise
spatial correlation. In the case of digital breast tomosynthesis (DBT), this phenomenon
might affect the perception of small details in the image, such as microcalcifications. In
this work, we propose the use of a deep convolutional neural network (CNN) to restore
DBT projections degraded with correlated noise using the framework of a cycle generative
adversarial network (cycle-GAN). To generate pairs of images for the training procedure,
we used a virtual clinical trial (VCT) system. Two approaches were evaluated: in the first
one, the network was trained to perform noise decorrelation by changing the frequency-
dependency of the noise in the input image, but keeping the other characteristics. In the
second approach, the network was trained to perform denoising and decorrelation, with
the objective of generating an image with frequency-independent (white) noise and with
characteristics equivalent to an acquisition with a radiation exposure four times greater than
the input image. We tested the network with virtual and clinical images and we found that in
both training approaches the model successfully corrected the power spectrum of the input
images. Our code is available at www.github.com/LAVI-USP/NoiseDecorrelation-DBT.

6.2 Introduction

In general, digital breast tomosynthesis (DBT) systems use a large flat panel detector
either using the technology of amorphous silicon (a-Si) coupled with a thallium-doped
cesium iodide (CsI:Tl) or amorphous selenium (a-Se) (GHETTI et al., 2008; SALVAGNINI
et al., 2013). The former contains layers of phosphor, a-Si and a thin film transistor (TFT),
which convert x-rays to visible light and then to an electrical signal. The latter consists of
an a-Se and a TFT layer (MCENTEE, 2017).

https://doi.org/10.1117/12.2625357
www.github.com/LAVI-USP/NoiseDecorrelation-DBT
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The indirect detection system is commonly known to have considerate noise spatial
correlation due to the scintillation of the phosphor layer. It was reported on a recent work of
Boita et al. (BOITA et al., 2021) that noise correlation has a direct impact on the detection
of subtle structures in digital mammography. In worse cases, noise correlation can create
an undesired signal which could resemble tinny microcalcifications. Also, many restorations
methods consider that the input image was corrupted by frequency-independent (white)
noise. The fact that indirect detectors impose noise correlation might affect the performance
of such methods.

In this work, we propose a deep convolutional neural network (CNN) to restore
DBT projections that were degraded by frequency-dependent (correlated) noise. We used
a cycle generative adversarial network (cycle-GAN) (ZHU et al., 2017) in the restoration
process. This network was initially used to transform images of horses into images of
zebras and vice-versa. In this work, two medical imaging restoration approaches were
considered. In the fist approach, the network was trained to perform noise decorrelation,
i.e., to transform the correlated noise in the input image into white noise in the output
image. In the second approach, the network was trained to perform noise decorrelation
and also to suppress the noise to a level equivalent to an acquisition with a radiation
exposure four times greater than the input image.

6.3 Materials & methods

6.3.1 Training and testing datasets

Even though it is possible to acquire a clinical image dataset to train deep neural
networks, as we have done previously in Shan et al. (SHAN et al., 2023) and Vimieiro et
al. (VIMIEIRO et al., 2022), it is not possible to obtain labels without noise correlation,
especially for systems with indirect detectors. Thus, for our training dataset, we simulated
DBT projections using the virtual clinical trial system (OpenVCT), developed by the
University of Pennsylvania (BAKIC et al., 2017).

6.3.1.1 Training

Five hundred 3D breast phantoms with different anatomical structures were sim-
ulated using OpenVCT. Then, we generated three sets of raw projections for all the
volumes. The first dataset, named independent full-dose (IFD), was generated considering
the radiographic factors of a standard-dose acquisition with 90mAs and corrupted with
no-correlated (white) noise. The second dataset, named correlated full-dose (CFD), was
generated considering the same radiographic factors of the previous one, but the images
were corrupted with correlated noise. The noise correlation kernel was estimated from a
DBT system with a-Si(CsI:Tl) detector. Third, a four-fold acquisition with no-correlated
noise was considered, i.e., the same radiographic factors of the previous ones but with
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4x longer exposure time (360mAs). This dataset was named independent four-fold (IFF).
Fig. 30 illustrates how the projection data was organized for the training scheme. We
followed the work of Borges et al. (BORGES et al., 2019) for the noise simulation.

500 phantoms

Breast volume

Input - CFD
(90 mAs)

Target - IFD
(90 mAs)

Target - IFF
(360 mAs)

Correlated noise Independent noise

Projections

Figure 30 – Scheme illustrating how the training dataset was generated. From the 500
phantoms, three sets of projections were generated. The input dataset at
90mAs with independent white noise and two targets with correlated noise.
One target at the same dose as the input and the other one at 360mAs.

The datasets CFD and IFD were used to train the first proposed network (cGAN
#1), where the approach is to perform only noise decorrelation, without changing the total
amount of noise of the image. The datasets CFD and IFF were used to train the second
network (cGAN #2), where the approach is to perform noise decorrelation and denoising.

The training dataset contained 256,000 patches of size 64 × 64 pixels, extracted
randomly from the raw DBT projection images. The network input was composed of
90mAs correlated-noise patches and the labels were either independent-noise patches at
90mAs or 360mAs.

6.3.1.2 Testing

For testing, we selected a virtual phantom that was not used in the training step
and generated 10 acquisitions of it. For objective validation, we measured the mean
normalized squared error (MNSE) decomposed into residual noise (RN ) and bias squared
(B2). This decomposition allows the evaluation of the restoration methods in terms of
signal smoothing and residual noise separately. This metric was proposed by Borges et
al. (BORGES et al., 2018) and further information is available in Shan et al. (SHAN et al.,
2023). All 10 acquisitions were utilized to measure the MNSE comparing with the ground
truth (GT) from the OpenVCT software. We also measured the power spectrum (PS) as
an objective metric (KAVURI; DAS, 2020), as follow:

PS = p2
s

nr np

nr∑
k

|FFT {h × uk}|2 , (6.1)
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NPS = PS

LAS2 , (6.2)

where nr is the number of extracted region of interests (ROI), np is the ROI total number
of pixels, ps is the pixel size in mm, h is a Hanning window, uk is the extracted ROI and
FFT indicates the discrete fast Fourier transform. We normalized the PS through (6.2) by
the LAS, which is the large are signal, calculated as the squared mean pixel value inside
the segmented breast. The 1D plot was calculated as a radially mean of the 2D spectrum.

Finally, we tested the network on real clinical images. We selected six images from
a dataset we collected in cooperation with the Barretos Cancer Hospital (Brazil). These
images are from 6 different patients acquired in the Senographe Pristina (GE) DBT system
under IRB approval CAAE #986670. This DBT system contains an a-Si(CsI:Tl) detector.
All these images were acquired using the automatic exposure control (AEC) from the
system and were fully anonymized to preserve patients’ medical records.

6.3.2 Network and implementation details

For the network architectures, we used the model proposed by Shan et al. (SHAN
et al., 2023) in both generators. For the discriminators, we kept the same architecture of
the original cycle-GAN proposed by Zhu et al. (ZHU et al., 2017). Also, we used the same
losses and parameters stated in the original work. The CNN was implemented using the
PyTorch Deep Learning library1, trained and tested using an NVIDIA TITAN Xp with
12GB of RAM. All networks were trained for 30 epochs.

6.4 Results & discussions

Fig. 31 illustrates several ROIs extracted from the virtual phantom used for testing.
The first column (a) illustrates the ROIs which were input for both proposed networks.
Respectively, columns (b) and (d) are the network outputs for the cGAN #1 and #2,
respectively. Columns (c) and (e) are the target for the cGAN #1 and #2, respectively. Here
again, we can see that cGAN #1 could achieve noise results that resemble an independent
noise, however, the resulting image looks noisier than the input. For the cGAN #2, the
results are very close to the target one. The fine details are more sharp compared to the
input. In fact, some structures do not exactly match the target one since those details
were lost in the input image due to the system degradation simulation. Although these
results are from synthetic images, we claim that the networks did not overfit to this type
of data, as we demonstrated on the real clinical results from Fig. 32.

Fig. 32 illustrates ROIs of the central projection for the DBT clinical images. The
first row represents the original images, the second row the results of the network targeting
an independent noise at the same radiation dose (cGAN #1) and the third row the results
1 www.pytorch.org

www.pytorch.org
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(a) Input-90mAs (b) cGan#1-
90mAs

(c) Target#1-
90mAs

(d) cGan#2-
360mAs

(e) Target#2-
360mAs

Figure 31 – ROIs of the testing phantom generated with the OpenVCT. Each line is
showing a region of interest extracted from: (a) input images at the FD with
correlated noise; (b) cGAN #1 restoration at the FD; (c) target FD images
with independent noise; (d) cGAN #2 restoration at 4x the FD and (e) target
images at 4x the FD with independent noise.

of the network targeting a four-fold dose with independent noise (cGAN #2). In the
second row, we can see that the network was able to decorrelate the noise but at a cost
of increasing the overall noise in the images. For the third row, the image contains less
relative noise and also with a white noise appearance. The results are more evident on
the columns (b) and (e), where the structures look even sharper than the original input.
Still on the third row, although some microcalcifications were blurred, the network did
not remove any of them. As we do not have the GT for these clinical images, we might
not be able to distinguish whether some small white spots are real microcalcifications or
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the result of noise correlation, especially on the (f) column.
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Figure 32 – ROIs extracted from DBT central projections of six clinical cases. The first
row represents the input images at the standard full dose. The second and
third rows represent the output from the networks targeting the independent
noise at the same dose (cGAN #1) and four times the dose (cGAN #2),
respectively. (a) to (f) illustrate the six different clinical cases.

Fig. 33 illustrates the PS measurements in the testing phantom for the cGAN #1.
The blue dotted line shows the curve for the standard FD image with correlated noise,
i.e., the network input. In this task, as described before, the network has as target the
PS illustrated in the orange curve, i.e., the network was responsible to perform only the
decorrelation task. It is known that anatomical noise prevails in the PS on frequencies below
1 mm−1, while quantum and electronic noise dominates in higher frequencies (KAVURI;
DAS, 2020). To better visualize the contributions of quantum and electronic noise, we
also show the zoom on these high frequencies in Fig. 33 (b). First, we can see that the
degradation caused by spatial noise correlation decreases the high-frequency noise and
slightly increases the low-frequency noise. This can be seen when comparing the blue and
orange curves from the intersection point at frequency 2.5mm−1. For the network result,
if we compare the PS of the input image with the restored one, it is possible to verify
that the network adjusted the spectral dependence of the noise so that the output image
had the PS very close to the target image (acquired with independent noise at 90mAs).
However, by analyzing an ROI of the restored image (Fig. 31 (b)), it is possible to verify
that the network filtered the low-frequency noise but added high-frequency noise to adjust
the PS according to the target image (Fig. 31(c)). This high-frequency PS difference is
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(a) (b)

Figure 33 – (a) Power Spectra (PS) calculated at the testing step of the proposed network
cGAN #1, where the network performs only noise decorrelation; (b) zoom-
in on PS high-frequencies where quantum and electronic noise is known to
predominate.

(a) (b)

Figure 34 – (a) Power Spectra (PS) calculated at the testing step of the proposed network
cGAN #2, where the network performs both denoising and decorrelation; (b)
zoom-in on PS high-frequencies where quantum and electronic noise is known
to predominate

illustrated by the two-head read arrow on Fig. 33 (b). We also plotted the PS for the GT
for reference. Note that this image does not contain any noise.

The second approach (cGAN #2) was to target the green PS curve of Fig. 34,
where the network task is to perform both denoising and decorrelation. This approach
aims to mitigate the high-frequency noise injection observed in the first network. Aiming
for an image with lower high-frequency noise, as observed in the PS curves, we constrain
the network to not inject high-frequency white noise with a higher dose target (green line).
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With that, the network performs both denoising and decorrelation successfully. We can
see that, comparing the green and brown lines of Fig. 34, the network approximates well
the PS, and through Fig. 31 (e) is possible to note that both denoising and decorrelation
were done reasonably well.

Table 18 – Mean value of the MNSE calculated for all DBT projections of the synthetic
breast phantom used for testing. The confidence interval is displayed inside
the brackets. Input means the original correlated 90mAs image, output #1 the
result cGan for 90mAs images, output #2 the cGan result for 360mAs images,
target #1 the white noise 90mAs image and target #2 the white noise 360mAs
image.

Total MNSE(%) RN (%) B2(%)
Input 37.50 [37.46, 37.55] 37.50 [37.49, 37.51] 0.00 [0.00, 0.00]

Output #1 37.29 [37.25, 37.34] 36.07 [36.06, 36.08]] 1.22 [1.22, 1.23]
Output #2 17.67 [17.63, 17.72] 15.02 [15.01, 15.02] 2.66 [2.65, 2.66]
Target #1 37.57 [37.55, 37.59] 37.57 [37.56, 37.58] 0.00 [0.00, 0.00]
Target #2 9.23 [9.22, 9.23] 9.23 [9.23, 9.23] 0.00 [0.00, 0.00]

Table 18 shows the image fidelity metrics for the testing phantom. The first network
(cGan #1) matches the RN of the target but generated a B2 of 1.22%. The bias might
be explained by the low-frequency denoising and the injection of high-frequency noise.
For the second network (cGan #2), the restoration reduced the RN of the input image
from 37.5% to 15.02% and generated a B2 of 2.66%. Note, however, that for this case, the
network performed a selective filtering, based on the spatial frequency of the noise, i.e.,
low-frequency noise was removed with more intensity than the high-frequency noise, to
generate an output image with approximately no-correlated residual noise (white).

6.5 Conclusions

In conclusion, CNNs might be used to restore images corrupted by correlated noise.
We found that the cycle-GAN was able to perform both denoising and decorrelation. The
network generated restored images with noise frequency components very close to the
target images. This costs an increase in the bias of the output image. Further studies
might be done in the sense of imposing image fidelity to the network to obtain lower
bias values while achieving satisfactory noise frequency properties. For the clinical results,
it was demonstrated that the network did not overfit to the simulated dataset, since it
achieved good results on the testing dataset. To further improve the results, especially for
microcalcifications, we can insert real calcifications on the simulated dataset and train the
network so it learns how to preserve more these fine details.
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7 PAPER 5:COMPUTATIONAL METHOD TO ARTIFICIALLY INSERT CLUS-
TERS OF MICROCALCIFICATIONS IN DIGITAL BREAST TOMOSYNTHESIS

The material presented in this chapter was published in: Vimieiro, Rodrigo de
Barros, Lucas Rodrigues Borges, Bruno Barufaldi, Andrew Douglas Arnold Maidment,
Renato França Caron, Silvia Maria Prioli De Souza Sabino, Ge Wang, and Marcelo Andrade
da Costa Vieira. “Computational method to artificially insert clusters of microcalcifications
in digital breast tomosynthesis.” In Medical Imaging 2023: Physics of Medical Imaging,
vol. 12463, p. 572-578. SPIE, 2023. Available at: https://doi.org/10.1117/12.2653857. The
author obtained permission for total and/or partial reproduction of the content from the
publisher SPIE.

7.1 Abstract

Digital Breast Tomosynthesis (DBT) is a medical imaging modality that has
been increasingly used for breast cancer screening. To improve the accuracy in the early
detection of breast cancer, it is common to use tools based on image processing to
improve the quality of DBT images and, consequently, the visibility of lesions of clinical
interest. Microcalcification (MC) clusters are in the class of findings that may indicate
the early stages of breast cancer. To evaluate the impact of image processing methods in
the detection of breast lesions, human perception studies are usually performed, where
detection accuracy is evaluated using positive and negative cases, i.e., images with and
without lesions. However, only a small fraction of clinical cases have positive cases and
the exact location of the lesion is not always known. Thus, in this work, we present a
method to artificially insert MC cluster in normal exams of DBT. A set of MCs was
segmented from clinical cases acquired in a prone stereotactic breast biopsy system. In
the pipeline, we built a MC cluster and insert it in a 3D volume. Then, we project it on
the detector and inserted the MC cluster into the projections of a clinical DBT exam. It
is possible to define the size, contrast, and location of the MC cluster accordingly. We
performed a two-alternative forced-choice (2-AFC) study with six experienced medical
physicists and the average success rate was 53.83%, suggesting that readers, on average,
could not distinguish between real and simulated MCs. Overall results showed that images
with simulated MC are similar to the real clinical cases. Our source code is available at
www.github.com/LAVI-USP/MCInsertionPackage-DBT.

7.2 Introduction

The development and validation of many medical image processing algorithms rely
on the variability of the data available. Among the medical imaging fields that greatly

https://doi.org/10.1117/12.2653857
www.github.com/LAVI-USP/MCInsertionPackage-DBT
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benefit from data variability, we can mention learning-based algorithms trained to classify,
segment, and restore medical images. One of the challenges of creating a diverse dataset
in medical imaging is to identify abnormalities, as they may be infrequent or difficult to
detect. One approach to overcome this limitation is to simulate the abnormalities with the
desired characteristics (e.g., intensity, size, localization) and later embed the simulated
abnormality into healthy clinical patient data, thus creating a hybrid abnormal case. In
mammography, microcalcification (MC) clusters are in the class of abnormalities that may
sign breast cancer (YAFFE, 2000), and the virtual insertion of MCs on healthy exams has
been done in previous works (SHANKLA et al., 2014; SHAHEEN et al., 2011; SHAHEEN
et al., 2010; BORGES; MARQUES; VIEIRA, 2019).

Recently, Borges et al. (BORGES; MARQUES; VIEIRA, 2019) developed a method
to artificially insert MC clusters into full-field digital mammography (FFDM) exams. This
work extracted real MCs from mammography exams followed by the insertion of the lesions
into normal exams, taking into consideration their localization, contrast and size. The
method was previously used by our group to evaluate the effect of denoising methods on
the localization of MCs (BORGES et al., 2020). The objective of this work is to further
expand our previous work for Digital Breast Tomosynthesis (DBT), allowing the artificial
insertion of MCs into DBT exams with no findings.

7.3 Materials & methods

7.3.1 Simulation pipeline

The pipeline proposed in this work is summarized in Fig. 35. In the first step, lesion-
free DBT projections were identified from a dataset of retrospective exams, as described
in section 7.3.3. The publicly available1 Laboratory for Breast Radiodensity Assessment
(LIBRA) software (KELLER et al., 2012; KELLER et al., 2015) was used in the next step
to estimate breast density projection masks. We used morphological operations to erode
the masks and remove isolated points. The estimated density masks were back-projected
using our in-house DBT reconstruction toolbox (VIMIEIRO; BORGES; VIEIRA, 2019),
publicly available for download2. To identify areas of dense tissue in the back-projected
masks we adopted a hard-threshold of 0.5 pixels, with values above 0.5 labeled as candidate
locations for the MC cluster. Finally, one of the candidate locations of the cluster was
randomly selected.

The simulated MC clusters were created using individual MC from the dataset
described in Maidment et al. (MAIDMENT et al., 1996), spatially arranged using a stack
of 2D Gaussian probability density functions - a 3D generalization of the process described
in Borges et al. (BORGES; MARQUES; VIEIRA, 2019). The number of individual MC
1 https://www.med.upenn.edu/sbia/libra.html
2 https://github.com/LAVI-USP/pyDBT

https://www.med.upenn.edu/sbia/libra.html
https://github.com/LAVI-USP/pyDBT
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per cluster was randomly defined using a uniform distribution with probabilities at the
range 1 to 4. After the MC cluster was generated, we used our in-house reconstruction
toolbox (VIMIEIRO; BORGES; VIEIRA, 2019) to project the lesion volume into 2D
projections, using the appropriate geometry. Each individual MC was simulated with a
different contrast, similar to Borges et al. (BORGES; MARQUES; VIEIRA, 2019). This
was done by projecting each MC individually and fixing the contrast in the projection
domain according to the size of that MC. After the projection of all MCs, we applied
the DBT system modulation transfer function (MTF) to the images. We estimated the
Senographe Pristina (GE) MTF following the procedure presented on the Equipment
Report Technical evaluation (ENGLAND, 2019). Finally, we embedded the MC clusters
into the clinical images using an overall contrast of 0.2, defined empirically. Note that the
code is flexible and allows the modification of any parameter, so the simulation may be
tuned to reflect a particular population.

(1) Lesion-
free raw

projections

(2) Find
locations for

the lesion

(7) Apply
system MTF

(8) Insert MC
into clinical
projections

(9) Pre-
processing
raw data
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project the
candidate
locations

(4) Select
lesion

location

(6) Project
MC cluster

(5) Generate
MC cluster

(10) Recon-
struct clinical
projections

(11) Slices
with simu-
lated MCs

Image domain

Figure 35 – Scheme illustrating the proposed pipeline to generate and insert MC cluster
in DBT projections.

7.3.2 Two-alternative forced-choice

To assess the appearance of the simulated clusters, we performed a two-alternative
forced-choice (2-AFC) study with six medical physicists with an average of five years of
experience in breast imaging. A total of 100 image pairs were displayed and each pair
contained ROIs of one real and one simulated MC cluster. The region of interest had the
size of 20 × 20 × 10mm and the user was able to scroll through 15 slices. We created
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a graphic user interface3 where the reader was asked which images is the real one, as
illustrated on Fig. 36.

A correct selection rate close to 50% may indicate that the readers were not able
to distinguish between real and simulated MC clusters, while rates above (or below) 50%
may indicate that the readers were able to identify differences.

Figure 36 – The graphic user interface used by readers to perform the two-alternative
forced-choice test. One real and one simulated MC cluster are displayed.

7.3.3 Lesion-free and lesion-present dataset

Retrospective exams from 44 patients were inspected by two experienced medical
physicists and 64 lesion-free DBT exams were identified. A total of 100 MC clusters were
simulated and inserted into the lesion-free cases. Note that 36 samples had 2 inserted MC
clusters. However, since we are using ROIs in our human-observer test, different regions
were selected for those exams. A separate cohort of 100 patients, with identified MC
clusters were also used in the 2-AFC study (benchmark dataset). All the clinical samples
used in this study were obtained in a collaboration with the Barretos Cancer Hospital
(Brazil) and were acquired using a Senographe Pristina (GE) DBT System under IRB
approval CAAE #986670.

7.3.4 Microcalcification dataset

Individual calcifications were selected from the dataset published in Maidment et
al. (MAIDMENT et al., 1996). Although the dataset consists of both individual MCs and
clusters of MCs, in this work we only used individual MCs. There are 1,117 individual
MCs and the distribution in terms of volume is shown in Fig. 37 (a).

3 https://github.com/LAVI-USP/2AFC_Interface

https://github.com/LAVI-USP/2AFC_Interface
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(a) (b)

Figure 37 – (a) Distribution of volume, in number of voxels, of MCs for the entire dataset.
(b) Distribution of volume, in number of voxels, of MCs, after the selection
criteria.

To match the characteristics of our cohort of lesion-present dataset, we selected
individual MCs with the number of voxels between 2000 and 6000. Figure 37 (b) illustrates
the distribution of the volume after the selection criteria.

7.3.5 Image reconstruction

After simulating the MC cluster for 100 cases, we back-projected the volume using
our in-house toolbox. The raw projections were processed using the commercially available
software Briona Standards (Real Time Tomography, PA, USA)4. The same procedure was
done to reconstruct the 100 case with lesion present (benchmark).

7.4 Results & discussions

7.4.1 Simulated images

Figure 38 illustrates ROIs with real and simulated MC. The first row shows real
MCs extracted from the dataset with MC clusters. The second row shows some simulated
MC cases. Note that these ROIs were extracted from DBT slices. Overall, it is possible
to say that the simulated MC morphology is very similar to the real ones. Note that the
variability of shape, contrast and size of the simulated MCs approximate to those from
the real clusters.

Figure 39 shows a sequence of 4 slices from a simulated MC. For the sake of
simplicity we are just showing 4 slices out of 15. As we mentioned before, each calcification
is inserted at a random coordinate for X,Y and Z. In this figure we can see that on slice
#1 both are out of focus. This also happens on the slice #15. However, in slice #5 the
4 https://www.realtimetomography.com

https://www.realtimetomography.com
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Figure 38 – Illustration of real (first row) and simulated MCs (second row). The ROIs
were extracted from DBT slices.

bottom calcification is on focus while the top one is out of focus and the inverse happens
on slice #10.

(a) slice #01 (b) slice #05 (c) slice #10 (d) slice #15

Figure 39 – Illustration of 4 slices out of the 15 from the simulated cluster. The figure
shows simulated MCs on different depths.

7.4.2 Two-alternative forced-choice study

The 2-AFC results are shown in Fig. 40. As previously mentioned, it is expected
that readers get the correct selection rate close to 50% if they are not able to identify
differences between real and simulated clusters. The gray region shows the 95% CI of
random choice [39.8% 60.1%] for one reader (N=100). Considering the entire test (N=600),
the 95% confidence interval (CI) is [45.9% 54.0%], according to the Binomial distribution.
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The mean successful rate of the study was 53.83%. The mean successful rate is within the
CI of the study suggesting that, on average, the readers could not distinguish between the
real and simulated cases.

Figure 40 – 2-AFC results for each individual reader. The gray region shows the confidence
interval for the random selection of a single reader (Binomial distribution with
N=100).

The results show that 4 out of 6 readers had the selection rate within the 95%
CI of random selection. Two readers (reader #5 and #6) tended to choose the real MCs.
When questioned about what helped them to identify the correct lesions, reader #5 stated
that he identified that in all simulated cases the center of the MC’s volume of interest
matched the central slice of the volume of interest (VOI) being displayed. Reader #6
stated that he noticed more out-of-plane artifacts in simulated cases if compared to real
ones. In real cases, sometimes the center of the MC’s VOI was slightly shifted with respect
to the center of the displayed stack. This is a limitation of this study, as the center of the
simulated VOI is known exactly while the center of the real VOI can only be estimated by
the reader who identified the lesion.

7.5 Conclusions

In this work we presented a method to simulate MC clusters in DBT exams. We
inserted MCs in the image domain with different contrasts, in dense regions and projected
them onto the detector. To verify the aspect of the simulated lesions, we performed a
2-AFC study with six experienced medical physicists. The average selection rate was within
the CI of random selection suggesting that readers, on average, could not differentiate
between the simulated and real MC clusters. On the individual level, two readers were
better at detecting the simulated clusters.
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8 CONCLUSIONS

To investigate MBDL approaches, we first start developing DB methods and all
their characteristics. More specifically, in Paper 1, we observed that NNs have the potential
to restore LD FFDM images, however, their results are slightly worse compared to the MB
one. Obviously, this work has its limitations since it uses a simple architecture. With more
advanced architectures it is expected that the results would improve. We also observed
the potential of each loss function and observed that content losses like MAE and MSE
impose blur but tend to keep image fidelity. On the other hand, visual perception losses
can be used to retrieve image details and decrease the signal blur. In conclusion, we showed
the potential of DL models for medical imaging restoration and the great importance of
the loss function on this task. Since ML methods in the CV area do not only depend on
the loss, Paper 2 showed different training strategies for image restoration. In conclusion,
different training strategies such as early stops can be done depending on the target
task and we also showed the importance of cross-validation. In Paper 3, a loss function
considering the power spectrum of the images was proposed. This necessity comes from
the fact that visual perception losses like the PL impose spatial noise correlation in their
results. We observed that the combination with the proposed loss was able to keep the
power spectrum properties while maintaining the image details.

In Paper 4, the synergy of MB methods and DB approaches have great potential to
be explored in the DL field, especially in image restoration. Since DL methods suffer from
black-box nature, introducing known and established mathematical formulations on the
architecture design, improves not only the results but also the stability of the models. Over
the initial works, we built knowledge on DB models that learn specifically from the provided
data and afterward, we compared this model with the proposed MBDL framework. We
observed the black-box nature of solely DB approaches in Paper 2, where cross-validation
showed different objective results each time. However, in the MBDL approach, even with
different architecture, they resulted in very similar metrics, which suggest more stability
and control over the models. We demonstrated that the networks benefit from all this
previous knowledge added, independent of the utilized NN architecture. It is still not clear
if a final image with slightly high RN and lower bias, compared to the target FD, is better
compared to another one with lower RN but higher bias. This question must be answered
with clinical and human perception studies. Independent of the answer, the proposed
bias-RN loss function is able to set the network at some desired point of operation in terms
of these two metrics. Obviously, this point is limited to the performance of the chosen
architecture, as we noticed in the experiments. However, the whole proposed framework is
architecture-agnostic, making it suitable for different ones and perhaps more advanced
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ones.

In paper 5, we demonstrated the potential of DNNs to restore correlated noisy
images, which is different from the independent noise properties from the first papers. It
was able to both denoise and decorrelate the degraded images. However, this work has
limitations. We only used one architecture inside the cycle-GAN framework. Also, it is still
not clear whether the bias imposed in the process might impact localization and cancer
detection or not. In conclusion, the use of a precise model to simulate the noise correlation
kernel and apply it to the images, with this specific degradation, imposes some indirect
prior knowledge on the models, making it possible to have target images for supervised
learning. In real scenarios, such an approach would not be possible. Although further
validation is necessary, preliminary results indicate that the MBDL may be suitable for
this task.

Finally, in Paper 6 we proposed a method to simulate MC on DBT images. This
is the first step to performing clinical studies for Paper 5. In conclusion, the 2-AFC test
showed, on average, that the simulated MC could not be distinguished from the real ones.
This work was limited since it was only evaluated by medical physicists and for future
work it should be tested with radiologists.

For future work, in the MBDL framework, we can explore the potential of using
a learnable weight in the last residual layer. Theoretically, the mathematical model
considers that the denoising algorithm reduces the noise variance to zero. This is not
always true in reality. So, a learnable parameter could compensate for this limitation. Also,
different stabilization transforms can be tested and perhaps end-to-end training can be
done, eliminating the necessity of using a self-learning framework. Several state-of-the-art
architectures can be tested to improve the objective metrics even more.

It is important also to test the framework in systems with frequency-dependent
correlated noise. As a first step, we used the cycle-GAN to restore this type of image.
Combining this approach with the MBDL framework might improve the results even more.
Another potential approach would be combining the residual sum used in the MBDL
framework to restore image details for the four-fold restoration. We could use the one-fold
uncorrelated image to retrieve some details of the four-fold restoration, i.e., a combination
of both approaches proposed in Paper 5 with the framework of Paper 3. Indeed, this
denoising with decorrelation must be tested in practice with human perception studies.

As a general conclusion, the synergy of MB methods and DB approaches has great
potential to be explored within the DL domain, demonstrated by the improved results
over models that do not benefit from those priors. All these AI methods used in the field
of medical imaging have the potential of improving image quality, reducing radiation dose
and perhaps enhancing breast cancer diagnosis.
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