• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Doctoral Thesis
Full name
Bruna Callegari
Knowledge Area
Date of Defense
São Carlos, 2020
Pinto, Haroldo Cavalcanti (President)
Afonso, Conrado Ramos Moreira
Coelho, Rodrigo Santiago
Gargarella, Piter
Mücklich, Frank Thomas
Title in English
Understanding the impact of microstructure on the response of titanium alloys to aging treatments
Keywords in English
Electron backscatter diffraction
Phase transformations
Synchrotron radiation
Thermomechanical processing
Titanium alloys
X-ray diffraction
Abstract in English
The impact of the initial microstructure on the behavior of the β-metastable alloy Ti-5Al-5Mo-5V-3Cr (Ti-5553, composition in wt%) and the α+β alloy Ti-6Al-4V (Ti-64, composition in wt%) during subsequent isothermal treatments has been evaluated in this work. Thermal and thermomechanical treatments were imposed to the alloys to achieve such microstructural variability. Regarding Ti-5553, it was concluded that the β phase undergoes dynamic recovery above and below its β-transus temperature, and recovery is more dominant at lower strain rates. Meanwhile, α phase undergoes not only a process of breakage and globularization, but also decomposition, which contributes to flow softening. The increase in strain rate caused non-uniform recovery in the β field and a more intense refinement of α precipitates in the α+β field. Macrotexture evaluation after deformation indicates that β's texture is much stronger than that of α, with its (200) component being the strongest one. Relevant microstructures were then selected to undergo aging treatments. Results show that the presence of deformation-induced defects accelerates phase precipitation during aging, and that the composition of the β matrix, which is affected by the amount of primary α, plays a major role. The α'' phase tends to form from the β matrix in high quantities without the presence of primary α phase or with a low fraction of this phase, and the conversion of α'' into α is sluggish, being faster in the β-heat-treated condition, whereas a continuous β → α transformation occurs, with little or no precipitation of α'' in the α+β-heat-treated condition. With respect to Ti-64, during deformation in the β field, lower strain rates appear to cause a decrease in the aspect ratio and in the c/a ratio of final martensitic laths and an increase in the final amount of retained β phase. Lower strain rates during deformation in the α+β field also increase the β phase fraction. However, an excessive amount of β causes its instability during quenching, with consequent transformation into secondary α. At a lower temperature in the α+β field, the globularization tendency of the alloy is significantly enhanced, especially during slow deformation. Significant fiber texture of the α/α' phase was observed only after deformation in the β field. Grain orientation spread analyses have shown a high degree of internal misorientation in deformed α lamellae and the tendency of globularization of lamellae by the evolution of internal low angle boundaries to high angle boundaries. Conditions of interest were chosen for aging treatments. Results show that β decomposition into fine secondary α laths, transformation of the metastable martensitic α' into the equilibrium α phase and precipitation of the intermetallic Ti3Al can take place during aging. The composition and distribution of the β phase was shown to affect the precipitation of secondary α during aging, while the composition of the α phase plays a key role on the formation of Ti3Al. In situ X-ray diffraction studies indicate the contribution to hardening by the increase of the c/a ratio during the α' → α conversion and the chemical homogenization of the β phase.
Title in Portuguese
Compreendendo o impacto microestrutural na resposta de ligas de titânio a tratamentos de envelhecimento
Keywords in Portuguese
Difração de elétrons retroespalhados
Difração de raios-X
Ligas de titânio
Processamento termomecânico
Radiação síncrotron
Transformações de fase
Abstract in Portuguese
O impacto da microestrutura inicial no comportamento da liga β metaestável Ti-5Al-5Mo-5V-3Cr (Ti-5553, composição em peso) e da liga α+β Ti-6Al-4V (Ti-64, composição em peso) durante tratamentos de envelhecimento foi avaliado neste trabalho. Tratamentos térmicos e termomecânicos foram impostos para alcançar tal variabilidade microestrutural. Com relação à liga Ti-5553, concluiu-se que a fase β sofre recuperação dinâmica acima e abaixo da β-transus, sendo mais dominante em taxas de deformação mais baixas. Enquanto isso, a fase sofre não apenas quebra e globularização, mas também decomposição, o que contribui para o amolecimento. O aumento na taxa de deformação causou recuperação não uniforme no campo β e um refinamento mais intenso da fase α no campo α+ β. A avaliação de macrotextura após a deformação indica que a textura da fase β é muito mais forte que a da fase α, com seu componente (200) sendo o mais intenso. Microestruturas relevantes foram subsequentemente selecionadas para tratamentos de envelhecimento. Os resultados mostram que a presença de defeitos induzidos por deformação acelera a precipitação da fase durante o envelhecimento e que a composição da matriz β, afetada pela quantidade de fase α primária presente, desempenha um papel importante. A fase α'' tende a se formar a partir da matriz β em grandes quantidades sem a presença da fase α primária ou com uma fração baixa dessa fase, e a conversão de α'' em α é lenta, sendo mais rápida após tratamento térmico no campo β, enquanto uma transformação β → α contínua, com pouca ou nenhuma precipitação de α'', ocorre após tratamento térmico no campo α+β. Com relação à Ti-64, taxas de deformação mais baixas no campo β parecem diminuir a razão de aspecto e a razão c/a das ripas martensíticas, e aumentar a quantidade de fase β retida. Taxas mais baixas durante a deformação no campo α+β também aumentam a fração da fase β. Porém, uma quantidade excessiva de fase β causa sua instabilidade durante a têmpera, com consequente transformação na fase α secundária. Em temperaturas mais baixas no campo α+β, a tendência de globularização da liga é significativamente aumentada, especialmente durante deformação lenta. Textura significativa do tipo fibra da fase α/α' foi observada somente após deformação no campo β. Análises de dispersão da orientação dos grãos mostraram um alto grau de desorientação interna nas lamelas deformadas de α e a tendência de globularização das lamelas pela evolução dos contornos internos de baixo ângulo para contornos de alto ângulo. Condições de interesse foram escolhidas para tratamentos de envelhecimento posteriores. Os resultados mostram que a decomposição de β em uma refinada fase α secundária, a transformação da martensita metaestável na fase α de equilíbrio e a precipitação do intermetálico Ti3Al podem ocorrer durante o envelhecimento. Foi demonstrado que a composição e distribuição da fase β afetam a precipitação de α secundária, enquanto a composição da fase α desempenha um papel fundamental na formação de Ti3Al. Os estudos de difração de raios-X in situ indicam a contribuição para o endurecimento pelo aumento da razão c/a durante a conversão α' → α e a homogeneização química da fase β.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2023. All rights reserved.