Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.18.2017.tde-25012017-163244
Documento
Autor
Nome completo
Augusto Hirao Shigueoka
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2015
Orientador
Banca examinadora
Trindade, Marcelo Areias (Presidente)
Rade, Domingos Alves
Serpa, Alberto Luiz
Título em português
Otimização de filtros modais espaciais usando redes de sensores aplicados ao controle de vibrações de estruturas do tipo viga e placa
Palavras-chave em português
Controle de vibrações
Dinâmica estrutural
Filtro modal
Otimização
Parâmetro distribuído
Resumo em português
Ao empregar a teoria de controle para a dinâmica de uma estrutura, é possível projetar um observador potencialmente complexo que a partir da leitura de apenas um sensor estime o estado do sistema e determine os modos de vibração presentes. Este trabalho, no entanto, estuda o uso de filtros modais em controle de vibrações, com a motivação de que essa estratégia dependa de menos componentes eletrônicos. O objetivo é encontrar um filtro modal que possua alto desempenho em malha fechada mesmo com um número reduzido de sensores. Primeiramente foi desenvolvido o modelo dinâmico do sistema em malha aberta, com posterior otimização do filtro modal por meio do método do ponto interior. Depois, foi desenvolvido o modelo dinâmico do sistema em malha fechada. A seguir, um algoritmo genético otimizou o sistema de controle de vibrações seguindo duas metodologias. A primeira considera apenas as posições dos sensores como variáveis de otimização, enquanto a segunda leva em consideração não só as posições dos sensores como também os ganhos do filtro modal e o ganho de retroalimentação de velocidade. Os resultados do estudo do sistema em malha aberta mostram que se trata se um problema de otimização não-convexa, mas todas as tentativas levaram a crer que o mínimo global tenha sido encontrado para a função objetivo proposta, baseada no desvio quadrático da função de resposta em frequência do filtro modal com relação a uma referência pré-estabelecida. Os resultados do estudo do sistema em malha fechada mostram que considerar as posições e os ganhos como variáveis de otimização levam a um filtro modal mais conveniente do que o que é obtido levando-se em consideração apenas as posições. Finalmente, a partir da interpretação dos resultados, conclui-se que mesmo com um filtro modal composto por 5 sensores é possível ainda desenvolver um sistema de controle de vibrações que seja de fase mínima. Apesar de existir spillover de observação do ponto de vista de um filtro modal, nota-se que todos os modos estão em fase, o que acaba por ser até benéfico para o sistema de controle de vibrações.
Título em inglês
Optimization of spatial modal filters composed of sensor networks applied to the structural vibration control of a cantilever beam ans a clamped plate
Palavras-chave em inglês
Distributed parameter
Modal filter
Optimization
Structural dynamics
Vibration control
Resumo em inglês
The control systems theory may be applied to structural dynamics in order to design a potentially complex observer which is able to estimate the system's state from the readings of a sole sensor. This work, though, focused on the application of modal filters in vibration control based on the premise that this strategy will require a simpler hardware. The main target consists of finding a modal filter which can deliver high performance in vibration control despite being composed of a reduced number of sensors. In the first step, a dynamic model of a modal filter on a cantilever beam was developed, followed by an optimization carried on with the interior-point method. Then, the dynamic model of the closed-loop cantilever beam was developed aftwerwards. However, this time a genetic algorithm was used as the optimization method instead, with two methodologies being employed. While the first one considered only the placement of the sensors, the second one also takes into consideration the modal filter gains and the negative velocity feedback gain. The results yielded by the open-loop cantilever beam analysis showed that it is a non-convex optimization problem. However, all of the attempts support the belief that the global minimum has been found in the sense of the proposed objective function, which was based on the quadratic error between the frequency response function (FRF) of the modal filter and an idealized FRF used as reference. The results yielded by the closed-loop system optimization showed that it is more convenient to consider as optimization variables not only the placement of the sensors, but also their gains and the negative velocity feedback gain. Finally, after pondering over the obtained results, it has been concluded that the observation spillover resulting from a modal filter composed of a reduced number of sensors may be turned to the vibration control system's favour by means of optimization. The minimal-phase modal filter composed of 5 sensors found in this work stands out as the most notable example in this work, being able to guarantee stability for the first 12 modes since all of them are in-phase.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-01-27
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
- SHIGUEOKA, A.H., and TRINDADE, M.A. Continuous optimization of discrete modal filters applied to flexible structures. In Congresso Nacional de Engenharia Mecânica (CONEM 2014), Uberlândia, 2014. Anais do Congresso Nacional de Engenharia Mecânica (CONEM 2014)., 2014.
- SHIGUEOKA, A.H., e TRINDADE, M.A. Simultaneous optimization of distribution and gain of piezoelectric sensor networks for the improvement of active vibration control. In 25th International Conference on Adaptive Structures and Technologies (ICAST 2014), The Hague, 2014. Proceedings of the 25th International Conference on Adaptive Structures and Technologies (ICAST 2014)., 2014.