• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2009.tde-11112009-164840
Document
Auteur
Nom complet
Marciel Alberto Gomes
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2009
Directeur
Jury
Siqueira, Adriano Almeida Gonçalves (Président)
Caurin, Glauco Augusto de Paula
Medeiros, Adelardo Adelino Dantas de
Titre en portugais
Algoritmos de adaptação do padrão de marcha utilizando redes neurais
Mots-clés en portugais
Algoritmos de adaptação
Exo-esqueleto
Gerador de trajetórias
Método do gradiente
Otimização
Padrão de marcha
Redes neurais artificiais
Resumé en portugais
Este trabalho apresenta o desenvolvimento de algoritmos de adaptação do padrão de marcha com a utilização de redes neurais artificiais para uma órtese ativa para membros inferiores. Trajetórias estáveis são geradas durante o processo de otimização, considerando um gerador de trajetórias baseado no critério do ZMP (Zero Moment Point) e no modelo dinâmico do equipamento. Três redes neurais são usadas para diminuir o tempo de cálculo do modelo e da otimização do ZMP, e reproduzir o gerador de trajetórias analítico. A primeira rede aproxima a dinâmica do modelo fornecendo a variação de torque necessária para a realização do processo de otimização dos parâmetros de adaptação da marcha; a segunda rede trabalha no processo de otimização, fornecendo o parâmetro otimizado de acordo com a interação paciente-órtese; a terceira rede reproduz o gerador de trajetórias para um determinado intervalo de tempo do passo que pode ser repetido para qualquer quantidade de passos. Além disso, um controle do tipo torque calculado acrescido de um controle PD é usado para garantir que as trajetórias atuais estejam seguindo as trajetórias desejadas da órtese. O modelo dinâmico da órtese na sua configuração atual, com forças de interação incluídas, é usado para gerar resultados simulados.
Titre en anglais
Gait-pattern adaptation algorithms using neural network
Mots-clés en anglais
Adaptive algorithms
Artificial neural network
Exoskeleton
Gait pattern
Gradient descent method
Optimization
Trajectory generator
Resumé en anglais
This work deals with neural network-based gait-pattern adaptation algorithms for an active lower limbs orthosis. Stable trajectories are generated during the optimization process, considering a trajectory generator based on the Zero Moment Point criterion and on the dynamic model. Additionally, three neural network are used to decrease the time-consuming computation of the model and ZMP optimization and to reproduce the analitical trajectory generator. The first neural network approximates the dynamic model providing the necessary torque variation to gait adaptation parameters process; the second network works in the optimization procedure, giving the adapting parameter according to orthosis-patient interaction; and the third network replaces the trajectory generation for a stablished step time interval which can be reproduced any time during the walking. Also, a computed torque controller plus the PD controller is designed to guarantee the actual trajectories are following the orthosis desired trajectories. The dynamic model of the actual active orthosis, with interaction forces included, is used to generate simulation results.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2009-11-18
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.