• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.18.2012.tde-20042012-100442
Document
Author
Full name
Vagner Candido de Sousa
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2011
Supervisor
Committee
De Marqui Junior, Carlos (President)
Donadon, Maurício Vicente
Marques, Flavio Donizeti
Title in Portuguese
Análise do comportamento eletroaeroelástico de uma seção típica para geração piezelétrica de energia
Keywords in Portuguese
Aeroelasticidade
Geração de energia
Piezeletricidade
Vibrações mecânicas
Abstract in Portuguese
A conversão de vibrações aeroelásticas em eletricidade para a geração de pequenas quantidades de potência tem recebido cada vez mais atenção nos últimos anos. Além de aplicações em potencial para estruturas aeroespaciais, o objetivo é desenvolver configurações alternativas para a coleta de energia do escoamento e usá-las em sistemas eletrônicos sem fio. O uso de uma seção típica é uma abordagem conveniente para criar instabilidades e oscilações persistentes na coleta aeroelástica de energia. Este trabalho analisa as versões linear e não linear de dois geradores aeroelásticos de energia baseados em aerofólio que utilizam transdução piezelétrica: (1) com dois graus de liberdade (GDL) e (2) com três GDL. As equações governantes eletroaeroelásticas adimensionais são dadas em cada caso com uma carga resistiva no domínio elétrico para a previsão do comportamento do sistema. Primeiro, a interação entre a geração piezelétrica de potência e os comportamentos aeroelásticos linear e não linear de uma seção típica com 2-GDL é investigada para um conjunto de cargas resistivas. As previsões do modelo são comparadas com dados experimentais obtidos em ensaios em túnel de vento na condição de flutter. No segundo estudo de caso, uma não linearidade bilinear é adicionada ao GDL de rotação da seção típica. Mostra-se que oscilações não lineares em ciclo limite podem ser obtidas abaixo da velocidade linear de flutter. As simulações do modelo previram com sucesso os resultados experimentais. Finalmente, a combinação das não linearidades rigidez cúbica (do tipo que se torna mais rígida proporcionalmente ao cubo do deslocamento) e bilinear é considerada no GDL de rotação da seção típica. A resposta piezoaeroelástica não linear é investigada para diferentes valores da razão entre a rigidez não linear e a rigidez linear. A não linearidade bilinear reduz a velocidade em que oscilações persistentes aparecem enquanto que a rigidez cúbica contribui para com a obtenção de oscilações persistentes de amplitude aceitável em uma faixa mais ampla de velocidades do escoamento. Em seguida, os comportamentos piezoaeroelásticos linear e não linear de uma seção típica com 3-GDL são investigados. A não linearidade bilinear é adicionada ao GDL de rotação da superfície de controle. Mostra-se que oscilações não lineares em ciclo limite podem ser obtidas em uma faixa de velocidades do escoamento. No último caso, a não linearidade cúbica é modelada no GDL de rotação da seção típica (além da não linearidade bilinear na superfície de controle) e oscilações de amplitude limitada são obtidas em uma faixa de velocidades do escoamento. Não linearidades concentradas podem ser introduzidas em geradores aeroelásticos de energia (que utilizam transdução piezelétrica ou outro mecanismo transdutor) para melhoria do desempenho do sistema.
Title in English
Electroaeroelastic behavior analysis of a typical section for piezoelectric energy harvesting
Keywords in English
Aeroelasticity
Energy harvesting
Mechanical vibrations
Piezoelectricity
Abstract in English
Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. The use of a typical airfoil section is a convenient approach to create instabilities and persistent oscillations in aeroelastic energy harvesting. This work analyzes the linear and non linear versions of two airfoil-based aeroelastic energy harvesters using piezoelectric transduction: (1) with two degrees of freedom (DOF) and (2) with three DOF. The governing dimensionless electroaeroelastic equations are given in each case with a resistive load in the electrical domain for predicting the system behavior. First the interaction between piezoelectric power generation and linear and non linear aeroelastic behavior of a typical section with 2-DOF is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limitcycle oscillations can be obtained below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Later the linear and non linear piezoaeroelastic behavior of a typical section with 3-DOF is investigated. Free play nonlinearity is added to the control surface DOF and it is shown that nonlinear limit-cycle oscillations can be obtained over a range of airflow speeds. In the last case cubic hardening nonlinearity is modeled in the pitch DOF (in addition to the free play in the control surface) and bounded oscillations are obtained for a range of airflow speeds. Concentrated nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2012-04-24
 
WARNING: The material described below relates to works resulting from this thesis or dissertation. The contents of these works are the author's responsibility.
  • SOUSA, V C, et al. Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities : theory and experiment [doi:10.1088/0964-1726/20/9/094007]. Smart Materials and Structures [online], 2011, vol. 20, n. 9, p. 094007.
  • SOUSA, V C, and DE MARQUI JR, C. Modeling and analysis of a broadband piezoaeroelastic energy harvester. In Brazilian Congress of Mechanical Engineering (COBEM), 21, Natal - RN, 2011.
  • SOUSA, V C, DASSUNCAO, D, and DE MARQUI JR, C. Piezoaeroelastic typical section for wind energy harvesting. In Topics in Modal Analysis II, 30, Jacksonville - FL, 2012. - : Springer Science+Business Media, 2012. vol. 6, DOI: 10.1007/978-1-4614-2419-2_6. ISBN 1461424185.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.