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ABSTRACT

MATHIAS, M. S. Instability analysis of compressible flows over open cavities
by a Jacobian-free numerical method. 2017. 138p. Dissertação (Mestrado) - Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2017.

The influence of the Mach number and the boundary layer thickness over the stability of
Rossiter-like modes in a subsonic compressible flow over an open rectangular cavity is
studied. This work describes the implementation and use of the relevant computational
methods. The most straight-forward way of accessing the stability of a flow is to build the
Jacobian matrix of its governing equations and to compute its eigenvalues and eigenvectors.
The so called matrix forming methods explicitly compute this matrix and use numerical
algorithms to solve its eigenproblem. When the flow grows more complex, the Jacobian
matrix may become unfeasibly large. The algorithm implemented here is of the Jacobian-
free type, which means that this matrix is not explicitly needed. Therefore, the Arnoldi
iteration method is used as all it needs is the ability of multiplying the Jacobian by an
arbitrary vector. The algorithm is built in a way that a call to a flow solver is equivalent
to this multiplication. The development of this solver is also covered by this work, it is
a DNS (Direct Numerical Solver) for the compressible Navier-Stokes equations, which
means that no turbulence models are used. High numerical precision is an important
requirement as small disturbances, many orders of magnitude smaller than the base flow,
must be well resolved. High order spectral like differentiation methods are employed. A
validation work is performed for both the DNS and the instability analysis algorithm.
Finally, this code becomes a tool to access the effect of a cavity on a boundary-layer flow.
Two-dimensional cases are run for various incoming boundary layer thicknesses and Mach
numbers. This work focuses on Rossiter modes and the physical phenomena that cause
them to be either stable or unstable. Three types of phenomena are checked for their
influence in the Rossiter modes: resonance with standing waves; spatial amplification at
the mixing layer; and transfer from the flow disturbances to acoustic energy. Finally, the
linear stability results are compared to DNS runs, which include non-linear effects. In the
current parametric space, it was concluded that the instability at the mixing layer has
an important role in selecting the Rossiter modes, while the increased flow to acoustic
energy transfer caused by higher Mach numbers influence the mode amplification rate.
The resonance with standing waves only plays a small role in this case.

Keywords: Compressible flow. Open cavity. Arnoldi iteration. Direct Numerical Solver.
Rossiter modes.





RESUMO

MATHIAS, M. S. Análise de instabilidade de escoamentos compressíveis sobre
uma cavidade aberta por um método numérico sem formação de Jacobiano.
2017. 138p. Dissertação (Mestrado) - Escola de Engenharia de São Carlos, Universidade
de São Paulo, São Carlos, 2017.

A influência do número de Mach e da espessura da camada limite sobre a estabilidade
de motos tipo Rossiter no escoamento subsônico sobre uma cavidade aberta retangular é
estudade. Este trabalho descreve a implementação e o uso dos métodos computacionais
relevantes. O método mais direto para se fazer esta análise de estabilidade se resume
a encontrar os autovalores e autovetores da matriz Jacobiana das equações governantes
do escoamento. Métodos conhecidos como matrix-forming montam essa matriz e usam
técnicas numéricas para resolver seu autoproblema. No caso deste escoamento, esta matriz
se torna muito grande, a ponto de ser impraticável usá-la, ainda mais considerando os
métodos de diferenciação numérica utilizados, que a tornariam uma matriz cheia. Para
evitar a formação desta matriz, o método da iteração de Arnoldi é utilizado, uma vez
que ele não precisa explicitamente da matriz, mas apenas da capacidade de multiplicar o
Jacobiano por vetores arbitrários. O algoritmo é construído de forma que uma chamada
do código de simulação do escoamento equivale a esta multiplicação. O desenvolvimento
deste código também é mostrado neste trabalho. Se trata de um DNS (Direct Numerical
Solver) para as equações compressíveis de Navier-Stokes. Para este uso, o código deve
ter uma alta ordem de precisão pois perturbações várias ordens de grandeza menores
que o escoamento base devem ser resolvidas com precisão. Métodos de diferenciação
espacial com alta resolução espectral são usados para que a malha não precise ser tão
grande, reduzindo o custo computacional. Um trabalho de validação é realizado, para
se ter a certeza de que todos os parâmetros tanto do DNS quanto do método de análise
de instabilidade estão bem escolhidos e para se saber quais os passos a serem tomados
caso uma precisão maior seja necessária. Por fim, estes códigos são utilizados para se
estudar o efeito de uma cavidade sobre a estabilidade do escoamento sobre uma placa
plana. Casos bidimensionais são rodados com várias espessuras de camada limite no bordo
de ataque da cavidade e com diversos números de Mach. Este trabalho foca nos modos
de Rossiter e nos fenômenos físicos que os tornam estáveis ou instáveis. Três tipos de
fenômeno são analisados: ressonância com ondas estacionárias; amplificação espacial na
camada de mistura; e transferência das perturbações no escoamento para energia acústica.
Por fim, os resultados da instabilidade linear são comparados com dados do DNS, que
incluem os efeitos não lineares. No espaço paramétrico atual, a instabilidade na camada
de mistura age de forma a selecionar os modos de Rossiter presentes, enquanto a maior
transferência de energia do escoamento para o campo acústico causada pelo aumento do



número de Mach influencia a taxa de amplificação dos modos. A ressonância com ondas
estacionárias tem um papel pequeno neste caso.

Palavras-chave: Escoamento compressível. Cavidade aberta. Método de Arnoldi. Simu-
lação numérica direta. Modos de Rossiter.
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Chapter 1

Introduction

1.1 Proposal of this study and motivation

The flow over an open cavity is modeled and its instability modes are computed.
This is done in a computational framework with a Direct Numerical Simulation (DNS)
code and a Jacobian-free eigenproblem solver.

An open cavity can be used to represent several different parts of an aircraft
in flight. For example, the gap between the slats or flaps and the wing main element,
the landing gear wells, gaps at doors and windows, as well as other non-aeronautical
applications, such as gaps between train cars and windows and sun roofs in cars. Better
understanding the flow mechanics over this simplified case can aid designers to predict
the effects these geometries have over the flow stability, as well as the related acoustic
emissions. (COLONIUS, 2001)

A good prediction of the transition location on a wing, or on any other aerodynamic
surface, is essential to improve its performance.

Tools for linear instability analysis are developed, validated and run. The main goal
is to better understand the effect of both the Mach number and the incoming boundary
layer thickness to the overall instability.

1.2 Problem description

In this work, an open cavity in a flat plate is modeled and simulated. This geometry
was chosen as it is relatively simple and can be used to model more complex situations, as
mentioned earlier.
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Figure 1 illustrates the situation. There is a uniform flow coming from the left-hand
side, a boundary layer is formed on the flat plate and there is a rectangular cavity in this
plate after a certain distance. The geometry is considered uniform and infinite in the
span-wise direction, as is the downstream to the cavity.

Uniform flow 

Boundary layer 

Acoustic 
emission 

Shear layer 

Recirculation 

Flat plate Flat plate 

Cavity 

L 

D 

θ0 

Figure 1 – Illustration of the open cavity flow.

In the usual case, the flow circulates inside the cavity and a shear layer is formed
on the opening. If the flow is unsteady, sound is also emitted.

All values are non-dimensional and the parameters to be chosen are:

• L/D - Cavity aspect ratio (length by depth)

• θ0 - Boundary layer momentum thickness at the cavity leading edge

• Re - Reynolds number

• Ma - Mach number

Depending on these parameters, the flow might be either stable or unstable. A
stable flow will be steady, while an unstable flow will develop into an oscillating regime.

Figure 2 brings a diagram with neutral stability curves by Brès and Colonius
(2008) for a fixed cavity aspect ratio of L/D = 2 and a boundary layer thickness given
by L/θ0 = 52.8. At low Mach numbers, increasing the Reynolds number triggers three-
dimensional instabilities, while two-dimensional instabilities tend to appear first if the
Mach number is higher. For this length to depth ratio, flows above a ReD of roughly 1300
are 3D unstable. The minimum Re for a 2D unstable flow is reduced as the Mach number
increases, becoming lower than the 3D instability threshold above around Mach 0.4. These
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disturbances eventually saturate to become periodic oscillations in the flow. Some of their
runs are indicated in this diagram.

Figure 2 – Neutral stability curves for a L/D = 2 and L/θ0 = 52.8 open cavity as a function
of Mach and Reynolds. The symbols indicate results by Brès and Colonius
(2008), filled markers indicated unstable cases, squares for two-dimensional and
circles for three-dimensional. (BRÈS; COLONIUS, 2008)

1.3 Scope

A computational model of this geometry is created and used to study the flow
stability. Both two and three-dimensional cases are considered. The simulation is always
compressible, even at low Mach numbers.

In a two-dimensional case, the flow is considered uniform in the span-wise direction.
While in a three-dimensional case, the flow is periodical in this direction.

Most modern jet aircraft fly at mid to high subsonic speeds, in which compressibility
plays an important role as can be seen in Fig. 2. This work will focus on this range of
Mach numbers. The effect of both the Mach number and the incoming boundary layer
thickness on Rossiter modes is studied.

1.4 Summary of this work

After this introduction, Chapter 2 brings a review of papers and other relevant
works that have contributed to our knowledge in this area. It is divided into two sections,
the first one reviews the history of flow instability studies, while the second one is about
aeroacoustics and how it relates to the instabilities in cavities.
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Chapter 3 describes the methods and algorithms used and the reason they were
chosen, as well as detailing the computational implementation. After a quick summary, the
flow simulation routine is explained. Later, the instability analysis method is described.

Chapter 4 bring data on the code validation and on its performance.

In chapter 5, the code is used to evaluate the influence of two parameters, the Mach
number and the incoming boundary layer thickness on the Rossiter modes. Finally, three
types of physical phenomena are discussed as for their influence on the global stability:
resonance with standing wave modes; mixing layer instability; and acoustic energy transfer
ratio. Full DNS runs, with non-linear effects are also performed and compared to the
linear results.

Chapter 6 reviews the results and lists some possible future works.



23

Chapter 2

Review

2.1 Flow instability

Flow transition from laminar to turbulent regimes has been largely studied for the
past century. Despite great advances in these last decades, it remains an open problem.

Among the first studies for this phenomenon, Osbourne Reynolds’ work stands
out. In his first publication in this matter, Reynolds (1883) classifies two types of flow:
“Direct” and “Sinuous”, referring to both the flow surface and the shape of a colored
marker he would add to the water. His following publication Reynolds (1894) brought a
new, non-dimensional parameter that relates to the transition location, accounting for the
flow velocity, the fluid’s viscosity and a characteristic length, taken as the tube diameter.
This would later be known as the Reynolds number.

Prandtl (1904) brought the concept of the boundary layer above a flat plate,
already mentioning the phenomenon of transition from laminar to turbulent flow and
boundary layer separation. His students continued his work, Walter Tollmien and Hermann
Schlichting were among them. (SCHLICHTING; GERSTEN, 2000)

Earlier, Rayleigh (1879) studied the stability of a parallel, inviscid flow, concluding
that a necessary condition for instability was the existence of an inflection point in the
velocity profile. Orr (1909) and Sommerfeld (1908) derived the equation used to determine
the stability modes of a parallel, viscous flow. It would, later, be known as the Orr-
Sommerfeld equation. Tietjens (1925) has investigated the transition in a boundary layer,
concluding the viscosity would play a destabilizing role.

Tollmien (1929) (translated in Tollmien (1932)) and Schlichting (1933) have studied
the effects of a small perturbation in a Blasius profile by modeling them as waves that are
attenuated or amplified, depending on the flow stability, known today as the Tollmien-
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Figure 3 – The various regions of a boundary layer transition. (SCHLICHTING; GER-
STEN, 2000)

Schlichting (TS) waves. In summary, Tollmien has drawn the critical stability curve
in the Reynolds number versus wave number plane; and Schlichting has computed the
amplification levels in this plane.

For the next decade, this theory could not be reproduced due to the high turbulence
in the wind tunnels of the time. Finally, Schubauer and Skramstad (1943) were able to use
a low turbulence wind tunnel and successfully observe the amplification of periodic waves
just upwind of the transitional region in a boundary layer, soon followed by Liepmann
(1943). These observations matched Tollmien and Schlichting’s theory.

Schubauer and Skramstad (1943) used a vibrating ribbon in the boundary layer to
generate controlled TS waves and observed the spatial evolution of their amplitude, as
illustrated in Fig. 4. This image also shows the stability diagram from the Orr-Sommerfeld
equation.

According to Lin (1955), the disturbance kinetic energy in a two-dimensional
boundary layer increases at a rate given by −ρu′v′uy, where ρ is the density, u and v are
velocities parallel and normal to the flow, respectively. The prime denotes fluctuations
and the subscript, a derivative. In an inviscid flow, u′ and v′ have a 90°phase difference,
causing this product to be always null. Prandtl noticed that the viscosity tends to increase
this phase difference, causing a positive energy flow rate, as illustrated in Fig. 5.

So far, the Navier-Stokes equations have been studied in their linearized form.
Landau (1944) has begun investigating non-linear effects, followed by several researches in
the next decades. Klebanoff and Tidstrom (1959) have linked these non-linear effects in a
flat plate boundary layer to oscillations of TS waves amplitude in the span-wise direction,
creating three-dimensional effects, which have previously been linked to the appearance of
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Figure 4 – Illustration of TS waves evolution before transition to turbulence.
(HOUGHTON et al., 2012)

turbulent spots, which precede the fully turbulent flow. (EMMONS, 1951)

Gaster (1962) has connected the effects of temporal disturbance growth, that can
also be predicted theoretically, to the spatial growth, observed experimentally, proposing
the solution of the Orr-Sommerfeld equations for spatial modes (GASTER, 1965). Bouthier
(1972) removes the parallel flow approximation that had been used so far, accounting for
the spatial growth of the boundary layer.

Ingen (1956) has proposed a method to predict the transition location from the
disturbance amplification rates, known as the en method. Its idea is to integrate the
amplification rate through the boundary layer and to assume transition happens when
this integral reaches a certain threshold, represented by the constant en. Usually, e = 9 is
taken as an average value, in flight, lower or greater values may be used depending on the
transition type and the environmental conditions.

The en method is used to this day to predict the transition position, for example,
in airfoils. Drela and Giles (1987) used this theory in the very popular XFoil and MSES
codes for airfoil evaluation and design. It is worth noting that the pressure gradient in
airfoils influences the stability and should be accounted in the Orr-Sommerfeld equation.
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Figure 5 – Illustration of the energy flow rate in TS waves. (HOUGHTON et al., 2012)

2.1.1 Instabilities in cavities

Cavity flow studies were first motivated by both its acoustic emissions and pressure
oscillations over surfaces such as gaps in wings or openings in fuselages, specially landing
gear doors or spoilers. Krishnamurty (1956) has performed an experimental analysis on
a two-dimensional gap in an airfoil. Owen (1958) has studied the pressure oscillations
caused by these features and their effects on the aircraft structure.

Rossiter (1964) investigated the effects of instability in the flow over a cavity and
related them to its aspect ratio, concluding that deeper cavities tend to have a cleaner
and more periodical spectrum, while shallower cavities tend to have more relevant random
frequencies. He has also proposed his famous empirical equation to predict the dominant
frequencies, which will be further discussed in the aeroacoustics section.

Non-linear interactions between modes were investigated by Knisely and Rockwell
(1982). Cattafesta et al. (1998) have experimentally observed a switching between Rossiter
modes, which was later studied by Kegerise et al. (2004).
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The disturbances amplification rates may be computed by the linear stability
theory, Rowley, Colonius and Basu (2002) presents a diagram containing amplification
rate as a function of the ratio between boundary layer thickness and cavity depth (D/θ),
obtained numerically, with a DNS. Another option to obtain these values is by a global
instability analysis, as done by Theofilis (2000a).

Besides the interactions between the flow and its acoustic field, there may also be
purely hydrodynamic instabilities, as observed by Gharib and Roshko (1987) and, later by
Rowley, Colonius and Basu (2002) in numerical simulations.

McGregor and White (1970) justified research on cavity instability by concluding
that, in transonic and supersonic flows, aerodynamic drag in surfaces with cavities is
greatly increased if there is an acoustic resonance. Dix and Bauer (2000) points out
that pressure fluctuations due to cavities may reach great amplitudes that, besides the
acoustic emission, might cause structural fatigue as they are specially correlated waves,
causing repetitive stress on some structural points. Outside of the aeronautical scope,
other justifications may be found. Kook and Mongeau (2002), for example, were motivated
by automotive sunroofs.

More recently, cavity flow control came into the scope of researchers (HOWE, 1997;
COLONIUS, 2001; ROWLEY; WILLIAMS, 2006). Control can be either passive, done
by features such as grills, spoilers and ramps, or active, by using suction, jets, oscillators
and piezoelectric components (CATTAFESTA et al., 2003; WILLIAMS; ROWLEY, 2006;
THEOFILIS, 2011).

Brès and Colonius (2008) performed open cavity simulations with high order
finite difference schemes Lele (1992) to investigate the interaction between two and three-
dimensional modes. Mack and Schmid (2010) have studied the instability in a swept cavity
in supersonic flows by using a combination of a DNS and Krylov subspace algorithms.

Yamouni, Sipp and Jacquin (2013) related modes from bi-global stability analysis
to Rossiter and standing wave modes in a square cavity. They conclude that interactions
between these two phenomena may affect the global mode, causing it to be more unstable
when their frequencies match.

Meseguer-Garrido et al. (2014) investigated a range of parameters for span-wise pe-
riodic incompressible open cavities, documenting the neutral curves and the characteristics
of the leading eigenmodes.

Sun et al. (2016) compared the effect of using a time-averaged three-dimensional
flow as base-flow for a bi-global stability analysis against using a regular base-flow, which
has a null time derivative. They conclude that in some cases, usually with longer cavities,
the two-dimensional wake modes are absent due to this modified base-flow.

Qadri and Schmid (2017) investigated the effects of shallow cavities, with a depth
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similar to the boundary layer thickness, as a frequency selection mechanism, as well
as its effects on the flow stability. His reasoning is that small surface irregularities are
unavoidable in a real situation and that understanding their influence on the flow stability
is a step towards more robust designs.

2.1.2 Jacobian-free instability analysis

The most straight-forward approach to obtain the instability modes of any system is
to compute its Jacobian matrix and to find its eigenvalues and eigenvectors. Unfortunately,
this matrix grows very fast as the mesh becomes finer, causing the processor and memory
requirements to quickly increase, especially if the matrix is full.

Arnoldi (1951) has developed an iterative algorithm to compute some of the
eigenvalues of large matrices, based on the Krylov subspaces. One of the most interesting
features of this method is that the matrix itself is not explicitly required, just the ability
to compute vector multiplications with it.

Eriksson and Rizzi (1985) have implemented the Arnoldi iteration in to compute
the steady state of an inviscid flow over an airfoil. Arnoldi’s method was used to find
the least stable eigenvalues of the flow, which were artificially damped, speeding up the
convergence.

Edwards et al. (1994) have used it on a Couette-Taylor flow. First to find a steady
state solution, then to speed up its time evolution by exponential propagation and, finally,
to obtain the leading eigenvalues and corresponding modes of the flow.

Chiba (1998) has used this method on more complex geometries, such as a cylinder
wake. Tezuka and Suzuki (2006) were the first to implement it for three-dimensional flows.
Gómez, Gómez and Theofilis (2014) have used the open-source OpenFOAM (WELLER et
al., 1998) code to perform the flow simulation, allowing for much more complex geometries.

Arnoldi’s method finds the eigenvalues iteratively, first converging the ones that
are further away from the complex plane’s origin. Due to the exponential operations used,
these outermost eigenvalues map to the most unstable modes. Gómez et al. (2015) have
used a shift-invert strategy in the algorithm so one can control which region of the complex
plane contains the first converged eigenvalues, this technique can be used, for example, to
focus on the acoustic modes.

Most instability analyses involve first computing a base flow, which is used as
the central point for the linearized equations. Barkley (2006), Sipp and Lebedev (2007)
compare the modes in this base flow to the actual oscillations observed in the flow. Their
studies focus on the flow around a cylinder very close to the critical Reynolds number and
its wake modes. For the cylinder, they conclude that the frequencies found by the linear
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stability analysis are very close to the ones observed in the limit-cycle when non-linearities
are also considered. They mention that this is not valid for any type of flow, using the
open cavity as a counter-example. One remark is that the mean flow from the non-linear
equations coincides with the base flow for the instability analysis at the bifurcation, i.e. at
critical stability conditions.

2.2 Aeroacoustics

Lord Rayleigh’s work is often cited as the basis of acoustics Rayleigh (1877),
Rayleigh (1878). It brought together various works from different authors under a single,
unified theory, becoming the starting point for upcoming research.

In a similar way, the work of Lighthill is often considered the basis for aeroacoustics
(LIGHTHILL, 1952; LIGHTHILL, 1954). He has focused on identifying the kinds of flows
that generate sound and to understand how much of the flow’s energy is transfered to the
acoustic field. It is worth noting that the flow is the only sound source accounted for in
this work, structure vibrations, for example, are not covered by it, but might be included
as boundary conditions in some cases.

Generally speaking, Lighthill considered the acoustic field fluctuations to be much
smaller that the base flow magnitude, causing non-linear terms relative to these fluctuations
in the Navier-Stokes equations to be considered very small and, thus, removed.

He has also defined three basic types of acoustic sources. The monopole, equivalent
to an oscillating source of mass in the flow, the most efficient way of generating sound. The
dipole, equivalent to an oscillating force. And the quadrupole, equivalent to a fluctuating
shear tension, the least efficient acoustic source.

With the increase of commercial jets in service after the 1960s, especially the su-
personic Concorde, the necessity of more aeroacoustic research became evident (FFOWCS-
WILLIAMS, 1977; FFOWCS-WILLIAMS, 1996). These studies focused initially on jet
noise, as the engines were, by a fair margin, the greatest acoustic sources.

2.2.1 Cavity aeroacoustics

Initially, open cavity research was motivated by their vibration modes, with special
attention given to the frequencies. Acoustic intensity was not considered very relevant due
to the much louder engines of the time. The concern of whether or not there would be
oscillatory modes as what would be their frequencies was for structural reasons, as these
oscillations could excite modes in the structure, speeding up fatigue. To a smaller extent,
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there was also some concern on the increased drag caused by the oscillations. (OWEN,
1958).

Krishnamurty (1956), motivated by the buffeting observed in aircraft cavities
such as open cockpits or landing gear doors, performed an experimental campaign and
concluded that the minimum cavity size that generates sound is reduced as the Mach
number increases and that this size is inversely proportional to the sound frequency
observed. He has also reported that sound intensity grows quickly with the Mach number,
roughly at its eighth power, as predicted by the existing theories. Acoustic waves were
also visualized by Schlieren photography, qualitatively showing the sound directivity, as
shown in Fig. 6.

Figure 6 – Schlieren image of the cavity flow showing its acoustic output. (KRISHNA-
MURTY, 1956)

At the same time, Roshko (1955) performed experiments to generate more data on
open cavity flow and to observe its structures, also looking to understand the relevance of
the cavity aspect ratio. His work is focused on the mean flow over the cavity, not on the
oscillations that, eventually, become sound waves.

Rossiter (1964) has performed an experimental campaign at subsonic and transonic
velocities, resulting in his famous semi-empirical equation, which connects flow parameters,
such as Mach number and cavity length to the observed sound frequencies. It is still
largely used to this date (COLONIUS, 2001; GLOERFELT, 2009). His equation has some
empirical constants, obtained experimentally.

This equation assumes that the unstable mode that generates sound is triggered
by an acoustic feedback. In short, when a vortex reaches the cavity’s downstream edge, it
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generates acoustic waves that travel back to the upstream edge, triggering the shear layer
modes that generate another vortex.

Rossiter’s equation matches well with experimental results, despite a considerable
dispersion, especially at lower Mach numbers. The saturation amplitudes of the modes
present a much higher dispersion than the frequencies, due to the high sensitivity to
disturbances in the shear layer. (COLONIUS, 2001)

Through the years, various corrections and adjustments of empirical values have
been suggested to Rossiter’s equation. (HELLER; HOLMES; COVERT, 1971; ROCK-
WELL; NAUDASHER, 1979)

Plumblee, Gibson and Lassiter (1962) have proposed another mode for sound
generation in an open cubic cavity, later extended to other geometries by Tam (1976). In
this mode, stationary waves normal to the flow receive energy from the shear layer over
the cavity, modes are selected depending on their frequencies and this energy is sent back
to the flow in acoustic form. In this work, the Navier-Stokes equations were simplified by
several hypotheses. After the boundary conditions were applied, the resulting equation
predicts the frequencies and modes and depends on no empirical constants, just on two
integers, related to the mode number.

East (1966) linked aeroacoustic feedback mechanisms (Rossiter) to acoustic res-
onance mechanisms (Plumblee), concluding that they may interact with each other,
amplifying the sound output if their frequencies match.

Comparing his results to experiments, Tam (1976) concluded that they are valid
only for cavities with a depth greater than their length and above a certain Mach number,
around 0.25. He arguments that in shallow cavities or at lower Machs, the energy absorbed
by the standing waves is much less than what is needed to generate sound, damping these
waves until they are practically non-existent. This complements East’s conclusions.

Block (1976) has also compared both mechanisms experimentally, reaching a
similar conclusion. Deeper cavities tend to have stronger acoustic resonance modes while
longer ones have stronger aeroacoustic feedback modes. Peaks in sound intensity were also
observed when the modes matched in frequency. She has also noted that at higher velocities,
only the feedback modes are seen, other modes appear at lower velocities, widening the
spectrum. This mode interaction was also discussed by Rockwell and Naudasher (1979),
Yamouni, Sipp and Jacquin (2013).

Howe (2004) identifies the sound generation mechanisms at low Mach numbers,
roughly from 0.01 to 0.2. He has used a Green’s function for this geometry and analytical
models of the sources, treating them as monopoles and dipoles. The monopole source is
associated with the net flux of mass entering or leaving the cavity, while the dipole is
associated with an unsteady drag force caused by the interaction of the vorticity and the
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cavity trailing edge, which happens due to the shear layer instability.

Howe has concluded that at very low Mach numbers the sound radiation is domi-
nated by the dipole source caused by the unsteady drag force, while at slightly higher Mach
numbers, the monopole source takes over. This is illustrated in Fig. 7, which compares
the directivity at Mach 0.05 and at Mach 0.1.

Figure 7 – Cavity acoustic directivity at Mach 0.05 and Mach 0.1. (HOWE, 2004)

He has also concluded that, at lower frequencies, the emission is dominated by the
dipole and, at higher frequencies, by the monopole, as can be seen in Fig. 8.

Figure 8 – Cavity acoustic directivity at Mach 0.1 for various frequencies. (HOWE, 2004)

The ever increasing computational power has allowed for numerical simulation
of the cavity flow. This new tool allows better visualization of the flow. Several types
of modeling can be used, from Direct Numerical Simulation (DNS) and Large Eddy
Simulation (LES) for lower Reynolds numbers to Reynolds Averaged Numerical Simulation
(RANS) for larger values. (COLONIUS, 2001; ROWLEY; COLONIUS; BASU, 2002)

2.2.2 Linking to stability analysis

The acoustic emission of a cavity is strongly linked to its oscillation modes and
depends on the existence of unstable eigenvalues. Great advances were achieved in this
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direction by bi-global instability analysis Theofilis (2003), Brès and Colonius (2008),
Vicente et al. (2014). Eigenvalues in the complex plane can be mapped for the cavity flow,
indicating the existence of unstable modes and their respective frequencies. These modes
grow until non-linear effects cause them to reach a saturation point.

Most recent investigations on open cavities focus on the flow stability. Meseguer-
Garrido et al. (2014) have performed a parametric study of the flow and its instability
modes. Liu, Gómez and Theofilis (2016) have compared two-dimensional cavities, with an
infinite span, to three-dimensional ones, with a finite span, concluding that most effects
are shared by both geometries. These last results were obtained for incompressible flows
and acoustic analogies might be done from them. A compressible flow would be needed if
direct observation of the acoustic field is desired.

A limited number of papers were found in the literature about mid to high subsonic
flows over a cavity, such as Brès and Colonius (2008), Yamouni, Sipp and Jacquin (2013),
Sun et al. (2016), Sun et al. (2017), which mostly focus on how the Mach number affects
the stability. This range of Mach numbers is certainly important for practical reasons
as this is where most modern aircraft fly. This work is in the direction of expanding the
current knowledge of open cavity flows in this sense, a focus will be given to the effect of
the boundary layer thickness over the cavity, about which not much was found.
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Chapter 3

Methods

3.1 Summary of methods

A Direct Numerical Solver (DNS) for the Navier-Stokes equations on an open cavity
was developed. Special attention is given to the code’s capability of operating at the high
order of precision required for instability and acoustic analysis. Various numerical methods
were implemented in the solver, including the spectral-like compact finite differences shown
by Lele (1992).

This DNS is used to generate the base flow for the instability analysis. It is also
part of the matrix-free instability analysis methods to compute the flow’s eigenvalues
and their respective eigenfunctions. Regular matrix-forming methods would demand an
enormous amount of memory to compute the flow modes, in the order of the squared total
number of nodes in the domain multiplied by the number of variables, which would easily
scale into gigabytes or even terabytes of memory solely to store the required matrices
(THEOFILIS, 2011).

This matrix-free method is based on the work of Eriksson and Rizzi (1985), who
have implemented an algorithm based on Arnoldi (1951) to find the most unstable or least
stable modes of an inviscid flow around an airfoil.

3.2 Flow simulation

The direct numerical simulation code was developed by a hydrodynamics instability
research group in the São Carlos School of Engineering, University of São Paulo, for
several uses, and was adapted for the open cavity flow. It is written in FORTRAN 90
language and uses a domain decomposition technique along with MPI and OpenMP for
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parallelization. (BERGAMO, 2014; MARTINEZ; MEDEIROS, 2016; MARTINEZ, 2016)

3.2.1 Governing equations

The compressible Navier-Stokes equations are used to model the flow, along with
mass and energy conservation equations. A compressible flow can be entirely defined by
five variables: density (ρ), internal energy (e) and the three velocity components (u,v,w),
in this case. Each variable depends on location (x,y,z) and time (t).

Equations are written in the non-conservative form, which solves for each individual
variable mentioned above, simplifying the boundary conditions.
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Where the viscous tensor and the heat flux term are:
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Temperature and pressure, assuming an ideal gas, are given by:

T = eγ (γ − 1)M2
∞, p = (γ − 1) ρ e (3.6)

Viscosity is modeled by Sutherland’s law:
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Defining C = 110K
T ∗∞

and T ∗∞ = 300K.

All values are non-dimensional, being normalized by the free flow speed, cavity
depth and initial density. Reynolds, Prandtl and Mach numbers are given by:

Re = ρ∗∞ U∗∞ L0

µ∗∞
, P r =

µ∗∞c
∗
p

k∗
, M∞ = U∗∞√

γ p
∗
∞
ρ∗∞

(3.8)
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Dimensional (denoted with a ∗) and non-dimensional values are related by the
following equations.

ρ = ρ∗

ρ∗∞
, p = p∗

p∗∞U
∗2
∞
, xi = x∗i

L0
, T = T ∗

T ∗∞
, ui = u∗i

U∗∞
, t = t∗U∗∞

L0
, e = e∗

U∗2∞
(3.9)

3.2.2 Meshing and domain

The code uses a structured mesh in a rectangular domain. The grid is much finer
in the wall-normal direction close to the flat plate and the cavity. There is also stretching
in the stream-wise direction, concentrating nodes on the cavity.

The following equation is used to obtain the node locations.:

x̄ = η − A

B
tanh (B(η − η0)) (3.10)

A and B are stretching parameters. η0 controls the refinement location. η goes
from 0 to 1 at equally spaced intervals. x̄ is linearly transformed to match the desired
initial and ending points for the mesh.

A, B and η0 have to be carefully chosen so that there are nodes positioned exactly
at the cavity edges in both x and y directions and at the flat plate leading edge. An
algorithm was developed with this goal, it takes desired values for the stretching parameters
as inputs and slightly modifies them to meet these criteria. This algorithm is also allowed
to slightly change the inlet x coordinate. Note that, as will be explained in the next
subsection, this does not affect the flat plate, which always begins at x = 0.

Table 1 shows parameters for an example mesh with a cavity at 2.96 ≤ x ≤ 4.96
with unitary depth.

Table 1 – Parameters of the mesh example.

x y
Number of nodes 400 150
Initial position -3.04 -1
Final position 12 5

A 0.99 0.995
B 0.5 0.3
η0 0.488 0.316

Figure 9 illustrates this mesh, note that only one node for every four in each
direction is shown. Figure 10 shows the nodes’ positions and spacings for this mesh.
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Figure 9 – Illustration of a mesh, only one node for every four is shown.
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Figure 10 – Positions of nodes and their spacing in an example mesh.

In this example, there are 131 nodes out of 400 in x inside the cavity and 48 out of
150 in y.

Closer to the open boundaries, in both directions, the spacing is greatly increased,
as part of the buffer zone. No multidomain technique is used in this case, grid points
inside the wall are ignored by the solver. Figure 11 illustrates the domain, the buffer zone
is shown in blue, while points inside the wall are orange, darker colors indicate a finer grid.

For 3D cases, in the span-wise direction, the mesh is equally spaced and the domain
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Figure 11 – Illustration of the domain and its boundaries. Buffer zone is shown in blue,
points inside the wall are orange, darker grays indicate a finer grid.

is periodical. The domain size in this direction defines the possible span-wise wave numbers
in the simulation.

3.2.3 Boundary and initial conditions

The inflow boundary is defined as a uniform flow at constant temperature and
a Neumann condition is placed for the pressure so that its derivative is null in the flow
direction. In the outflow, pressure is kept constant and Neumann homogeneous conditions
are used for temperature and velocities.

Walls have no-slip and no-penetration conditions for velocity, the pressure gradient
is set to zero in the normal direction and the temperature is fixed. Just downstream of
the inflow, there is a free-slip region in the wall, it is necessary to accommodate the flow
before the boundary layer starts forming.

It is worth noting that pressure and temperature are not directly available as
variables in the code and they should be computed from the density and energy values.
The temperature depends solely on the energy and pressure depends on both density and
energy. This way, the boundary conditions routine first changes the energy to observe the
temperature conditions and, later, the density to keep the pressure conditions.

The two top corners on the cavity were points of particular attention for the
boundary conditions. The Neumann homogeneous condition for pressure in other points
is observed by computing the density at each point of the boundary so that the pressure’s
derivative is null in the normal direction on the wall. Both corner nodes present a problem
as walls in distinct directions meet and the density that observes the Neumann condition
in one direction might violate it for the other. The pressure in both nodes is set to the
mean of the pressures that meet the boundary condition for each direction.
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The initial condition is defined as free-flow velocity above the flat plate and zero
velocity in the cavity, at constant pressure and temperatures. Results from previous runs
can also be used as initial condition as long as they share the same mesh; Reynolds and
Mach numbers and the numerical methods may be changed.

For the lid-driven cavity case, simply setting the tangential velocity to unity at the
lid would cause issues at the corners, as this condition is not compatible to the neighboring
walls. As done by Vicente et al. (2011) and Bergamo (2014), the tangential velocity at
this boundary is given by:

u =
(
1− (2x− 1)18

)2
(3.11)

This profile is very close to a uniform unitary flow, but smoothly reduces the
velocity to zero at the edges. This equation is valid if the edges are located at x = 0 and
x = 1.

In this case, the initial condition is a static flow.

3.2.4 Spatial derivatives

Spatial derivatives are computed by a finite differences method chosen before
runtime. Explicit second and fourth order methods are implemented, as well as compact
fourth order spectral-like and sixth order schemes described by Lele (1992). It is possible
to use a distinct differentiation method for the buffer zone, usually of a lower order, the
transition from one method to the next happens smoothly.

The following equation has to be solved when the derivative is needed:

βu′i−2 +αu′i−1 + u′+αu′i+1 + βu′i+2 = a
ui+1 − ui−1

2h + b
ui+2 − ui−2

4h + c
ui+3 − ui−3

6h (3.12)

α, β, a, b and c are adjustable coefficients, h is the mesh spacing, fi is the function
value at node i and f ′i , its approximated derivative.

Close to the boundaries, the stencil is shifted and coefficients are adjusted accord-
ingly.

If both α and β are null, there is no need to solve a linear system as the derivative
is given explicitly. The simplest scheme is the explicit second order, in which a = 1 and
all other parameters are null. An explicit fourth order scheme has a = 4/3 and b = -1/3.
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The order of accuracy of a scheme is given by which of the following equations
hold true for its coefficients.

2nd order: a+ b+ c = 1 + 2 (α + β) (3.13)

4th order: a+ 22b+ 32c = 6
(
α + 22β

)
(3.14)

6th order: a+ 24b+ 34c = 10
(
α + 24β

)
(3.15)

8th order: a+ 26b+ 36c = 14
(
α + 26β

)
(3.16)

Despite being able to achieve high orders of formal accuracy, explicit schemes
quickly lose precision at higher wave numbers, due to the increased high-order derivatives.

The difference in amplitude from the exact differentiation to the numerical ap-
proximation for each wave number, also known as the modified wave number, is given
by:

ω′(ω) = a sin(ω) + b sin(2ω)/2 + c sin(3ω)/3
1 + 2α cos(ω) + 2β cos(2ω) (3.17)

Lele (1992) uses this relation to derive some spectral-like derivative schemes. Ideally,
the modified wave number would always match the original wave number.

Besides both explicit schemes, a spectral-like derivative routine was implemented.
The restrictions are as follow:

1. Fourth order accuracy

2. Tridiagonal system

3. 5-point stencil

4. ω′(1.8) = 1.8

For the first item, Eqs. 3.13 and 3.14 must hold true. For the second and third
items, chosen to reduce the computational cost, β = 0 and c = 0. For the fourth item,
Eq. 3.17 must hold true for ω′ = ω = 1.8.

Therefore, there are five equations for the five variables, fully defining the system and
resulting in α = 0.364957272268410, β = 0, a = 1.57663818151227, b = 0.153276363024547
and c = 0.
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Figure 12 shows the modified wave number for some numerical schemes. Note how
the spectral-like method stays closer to the exact value even at higher wave numbers.

ω
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Figure 12 – Modified wave number for various numerical differentiation schemes.

It is important to note that these finite difference methods only work for equally
spaced meshes. Therefore, the well know chain rule for derivatives must be used, as shown
in the following equation.

∂u

∂x
= ∂u

∂φ

∂φ

∂x
(3.18)

u is the function value and x is the actual mesh dimension. φ is the dimension
in an intermediate mesh which corresponds node to node with the actual mesh. This
intermediate mesh is equally spaced with h = 1. Therefore, both terms on the right-hand
side of Eq. 3.18 can be obtained by standard finite difference methods. Note that the
second term only needs to be computed once as it depends only on the mesh.

Once more, both corner nodes presented a challenge for these methods when
computing the derivative. Fig. 13 illustrates the Regions considered. In an inner node,
i.e. away from the boundaries, finite differences method uses the nodes around it to
approximate the derivative. If no other changes were made to the code, corners nodes 1
and 2 would be considered as inner nodes and, thus, derivatives computed for them would
account for both points on the wall and points immersed in the flow, which would not
be correct and cause the solution to fail. Because of this, both these nodes only consider
values in Region 2 of Fig. 13.

This has solved the problem for both corner nodes and for the region between them.
But nodes in Regions 1 and 3 of the figure would still have its derivatives miscalculated,
causing discontinuities in the domain close to the corner, which would later cause the
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simulation to fail. This was solved by considering both the last node in Region 1 and the
first node in Region 3 as inner nodes for the finite differences method, which makes the
derivative a continuous function again.

In sum, derivatives in Region 2 depend only on values in it. Derivatives in Regions
1 and 3 depend on values both in their respective regions and on values in Region 2. The
approach for wall-normal derivatives is analogous.

Wall Wall Cavity 

Region 1 Region 2 Region 3 

Corner node 1 Corner node 2 

Figure 13 – Close-up of the corner nodes in the domain and the regions considered for
derivatives.

Equation 3.19 illustrates how the derivatives would be computed close to corner
node 1, with index c1. α, a, b and c are the finite differences coefficients, note that they
are different for the corner nodes and more coefficients may be added depending on the
derivative scheme chosen. D and f are vectors containing the derivatives and the function
values for each node, respectively.



1 α . . . 0
α 1 α

...
. . . . . . . . .

α 1 α

1 α
... α 1 α

0 . . .
. . . . . . . . .





D1

D2
...
Dc1−1

Dc1

Dc1+1
...


=

=



a b c . . . 0
−a 0 a

...
. . . . . . . . .
−a 0 a

a b c
... −a 0 a

0 . . .
. . . . . . . . .





f1

f2
...
fc1−1

fc1

fc1+1
...



(3.19)

These matrices are analogous at to the second corner index, c2.
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It can be seen that, as seen above, the linear system for nodes c1 to c2 can be
decoupled from the others, while nodes from 1 to c1 − 1 and from c2 + 1 to n still depend
on the central region. An analogous approach is taken in the wall-normal direction.

The code allows the buffer zones to use different schemes for spatial derivatives,
usually lower orders are desired. A smooth cosine-shaped transition happens from the
main scheme to the lower order one in this region.

3.2.5 Time integration

Time integration is performed at a fixed time step by either an explicit Euler, a
second order or a forth order Runge-Kutta scheme.

The simplest method is the explicit Euler, shown in the following equation. Un is
the flow state at time step n and f is the time derivative of this flow.

Un+1 = Un + ∆tf (Un) (3.20)

The fourth order Runge-Kutta method is given by the equations below. Despite
its higher computational cost at each step, it pays off by being able to take much larger
steps without losing stability or precision.

Un+1 = Un + ∆t
6 (K1 + 2K2 + 2K3 +K4) (3.21)

K1 = f (Un) (3.22)

K2 = f

(
Un + ∆t

2 K1

)
(3.23)

K3 = f

(
Un + ∆t

2 K2

)
(3.24)

K4 = f (Un + ∆tK3) (3.25)

The boundary conditions routine is called after each sub-step of the method.

The largest time step possible is defined by the method’s numerical stability. For
the flow’s diffusive characteristics, Eq. 3.26 must be observed, and for the flow’s convective
characteristics, Eq. 3.27 must be observed. The maximum CFL value depends on the time
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integration method chosen. For the fourth order Runge Kutta, a CFL under around 1.3 is
stable.

∆t ≤ Re(
1

∆x2
min

+ 1
∆y2

min
+ 1

∆z2
min

) (3.26)

∆t ≤ CFLmax(
1/M+umax

∆xmin
+ 1/M+vmax

∆ymin
+ 1/M+wmax

∆zmin

) (3.27)

The diffusive stability does not depend on the flow state, only on the mesh and on
the Reynolds number, so it is only computed once. The convective stability depends on
the flow velocity field and is computed at every step. Equation 3.27 also shows that for
very low Mach numbers, closer to an incompressible flow, the time step would have to
be significantly reduced due to the increased speed of sound waves compared to the flow
velocity, considerably increasing the computational cost.

At very low Mach numbers, the incompressible Navier-Stokes equations would yield
a much faster solution at the cost of not being able to identify any acoustic phenomena or
the instability modes related to it.

3.2.6 Anti-aliasing filtering

In this type of simulation, high-frequency numerical noise may quickly build up,
causing the simulation to diverge from the physical solution.

In a real flow, some mechanisms transport energy from long wavelengths to shorter
ones, until the molecular viscosity becomes strong enough to dissipate this energy. In a
fully turbulent flow, this is known as the Kolmogorov cascade (KOLMOGOROV, 1991).
Simulations down to this scale would require extremely fine meshes and are outside the
scope of this work and have a huge computational cost, outside the reach of modern
computers for most geometries, even one as simple as an open rectangular cavity.

Eriksson and Rizzi (1985) state that, due to aliasing effects, the motion in the
shortest wave length resolved by the mesh is numerically transferred to long wavelengths,
which causes the solution to diverge from the physical system.

A numerical low-pass filter attenuates this noise (GAITONDE; VISBAL, 1998).
The filter strength can be adjusted before runtime and, ideally, should be as low as possible,
minimizing its effect on results. Filtering was turned off close to the boundaries due to
the large derivatives present.

This filtering should be enough to dissipate the motion in short wavelengths before
they reach the Nyquist frequency limit, which states that a mesh can only resolve wave
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lengths of, at least, twice the node spacing and that shorter oscillations would cause
aliasing issues.

Filtering is done at the end of each time step and requires solving a tridiagonal
linear system for each direction.

It is implemented in a very similar manner to the spatial derivatives. The matrices
for the linear system are formed and solved at the end of each time step. The treatment
for border and corner nodes is the same as described in Fig. 13 and Eq. 3.19.

The system to be solved is the following:

αf ūi−1 + ūi + αf ūi+1 =
N∑
n=0

an
2 (ui−n + ui+n) (3.28)

For this tenth order scheme, the coefficients are:

a0 = 193 + 126αf
256 , a1 = 105 + 302αf

256 , a2 = −15 + 30αf
64

a3 = 45− 2αf
512 , a4 = −5 + 10αf

256 , a5 = 1 +−2αf
512

(3.29)

αf is an adjustable parameter from -0.5, which is maximum filtering, to 0.5, which
is no filtering. ui is the function value at node i and ūi denotes this value after filtering.

The spectral function of the filter shows the attenuation for each wavenumber. It
is given by:

SF (ω) =
∑N
n=0 an cos (nω)

1 + 2α cos (ω) (3.30)

Figure 14 is a plot os this spectral function for various values of α for this tenth
order scheme.

3.2.7 Artificial damping

This DNS is used in two distinct parts of this work. Besides being called during
the instability analysis, it is also used to generate the base flow.

A fundamental requirement for this base flow to be used for instability analysis is
to be steady, i.e., its derivatives with respect to time are null. Given that f(U ) describes
the time derivative of the flow U , a steady state solution U0 suitable to be a base flow
would yield

f(U0) = 0 (3.31)
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Figure 14 – Spectral function for the tenth order low-pass filter.

Two of the most straightforward methods to obtain U0 are:

1. Run the time evolution for a sufficient time to reach a steady flow within a certain
tolerance.

2. Use a Newton iteration method to solve the non-linear system.

The first solution works only if all the base flow modes are stable and requires
long simulations when close to critical stability conditions. An open cavity flow may not
always meet this criterion, as it may be two dimensionally unstable, which would cause
the simulation to reach a periodical solution.

At the critical stability condition, the time average of this periodical solution
coincides with the base flow, but this is not true for unstable conditions. (SIPP; LEBEDEV,
2007)

The second solution would require a considerable amount of recoding of the DNS
and also depends on a good initial guess.

Åkervik et al. (2006) propose a solution based on the first method, called the
Selective Frequency Damping (SFD). It works as a low pass filter in the time domain,
which damps the unstable modes present in the flow so that a physical steady state is
reached by the simulation, even if it is physically unstable.

It is based on a proportional feedback control and works by adding a forcing term
to the governing equations.

∂U

∂t
= f(U)− χ(U −w) (3.32)
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Where w, ideally, would be the target steady flow, but as it is not available at run
time, it is substituted by a time filtered flow obtained by the convolution of U with a time
filtering kernel T .

w = Ū(t) =
∫ t

−∞
T (τ − t,∆)U(τ)dτ (3.33)

The filtering kernel can be defined as:

T (τ − t,∆) = 1
∆exp

(
τ − t

∆

)
(3.34)

The cutoff frequency is given by:

ωc = 1
∆ (3.35)

For the implementation, Eqs. 3.33 and 3.34 as rewritten in the equivalent differential
form:

∂Ū

∂t
= U − Ū

∆ (3.36)

This equation can be solved along with the actual flow, with few changes to the
code and a small increase in the computational cost. Both χ from Eq. 3.32 and ∆ from
Eq. 3.36 are adjustable parameters.

χ controls the strength of the artificial damping. Low values may cause the system
to remain unstable or very close to the critical condition. High values add too much
damping, causing the system to take a very long time to converge.

∆ controls the cutoff frequency, which should be lower than the unstable mode’s
frequency. On the other hand, high values of ∆, therefore low cutoff frequencies, cause a
similar effect to a strong damping, increasing the time needed for the solution to reach
the steady state.

In summary, the following system of equations is solved through time:

∂U

∂t
= f(U )− χ(U − Ū ) (3.37)

∂Ū

∂t
= U − Ū

∆ (3.38)

When this system reaches a steady state, U and Ū will be equal and the second
term of the first equation will vanish. Therefore, U will represent the physical flow U0,
which is steady.
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To reduce the computational cost, a fourth order Runge-Kutta scheme may be
used to solve for the physical part of the flow, which is only the first term of the right
hand side of Eq. 3.37, for its increased stability. While the other parts are solved by the
simpler explicit Euler method. Hence, Eq. 3.21 is replaced by:

Un+1 = Un + ∆t
6 (K1 + 2K2 + 2K3 +K4)−∆t χ(U − Ū) (3.39)

With Eqs. 3.22 to 3.25 still used for the sub steps K1 to K4. Equation 3.38 is
solved through time by:

Ūn+1 = Ūn + ∆tU
n − Ūn

∆ (3.40)

It is worth noting that the goal of using this Selective Frequency Damping method
is simply obtaining a steady state flow as quickly as possible. Therefore, there is no need
for high precision algorithms for the time stepping. The Runge-Kutta algorithm is used
because of its excellent stability properties, allowing larger time steps.

It is also possible to use this method only in the buffer zone to mitigate problems
at the boundary conditions such as reflections. In this case, χ is multiplied by a parameter
η that depends on the position, which varies smoothly from zero at the beginning of the
buffer zone to one at the domain boundary.

3.2.8 Domain decomposition and parallel execution

For the parallel execution, the domain is decomposed in slices and each one is
sent to a different process. Figure 15 illustrates this decomposition, as done by the
2DECOMP&FFT library, which uses the MPI protocol (LI; LAIZET, 2010).

Figure 15 – Scheme of a three dimensional domain decomposed for a grid of 3x4 processes
(LI; LAIZET, 2010).
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Each slice can be further parallelized by using OpenMP, which allows multiple
iterations of loops to be run concurrently.

Each MPI process holds all points of the domain in one direction, but not in the
others. For most operations, the decomposition in x is used, i.e., each process can access
all points in x for their values of y and z. Which means that for the derivatives and filters
in all directions to be computed, the domain has to be transposed once for each direction.
This process is illustrated in Fig. 16. An analogous routine is used for the noise filtering
in each direction.

Figure 16 – Flowchart to obtain derivatives of the decomposed domain.

Even tough each domain transposition is a memory intensive operation the MPI
parallel execution was found to be more efficient.

The number of MPI processes is limited by the geometry. The subroutine for
the boundary conditions is called when the domain in decomposed in the stream-wise
x direction, i.e. no program instance has access to all values of y and z in the domain.
This becomes an issue when computing wall-normal Neumann boundary conditions, as a
number of points in the y direction are needed at this step and all these nodes should be
contained in the same instance, to avoid communication overhead.

Therefore, care has to be taken so that all points needed for the Neumann conditions
are contained in a single instance.

The routines were mostly executed in a computer with 40 physical cores (each
providing two logical threads) and 128 GB of RAM. In terms of performance, it was noted
that parallelizing the execution by decomposing the domain was usually more efficient
than using multiple OpenMP workers, this difference was increased as the mesh grew.

Multiple OpenMP workers were only used when the domain could not be decom-
posed in many parts due to the geometry. This was usually the case for two-dimensional
runs, when the domain could only be decomposed in two or three slices. Three dimensional
runs can also be decomposed in the span-wise direction, therefore, OpenMP was rarely
used.
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It was also noted that it is more efficient to run multiple cases at once, each using
fewer processors, than running fewer cases with more processors each. More details are
given in Section 4.12.

3.3 Instability Analysis

In order to obtain the oscillation modes of a certain flow, one has to compute the
eigenvalues and eigenvectors of its Jacobian matrix. It is, given that the Navier-Stokes
equations and all boundary conditions are described by a function f such that:

∂U

∂t
= f(U) (3.41)

Where U is a vector that contains all flow variables for each node in the mesh, the
Jacobian is given by

A = ∂f(U)
∂U

(3.42)

It can be used to linearize the Navier-Stokes around a given base flow U0. The
flow U , in this case, is given by the base flow plus a disturbance: U = U0 + u. After
linearizing, the time evolution of u is given, analytically, by

ut = etAu0 (3.43)

u0 and ut represent the flow state at the initial condition and at time t, respectively.

By computing the eigenvalues L and eigenvectors V of A, it can be rewritten as

ut = V etLV −1u0 (3.44)

By solving the eigenproblem, one can obtain the flow modes and their respective
amplification rates and oscillation frequencies. Each column vi of V corresponds to a flow
mode and is associated to a value σi in L.

The real part of σi represents the amplification rate of each mode. Negative values
mean that the mode is stable and will be attenuated; positive values relate to an unstable
mode, that will be amplified. In a perfectly linear system, this amplification would happen
indefinitely; in real systems, after reaching a certain amplitude, non-linear effects would
appear and cause it to saturate.

An interesting way of looking at Eq. 3.44 is to read it from right to left. The last
two terms, V −1u0, compute how much of each mode is present in the initial disturbance.
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The term etL shows how much each mode is amplified or attenuated through time. Thus,
etLV −1u0 means how much of each mode is present in the flow at any given time. Finally,
by multiplying it by V , the modes are combined and transformed into the actual flow.

3.3.1 Arnoldi iteration

The size of the Jacobian matrix is 4N×4N for two-dimensional flows and 5N×5N
for three-dimensional. 4 and 5 are the numbers of variables for each node in a compressible
flow, respectively. N being the number of nodes in the domain.

The mesh size is usually in the order of hundreds of points in both the stream-wise
and wall-normal directions and a few dozens of points in the span-wise direction. Therefore,
the total number of variables to solve for is in the order of 105 to 106 in two-dimensional
cases and 106 to 107 when accounting for the third dimension.

Due to the implicit differentiation methods used, in which each node in the domain
influences every other at all steps, the Jacobian of this system would be a full matrix. At
the double precision used by this code, which takes 8 bytes of memory per scalar value,
simply storing the Jacobian for a system with 106 variables, for example, would take
8×1012 bytes, or 8 terabytes of memory.

Because of this, it is not feasible to directly compute the Jacobian matrix. It is
also not necessary, as the vast majority of its modes are very stable and not in the scope
of this work, only some of the most unstable modes are needed.

The Arnoldi iteration is an algorithm to obtain the eigenvalues and eigenvectors
of a system iteratively, it has the very interesting property of not explicitly needing the
matrix in order to solve the eigenproblem, all it needs is the capability of multiplying the
matrix by arbitrary vectors. (ARNOLDI, 1951)

As implemented, this method has the memory usage scale linearly with the mesh
size, instead of quadratically. For the same system with 106 variables, if 1000 iterations
are used, 8×109 bytes, or 8 gigabytes, of memory would be needed for the largest matrix.

The concept behind this method is that by repeatedly multiplying a matrix M by
a vector v, the eigenvectors of M that are present in v will be filtered out depending on
their eigenvalues.

After enough iterations, only the eigenvectors corresponding to eigenvalues with
the greatest absolute value will remain.

This simple algorithm, known as the power iteration, would be capable of finding
a single eigenvector and would take a considerable amount of iterations to converge.

The Arnoldi iteration differs in a way that, after each multiplication, the resulting
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vector is projected to be orthonormal to all previous vectors before being multiplied again.
This allows multiple eigenvectors to be retrieved. Eigenvalues with the greatest modules
tend to converge with fewer iterations.

For further improving results and speeding up convergence, some numerical tech-
niques may be used. The method may be restarted after a fixed number of iterations,
using the most unstable mode of a run as the initial disturbance for the next.

Another option for further improvement is the implementation of the Implicitly
Restarted Arnoldi method (IRA). (LEHOUCQ; SORENSEN, 1996; RADKE, 1996).

Shift-invert strategies may also be used in conjunction with this method, as done
by Gómez et al. (2015). This allows Arnoldi’s method to retrieve modes in a specific
Region of the complex plane, for example, it could retrieve modes related to acoustic of
the flow, which may be more stable than other modes.

3.3.2 Jacobian-free instability analysis

This method was proposed and implemented by Eriksson and Rizzi (1985) for the
Euler equations, Edwards et al. (1994) and Chiba (1998) are among the first to implement
it for the incompressible Navier-Stokes equations. It is based on Arnoldi’s method for
solving the eigenproblem. The DNS itself is embedded into the method instead of the
Jacobian matrix.

A matrix B is defined as etA from Eq. 3.43, thus, the system becomes

ut = Bu0 (3.45)

The Arnoldi iteration is used to obtain the eigenvalues and eigenvectors of B,
which can be easily related to those of A.

Numerically integrating f from Eq. 3.41 for a time t is equivalent to multiplying
the initial flow by B, excluding the non-linear terms. It is important to note that the
linearized system operates on the disturbance u around the equilibrium point U0, while f
operates on the whole flow U = U0 + u.

U0 + ut = U0 +Bu0 = U0 +
∫ t

0
f (U0 + u0) dt−N.L.T. (3.46)

This is only valid if the base flow U0 is an equilibrium point, it is, f(U0) = 0.
Which, given the numerical nature of this work, may not be completely true, as there are
usually some residuals involved when computing the base flow.
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To overcome this problem, as well as to reduce the errors from non-linear terms,
two numerical integrations are performed, with symmetrical disturbances, as shown in the
following equations. To simplify the notation, from now on the integral of f from 0 to t
will be written as F , which is equivalent to a DNS call.

Equation 3.46 is rewritten as:

U0 +Bu0 ≈ U0 + F (U0 + u0) (3.47)

Analogically, by using the opposite disturbance:

U0 −Bu0 ≈ U0 + F (U0 − u0) (3.48)

Therefore, subtracting Eq. 3.48 from Eq. 3.47:

2Bu0 ≈ F (U0 + u0)− F (U0 − u0) (3.49)

In this analysis, the initial disturbance u0 is given by a normalized vector ζ
multiplied by a scaling factor ε. Equation 3.49 becomes:

2εBζ ≈ F (U0 + εζ)− F (U0 − εζ) (3.50)

Bζ ≈ 1
2ε (F (U0 + εζ)− F (U0 − εζ)) (3.51)

Small values of ε reduce the non-linear terms, providing better approximations in
terms of the truncation error, but are likely to increase the round-off error caused by the
computer’s precision, which is already critical in this situation, as the disturbances are
orders of magnitude smaller than the base flow.

Eriksson and Rizzi (1985) have noted that the error in Eq. 3.51 scales with ε2 and
developed a similar equation, but with fourth order accuracy:

Bζ ≈ 1
12ε [−F (U0 + 2εζ) + 8F (U0 + εζ)− 8F (U0 − εζ) + F (U0 − 2εζ)] (3.52)

Note that Eq. 3.52 requires four DNS calls for the numerical integration, instead of
just two.

Both Eqs. 3.51 and 3.52 can be used by the Arnoldi iteration as the form to obtain
Bζ. In this work, only the former is used, as it nearly halves the computational cost.
Tezuka and Suzuki (2006) have also used this lower order method and noted that the
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difference in results from ε = 0.01 to ε = 1 is negligible, leading to the conclusion that
even at this lower order of accuracy, the truncation error is very small.

After the iterations are concluded, the eigenvalues and eigenvectors of A are finally
computed. Arnoldi’s method converges faster on the eigenvalues that are further away
from the origin of the complex plane, which, after the exponential transform, translate
into the most unstable modes of the flow.

In summary, the method adds small disturbances to the steady-state flow and uses
the DNS to observe how the flow reacts to them. After a series of orthogonal disturbances,
the Hessenberg matrix in Arnoldi’s method is obtained, which is several orders of magnitude
smaller than the flow’s Jacobian matrix would be. The eigenvalues and eigenvectors of
this matrix are computed and, finally, used to approximate the flow’s modes and their
respective amplification or attenuation rates. This is shown in the flowchart in Fig. 17.

(1) Steady state flow U0 from DNS

(2) Initial disturbance ζk of norm 1 with k = 1

(3) Compute flows U+
k and U−k by adding and subtracting εζk from U0, respectively

(4) Run DNS from U+
k and U−k for t time, resulting flows are Ũ+

k and Ũ−k , respectively

(5) Bζk = (Ũ+
k − Ũ

−
k )/2ε

(6) hj,k = ζTj ·Bζk j = 1 . . . k

(7) ũk+1 = Bζk −
∑k
j=1 hj,kζj

(8) hk+1,k = ||ũk+1||

(9) ζk+1 = ũk+1/hk+1,k

(10) k = k + 1, repeat while k ≤M

(11) Compute eigenvalues σH and eigenvectors φH of H

(12) σA = log (σH)/t and φA = {ζ1 . . . ζk}φH

Figure 17 – Flowchart of the Jacobian-free method for computing the flow modes.

In step (3) of Fig. 17, ε controls the perturbation’s norm, as noted above. It is
worth noting that the number of mesh nodes influences the perturbation’s module in each
one. In this work, to overcome this issue, the perturbation norm is defined as a fixed
parameter multiplied by the square root of the number of nodes in the mesh: ε = ε0

√
N .
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This is done so the RMS of the disturbance is kept constant for any number of variables
in the system.

If higher order schemes are used, as Eriksson and Rizzi (1985) have noted, step
(5) should be changed accordingly and previous steps should include the extra DNS runs
required.

It should also be noted that in step (12), the equation for eigenvalues is not fully
reversible for the imaginary part, as the exponential function of a complex number is not
injective. This means that the method brings a correct approximation only for the real
part of the eigenvalues, related to the amplification rate.

The imaginary part, related to the frequency, must be checked by other means if t
is too large, for example by using the DNS to simulate each of the modes identified and
observing the oscillation frequencies. The difference between the imaginary part found by
the code and the actual value is an integer multiplied by 2π/t.

According to Gómez, Gómez and Theofilis (2014), the time each simulation is run
is limited by:

∣∣∣∣ 1
λi − λm

∣∣∣∣ < t <
ln
(
εDNS

ε0

)
λi

(3.53)

Where λi is the most stable mode to be accurately retrieved. λm is the most stable
eigenvalue from the Hessemberg matrix. ε0 is the magnitude of the disturbance added to
the baseflow and εDNS is the method’s truncation error.

This means that the simulation time is limited from below by the separation of the
eigenvalues. One can overcome this limitation by simply running more Arnoldi iterations,
increasing the Krylov span and, therefore, lowering the value of the most stable mode
of the Hessemberg matrix. On the other hand, this increases the size of the Hessemberg
matrix, increasing the method’s memory usage.

On the other side, the upper limit of this simulation time is given by the code’s
truncation error, as the disturbances must still be observable after the run is done. Note
that this limit only applies for stable modes. One downside of increasing the simulation
time, as noted before, is that the imaginary part of the eigenvalues would have to be
checked by other means.

Therefore, a choice has to be made: Short simulation times yield more reliable
imaginary parts for the eigenvalues but increase the memory footprint of the code as larger
Hessemberg matrices are needed. Longer simulation times reduce the memory footprint
but would require checking the imaginary parts.
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3.3.3 Initial disturbance

The Arnoldi method depends on an arbitrary initial disturbance (ζ1 from Fig. 17)
and there is no single solution for this. Eriksson and Rizzi (1985) use a random vector for
the initial disturbance. Chiba (1998) computes it as a random vorticity field, for which
the Poisson equation is solved numerically, resulting in the disturbance’s stream function.

A good choice for this disturbance is important as the algorithm can only find
modes that are contained in it. Modes which are more present initially tend to converge
faster. Three types of disturbances were considered: a random vector all over the domain;
a random vector multiplied by a weighting function that concentrates it close to the cavity;
a known function such as a Gaussian distribution centered close to the cavity.

Random functions such as white noise have a flat spectrum, which may initially
be seen as an advantage, but they excite high-frequency modes, which are soon damped
out by the numerical low-pass filters, resulting in a quick loss of disturbance energy. Also,
they are not deterministic, i.e., might yield multiple results if run multiple times, adding
to the complexity of the problem. A Gaussian distribution is deterministic and, if well
scaled, may excite all the modes in the scope of this work.

In the span-wise direction, another approach is also possible: sine and cosine
functions can be used so that a single span-wise wave number is considered.

For the final code, the Gaussian distribution over the stream-wise (x) and wall-
normal (y) directions and a combination of cosines and sines was chosen for the span-wise
direction (z). This is shown by the following equations.

ρ1(x, y, z) = exp
(
−αx(x− x0)2 − αy(y − y0)2

)
cos(βz) (3.54)

u1(x, y, z) = exp
(
−αx(x− x0)2 − αy(y − y0)2

)
cos(βz) (3.55)

v1(x, y, z) = exp
(
−αx(x− x0)2 − αy(y − y0)2

)
cos(βz) (3.56)

w1(x, y, z) = exp
(
−αx(x− x0)2 − αy(y − y0)2

)
sin(βz) (3.57)

e1(x, y, z) = exp
(
−αx(x− x0)2 − αy(y − y0)2

)
cos(βz) (3.58)

ζ1 = [ρ1, u1, v1, w1, e1]T (3.59)
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αx, αy, x0 and y0 are adjustable parameters, always chosen in a way to center the
disturbance close to the cavity opening. β is the desired wave number in z as will be
explained in the next subsection.

Notice that for the span-wise velocity (w), the cosine in z is changed to a sine,
causing a phase shift of 90° in this variable. This was done because the flow modes are
also expected to present this phase shift. Therefore, the initial disturbance is more likely
to excite the desired modes.

3.3.4 Spectral treatment for the span-wise direction

As mentioned before, the span-wise direction is considered periodical, and thus,
the initial disturbance is given by sines and cosines. In this implementation, a single
wave number in this direction is used each time, allowing for smaller meshes, considerably
reducing the computational cost.

There is also the option for the instability analysis code to consider the span-wise
direction as spectral, this considerably reduces the number of variables in the system, as
all values in z for each x and y are Fourier transformed, and just the value corresponding
to the desired wave-number is stored. This is illustrated in Fig. 18.

Instability code 

Spectral in the span-wise 

direction (z) 

Each node in x and y 

contains a complex value 

for each variable 

DNS code 

Spatial in all directions 

Each node in x, y and z 

contains a real value for 

each variable 

Inverse Fourier 

Fourier Transform 

Figure 18 – Flowchart of the interface between the spectral and the spatial parts of the
code.

It is also possible to fix the span-wise phase, causing the Fourier transform to
return only a real value for each x and y. Note that in this case, for the span-wise velocity,
only the imaginary part is kept, causing the 90° phase shift expected from the modes.

3.3.5 Implementation

A code for this routine was implemented in MATLAB® and it calls the FORTRAN
DNS as necessary. An important perk of this method is that it can be programmed in
a very modular manner. The DNS could be easily replaced or updated with only minor
changes to the MATLAB® code. All parallel processing capabilities of this DNS are kept.
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Figure 19 brings a flowchart that illustrates the working of this instability analysis.

Figure 19 – Flowchart of the Jacobian-free instability analysis implementation.

For each Arnoldi iteration, the DNS is called twice, once for the positive disturbance
and once for the negative. Both these calls can be done concurrently, further increasing
the code’s parallel execution capabilities. Figure 20 illustrates the parallelization scheme
of both the instability analysis and the DNS.

Figure 20 – Overview of code parallelization.

Overall, a 2D instability analysis would take from a few hours to a day, using
around 3 GB of RAM, considering the domain sliced in two parts, each with four OpenMP
workers. A 3D analysis would take up to a week and consume up to 20 GB of RAM for
the largest cases, considering eight slices in the domain, each one run sequentially. The
meshes in this example had a few hundred nodes in the stream wise and wall normal
directions and 8 span wise nodes, the same order of magnitude as used in the validation
and results chapters.
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3.3.6 Residual algorithm

For validation purposes, a second method was also used, the Residual Algorithm,
which is capable of retrieving the least stable mode. (THEOFILIS, 2000b; THEOFILIS;
COLONIUS, 2003; GÓMEZ et al., 2012)

This method consists on placing probes in the domain as the simulation is run
from an initial condition towards a steady state. These probes record flow variables as a
function of time.

The concept behind this method is that only the least stable mode will remain in
the flow after some time, all other modes would have already decayed.

Given that q is the signal obtained by a probe in the domain, one has to observe
whether it is a zero-frequency decay or not. A zero-frequency decay happens when the
most unstable mode has a real eigenvalue, while an oscillating decay comes from a complex
eigenvalue.

In the simpler case, which is the zero-frequency decay, the following equation can
be used to obtain the corresponding eigenvalue:

σ = ∂2q/∂t2

∂q/∂t
(3.60)

If there is a single frequency present in the signal, then the following equation is
valid:

∂3q

∂t3
− 2σ∂

2q

∂t2
+
(
σ2 + ω2

r

) ∂q
∂t

= 0 (3.61)

If evaluated at points when ∂q/∂t = 0, it can be simplified to:

σ = 1
2
∂3q/∂t3

∂2q/∂t2

∣∣∣∣∣
∂q/∂t=0

(3.62)

The frequency ωr can be obtained by other means, such as measuring the signal’s
peak to peak time.

Many probes are placed on the domain to make sure at least one of them is in a
region where the mode’s eigenfunction has a considerable magnitude.

One of the challenges of this method is that all other modes in the flow must have
decayed enough before the most unstable mode can be retrieved. On the other hand, if
the simulation is run for too long, the signal of the most unstable mode will be too small
and will not be well resolved due to the computer’s rounding errors.
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Figure 21 illustrates σ as computed by Eq. 3.60 as the flow is simulated through
time. Four probes are present in this example. Two of them were placed where the
eigenfunction has a significant magnitude and two, yielding good results; and the other
two, where it is close to zero, yielding bad results.

Good probe 1
Good probe 2
Bad probe 1
Bad probe 2

Time

σ
Multiple modes present Least stable mode only Numerical noise

Figure 21 – Example results from the Residual Algorithm.

It can be seen that both probes that were well placed have converged to a single
value of σ for most of the simulation, while the value from the other two probes has not
converged at all.
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Chapter 4

Validation

The validation in this work is divided into four parts. First, the DNS is checked
for mesh and domain convergence by using an unsteady flow described by Colonius, Basu
and Rowley (1999).

A square lid-driven cavity is also tested and has its base flow compared to the
literature.

Second, the parameters in the stability analysis are checked for convergence both
for 2D and 3D flows based on Vicente et al. (2014).

Later, the instability analysis is validated by comparing the modes found by the
Arnoldi algorithm to the ones retrieved by the Residual Algorithm.

The same analysis is repeated for a lid-driven cavity and the results are compared
to the literature.

Finally, open cavity results are compared to runs by Brès and Colonius (2008),
Vicente et al. (2014), Sun et al. (2016).

The differentiation scheme used is the 4th compact spectral-like finite differences.
Time stepping is done by the 4th order Runge-Kutta method. Buffer zones are placed
on all open boundaries and have the finite differences changed to a explicit second order
scheme, SFD is also turned on at these regions.

At the end of this chapter, some data on the code performance, run time and
memory usage is presented.
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4.1 DNS validation

The case used as a reference for the DNS validation is described by Colonius, Basu
and Rowley (1999). The cavity’s aspect ratio is L/D = 4, the boundary’s layer thickness
related to the cavity length at its leading edge is L/θ = 102, Reynolds and Mach numbers
are, respectively, Reθ = 60 and Ma = 0.6. The characteristic flow length is the depth
of the cavity, free-flow velocity is also unitary. Note that for this base length, the cavity
depth, the actual Reynolds number considered by the code is 1530.

Two meshes were used in this case, they are shown in Tab. 2. A and B are the
stretching parameters from Eq. 3.10. The value of ηc was adjusted so that the mesh had
its finest region over the cavity opening.

Table 2 – Meshes for the DNS convergence analysis.

Mesh 1 Mesh 2
Nodes in x 300 400
Nodes in y 150 200

Ax 0.99 0.99
Bx 0.5 0.5
Ay 0.995 0.995
By 0.3 0.3

Nodes in the cavity 144×52 192×70

Both meshes cover the same domain, from xi = -2 to xf = 15 and from yi = -1 to
yf = 4. The cavity begins at x1 = 5.3367 and ends at x2 = 9.3367.

The cases also share the same parameters for the buffer zone, which adds 20 nodes
to each direction in the domain, increasing the node spacing by 20 times from the first
node to the last. In this region, the derivative scheme is also smoothly changed to explicit
second order finite differences. SFD is also turned on in this region, with parameters
∆ = 20 and χ = 0.05 for Eqs. 3.37 and 3.38.

Figure 22 shows this flow at an arbitrary time after the periodic flow has been
established.

Figure 23 shows the wall-normal velocity plotted against time at a fixed point at
x = 8.3367 and y = 0. It is, at the flat plate height, three quarters across the opening.
The velocity obtained by the two meshes is plotted along with the reference data extracted
from the paper by Colonius, Basu and Rowley (1999). Note that the phases were manually
adjusted.

For further validation, a square lid-driven closed cavity was also run. The Reynolds
number, based on lid length, was set to Re = 1000. The Mach number was set toMa = 0.1,
as the references found have used the incompressible equations. Two meshes were used,



4.1. DNS validation 65

Figure 22 – Velocity magnitude and streamlines of the unsteady flow at an arbitrary time.
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Figure 23 – Velocity plotted against time at a fixed point in an unsteady case.

one with 150 by 150 nodes and other with 250 by 250. The following results are from the
finer grid. The steady-state for this case is shown in Fig. 24.

The main vortex has its center located at (x, y) = (0.5317, 0.5654). Ghia, Ghia
and Shin (1982) have found this center at (x, y) = (0.5313, 0.5625), Schreiber and
Keller (1983) locate it at (x, y) = (0.5286, 0.5643), and Botella and Peyret (1998),
at (x, y) = (0.5308, 0.5625).
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Figure 24 – Velocity magnitude and streamlines of the lid-driven cavity baseflow.

4.2 Two-dimensional mesh independence

To validate the instability analysis, a case described by Vicente et al. (2014) was
used.

In this case, the cavity’s aspect ratio is L/D = 2, the Reynolds number is
ReD = 1149 and the boundary layer thickness at the cavity’s leading edge is θ = 0.0337.
As before, all lengths are normalized by the cavity depth and all velocities, by the inflow
velocity.

The reference case has assumed the flow as incompressible. To approximate this
assumption, the Mach number was set as Ma = 0.1. Low Mach numbers require a
shorter time step to maintain numerical stability, which would considerably increase the
computational cost. Figure 25 shows the baseflow for the stability analysis.

Figure 25 – Velocity magnitude and streamlines of the baseflow.
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For the mesh convergence analysis, four meshes have been used, they are shown in
Tab 3.

Table 3 – Meshes for convergence analysis.

Mesh 1 Mesh 2 Mesh 3 Mesh 4
Nodes in x 200 300 300 400
Nodes in y 150 150 225 300

Ax 0.99 0.99 0.99 0.99
Bx 0.5 0.5 0.5 0.5
Ay 0.995 0.995 0.995 0.995
By 0.3 0.3 0.3 0.3

Nodes in the cavity 76×52 114×52 114×79 152×105

All these meshes are for the same domain, which spans from xi = -2 to xf = 10
and from yi = -1 to yf = 4. The cavity is placed from x1 = 2.9597 to x2 = 4.9597.

Once more, the cases share the parameters for the buffer zone, adding 20 nodes
to each direction, increasing the node spacing by 20 times from the first node to the last.
The derivative scheme is also smoothly changed to explicit second order finite differences
and SFD is also turned on in this region, with parameters ∆ = 20 and χ = 0.05.

Figure 26 shows mesh spacing for all meshes in both x and y directions. Dashed
lines indicate points of interest, such as the beginning of the flat plate, leading and trailing
edges of the cavity for x and the flat plate height for y. Buffer zones are not shown in this
figure.

All meshes were run by the instability analysis routine. 400 Arnoldi iterations were
used for each run.

The number of time steps was adjusted for each case so that the physical run time
was the same. For Meshes 1 to 4, the time steps used were 8.0e-4, 6.0e-4, 5.0e-4 and 4.0e-4,
respectively. The number of steps were: 500, 667, 800 and 1000.

Figure 27 shows the eigenvalues obtained for all meshes in the complex plane. All
meshes have resulted in similar values for the 12 least stable modes.

The values of the 15 least stable eigenvalues are shown in Tab. 4. Values for all
meshes usually match for the first three or four decimal places.

The least stable modes found by each mesh also closely match each other. Figure 28
shows contours of the eigenfunctions found for mode 1 by each mesh. Other modes were
also checked and did match, but in the case of complex modes, each mesh has computed
them with different phases, which had to be adjusted for comparison.

Note that while this mode presents eigenfunctions with visually the same shape for
both density and internal energy, this is not always the case.
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Figure 26 – Mesh spacing for the convergence analysis.
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Figure 27 – Eigenvalues computed for the mesh convergence analysis.
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Table 4 – Eigenvalues from mesh convergence analysis.

Real part Imaginary part
Mode Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 1 Mesh 2 Mesh 3 Mesh 4

1 -0.017783 -0.017811 -0.017819 -0.017826 - - - -
2 -0.037405 -0.037671 -0.037696 -0.037753 - - - -
3 -0.049209 -0.049089 -0.049176 -0.049114 - - - -
4 -0.061377 -0.061300 -0.061370 -0.061356 0.293135 0.292746 0.291815 0.292134
5 -0.061377 -0.061300 -0.061370 -0.061356 -0.293135 -0.292746 -0.291815 -0.292134
6 -0.082059 -0.082041 -0.081997 -0.082013 - - - -
7 -0.095062 -0.094852 -0.095024 -0.094946 0.300320 0.300000 0.299059 0.299369
8 -0.095062 -0.094852 -0.095024 -0.094946 -0.300320 -0.300000 -0.299059 -0.299369
9 -0.096846 -0.097439 -0.097109 -0.097378 0.071643 0.072253 0.071825 0.072137
10 -0.096846 -0.097439 -0.097109 -0.097378 -0.071643 -0.072253 -0.071825 -0.072137
11 -0.098625 -0.099305 -0.099338 -0.099503 0.039301 0.039409 0.039239 0.039309
12 -0.098625 -0.099305 -0.099338 -0.099503 -0.039301 -0.039409 -0.039239 -0.039309
13 -0.106347 -0.118776 -0.119008 -0.117730 1.704951 - - -
14 -0.106347 -0.124620 -0.124782 -0.124740 -1.704951 0.587605 0.585761 0.586391
15 -0.124803 -0.124620 -0.124782 -0.124740 0.588443 -0.587605 -0.585761 -0.586391
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Figure 28 – Eigenfunction of mode 1 for mesh convergence analysis.
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4.3 Domain convergence

To make sure the domain size was not influencing the results, three other sizes
were used to reproduce the results.

This analysis is based on Mesh 3 of the mesh convergence tests, which is considered
as Domain 1. The other domains are enlarged and the mesh is also increased in order to
maintain node spacing. All domains have 114 by 52 nodes in the cavity. The parameters
for the buffer zone are also shared.

Table 5 brings the details of the domains considered.

Table 5 – Domains for convergence analysis.

Domain 1 Domain 2 Domain 3 Domain 4
Initial x -2 -3 -2 -3
Final x 10 15 10 15
Initial y -1 -1 -1 -1
Final y 4 4 6 6

Nodes in x 300 394 300 394
Nodes in y 225 225 270 270

It is worth noting that a domain convergence analysis in the z direction is not
necessary as the domain in periodical in this direction and the size chosen depends on the
wavenumbers to be observed.

Figure 29 shows the eigenvalues obtained for all meshes in the complex plane. The
first 8 modes of all domains match.
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Figure 29 – Eigenvalues computed for the domain convergence analysis.

The 11th mode of Domain 1 matches the eigenfunction of the 9th mode of the other
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domains, meaning that the smaller domain has miscalculated its eigenvalue as being more
stable. See Fig. 30.
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Figure 30 – Eigenfunction of the 9th mode for different domains.

From the 12th mode onwards, eigenfunction contours start reaching the end of the
domain and beginning of the buffer zone, which explains the different results when the
domain is changed.

Figure 31 shows the eigenfunction for u velocity of Mode 12. Note that, despite
having roughly the same shape, the eigenfunction’s absolute value is not close to zero at
the outflow boundary. Note that as this is a complex mode, the phases had to be adjusted
before the modes could be compared.
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Figure 31 – Eigenfunction of the 12th mode for different domains.

Figure 32 shows the normalized absolute value of the u eigenfunction for modes
1, 4, 8 and 12 at a fixed y = 0.01. It can be seen that the eigenfunctions for the least
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stable modes have already decayed considerably at the domain outflow, while it still has a
considerable magnitude for mode 12.
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Figure 32 – Eigenfunction modulus of modes 1, 4, 8 and 12 at a fixed height. Dashed lines
are for Domain 1 and full lines are for Domain 4.

At the end of the next subsection, this analysis is repeated with more Arnoldi
iterations.

4.4 Arnoldi method convergence in two-dimensional analysis

After checking mesh and domain, the next step is to make sure the parameters
chosen for the instability analysis algorithm are not significantly influencing the results.
Three parameters are to be analyzed:

• ε0, which controls the magnitude of the disturbance at each Arnoldi iteration.

• nT , the number of time steps the DNS is run at each call.

• M , the number of Arnoldi iterations.

4.4.1 Disturbance magnitude

For this part of the analysis, Mesh 2 of Tab. 3 was chosen as base. Initially, this case
was run with ε0 = 1e-5. 1e-2, 1e-3, 1e-4 and 1e-7 were also used for validation purposes.

Figure 33 shows the resulting eigenvalues for the 1e-2, 1e-3, 1e-5 and 1e-7 cases.
Most values were only slightly modified, even in the most stable part of the spectrum.
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Figure 33 – Eigenvalues computed for the independence analysis of the disturbance mag-
nitude.

Table 6 shows the 3 least stable eigenvalues. Note that the results from the two
smallest disturbances match each other up to 7 decimal places in these cases, despite the
difference of two orders of magnitude.

Table 6 – Eigenvalues from the disturbance magnitude convergence analysis.

Mode ε0 = 1e-2 ε0 = 1e-3 ε0 = 1e-4 ε0 = 1e-5 ε0 = 1e-7
1 -0.0188047204 -0.0178210232 -0.0178117175 -0.0178116163 -0.0178116254
2 -0.0377751452 -0.0376719903 -0.0376773347 -0.0376773256 -0.0376773526
3 -0.0492358962 -0.0490902776 -0.0490870367 -0.0490870253 -0.0490870251

Figure 34 shows the eigenfunction of the least stable mode. Note that despite the
similar eigenvalues, the eigenfunction retrieved by the greatest disturbance differs greatly
from the others, especially in the velocity fields.

If the same image is plotted for mode 2, a similar effect happens. However, for
mode 3 the eigenfunction retrieved is considerably similar for all cases, despite the five
orders of magnitude gap, as can be seen in Fig 35.

4.4.2 Flow simulation time at each iteration

During the mesh convergence analysis, 667 DNS time steps were taken at each call.
The algorithm was also run for 200, 400 and 1000 steps. Fig. 36 shows the spectra for
these cases. All cases were run for 400 Arnoldi iterations.

It can be seen that the nT = 200 case is not converged, as it has resulted in a
different set of eigenvalues. The nT = 400 case diverges at the 3rd mode. The other two
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Figure 34 – Eigenfunction of mode 1 for the convergence analysis of the disturbance
magnitude.
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Figure 35 – Eigenfunction of mode 3 for the convergence analysis of the disturbance
magnitude.

results match, usually up to the 8th decimal place for the first few eigenvalues. From the
13th mode onwards, the nT = 667 case also starts diverging.

By plotting the eigenfunctions in Fig. 37, it can be seen that, as in the ε0 convergence
analysis, despite correctly computing the first eigenvalue up to 4 decimal places, the
nT = 200 case has failed to find the corresponding eigenfunction.
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Figure 36 – Eigenvalues computed for the convergence analysis of the number of DNS
steps.
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Figure 37 – Eigenfunction of mode 1 for the convergence analysis of the number of DNS
steps.

The range of values for σi reduces as the number of steps is increased, due to the
last equation in the flowchart of Fig 17. This means that smaller values of nT have the
advantage of being able to resolve a wider spectrum of modes.

This case has a particularly short time step for the DNS due to the low Mach
number. At higher Mach numbers, the amount of time steps can be significantly reduced
due to the increased step length.

Back to the nT = 667 case, now the convergence of the number of Arnoldi iterations,
M , was checked. Figure 38 shows the evolution of the first 30 eigenvalues as the iterations
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are run.

Figure 38 – Eigenvalues computed for the convergence analysis of the number of Arnoldi
iterations.

At the end of 400 iterations, the 12 least stable eigenvalues are already converged.
The first eigenvalue visually converges around the 150th iteration.

Figure 39 confirms the convergence of the first eigenfunction after 200 Arnoldi
iterations. While Fig 40 shows that the second eigenfunction has converged after 300
iterations.

Note that the convergence of the number of Arnoldi iterations and the number
of DNS time steps at each iteration are closely related, as seen in Eq. 3.53. Its lower
boundary, which states that the shortest simulation time that yields accurate modes, is
given by:

∣∣∣∣ 1
λi − λm

∣∣∣∣ < t (4.1)

λi is the most stable mode to be accurately retrieved. λm is the most stable
eigenvalue from the Hessemberg matrix. To meet this condition, two actions are possible:

1. Increase the physical time t by increasing the number of DNS time steps

2. Increase the Krylov span M , so that λm becomes more negative

These possibilities are discussed in the next section.
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Figure 39 – Evolution of eigenvalues as the Arnoldi method is iterated.
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Figure 40 – Eigenfunction of mode 2 for the convergence analysis of the number of Arnoldi
iterations.

4.4.3 Number of Arnoldi iterations

The cases from the domain convergence analysis were run again with more Arnoldi
iterations. Previously, 400 iterations were used, these new results have used 600.

Figure 41 shows the eigenvalues obtained for all meshes in the complex plane. The
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first 8 modes of all domains match.
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Figure 41 – Eigenvalues computed for the domain convergence analysis with more Arnoldi
iterations.

It can be seen that more eigenvalues match when more iterations are used. Figure 42
shows the eigenfunction for u velocity of Mode 12. This time, the results are much closer,
leading to the conclusion that the bottleneck for that analysis was not only the domain,
but rather also the number of iterations.
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Figure 42 – Eigenfunction of the 12th mode for different domains with more Arnoldi
iterations.

Figure 43 shows the normalized absolute value of the u eigenfunction for mode
12, comparing Domains 1 and 4 with both 400 and 600 iterations. The larger domain
with the least iterations does not match the other results. It can be concluded that larger
domains take longer to converge. This may be due to the relatively large absolute value of
this eigenfunction close to the outflow boundary.
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Figure 43 – Eigenfunction modulus of mode 12 at a fixed height for two domains and two
numbers of Arnoldi iterations.

4.5 DNS time steps and Arnoldi iterations trade-off

As noted by Gómez, Gómez and Theofilis (2014) and mentioned in Chapter 3,
there is a trade-off between the DNS run time and the number of Arnoldi iterations needed
for convergence. Longer run times require less iterations for similar results at the most
unstable modes.

Several combinations of these parameters were run to check for an optimal point.
The open cavity from the two-dimensional validation was selected as base. The numbers of
DNS time steps chosen were: 50, 100, 500, 1000, 5000 and 10000. The amount of Arnoldi
iterations was chosen so that a total of a million time steps were performed at each case,
accounting for both runs at each iteration.

Figure 44 shows the evolution of the relative eigenvalue error for each run as the
method is iterated, the last value in each series is used as base. The convergence for both
cases with a shorter time span stalls earlier than the other cases. Overall, the runs with
1000 and 500 time steps yielded the best performance. The first mode is shown in the
largest plot, this trend is also observed in modes 2 to 9.

Overall, if longer run times at each iteration are used, the following upsides are
obtained:

• Better convergence if enough steps are run

• Lower memory usage

On the other hand, shorter time spans present the following upsides:
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• Faster convergence initially

• A larger span of imaginary parts is retrieved accurately

Once more, it is worth noting that these numbers of time steps are only valid
for this specific flow and mesh combination. To make this analysis more general, the
physical flow time must be considered. 500 and 1000 time steps correspond to 0.3 and
0.6 non-dimensional time units, respectively. This is the number to keep in mind when
choosing the amount of time steps to be use.
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Figure 44 – Relative eigenvalue error versus total number of time steps for modes 1 to 9.
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4.6 Three-dimensional mesh independence

For the three-dimensional convergence analysis, Mesh 2 from Tab. 3 was used in
the stream-wise and wall-normal directions (x and y). The span-wise direction (z) was
represented by a uniform mesh, with either 4, 8 or 12 nodes.

The span-wise direction was treated as both spatial and spectral by the instability
code and the results were also compared. 800 Arnoldi iterations were used, each with 500
DNS time steps.

Figure 45 compares the eigenvalues retrieved with 4, 8 and 12 nodes in the z direction
with the spectral treatment, the case with 8 nodes was also run without the spectral
treatment for z, allowing harmonics to appear. The same data is shown in Tab. 7 for the
first 10 modes. Vicente et al. (2014) place the first eigenvalue as λ1 = 0.00011 ± 0.17208i.
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Figure 45 – Eigenvalues computed for the mesh convergence analysis for various counts of
span-wise nodes.

Next, the real part of first mode from each case was plotted and is shown in Fig. 46.
Note that the phases were adjusted to match. Once more, apart from the coarsest mesh,
the results agree with each other. Figure 47 shows the density eigenfunction in the form
of isosurfaces.

Back to Tab. 7, in the multiple β case, the complex conjugate modes 12 and 13
have matched modes 14 and 15, respectively. By plotting their respective eigenfunctions
in Fig. 48, it can be seen that it has shifted in the span-wise direction from one mode to
the other. This happens because, in this case, the phase in this direction is not fixed. On
the other hand, when the spectral treatment is used in this direction, this kind of phase
shift is not possible.
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Table 7 – Eigenvalues from the 3D mesh convergence analysis.

Mode nZ = 4 nZ = 8 nZ = 8 (Multiple β) nZ = 12
1 -0.0006 +0.1850i 0.0052 +0.1886i 0.0052 +0.1886i 0.0052 +0.1886i
2 -0.0006 -0.1850i 0.0052 -0.1886i 0.0052 -0.1886i 0.0052 -0.1886i
3 -0.0079 +0.0706i -0.0165 +0.0636i -0.0165 +0.0636i -0.0165 +0.0636i
4 -0.0079 -0.0706i -0.0165 -0.0636i -0.0165 -0.0636i -0.0165 -0.0636i
5 -0.0457 -0.0566 -0.0566 -0.0566
6 -0.0634 +0.3666i -0.0620 +0.4203i -0.0620 +0.4203i -0.0621 +0.4202i
7 -0.0634 -0.3666i -0.0620 -0.4203i -0.0620 -0.4203i -0.0621 -0.4202i
8 -0.0657 -0.0766 +0.0042i -0.0776 +0.0040i -0.0766 +0.0046i
9 -0.0786 -0.0766 -0.0042i -0.0776 -0.0040i -0.0766 -0.0046i
10 -0.0790 +0.1801i -0.0910 +0.1888i -0.0910 +0.1888i -0.0910 +0.1887i
11 -0.0790 -0.1801i -0.0910 -0.1888i -0.0910 -0.1888i -0.0910 -0.1887i
12 -0.0869 +5.6948i -0.0937 +6.7295i -0.0937 +6.7295i -0.0937 +6.7562i
13 -0.0869 -5.6948i -0.0937 -6.7295i -0.0937 -6.7295i -0.0937 -6.7562i
14 -0.0892 +0.2928i -0.1001 +0.2928i -0.0937 +6.7295i -0.1001 +0.2928i
15 -0.0892 -0.2928i -0.1001 -0.2928i -0.0937 -6.7295i -0.1001 -0.2928i
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Figure 46 – Eigenfunction of mode 1 for mesh convergence analysis in 3D.
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Figure 47 – Isosurfaces of density fluctuation of mode 1 at β = 5.62.

Figure 48 – Isosurfaces of density fluctuation of modes 12 and 14 at β = 5.62 when the
phase in the span-wise direction is not fixed.
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4.7 Arnoldi method convergence in three-dimensional analysis

When the domain was changed to three dimensions, a considerable increase in the
number of variables happened. Apart from the extra variable for the span-wise velocity,
the number of nodes was also increased. The spectral treatment for the span-wise direction
was able to take the number of variables in the Arnoldi iteration back to what it was with
two dimensions.

Figure 49 shows the evolution of the least stable eigenvalues as the method is
iterated for the case with 8 span-wise nodes from the mesh convergence analysis with the
spectral treatment.

Figure 49 – Evolution of eigenvalues as the Arnoldi method is iterated for the 3D case.

Figure 50 brings this same data, but without the spectral treatment. Notice that,
besides the slightly slower convergence, some modes start collapsing to the same value after
a number of iterations, as was observed with modes 12 and 14 in Tab. 7. This happens
when two modes that only differ by the span-wise phase are found.
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Figure 50 – Evolution of eigenvalues as the Arnoldi method is iterated for the 3D spectral
case.

4.8 Comparison with the residual algorithm

The residual algorithm (RA) was used to make sure the eigenvalues and eigenfunc-
tions found by the Arnoldi iterations matched the ones present in the code. As mentioned
earlier, this algorithm is only capable of retrieving the least stable mode.

Mesh 2 from Tab. 3 was used for the comparison in two dimensions. The time
series from the uniform initial condition towards the converged base flow was used as input
for the residual algorithm.

35 probes were placed in the domain, both inside and outside the cavity. They
stored the value of each variable every 1000 time steps. Data from time steps 1 to 2×106

was used. The initial condition for this run was a uniform flow outside the cavity.

Figure 51 shows the results obtained by the well-placed probes for each time sample,
as well as the mean value and standard deviation.

This algorithm has computed the eigenvalue to be σ = -0.0179. Adding and
subtracting one standard deviation, it is somewhere between -0.0178 and -0.0180. This
matches the Arnoldi method, which has computed this value to be σ = -0.01781. These
values were extracted from samples 1000 to 1200, just before the numerical noise started
growing.

Figure 52 compares the eigenfunctions found by the Arnoldi method and by the
residual algorithm. Two samples of the RA’s eigenfunction are plotted, extracted from



4.8. Comparison with the residual algorithm 87

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample

-0.03

-0.028

-0.026

-0.024

-0.022

-0.02

-0.018

-0.016

-0.014

-0.012

-0.01

Mean
Standard deviation
Best probes

Figure 51 – Least stable eigenvalue as computed by the residual algorithm.

distinct time steps. The probes positions are also shown.
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Figure 52 – The first eigenfunction as computed by the residual algorithm.

The eigenfunction matches for the density and the internal energy. For both
velocities, the RA has not converged to a single eigenfunction as both samples yielded
distinct results, especially just outside of the cavity. All 40 probes used were monitoring
both the density and the internal energy inside the cavity. The probes outside the cavity
or monitoring the velocities did not produce consistent results.
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The three-dimensional case was also checked with the residual algorithm. A smaller
value of β = 0.504 was used so only stable modes would be present. Instead of creating
a time series from the uniform initial condition to the final flow, as was done in the
two-dimensional case, a small Gaussian disturbance was added to a previously converged
flow, this has considerably reduced the number of time steps needed to obtain the results.

Figure 53 shows the results obtained by the well-placed probes for each time sample,
and the mean value plus and minus a standard deviation.
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Figure 53 – Least stable eigenvalue as computed by the residual algorithm for the 3D case.

Averaging the computed σ value from samples 200 to 250, the RA has resulted in
σ = -0.0182 ± 0.001, while the Arnoldi method has retrieved σ = -0.01813.

Figure 54 compares the eigenfunctions found by the Arnoldi method and by the
residual algorithm. Two samples of the RA’s eigenfunction are plotted, extracted from
distinct time steps.

Once more, both methods match for density and internal energy and there is a
visible difference for the velocities.

Figures 55 to 58 compare the isosurfaces of mode 1 for both algorithms.

In terms of computational cost, the residual algorithm took just over a million
iterations to converge to a solution in the two-dimensional case, which started with an
uniform flow. The three-dimensional case, which was given a head start by having the
base flow plus a small disturbance as initial solution, took about 250 thousand iterations.
As shown in Fig 44 the Arnoldi iteration is capable of converging to the four decimal
places given by the RA in about 250 thousand iterations.
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Figure 54 – The first eigenfunction as computed by the residual algorithm.

Figure 55 – Isosurfaces of density of mode 1, comparing the Arnoldi method to the Residual
Algorithm

Therefore, both methods are roughly on par when retrieving the first eigenmode.
But the Arnoldi method has the advantage of retrieving many more modes.
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Figure 56 – Isosurfaces of stream-wise velocity of mode 1, comparing the Arnoldi method
to the Residual Algorithm

Figure 57 – Isosurfaces of wall-normal velocity of mode 1, comparing the Arnoldi method
to the Residual Algorithm

Figure 58 – Isosurfaces of span-wise velocity of mode 1, comparing the Arnoldi method to
the Residual Algorithm
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4.9 Two-dimensional lid-driven cavity

For further validation, the algorithm was also used to compute the modes of the
lid-driven cavity used for the DNS validation. It is square and the Reynolds number is set
to 1000, normalized by the edge length. The eigenvalues found are presented in Fig. 59.
The values for the least stable modes are shown in Tab 8.
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Figure 59 – Eigenvalues computed for the square lid-driven cavity at Re = 1000 and
Ma = 0.1, 0.2.

Table 8 – Eigenvalues computed for the square lid-driven cavity.

Mode Ma = 0.1 Ma = 0.2
1 -0.0000 + 0.0000i -0.0000 + 0.0000i
2 -0.0396 + 0.0000i -0.0397 + 0.0000i
3 -0.0681 + 0.0000i -0.0682 + 0.0000i
4 -0.0981 + 0.9874i -0.1018 + 0.9855i
5 -0.0981 - 0.9874i -0.1018 - 0.9855i
6 -0.1393 + 0.9860i -0.1363 + 0.9856i
7 -0.1393 - 0.9860i -0.1363 - 0.9856i
8 -0.1757 + 0.0000i -0.1761 + 0.0000i
9 -0.1930 + 1.9682i -0.1959 + 0.0000i
10 -0.1930 - 1.9682i -0.1970 + 1.9622i

Note that the first mode has a null eigenvalue, which means it is neutral. This
mode is only possible because the DNS does not explicitly force a constant mass inside
the cavity. It represents mass getting in or out of the cavity.

The residual algorithm was also ran for this case. Fig 60 shows the most unstable
modes as the baseflow was generated. Each color corresponds to a different variable
recorded by the probes. The thick lines indicate the average of each variable. The dashed
lines are the modes computed by the Arnoldi iteration.
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Figure 60 – Evolution of the modes computed by the residual algorithm.

It is interesting to note how the variables converge to different modes. The density
probes have only agreed to a single value at the neutral mode. The internal energy probes
are very well converged to the second mode. Both velocities have converged to the third
mode before its magnitude became too small when compared to the computer rounding
error.

Merle, Alizard and Robinet (2010) has used a matrix-forming method for an
incompressible square lid-driven cavity at this same Reynolds number and computed the
least stable eigenvalue at σ = -0.06807. Which is consistent to the third mode found by
both the Arnoldi iteration and the residual algorithm.

The first mode retrieved by the Arnoldi iteration, at Ma = 0.1, is depicted in
Fig. 61. Note how the density fluctuation is negative across whole the domain, meaning
that this mode represents mass flowing into the domain or out of it. This is due to the
weak boundary conditions used, which do not impose a constant mass inside the cavity.
During the simulation, the total mass has decreased by 4.1 × 10-5 from its unitary initial
condition.
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Figure 61 – The first eigenfunction of the lid-driven cavity.

The second most unstable mode is shown in Fig. 62. It can be seen that the
fluctuation of internal energy in this mode is about 3 orders of magnitude larger than the
fluctuation of the other variables. This explains why the residual algorithm could only
retrieve this mode with the internal energy probes and not the others.

This also explains why the incompressible analysis by Merle, Alizard and Robinet
(2010) has not found this mode. Physically, this mode corresponds to the temperature
diffusion inside the cavity, a phenomenon that is not accounted for in the incompressible
equations.
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Figure 62 – The second eigenfunction of the lid-driven cavity.

The third most unstable mode is illustrated in Fig. 63. Note how the velocities
present the greatest fluctuation magnitudes.

Figure 63 – The third eigenfunction of the lid-driven cavity.

By integrating the density fluctuation on the domain for modes 2 and 3, it can be
seen that the net mass change can be considered null as it is about 6 orders of magnitude
smaller than the greatest fluctuations.

To check the hypothesis that the first two modes found are caused by the compress-
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ibility effects, a closed cavity with a static lid was run in the algorithm. As expected, both
the first and the second modes were also present in this case, but not the third. Which
confirms the hypothesis, explaining why the incompressible analysis has not retrieved the
first two modes found in the compressible case.

The first mode has a null eigenvalue. The eigenfunction is roughly constant for the
density and almost null for the other three variables. It can be seen in Fig. 64. The noise
is about seven orders of magnitude smaller than the computed density eigenfunction.

Figure 64 – The first eigenfunction of the static cavity.

The second eigenvalue has shifted from σ = -0.0396 in the moving lid case to
σ = -0.0341 in the static case. Its eigenfunction is shown in Fig. 65.
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Figure 65 – The second eigenfunction of the static cavity.

4.10 Three-dimensional lid-driven cavity

A case from Bergamo (2014) was used to validate span-wise periodical results in a
compressible lid-driven cavity.

The parameters for this case are: cavity aspect ratio, L/D = 1; Reynolds number,
Re = 900; Mach number, Ma = 0.1; span-wise wavenumber, β = 7.35.

A mesh with 120 × 120 nodes is used. The Arnoldi method was run for 500
iterations, each being run for 500 DNS time steps. In the span-wise direction, 4, 8 and 12
nodes were used.

Figure 66 compares the results from these meshes to the eigenvalues available in
the reference. The coarsest mesh was not able to reproduce any of the modes. Both other
meshes have accurately retrieved all eigenvalues available. Table 9 compares the modes
found in the reference to the ones retrieved.

Table 9 – Eigenvalues computed for the three dimensional square lid-driven cavity at
Re = 900, Ma = 0.1 and β = 7.35.

Reference nz = 8 nz = 12
-0.0035 ± 0.4925i -0.00348 ± 0.49340i -0.00349 ± 0.49350i
-0.1058 ± 0.6855i -0.10571 ± 0.68696i -0.10566 ± 0.68672i
-0.1061 ± 1.3691i -0.10650 ± 1.37161i -0.10648 ± 1.37138i

-0.1405 -0.14072 -0.14046
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Figure 66 – Eigenvalues computed for the three dimensional square lid-driven cavity at
Re = 900, Ma = 0.1 and β = 7.35.

4.11 Comparison to the literature for open cavities

Finally, the method was checked against the literature on two and three-dimensional
open cavities.

Vicente et al. (2014) provide the most unstable eigenvalue for the β = 5.62 case
at ReD = 1149, θ0 = 0.0337 and Ma = 0. Figure 67 compares this value to the ones
obtained by the present method. The reference eigenvalue is σref = 0.00011 ± 0.17208i,
while the first eigenvalue computed by the method (nz = 12, Ma = 0.1) was σ1 = 0.00521
± 0.1886i. The amplification rates differ in the third decimal digit, while the frequencies
differ in the second decimal digit. It is worth noting that while the values may look off
relative to each other, they must be compared to the typical value of eigenvalues present,
which is in the first decimal order for the instability modulus and in the units order for
the frequencies.

A second case was used for validation, it was run by both Brès and Colonius (2008)
and Sun et al. (2016). Reynolds number is ReD = 1500, incoming boundary layer thickness
is θ0 = 0.0379, the cavity aspect ratio is L/D = 2. Brès has run this case at Mach number
Ma = 0.325, while Sun has used Ma = 0.3. The later value was used in this work. The
span-wise have number was set to β = π, 2π and 4π. This time, the wall are considered
adiabatic instead of isothermal. Figure 68 shows the results obtained.
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Figure 67 – Eigenvalues computed for the β = 5.62 case and compared to the reference.
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Figure 68 – Eigenvalues computed for the β = 1, 2 and 4 cases and compared to the
references.

4.12 Code performance

For the code performance analysis, a sample case was created. Its mesh has a total
of 380 nodes in the stream-wise direction, 170 nodes in the wall-normal direction and 10
nodes in the span-wise direction, including both the physical domain and the buffer zones.

The 4th order compact spectral-like finite differences were used for the spatial
derivatives. The 4th order Runge-Kutta method was used for time integration. Numerical
filtering was turned on for all directions at every step. Selective Frequency Damping was
turned on only at the buffer zones.

A server running the Ubuntu1 14.04 operating system was used. It features 4 Intel®

1 <https://www.ubuntu.com/>

https://www.ubuntu.com/
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Xeon® E7-4820 v3 processors, each with 10 cores at 1.90 GHz. A total of 128 GB of DDR3
RAM is available.

The Intel® FORTRAN Compiler2 is used in all cases.

4.12.1 Flow simulation

For the two-dimensional performance analysis, the code was run for 1000 time
steps. About 60 MB of RAM were used for the simulation. Table 10 brings the results for
different types of parallel execution.

In the three-dimensional case, the code was run for 100 steps, using about 600 MB
of RAM. The results are in Tab. 11.

Table 10 – Computation time for the two-dimensional case.

Domain OpenMP Total Time per node
slices workers threads Runtime (s) per step (s) Speed up Efficiency
1 1 1 288.9 4.47e-6 - -
2 1 2 144.9 2.24e-6 99% 99%
1 4 4 122.4 1.89e-6 136% 59%
2 4 8 67.5 1.05e-6 328% 53%

Table 11 – Computation time for the three-dimensional case.

Domain OpenMP Total Time per node
slices workers threads Runtime (s) per step (s) Speed up Efficiency
1 1 1 622.7 9.64e-6 - -
2 1 2 328.2 5.08e-6 89% 95%
4 1 4 169.6 2.63e-6 267% 92%
8 1 8 93.8 1.45e-6 564% 83%

It can be noted that the parallel execution by slicing the domain and using MPI is
much more efficient than simply increasing the number of OpenMP workers.

4.12.2 Instability analysis

During the instability analysis, the vast majority of the computational time is spent
by the DNS.

The main concern of this routine is memory usage as it must store multiple states
of the domain at once in the ζ matrix of Fig. 17.
2 <https://software.intel.com/en-us/fortran-compilers>

https://software.intel.com/en-us/fortran-compilers
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This matrix has each value stored as a double, which takes 8 bytes of memory.
Therefore, its size is given by the amount of nodes in the domain times the number fo
variables times the number of Arnoldi iterations times 8 bytes.

In this 380 × 170 × 10 domain, for example, this matrix would take 2.6 GB of
RAM if 1000 Arnoldi iterations are performed.
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Chapter 5

Results

In this chapter, three different parameter sweeps are performed. First, various
Mach numbers are run for two different incoming boundary layer thicknesses. One with
a thicker layer, which is the same case used in the validation chapter. And one with a
thinner layer.

Later, for a fixed Mach number of 0.5, many different incoming boundary layer
thicknesses are tried.

Finally, the results observed are related to the physical phenomena that may cause
them. Three types of phenomena are checked for their influence:

1. Resonance with standing waves

2. Spatial amplification at the mixing layer

3. Energy transfer from flow disturbances to acoustic modes

At the end, the linear stability results are compared to DNS runs, which include
non-linear effects.

Figure 69 illustrates the three sweeps performed.
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Figure 69 – Parametric space investigated.

5.1 Influence of Mach number

The incompressible case from Vicente et al. (2014), used for validation atMa = 0.1,
was extended to a range of subsonic Mach numbers. The cavity’s aspect ratio is L/D = 2,
the Reynolds number is ReD = 1149 and the boundary layer thickness at the cavity’s
leading edge is θ = 0.0337.

There is little change in the baseflow velocity field in the observed range of Mach
numbers, from 0.05 to 0.9.

Figure 70 shows the eigenvalues found for this case as the Mach number increases.
Most modes remain mostly unchanged. The exception are Rossiter-like modes (see
Figs. 74 and 75).

Figure 70 – Eigenvalues of the open cavity flow for various Mach numbers.
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Figure 71 shows how the eigenvalues of both Rossiter branches change with the
Mach number. By interpolating the available values, branch 1 becomes unstable above
Mach 0.32 and branch 2, above Mach 0.36. Rossiter 2 becomes the most unstable just
above Mach 0.5.

The instability of Rossiter mode 1 reaches a peak between Machs 0.6 and 0.7,
becoming slightly more stable above these values.

The frequency reduces as the Mach number is increased. This is due to the reduced
speed of sound when compared to the unitary free stream velocity. For example, at Mach
0.1, the feedback acoustic waves travel at a velocity of 10, while at Mach 0.5, this velocity
is reduced to 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mach

-0.2

-0.1

0

0.1

0.2

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mach

1

1.5

2

2.5

3

i

Rossiter 1

Rossiter 2

Figure 71 – Effect of Mach number on the eigenvalues of both Rossiter modes.

Figures 72 and 73 show both the real and the imaginary parts of the internal energy
eigenfunction.

By plotting multiples phases of the pressure in the eigenfunctions, one can verify
they resemble Rossiter modes. Figure 74 shows the first branch, corresponding to the first
Rossiter mode and Fig. 75 shows branch 2, corresponding to the second mode.

In both figures, disturbances at the cavity entrance can be seen traveling from
the leading edge to the trailing edge. As they interact with the trailing edge, a wave is
generated inside the cavity, that travels back to the leading edge, causing a new disturbance
at the shear layer.
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Figure 72 – Real and imaginary parts of internal energy eigenfunction of branch 1 at
Mach 0.6.

Figure 73 – Real and imaginary parts of internal energy eigenfunction of branch 2 at
Mach 0.6.
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Figure 74 – Multiple phases of the pressure eigenfunction of Rossiter mode 1 at Mach 0.6
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Figure 75 – Multiple phases of the pressure eigenfunction of Rossiter mode 2 at Mach 0.6
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A second Mach number sweep was performed for a thinner incoming boundary
layer. The following parameters were used: Cavity aspect ratio L/D = 2, Reynolds number
ReD = 1000, Incoming boundary layer thickness θ = 0.01.

This time, up to four Rossiter modes were retrieved by the method, as shown in
Fig. 76.

Figure 76 – Eigenvalues of the open cavity flow for various Mach numbers (thinner bound-
ary layer).

Figure 77 shows that, in this case, Rossiter mode 2 is always the most unstable,
reaching its peak instability around Mach 0.6. Rossiter mode 3 has a peak instability just
below Mach 0.4. Mode 4 has two peaks, one just before Mach 0.4 and the other just above
Mach 0.7. The oscillation frequency has a much more uniform behavior, usually reducing
slightly as the Mach number increases.

One phenomenon that may cause this behavior is the frequency matching between
different flow mechanisms. In this case, these peaks are suspected to happen when the
Rossiter mode frequency matches the standing wave modes, predicted by Plumblee, Gibson
and Lassiter (1962).

This would mean that in the case of Rossiter mode 4, the two peaks observed
would match two different acoustic harmonics in the cavity, with a switching somewhere
around Mach 0.5.

Figure 78 compares the modes predicted by Rossiter (1964) (Eq. 5.1) to the modes
from Plumblee, Gibson and Lassiter (1962) (Eq. 5.2).

ω = 2π(NR − γ)/L
1/κ+Ma

(5.1)
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Figure 77 – Effect of Mach number on the eigenvalues of the Rossiter modes (thinner
boundary layer).

NR is the Rossiter mode number. γ = 0.25 and κ = 1/1.75 are empirical constants.

ω = π

2Ma

[(
Mp

L

)2
+
(
Np

D

)2]
(5.2)

MP is the number of standing waves in the stream-wise direction and NP , in the
wall-normal direction. The modes are identified by (MP , NP ). In the case of a cavity with
aspect ratio L/D = 2, modes (2,0) and (0,1) coincide in frequency.

There is a considerable difference in the frequency from the Rossiter equation to
the global analysis, especially at the first and second modes, this may be attributed to the
fact the Rossiter empirical constants were extracted from a fully non-linear case, while the
global analysis is linear.

Note how curves P (2, 0) and P (1, 1) cross curve R4 at around the first peak
instability Machs observed in Fig. 77. P (2, 1) cross R4 at around its second peak instability.
The same is valid for curves P (2, 0) and P (1, 1) and R3.

The eigenfunction phase of the pressure was plotted for each of the cases observed,
as seen in Fig 79.

It can be seen that for Rossiter mode 4, a single acoustic node is present up to
Mach 0.5, with a second node appearing above Mach 0.6. A similar phenomenon can be
observed for Rossiter mode 3, around Mach 0.6.

It can be concluded that, while matching frequencies of Rossiter modes and standing
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Figure 78 – Rossiter modes compared to standing wave modes and to the global modes.
Filled markers indicate unstable modes, the size relate to the magnitude of
the eigenvalue’s real part.

wave mode do play a role in the global stability, other factors may be more important to
the overall instability of the global modes. They are covered in the following sections.

Yamouni, Sipp and Jacquin (2013) has found this effect to be of greater magnitude
in their parametric space, this was attributed to his relatively smaller mixing layer when
compared to the cavity size, which causes cavity-related pressure oscillations to have a
larger magnitude comparatively. This is also the reasoning behind the fact the standing
waves have had a greater effect over larger Rossiter modes: the oscillations they cause in
the mixing layer are smaller in magnitude, allowing the cavity pressure fluctuations to
have a larger role overall.
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Figure 79 – Eigenfunction phases for pressure for various Rossiter modes and Mach num-
bers.
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5.2 Influence of the boundary layer thickness

Another parameter sweep was performed for the incoming boundary layer thickness
at the cavity. This time, the following parameters were used, based on the second Mach
number sweep: Cavity aspect ratio L/D = 2, Reynolds number ReD = 1000, Mach number
Ma = 0.5.

The boundary layer thickness was defined by its relation to the cavity depth, in
the range of 5 ≤ D/θ ≤ 200. In other words, changing the incoming boundary layer
thickness while maintaining all other parameters means moving the cavity position in the
flat plate. For the thinest layer (D/θ = 200), the cavity leading edge was positioned only
0.0567 depth units downstream from the flat plate leading edge. For the thickest boundary
layer (D/θ = 5), this distance was increased all the way to 90.72 depth units.

Figure 80 shows the eigenvalue maps for various boundary layer thicknesses. Rossiter
modes 1 to 5 are indicated by the lines.
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Figure 80 – Eigenvalues of the open cavity flow for various incoming boundary layer
thicknesses.

Figure 81 depicts the effect of the boundary layer thickness on the three first
Rossiter modes, both the the stability and the frequency. Thinner boundary layers tend
to be less stable and oscillate faster. The increased frequency is due to the faster mean
velocity the disturbances are convected through the mixing layer. The stability will be
discussed at the next section.
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Figure 81 – Effect of the incoming boundary layer thickness on the eigenvalues of the
Rossiter modes.

5.3 Relation to mixing layer instability

In both sweeps of Mach numbers and boundary layer thicknesses, the modes
that presented the greatest sensitivity to these parameters were Rossiter-like modes i.e.
eigenfunctions that resemble Rossiter modes at a linear stage.

This sensitivity can be related to two physical phenomena. The first is the spatial
amplification at the mixing layer at the cavity opening, which takes small disturbances
at the leading edge and amplify them on the way to the trailing edge. Thinner mixing
layers tend to increase this amplifications, while higher Mach numbers tend to attenuate
it. (CRIMINALE; JACKSON; JOSLIN, 2003)

The second phenomenon is the amount of acoustic feedback generated by the
disturbance at the trailing edge that travels back to the leading edge. The mixing layer
disturbance transfers part of its energy to acoustic waves inside the cavity, the amount of
energy transfered may be called the sound emission. When this wave reaches the upstream
side of the cavity, part of its energy is transfered back to the mixing layer disturbance,
which may be called the flow receptivity. Higher Mach numbers tend to increase this
(HOWE, 2004). Figure 82 illustrates both phenomena.

This section compares the spatial amplification at the mixing layer from the Orr-
Sommerfeld equation to the results from the global instability analysis. The next section
analyzes the acoustic receptivity influence.
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Figure 82 – Scheme of energy transfer phenomena in a Rossiter mode and its sensitivity
to Mach number and mixing layer thickness.

5.3.1 Spatial instability analysis

The Orr-Sommerfeld equation is given by:

i

Re

[
v̂(4) − 2k2v̂(2) + α4v̂

]
+ (αū− ω)

[
v̂(2) − k2v̂

]
− αū(2)v̂ = 0 (5.3)

Where k =
√
α2 + β2, with α being the stream-wise wavenumber and β, the span-

wise wavenumber. ω is the temporal frequency. ū is the base flow stream-wise velocity
and v̂, the disturbance. All derivatives are with respect to y, the wall-normal direction.

Both α and ω may be complex numbers, they relate to the flow disturbance in the
following manner:

ṽ(x, y, z, t) = v̂(y)ei(αx+βz−ωt) (5.4)

In this analysis, the disturbances are two-dimensional, therefore, β is set to zero.
The real parts of α and ω relate to the spatial and temporal frequencies, respectively. If
the imaginary part of α is negative, the disturbance grows spatially and if the imaginary
part of ω is positive, the disturbance grows with time.

For an spatial analysis, the imaginary part of ω is fixed to zero, causing the flow to
be simply periodic in time. While in a temporal analysis, the imaginary part of α is null.

Equation 5.3 can be reorganized into a generalized eigenvalue problem, in the
following manner. D is a derivative operator. (JUNIPER; HANIFI; THEOFILIS, 2014)

Av̂ = ωBv̂ (5.5)
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A = i

Re

(
D4 − 2k2D2 + α4

)
+ αū

(
D2 − k2

)
− αD2ū (5.6)

B = D2 − k2 (5.7)

To obtain the spatial amplification of a certain frequency, one must integrate the
imaginary part of α at a fixed ω through the mixing layer, which leads to:

ln a

a0
= −

∫ L

0
αidx (5.8)

a0 and a are the disturbance magnitude at the beginning (0) and at the end (L) of
the mixing layer region, respectively. αi is a function of both stream-wise position (x) and
temporal frequency (ωr).

5.3.2 Numerical implementation

The numerical solution of this equation is done as in the paper by Juniper, Hanifi
and Theofilis (2014). In summary, the domain is discretized with the spectral collocation
method using Chebychev polynomials.

By solving the eigenvalue problem, one retrieves a set of complex ω values for a
given α, which is useful for an temporal analysis, as α can be chosen as a real value.

For the spatial analysis, Eq. 5.3 cannot be rearranged in a way to be solved as
an eigenvalue problem with α in the place of ω, which would be very convenient, as real
values of ω would be chosen and complex values of α would be retrieved.

The solution implemented in this work involves iterating imaginary parts of α until
the imaginary part of ω is null in the most unstable mode retrieved.

This process is repeated for multiple velocity profiles from the cavity leading edge
to its trailing edge.

Finally, for each temporal frequency ωr, the spatial amplification αi is integrated
in the stream-wise direction. The flowchart in Fig. 83 summarizes the process. This
algorithm was implemented and run in MATLAB®.

A quick mesh convergence analysis was run, 201 nodes were found to be enough.
In this analysis, the domain boundaries were disregarded, it was made large enough so
that the domains could be considered effectively infinite.
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Mixing layer flow field ū(x, y)

For each mixing layer profile ūn(y)

For each αr to be computed

Pick value for αi

Solve Eq. 5.5

Pick the most temporaly unstable mode (max(ωi))

Iterate αi until |max(ωi)| is inside tolerance

Store αi and ωr

Next αr

Interpolate αi for desired values of ωr

Next ūn

For each ωr, integrate αi in the streamwise direction (Eq. 5.8)

Figure 83 – Flowchart of mixing layer spatial instability analysis.

5.3.3 Comparison to the global instability

A series of cases at ReD = 1000 was considered. The cavity’s aspect ratio is fixed
at L/D = 2. The global analysis was run at Ma = 0.5. The spatial instability analysis
does not account for the compressibility. Various boundary layer thicknesses were run in
the range 10 ≤ D/θ ≤ 100.

The mixing layer thickness is defined as:

T (x) = ∆u
max

(
∂ū
∂y

) (5.9)

Figure 84 shows the computed mixing layer thickness for various incoming boundary
layer thicknesses.

Two types of cases were considered. In one, the stream-wise velocity directly
from the DNS was used in the instability analysis, in the other, it was approximated by
a hyperbolic tangent function. Figure 85 shows both velocity profiles for an incoming
boundary layer thickness of D/θ = 10, 25, 100.
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Figure 84 – Mixing layer thickness for various incoming boundary layer thicknesses.
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Figure 85 – Mixing layer profile and its hyperbolic tangent approximation for an incoming
boundary layer thicknesses of D/θ = 10, 25, 100.

The greatest difference between both profiles happens closer to the end of the
cavity, were the recirculation is strongest, especially at thinner mixing layers. The last
5% of the cavity length in the stream-wise direction were left out of this analysis, as the
parallel-flow approximation is not valid there and the stream-wise derivatives get too large.

Figure 86 compares the spatial amplification for the mixing layers to the temporal
amplification rate from the global analysis. The full lines were obtained with the actual flow
profiles, while dashed lines come from the hyperbolic tangent approximation. The asterisks
are the global modes eigenvalues of Rossiter modes and the dots are other eigenvalues. R1
to R5 indicate Rossiter modes 1 to 5, respectively.

It can be seen there is a clear relation between the most amplified global mode
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Figure 86 – Mixing layer spatial amplification compared to the global instability results.

and its respective spatial amplification at the mixing layer. The mixing layer instabilities
favor a certain range of frequencies, which ends up selecting which of the Rossiter modes
become the most unstable. In the case presented here, at D/θ ratios of 50 and above,
the second Rossiter mode is the most favored by the mixing layer, closely followed by the
third mode.

This analysis also sheds a light on the reason the first mode did not become
increasingly more unstable as the incoming boundary layer got thinner. The mixing layer
amplification around this frequency reaches a plateau after D/θ = 50.

Note that Rossiter modes 4 and 5 do not become unstable at any point of this
sweep, but they start becoming apparent for larger values of D/θ, as can also be seen in
the left hand side of Fig. 80.

Figure 87 shows Rossiter modes 1 to 5 obtained by the global stability analysis at
Ma = 0.5 and D/θ = 100. In this case, the Reynolds number based on the mixing layer
thickness is about 50 at the leading edge.
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Figure 87 – Wall-normal velocity isocontours of Rossiter modes 1 to 5 from the global
stability analysis at Ma = 0.5 and D/θ = 100.

5.4 Cavity aeroacoustic emissions

As mentioned in the previous section, the second physical phenomenon that relates
to the Rossiter modes’ sensitivity to the Mach number is the acoustic receptivity at the
cavity’s trailing edge and the flow receptivity at its leading edge.

Greater receptivities result in more energy transfered by the acoustic waves to the
beginning of the shear layer, which translates into more energy being released at its end.

One way of measuring the energy transfer into acoustic is to compare the disturbance
magnitude at the shear layer, just before the cavity trailing edge, to the acoustic energy
released. Instead of measuring the acoustic waves inside the cavity, where many other
fluctuations are present, they are measured at the far-field, where a cleaner signal is found.

The cases from the Mach number sweep were used for this analysis: Reynolds
number is ReD = 1149. The cavity’s aspect ratio is fixed at L/D = 2. The incoming
boundary layer thickness is θ = 0.0337. Mach number is in the range 0.05 ≤ Ma ≤ 0.9.

The analysis was performed by picking the eigenfunctions corresponding to Rossiter
modes for each Mach number and placing a series of probes. As shown in Fig. 88, shear
layer probes were placed at three quarters across the cavity opening, ranging from -0.25
to 0.5 in the wall-normal direction, where zero is the flat-plate height. All lengths are
normalized by the cavity depth. Various positions for the probes were tried with similar
results.
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Pressure fluctuation probes were placed in a semi-circumference centered at the
cavity trailing edge with radius 2. This radius was chosen to be into the acoustic far-field
but still away from interference by the boundary conditions.

Some near-field probes were also placed inside the cavity around the leading edge,
to measure incoming acoustic waves.

-2 0 2 4 6 8 10
-1

0

1

2

3

4

Flow disturbance
Pressure fluctuation
Mixing layer probes
Acoustic probes FF
Acoustic probes NF

Figure 88 – Placement of probes for the acoustic receptivity analysis.

Isocontours of pressure and velocity disturbances from Rossiter mode 1 at Mach
0.6 were overlayed in Fig. 88 to better illustrate the flow.

The eigenfunction’s absolute value is measured at each probe. The acoustic energy
transfer is computed as the ratio of acoustic power in the far-field to the acoustic source
term in the shear layer (HOWE, 2004), as in the following equations:

ESL =
∫
PSL

|∇ · (ω ∧ v)| dx (5.10)

EAc =
∫
PAc

|p|2 dx (5.11)

ETAc = EAc
ESL

(5.12)

PSL and PAc are the shear layer and acoustic probes. p, v and ω are respectively
pressure, velocity and vorticity from the eigenfunctions. Pressure and velocities are
normalized by their respective far-field values, the vorticity is computed from the velocities.

Figure 89 shows the transfer into acoustic calculated for various Mach numbers,
for Rossiter modes 1 and 2.

Howe (2004) implies that at most frequencies, a dipole dominates the acoustic
emission of the open cavity. Physically, it relates to the aerodynamic drag oscillations.
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Figure 89 – Far field acoustic receptivity measured for various Mach numbers for Rossiter
modes 1 and 2.

The dipole acoustic intensity varies with σ(ρ0U
3Ma3), which matches the scaling to Ma3

found in Fig. 89 for most frequencies, as both ρ0 and U are fixed.

Around the frequencies of the second Rossiter mode and low Mach numbers
(Ma ≈ 0.1), Howe’s results show there is a peak in monopole acoustic emission, which
explains the increased receptivity observed for this mode at Ma ≤ 0.3 and why this region
varies with σ(Ma2). Figure 90 shows the acoustic pressure spectrum at Mach 0.1, the
monopole peak occurs around fL/U = 1, which corresponds to the second Rossiter mode.
This monopole peak moves to lower frequencies as the Mach number is increased. This
spectra

Figure 90 – Acoustic pressure spectrum for Mach 0.1. (HOWE, 2004)

By using the near-field probes, one can estimate how much of the shear-layer
oscillation at the trailing edge translates into acoustic power near the leading edge, which
will generate new shear-layer oscillations. This time, the acoustic power to Mach number
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relation has varied from σ(Ma3) to σ(Ma1) as either the Mach number or the frequency
were increased, as shown in Fig. 91.
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Figure 91 – Near field acoustic receptivity measured for various Mach numbers for Rossiter
modes 1 and 2.

This analysis has always considered the oscillation magnitude at the end of the
shear layer to be constant. In a global analysis, as the Mach number increases, a larger
acoustic pressure reaching the leading edge will trigger greater oscillations in the shear
layer, adding up the effects. Therefore, if other phenomena are disregarded, one may
expect the overall acoustic emission to increase with up to σ(ρ2

0U
6Ma6). In a real flow,

considering the Mach number to scale linearly with the velocity, one may observe the
acoustic emission to increase with powers as high as σ(U12) or σ(Ma12).

Increasing the Mach number has a stabilizing effect in the shear layer, which reduces
the overall sound emission, causing some situations where the instability does not increase
with Mach, as observed back in Figs 71 and 77.

5.5 Comparison to simulation results

So far, all results were focused on small disturbances around the base flow, where
non-linear effects are negligible. This section compares the previous linear stability results
to fully non-linear simulations by the DNS code.

In these runs, the second Mach number sweep was used as base. Cavity aspect ratio
L/D = 2, Reynolds number ReD = 1000, Incoming boundary layer thickness θ = 0.01,
Mach number 0.1 ≤ Ma ≤ 0.9. The initial condition for the simulations was the base-flow,
from which the numerical residuals would grow due to the flow instabilities.

The time series obtained for each case is shown in Fig. 92. The stream-wise velocity
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was recorded at an arbitrary point chosen in the middle of the cavity, at the flat plate
height. All cases start at a linear regime, where the frequency and the growth rate match
those of the linear analysis, before non-linear effects kick in, causing the mean flow to differ
from the base flow, shifting the frequencies and causing all cases to reach a limit-cycle.

Note that the y axis in this figure was shifted, to improve visualization. The
different times before reaching the limit-cycle in this figure cannot be compared from case
to case, as the initial disturbance, caused by numerical residuals in the base flow, was not
the same for all cases.
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Figure 92 – Time series of stream-wise velocity for various Mach numbers. Each vertical
tick represents a quarter of the free flow velocity. Note that the plots were
vertically shifted.

The Mach 0.1 case has reached a periodic state correspondent to Rossiter mode 2.
Mach 0.3 and 0.5 cases have also settled for Rossiter mode 2, but with a subharmonic
present, likely indicating an instability at Rossiter mode 1, which is not large enough to
outgrow mode 2. This subharmonic, physically, means that the vortex street is composed
of alternating stronger and weaker vortices. This strength difference is greater in the Mach
0.5 case.

Mach 0.7 and 0.9 cases did not settle for a single Rossiter mode, instead, they kept
switching between modes 1 and 2. Figure 93 shows a close up at the beginning of the series.
Note that the time axis was manually shifted for each case. Figure 94 shows a shorter
portion of time after the limit cycle has been reached, where both higher Mach numbers
can be seen switching modes. Figure 95 shows snapshots of the pressure fluctuation at
arbitrary times after the initial transient.
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Figure 93 – Close up at the beginning of the time series of stream-wise velocity for various
Mach numbers. Each vertical tick represents a quarter of the free flow velocity.
Note that the plots were horizontally and vertically shifted.

Figure 94 – Close up of time series of stream-wise velocity for various Mach numbers.
Each vertical tick represents a quarter of the free flow velocity. Note that the
plots were vertically shifted.
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Figure 95 – Snapshots of the pressure fluctuation in the DNS for various Mach numbers.
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The spectra was computed by Welch’s power spectral density estimate. The
transient phase was ignored. It is shown in Fig. 96.
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Figure 96 – Spectra of the stream-wise velocity for various Mach numbers.

The peaks from the Fourier transform were organized in Tab. 12. Cells shaded in
blue indicate Rossiter mode 2.

For all cases, Rossiter mode 2 is dominant. At Mach 0.3 and above, its subharmonic
is also present, likely excited by Rossiter mode 1, which has a similar frequency and is
also unstable, albeit at a lower rate. The harmonics of both Rossiter mode 2 and its first
subharmonic are also visible, but with smaller magnitudes.

As predicted by the linear stability theory, the second Rossiter mode was the first to
appear in all cases, but it was not sustained as the only mode for long at the higher Mach
numbers. This may be caused because the mean flow for those cases became significantly
different from the base flow.

At lower Mach numbers, the prediction by the global stability analysis is closer

Table 12 – Peaks from the Fourier transform of DNS data compared to Rossiter modes
and global modes

Mach DNS 1 DNS 2 DNS 3 Ross. 1 Ross. 2 Global 1 Global 2
0.1 3.38 6.77 10.13 1.27 2.97 1.95 3.40
0.3 1.42 2.83 4.26 1.15 2.68 1.77 3.05
0.5 1.34 2.68 4.03 1.05 2.44 1.53 2.77
0.7 1.17 2.31 3.48 0.96 2.24 1.35 2.50
0.9 1.02 2.03 3.04 0.89 2.07 1.22 2.28
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than Rossiter’s equation, while the opposite is true at higher Mach numbers. This is
attributed to the fact that, at lower Mach numbers, the oscillation amplitude at the DNS
is smaller than at higher Mach numbers, meaning that is is still close to the linear regime
assumed by the global stability analysis.

The vortex street at the cavity opening causes the mean thickness of the shear layer
to increase, which, in turn, causes the amplification at higher frequencies to decrease. The
analysis used to generate Fig. 86 was run again, with the mean flows from the simulation.

Figure 98 shows how the mean mixing layer thickness increases with the Mach
number. The profiles can be seen in Fig. 98. Also note the increased back-flow magnitude,
up to 50% of the free flow. The base flow from the Mach 0.5 case is shown, its sensibility
to the Mach number is negligible.
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Figure 97 – Mean mixing layer thickness for various Mach numbers.

Figure 99 compares the spatial amplification for the mixing layers to the temporal
amplification rate from the global analysis. The full lines were obtained with the actual
flow, while dashed lines come from the hyperbolic tangent approximation. The asterisks
are the global modes eigenvalues of Rossiter modes and the dots are other eigenvalues, run
at Mach 0.5. R1 to R5 indicate Rossiter modes 1 to 5, respectively. It is very important
to note that this spatial instability analysis does not consider the Mach number directly,
only its effect to the mean flow. An increasing Mach number is expected to further lower
the amplification rate.
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Figure 98 – Mean mixing layer profile and its hyperbolic tangent approximation for various
Mach numbers and the respective base flow.
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Figure 99 – Mixing layer spatial amplification compared to the global instability results
for mean flows of various Mach numbers.
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Chapter 6

Discussion

6.1 Conclusion

This work was divided in two main parts. First, the DNS was adapted for the
open cavity flow and the Jacobian-free instability method was implemented and validated.
Later, these tools were used to analyze the stability of two-dimensional flows and their
respective modes, looking for physical explanations for the observed phenomena.

6.1.1 Method implementation

The DNS code from the work of Martinez (2016) was used as base and adapted to
support Cartesian geometry features such as steps and rectangular cavities. All parallel
processing features by domain decomposition were kept and OpenMP capability was
added.

The compact numerical derivatives by Lele (1992) allowed to mesh convergence to
happen with a few hundred nodes in the stream-wise and wall-normal directions and from
8 to 12 nodes in the span-wise direction.

The Selective Frequency Damping method, by Åkervik et al. (2006), works as a
low pass filter in the time domain and allows a base flow to be found even if the physical
flow is unstable. It has also allowed the buffer zones close to the domain boundaries to
work properly.

The Jacobian-free instability analysis method by Eriksson and Rizzi (1985) and
Chiba (1998) was successful in retrieving the most unstable modes, as confirmed when
comparing to the Residual Algorithm by Theofilis (2000b). Its memory usage was very
low when compared to storing the Jacobian matrix.



128 Chapter 6. Discussion

Total computing time for generating a base flow is in the order of some hours to a
day or two. The instability analysis for a 2D case takes some hours, while a 3D analysis
scales into a few days.

Three dimensional runs could be optimized if the DNS was capable of considering
the span-wise direction as spectral, instead of spatial. As the work has focused on 2D
flows, it was decided that it was not worth investing time to implement this feature.

Convergence analysis were performed for all relevant parameters. The mesh and
the domain for the DNS and the time span, the number of iterations and the disturbance
magnitude for the instability analysis algorithm. An interesting relation between the
number of DNS steps for each Arnoldi iteration and the total number of Arnoldi iterations
was found and confirmed by the literature.

6.1.2 Main findings

Three types of physical phenomena where investigated for their influences on the
Rossiter modes (ROSSITER, 1964).

The resonance between standing wave modes (PLUMBLEE; GIBSON; LASSITER,
1962) and Rossiter modes was found to only have a limited influence. It was more easily
visible in Rossiter mode 4 of the second Mach number sweep, which was stable in most
cases. More unstable modes were not significantly affected by the standing wave modes.
See Fig. 78. This effect is expected to be of greater importance if the cavity is larger when
compared to the mixing layer.

The mixing layer instability at the cavity opening has a clear relation to which
Rossiter modes are amplified. See Fig. 86. Thinner mixing layers are more unstable
spatially, which means even small disturbances at the leading edge may cause large
fluctuations at the trailing edge.

This effect is attenuated by an increasing Mach. First, a larger Mach number causes
a same velocity profile to become more stable spatially. Second, in a real case, instabilities
will cause vortices to form, widening the mixing layer of the mean flow, causing them to
be more stable. See Figs. 97 and 99.

On the other hand, and increasing Mach number causes the flow to acoustic energy
transfer to be more efficient, reducing losses in the acoustic feedback of the Rossiter modes.
See Fig. 89. As noted by Howe (2004), the acoustic source may be a dipole or a monopole,
for which the energy transfer efficiencies increase with the Mach number with powers of 2
and 3, respectively.
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6.2 Suggestion for future works

This work has focused on cases in which the boundary layer thickness is at least
one order of magnitude smaller than the cavity. It was also limited to a cavity aspect ratio
of two in the parameter sweeps. It is expected that the cavity depth may reach a point
where it no longer plays an important role in the stability, therefore the D/θ parameter
would not be relevant anymore, only the L/θ value. There may also be a point where
the cavity length becomes so great that it behaves as two separate steps rather than as a
single cavity.

On the other side of the parameter spectrum, shallow cavities may be studied, in
which the cavity depth is comparable to or smaller than the boundary layer thickness. In
some cases, the cavities may be so small that, instead of being defined geometrically, small
changes to the boundary conditions may suffice to represent them.
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