• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.18.2017.tde-16112017-112104
Documento
Autor
Nombre completo
Tarcisio Marinelli Pereira Silva
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2014
Director
Tribunal
De Marqui Júnior, Carlos (Presidente)
Carmo, João Paulo Pereira do
Nitzsche, Fred
Título en portugués
Circuitos piezelétricos passivos, semi-passivos, ativos e híbridos e suas aplicações para problemas aeroelásticos
Palabras clave en portugués
Aeroelasticidade
Controle de vibração
Materiais piezelétricos
Resumen en portugués
Desde o final da década de 1980 até os dias atuais a utilização de materiais inteligentes em sistemas de controle de vibrações e em problemas de conversão de energia mecânica em energia elétrica tem sido amplamente investigada. Entre os materiais inteligentes destacamos os piezelétricos, apresentando acoplamento entre os domínios elétrico e mecânico. Em casos de controle passivo de vibrações utiliza-se o efeito piezelétrico direto e a energia de vibração é dissipada em um circuito elétrico passivo. Apesar de não utilizarem uma fonte externa de energia, a faixa de frequências onde o controlador passivo tem bom desempenho é limitada em relação aos controladores ativos. Em problemas de controle ativo de vibrações o efeito piezelétrico inverso é utilizado. Neste caso, uma tensão elétrica de controle é aplicada aos piezelétricos para a atenuação de vibrações. Os sistemas híbridos de controle (ativo-passivo) associam circuitos passivos e uma fonte de tensão elétrica. Nesse caso, os efeitos piezelétricos direto e inverso são utilizados simultaneamente. Espera-se que a parte ativa do sistema híbrido necessite de menor potência elétrica de atuação (se comparado com um controlador ativo) além do sistema híbrido proporcionar melhor resposta estrutural que o sistema passivo isoladamente. Entretanto, os controladores ativos e híbridos apresentam desvantagens relacionadas com complexidades de uma lei de controle, necessidade de equipamentos externos e podem exigir elevada potência de atuação. Os controladores semi-passivos surgiram como uma alternativa aos pontos negativos dos controladores passivos, ativos e híbridos. Uma técnica semi-passiva chamada SSD (synchronized switch damping) consiste no chaveamento do material piezelétrico entre a condição de circuito aberto e a condição de curto-circuito (SSDS) ou a uma indutância (SSDI), em momentos específicos da vibração da estrutura. Em geral, a conversão eletromecânica de energia é amplificada assim como o efeito shunt damping. Dessa forma, os circuitos semi-passivos, assim como os passivos, têm sido utilizados tanto como controladores de vibração quanto em problemas de coleta piezelétrica de energia. O objetivo deste trabalho é avaliar o desempenho de controladores piezelétricos passivos, semi-passivos, ativos e híbridos na atenuação de vibrações e também em problemas aeroelásticos. O modelo piezoaeroelástico é obtido com um modelo por elementos finitos (placa de Kirchhoff) eletromecanicamente acoplado que associado a um modelo aerodinâmico não-estacionário (método de malha de dipolos) resulta um modelo piezoaeroelástico. Casos de excitação harmônica de base, entrada impulsiva e também condição de flutter são estudados.
Título en inglés
Passive, semi-passive, active and hybrid piezoelectric circuits and their application in aeroelastic problems
Palabras clave en inglés
Aeroelasticity
Piezoelectric materials
Vibration control
Resumen en inglés
From the late 1980s until the present date, the use of smart materials as actuators in vibration control systems and as conversers of mechanical energy into electricity has been widely investigated. Among these smart materials, the piezoelectric ones stand out, presenting a coupling between the electrical and mechanical domain. In passive vibration control, the direct piezoelectric effect is used and vibration energy is dissipated (or harvested) in a passive circuit. Although no external power source is required, the frequency bandwidth in which passive controllers have good performance is limited when compared to active controllers. In active vibration control problems, the inverse piezoelectric effect is used. In this work, a voltage source is applied on the piezoceramic patches in order to attenuate vibration. Hybrid (active-passive) vibration controllers combine passive shunt circuits with the voltage source. In this case, the direct and inverse piezoelectric effects are used simultaneously. It is expected that the active part of the hybrid system will require less energy (when compared to an active controller) and a better structural response will be obtained than the purely passive system. Nevertheless, the active and hybrid controllers present disadvantages such as complexity of a control law, require external equipment and potentially require large amounts of energy. The semi-passive controllers are a recent alternative to the drawbacks of passive, active and hybrid controllers. A semi-passive technique called SSD (synchronized switch damping) consists of using an electronic switch that the piezoelectric element is briefly switched to an electrical shunt-circuit that can be a simple short-circuit (SSDS), or a small inductance (SSDI) at specific times in the structure's vibration cycle (Mohammadi, 2008). In general, the electromechanical energy conversion is enhanced as well as the shunt effect damping. Therefore, the switching techniques, as well as the passive circuits, have been used both in vibration control problems and in piezoelectric energy harvesting problems. The goal of this work is to assess the performance of passive, semi-passive, active and hybrid piezoelectric controllers to attenuate vibration in aeroelastic problems. The aeroelastic model is obtained by combining an electromechanically coupled finite element model (Kirchhoff's plate) with an unsteady aerodynamic models (the doublet-lattice method and Roger's model). The case studies are carried out on an elastic wing response to a base excitation, impulse force, and the flutter condition.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-11-16
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2023. Todos los derechos reservados.