• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2009.tde-13012011-124946
Document
Auteur
Nom complet
Andre Luiz Fontes da Silva
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2009
Directeur
Jury
Catalano, Fernando Martini (Président)
Marques, Flavio Donizeti
Silva, José Demisio Simões da
Titre en portugais
Obtenção de distribuição de pressão em asas usando redes neurais
Mots-clés en portugais
CFD
Distribuição de pressão
Redes neurais
Resumé en portugais
Este trabalho apresenta uma metodologia para predição da distribuição de pressão sobre uma asa bi-trapezoidal genérica usando redes neurais artificiais. O toolbox de redes neurais do MatLab® foi utilizado para o treinamento e validação das redes neurais e os conjuntos de treinamentos foram obtidos por meio do software BLWF® versão 28 (Boundary Layer Wing-Fuselage) um código CFD (Computacional Fluid Dynamics) de potencial completo com correção de camada limite. Levando em consideração o nível de complexidade do problema, optou-se por dividir o estudo em três etapas de desenvolvimento. Inicialmente, uma rede neural foi treinada considerando apenas as variáveis de condição de voo e de forma em planta. Resultados promissores motivaram a criação de uma segunda rede neural, mais genérica, na qual foram adicionadas variáveis de três perfis distribuídos ao longo da asa. Porém apenas um desses perfis era variável enquanto que os demais eram parametrizados com relação à este perfil. Criou-se, por fim, uma rede neural ainda mais genérica, desta vez atentando também para as variáveis dos três perfis de modo independente. Os resultados obtidos mostram que esta metodologia pode ser usada como interessante ferramenta para obtenção de distribuição de pressão, especialmente em projetos de MDO (Multi-Disciplinary Optimization), uma vez que ela possibilita uma predição rápida, precisa e de fácil automatização de pressão em uma asa genérica.
Titre en anglais
Prediction of pressure distribution on wings using neural network
Mots-clés en anglais
CFD
Neural networks
Pressure distribution
Resumé en anglais
This work shows a method for predicting pressure distribution over a generic bi-trapezoidal wing using artificial neural networks. The MatLab® Neural Network Toolbox was used for the neural network implementation and the training set was obtained using the BLWF® version 28 (Boundary Layer Wing-Fuselage), a full potential CFD (Computational Fluid Dynamics) code with boundary layer correction. The work was divided in three development phase, according with the problem complexibibility level. Initially, a neural network considering only flight conditions and plan form variables was trained. Promising results motivated the generation of a more generic neural network, considering also parameters of three airfoils distributed along the wing spanwise and chordwise. However only one airfoil was variable, the two other were parametrized in relation to the variable airfoil. At last, an even more generic neural network was generated, this time considering also the variables of the three profiles independently. The results show that this methodology can be successfully used as an interesting tool to obtain the pressure distribution, especially on the solution of MDO (Multi-Disciplinary Optimization) problems, since it allows fast prediction, automation facility and accurate measuring of the pressure distribution under a generic wing.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2011-01-18
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.