• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2010.tde-17012011-160008
Document
Auteur
Nom complet
Fernando Guimarães Aguiar
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2010
Directeur
Jury
Seleghim Junior, Paulo (Président)
Barbosa, Paulo Roberto
Selli, Marcelo Fernando
Titre en portugais
Utilização de redes neurais artificiais para detecção de padrões de vazamento em dutos
Mots-clés en portugais
Detecção de vazamento
Instrumentação
Processamento de sinais
Redes neurais artificiais
Resumé en portugais
O presente trabalho tem como objetivo principal o desenvolvimento de um sistema de identificação do surgimento de vazamentos (rupturas) em dutos, através da análise do sinal de sensores de pressão de resposta rápida (frequência de corte superior a 1 kHz). O reconhecimento do sinal de vazamento se realiza através de uma rede neural artificial feed-foward do tipo Perceptron Multi Camadas, previamente treinada. Neste trabalho, a implementação para tal operação foi feita off-line, mas devido ao baixo custo computacional pode ser facilmente implementada em eletrônica embarcada, em tempo real (on-line). Os resultados experimentais foram obtidos no oleoduto piloto do NETeF - Núcleo de Engenharia Térmica e Fluidos da USP - Universidade de São Paulo, com uma seção de testes com 1500 metros e diâmetro de 51,2 mm. Especificamente, os resultados foram obtidos com escoamento monofásico de água. Os resultados mostram-se promissores, visto que o sistema de redes neurais artificiais foi capaz de discriminar 2 universos linearmente separáveis, para sinais de vazamento e de não vazamento, para diversas vazões e localizações de vazamentos simulados.
Titre en anglais
The use of artificial neural networks for pattern detection of leaks in pipelines
Mots-clés en anglais
Artificial neural networks
Instrumentation
Leak detection
Signal processing
Resumé en anglais
The present dissertation deals with the development of a system to identify abrupt leaks (ruptures) in pipelines, by analyzing the signal of fast response pressure sensors (cutoff frequency over then 1kHz). The recognition of the leak signal is established by an artificial neural network feed-forward Perceptron Multi Layer, previously trained. In the present work the implementation was performed off-line, but due to low computational costs, the neural network can be easily implemented in real time embedded electronics (online). The experimental results were obtained in a 1500 meter-long and 51.2 millimeter-diameter pilot pipeline at the Center of Thermal Engineering and Fluids. Specifically, the results were obtained with single-phase flow of water. The results have proven to be promising, as the trained neural network was capable of classifying the 2 types of signals into 2 linearly separable regions, for leakage signals and no leakage signals, for various flow rates and locations of simulated leaks.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2011-01-18
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.