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ABSTRACT 

CHAVEZ-CUSSY, Norman Effects of Reynolds number on the meso-scale 
hydrodynamics of fluidized gas-solid ftows . 2017. 99p. Dissertação 
(Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 
2017. 

Filtered two-fluid models have been widely used to simulate gas-particle fl.ows in fluidized 

beds, which require closures for filtered interface interaction forces and stresses. Such 

closures have been recently derived from results of highly resolved simulations applying 

microscopic two-fluid modeling. The usual highly resolved simulation is applied over 

periodic domains where the flow driving force is enforced through a boundary imposed 

axial gas-pressure gradient which is chosen to exactly match the gravity acting on the 

average gas-particle mixture. This renders a pa.rticulate flow field which is upwards in 

low solid concentration regions and downwards in high solid concentration regions, with 

Reynolds numbers varying in a very confined low range. In such a condit ion Reynolds 

number is found not to significantly affect filtered parameters. In the current work the effect 

of Reynolds number over filtered parameters is evaluated under more realistic gas flow 

condit ions. The more recent closure models for drag and stresses derived from microscopic 

two-fluid modeling have been formulated as a function of filt er size, filtered solid fraction 

and filtered slip velocity (Milioli et al., 2013, Sarkar et al. , 2016). Correlations have been 

proposed where the solid volume fraction is usually referred to as a first marker, while 

the filtered slip velocity has been named a second marker. By imposing more realistic 

Reynolds numbers to t he flow, those markers are revised as for their effects over relevant 

filtered parameters, and the Reynolds number itself is showed to be an addit ional marker 

to be accounted for. The domain average solid fraction is also considered as a possible 

additional marker. This work investigates how the domain average gas flow Reynolds 

number, and the domain average solid volume fraction, affect relevant parameters related 

to filtered interface forces between the phases, and related to fil tered and effective stresses 

in both phases. The present concern is t urned to circulating fluidized bed applications 

considering a high Stokes number particulate and average solid fractions inside the dilute 

flow regime typical of risers. Computational experiments haw heeu developed for rauges 

of solid fractions and gas flow rates covering fl.ow regimes typical of risers. The MFIX open 

source code has been used in all t he simulations. The ultimate goal which is pursued is 

to provide new evidence so t hat more realistic closure models can be derived for filtered 

two-fluid modeling of fluidized gas-part icle flows. 

Keywords: two-fluid modeling, sub-grid modeling, highly resolved simulation, gas-solid 

flow, fluidizatiou, risers. 



RESUMO 

CHAVEZ-CUSSY, Norman Efeitos do número de Reynolds na hidrodinâmica 
de meso-escala de escoamentos gás-sólido ftuidizados. 2017. 99p. Dissertação 
(Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 
2017. 

Modelos de dois fluidos filtrados tem sido largamente utilizados para simulação de escoa

mentos gás-sólido em leitos fluidizados. Estes modelos requerem fechamentos para forças 

interativas de interface e tensões filtradas, os quais tem sido recentemente gerados a partir 

de resultados de simulações altamente resolvidas aplicando modelagem microscópica de 

dois fluidos. A simulação altamente resolvida usual é aplicada sobre domínios periódicos, 

onde o "driving force"do escoamento é provido por um gradiente axial de pressão imposto 

à fase gás através dos contornos , que é escolhido para exatamente compensar a gravidade 

atuando sobre a mistura gás-partícula média. Isso produz um escoamento particulado 

ascendente em regiões de baixas concentrações de sólido, e descendente em regiões de alta 

concentração de sólido, com números de Reynolds baixos e variando em faixa bastante 

restrita. Sob ta is condições observa-se que o número de Reynolds não afeta significativa

mente parâmetros filtrados. No presente trabalho o efeito do número de Reynolds sobre 

parâmetros filtrados é avaliado sob condições de escoamento gás-sólido mais realistas. Os 

modelos de fechamento mais recentes para arrasto e tensões derivados de modelagem 

microscópica de dois fluidos tem sido formulados em função de tamanho de filtro, fração 

volumétrica de sólido filtrada, e velocidade de deslizamento filtrada (Milioli et al, 2013; 

Sarkar et al. , 2016). Correlações t em sido propostas onde a fração volumétrica de sólido 

é usualmente referida como primeiro marcador , enquanto a velocidade de deslizamento 

é referida como segundo marcador. Através da imposição de números de Reynolds mais 

realistas ao escoamento, estes marcadores são revisados quanto a seus efeitos sobre parâ

metros filt rados relevantes, e mostra-se que o próprio número de Reynolds apresenta-se 

como um marcador adicional a ser considerado. A fração de sólido média no domínio é 

também considerada como um possível marcador adicional. Neste trabalho investiga-se 

como o número de Reynolds médio do gás e a fração de sólido média no domínio afetam 

parâmetros relacionados a forças de interface entre fases filtradas, e relacionados a tensões 

filtradas e efetivas em ambas as fases. O presente interesse direciona-se para aplicações de 

leitos fluidizados circulantes, considerando-se particulado de elevado número de Stokes 

e frações de sólido médias no domínio dent ro do regime de escoamento diluído típico de 

'riscrs' . Experimentos computacionais foram desenvolvidos para faixas de frações de sólido 

e fluxos de gás cobrindo regimes de escoamento típicos de 'risers". O código aberto MFIX 

é usado em todas as simulações. Como objetivo final busca-se prover novas evidencias que 

venham a contribuir para o desenvolvimento de modelos de fechamento mais realistas para 



modelos filtrados de dois fluidos para escoamentos gás-sólido fl.uidizados. 

Palavras-chave: modelagem de dois fiuidos,modelagem sub-malha , simulação altamente 

resolvida , escoamento gás-sólido, fl.uidização, risers. 
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1 INTRODUCTION 

Fluidized bed reactors are widely used in chemical and energy industries, represent

ing a formidable impact on world's economy. Among the most important applications are 

Fluid Catalytic Cracking (FCC) (King, 1992) and Fluidized Bed Combustion (FBC) as in 

coai combustion (Basu and Fraser, 1991). In petroleum refineries FCC reactors perform 

the conversion of high molecular weight hydrocarbons of the crude oil into gasoline and 

other byproducts. The FBC reactor is used in combustion technology to burn solid fuels 

as coal and biomass while a llowing for pollutant emission control such us thosc of SOx 

and Nüx. Also it is used in gasification technology to obtain carbon dioxide, methane, 

hydrogen and other industrial gases. 

The development of such reactors is still a very much empírica} science, based upon 

gradually scaled demonstration plants that involve both very high costs and excessive 

execut ion t imes. The current research ult imately intends to cont ribute in t he context 

of replacing those very expensive plants by computational simulation. Computational 

sirnulation of fluidized bed reactors requires accurate modeling, and no accurate modeling 

can be advanced without a rigorous description of t he concerning very heterogeneous 

gas-solid flows. Those flows are characterized by very dynamic formation, composition and 

dissipation of entities such as gas bubbles and clusters of particulate, which manifest in a 

multitude of time and length scales, and profoundly affect mass transfer , heat transfer and 

chemical reaction rates. Owing to the commonly huge physical volumes that are involved 

in real scale fl.uidized bed reactors, only t he so called large scale simulations (LSS) are 

feasible. LSS impose very coarse numerical grids, inside which any heterogeneity is filtered, 

and their effects are thereby lo~t. Therefore, if accuracy is de1:>ired, closure models must be 

added to the LSS formulations in order to recover filtered effects. 

Literature presents filtered closure models that are derived from results of highly 

resolved simulations (HRS) with microscopic two-fluid modeling. In those models, relevant 

filtered parameters are correlated to inside fi ltered parameters only, taking no account of 

macro-scale parameters related to flow topology. In the present work macro-scale related 

parameters are invest igated regarding their effects over relevant filtered parameters. 

The current research, t herefore, ultimately intends to be a contribution for t he 

derivation of increasingly realistic filt ered closure models. As in previous works, t his is 

also clone by means of computational experiment with microscopic two-fl.uid modeling. It 

is proposed to investigate the effect of Reynolds number over filtered parameters, since 

the current state of t he art in t his line of development offers only models derived under 

low Reynolds number conditions. T he present concern is turned to the application of high 

Stokes number particulates which are typical of fiuidized bed processes. A high Stokes 
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number (frequently defined as the ratio of t he particulate response time to the Kolmogorov 

t ime scale or other relevant t ime scales of t he flow) means that the motion of individual 

particles is not affected by the carrying gas t urbulence. 

Computational experiments have been developed for ranges of solid fractions and 

gas flow rates covering flow regimes typical of risers. The MFIX open source code has 

been used in all the simulations. 

1.1 Fluidization Regimes 

In the process of gas fluidization a granular material is converted from a static 

solid-like state to a dynamic fluid-like state using a gas crossing through the granular 

material. 

Flow regime is the characterization of the different configurations of the hydrody

namic of gas-::;olid fluidized bed based on the motion of the gas and solids, their interactions 

and physical properties as it is shown in t he figure ( 1). There are many possible configura

bons depending primarily on t he superficial velocity of the gas through the bed uo, t he 

particle diameter dp and its density Ps· These regimes are known as minimum fluidizing, 

bubbling, turbulent, fast fluidizing and pneumatic transport. 

Figure 1: Flow regimes in fiuidized beds 
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Source: Kunii and Levenspiel (1991). 
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A fixed bed occurs when the particles remain static. With t he gas fiowing through 

the bed, the particles are suspended when the pressure drop exceeds slightly t he weight of 

the solids ( t his is t he minimum fiuidizing regime). The voidage increases and an expansion 

of the bed can be observed. The minimum fluidization velocity Vmf is defined at this 

configuration. As the gas flow rate grows above t hat required for minimum fluidization, gas 

bubbles start to develop and rise through the bed while coalescing t o each other, and burst 
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at the bed surface (bubbling regime). Further increase o f the gas ftow rate will disrupt the 

bubbles into irregular gas voids through the bed (turbulent regime). 

As the gas ftow rate through the bed is further increased above the turbulent 

regime, a condition is reached where the particulate is blown out (fast ftuidization regime). 

At this condition the gas velocity is very much related to the particle free fall terminal 

velocity Vt (the steady state velocity of an individual particle dropping in a quiescent gas) . 

The free fall terminal velocity of a spherical particle may be determined following 

Geldart (1986): 

for 

Ps9 
Vt =-

(3* 
for 

Vt = 
4 (Ps - Pg)gdP 
3 0.43pg 

where: 

(3* = ~c*p9vt 
4 d d p 

Re :::; 0.2 Laminar Stokes regime 

0.2 < Re < 1000 Transition regime 

for R e ~ 1000 Thrbulent regime 

(Wen and Yu, 1966) 

c* = 
24 

(1 + 0.15Re*0
·
687

) 
d R e* 

(Schiller and Newmann, 1935) 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

Ergun (1952) found au equation for the minimum ftuidi:imtiou velocity and Haider 

and Levenspiel (1989) for the terminal velocity for spherical particles, each one in its 

dimensionless form. 

150 ( ) * 1. 75 ( * ) 2 * ( *) 2 
-3- 1 - Emf vmf + - 3- vmf dp = dp 
Emf Emf 

(1 .7) 

* 18 0.591 
( ) 

- 1 

vt = (d; )2 + (d;)I/2 (1.8) 
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Based on the dimensionless particle diameter d; and gas velocity v* defined as: 

(1.9) 

( 

2 ) 1/3 * Pg v =v 
l-1-g(Ps- Pg)g 

(1.10) 

If the gas velocity exceeds the fast fiuidized condition t he system is in the pneumatic 

conveying regime. 

1.2 Gas-solid Riser Flows 

In a circulating fiuidized bed (CFB) the solid particles circulate between the main 

column (riser) and the feeding back loop column (downcomer). The particles which are 

continuously discharged from the top of the riser must be replaced or re-entered through 

the downcomer in the bottom of the riser. The riser, which operates in the fast fiuidization 

regime, is the section of the reactor where the intended chemical reaction process takes 

place. A layout of a circulating fiuidized bed reactor is shown in the figure (2). 

Figure 2: Circulating Fluidized Bed 
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Source: Elaborated by the author. 

Bcsides thc riser and thc downcomcr, a CFB systcm also includes a gas-solid 

separa to r ( cyclone) and a solid fiow control device. In the riser the solids fiow usually 

co-currently upward with the fiuidizing gas which is introduced at t he bottom of the 

column. T he solid particles come from the downcomer via the cont rol device and are 
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carried upward with the gas. At the top of the riser, the mixture fiows to a gas-solid 

separator. Separated parti eles fiow to the downcomer upper part and are fed back to the 

riser. The modeling effort in the current work concerns the riser fiow. 

The CFB system can be classified based on many different parameters as concen

tration of the solid, type of material, kinetic of the chemical reaction if it exists, gas-solid 

mass fiow rates, recirculation of the solid, etc. Gas fiow velocities can vary over a wide 

range typically from about 5 m/ s up to about 28 m/ s depending on the solid particle 

diameter, which typically ranges from 40 J-Lm up to about 1000 J-Lm. The recirculation 

solid mass fl.ux is usually between 10 kgjm2 s and 1200 kgjm2 s, (Sun, 1992). The solid 

concentration in the stream depends on the particular application and can vary from 

very dilute to vcry densc conditions, usually from 0.01 % up to 20 % and cven denser, 

(Bi and Grace, 1997). The capacity of production of the system is more related to t he 

transversal area o f the riser, while the required t ime o f residence o f the solid, which is 

quite dependent on to the kinetics of the chemical reactions and hydrodynamics, is more 

related to the high o f the riser. The gas-solid fl.ow in risers is characterized by complex 

hydrodynamics. Thc spatial distribution of the particles is non uniform. Solid particles 

recirculate inside the riser, ascending with the fl.owing gas streams in the core o f t he 

column while descending near the walls because of the low gas velocity at those regions. 

The fiuctuating, non-uniform, heterogeneous and unstable behavior of the fiow comes from 

a continuous formation, dissipation and interaction among coherent structures ( clusters of 

particles) , together with dispersed solids in the gaseous phase. Figure (3) illustrates such 

structures that appear in different scales. As these structures manifest over a multitude of 

length and time scales, modeling and simulation must be set rigorously, so as to capture 

all t he physics involved. 

Figure 3: Structures of particles in riser fiows 

CLUSTERS 

Source: E laborated by the author. 

The length scales are the problematic issue here as t hey can range from a few 

particle sizes up to the size of the column. The time scales, on the other hand, are not an 
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issue since they are much larger than t ime steps practiced in usual numerical procedures 

(Sharma et al. , 2000). So, the question rests on to accurately account for t he effects of 

even the smaller clusters in the fiow field. 

The micro-scales of a gas-solid fiow are defined as those below which the fiow is 

completely homogeneous, so that no coherent structures are observed. Otherwise, the 

meso and macro-scales of the fiow are quite heterogeneous and fully characterized by 

coherent structures. The macro-scales are all the scales that can be captured in large scale 

simulations. The meso-scales are all t he scales that are filtered in large scale simulations, 

and can be captured in highly resolved simulations ( see Section 4.1). 

Usually, in riser flows, the macro-scale is in the order of em- m, meso-scale in the 

order of mm - c:m and micro-scale in the order of p,m. 

The particulate structures emerge as a consequence of instabilities related to the 

relative movement of the gas and solid phases, and due to the dissipation of energy related 

to t he fluctuating movement of particles caused by inelastic collision and viscous damping 

(Agrawal et al. , 2001). The characteristic relative size of meso-scale structures is on the 

order of 10 up to 100 and even 1000 times particle diameters ( Igci and Sundaresan, 2011). 

The physical properties of the particles combined to the fluid flow conditions have 

great impact on particle structures development and behavior. The dimensionless Stokes 

number is particularly relevant in this context as it tells about the impact of the fluid phase 

turbulence over the particulate. The Stokes number based on the particle diameter (dp) , 

is defined as the r a tio between a part i ele relaxing or response time and a gas t ur bulence 

time scale. The particle response time is usually taken from the free fall terminal velocity 

evaluated at the Stokes drag region, which gives: 

Vt Psd~ 
T --- --

P - 9 - 18J..Lg (1.11) 

The turbulence time scale is taken from the gas velocity and a relevant turbulence 

length scale, which is usually chosen to match with the particle size. This gives: 

(1.12) 

The Stokes number for fluid-solid flow results: 

Std = Tp = Psdplvg l 
" Tg 18J..Lg 

(1.13) 

Large values of Stokes number correspond to the coarsest and heaviest particles for 

which there is no effect of turbulent gas vortexes over the motion of the particles. That 

condition is known as inertial fiow regime. A small Stokes number means that particles 
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follow the movement of t he gas fiow just like t racers. This is the viscous fiow regime. 

Figure ( 4) illustrates the inertial and viscous fl.ow regimes, as well as t he t ransitional fiow 

regime, where the part icles are affected by the gas turbulence but do not follow its stream 

lines. The figures for Stokes number are for a particular cru;e (Hrenya and Sinclair, 1997). 

In the current work a large Stokes number part iculate is considered, so that no gas 

turbulence treatment is implemented (See section 3.3.2) . 

Figure 4: Stokes number in fluid-solid flow associated to the motion of a particle for a 
particular case 
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Another relevant dimensionless group is the Froude number, which is particularly 

significant regarding gas-solid flow scaling. 

A Froude number associated to the motion of a particle is usually defined as t he 

ratio of t he particle inert ial force to the gravitational force acting on a particle. 

(1.14) 

1.3 Modeling Fluidized Gas-Solid Flows 

In gas-solid fl.uidization modeling, t he gas phase is usually treated as a continuum. 

The particulat e may be treated either by account ing for individual particles, parcels 

of particles, or a cont inuum phase that simulates its behavior . Depending on how the 

part iculate is t reated, the formulations are classified either as Euler-Lagrange ( continuum 

for the gas, discrete particles for t he particulate), oras Euler-Euler (gas and particulate 

treated as interpenetrating continua). Discrete Element Method (DEM), Lattice Boltzmann 
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Method (LBM) and Multi-phase Particle in Cell Method (MPPIC) are all Euler-Lagrange 

like formulations. The Two-fiuid model (TFM) is an Euler-Euler like formulation. All 

of those formulations are widely practiced by researchers for different purposes, ranging 

from small domain fundamental investigations (mainly LBM, DEM and TFM) up to real 

domain la rge scale predictions (mainly MPPIC and TFM) (see, for instance, van der 

Hoef et al. , 2006; Milioli and Milioli, 2011; Syamlal et al. , 1993). Instead of advancing a 

comprehensive comparison among the various possibilities, as each of them have different 

merits, in t his work it is just chosen to work with TFM. This approach is considered a very 

promising one for both large scale real simulations as well as small domain fundamental 

studies (Sundaresan, 2000) just like those developed in the current work. 

1.3.1 Some fundamentais of the Euler-Euler approach 

According to Ishii (1975), t here are four groups of two-phase fiows depending on 

the const ituent phases: gas-solid fiows, gas-liquid flows, solid-liquid flows and :flows of 

two non-miscible liquids. Depending on t he topology of the :flow there are three groups: 

separated :flows, mixed :flows and dispersed :flows. In this work the concern is turned t o 

gas-solid dispersed :flows. The two phases are modeled using equations for single phase 

fiow with a moving boundary between the phases. Averaging procedures as space average, 

time-average and ensemble-average are usually applied to provide useful formulations. 

An Euler-Euler hydrodynamic two-dimensional model for a two-fiuid fiow is devel

oped consisting of two cont inuity equations and two momentum equations. Also closure 

laws are needed. T here are t hree types of closure laws: topological laws describing the 

spatial distribution of phase-specific quantities, constitutive laws which describe physical 

properties of the phases, and transfer laws which dcscribe interactions between the phases. 

Euler-Euler formulations are founded on the very fundamental continuum hypothe

sis. The mat ter is a compound of elemental particles such as atoms and molecules. This 

concept brings inherently a discontinuity o f the matter, beca use at the atomic o r molecular 

levei the matter is not a cont inuum. T he assumpt ion of continuum is valid when the 

length scale of analysis is larger compareci with the dimensions of those elemental part icles. 

The continuum hypothesis allows the description of fluid and solid flow properties using 

differential calculus to set governing equations and model a physical problem. 

Continuum properties such as density and velocity become representative in any 

large cnough volume element. When thc lcngth scalc of the volume element is big enough 

to sat isfy the continuum hypotheses, t he quant ity of elemental particles inside it is large, 

and any average properties of t he particles become representative. 

·To formulate a two-fiuid Euler-Euler hydrodynamic model, a control volume is 

-·~étF·which is defined as a fixed space containing both the phases. Integral balances for 
"l- . -
· .fltass,.and momentum are applied over this control volume. T hese balances provide local '- .. 
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instantaneous equations for each phase and local instantaneous jump conditions which 

account for interactions between the phases at the interface. 

The local instantaneous equations apply to both phases, each one of them required 

to be a continuum. Clearly, on a finite fraction of space there would be discontinuit ies in 

a phase owing to the presence of the other phase, and the local instantaneous equation 

can not be applied. To overcome that difficulty averaging procedures are applied, thereby 

defining interpenetrating continua where interface interact ions are treated in average, as 

continuum field effects. Different averaging procedures may be applied (time, volume, 

ensemble averaging), which are usually assumed equivalent to each other (ergodicity 

hypothesis) (see, for instance, Enwald et al. , 1996; Gidaspow, 1994). 

1.3.2 Euler-Euler Two-fluid Mult i-scale Modeling 

The very complex set of conservative equations of the Euler-Euler two-fluid model 

can only be solved by numerical methods. Owing to computational limitations and to 

thc huge volumes to be resolved, large scale simulations (LSS) are only fcasible under 

very coarse numerical grids. At this scale of simulation the coarse grids filter any sub-grid 

effects. It is said that any meso-scale structures are filtered so t hat their effects over the 

macro-scale are lost. The formulation to be resolved in large scale simulations, frequently 

referred to as filtered formulation, requires sub-grid closures meant to recover coarse grid 

filtered effects. One way of recovering such effects , and thereby providing data for sub-grid 

correlation, is through the so called highly resolved simulations (HRS) . Usually, in HRS, 

a refined grid is defined over domains matching a LSS coarse grid cell, so that smaller 

structures are captured. The concerning refined grid must be fine enough so that all 

structures are captured, down to the smallest ( of about 10 particle diameters, according 

to Agrawall et al., 2001). Figure (5) illustrates both LSS and HRS domain and grids. 

Figure 5: Multi-scale Modeling 
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2 MAIN LITERATURE REVIEW AND OBJECTIVES 

Two-fiuid models including suitable filtered closures represent the most promising 

next generation modcls for multiphase reactors and, in this context, thc formulation of 

realistic filtered models is a great challenge ahead (Sundaresan, 2000). This part icular issue 

has been addressed by a number of researchers on the basis of highly resolved computational 

experiments ( or highly resolved simulations, HRS) with microscopic two-fiuid modeling 

(Agrawal et al. , 2001; Andrews IV et al. , 2005; Igci et al. , 2008; Igci and Sundaresan, 

2011 ; Parmentier et al. , 2012; Ozel et al. , 2013; Milioli et al. , 2013; Agrawal et al. , 2013; 

Schneiderbauer and Pirker , 2014; Sarkar et al. , 2016). Besides making it clear the real 

necessity for filtered models, t hose works suggest that filtered models so produced from 

highly resolved computational experiments do require continuous improvement as more 

and more realistic approaches are pursued. The filtered models are also called meso-scale 

models since they are generated from computational experiments under grid refinements 

that are expected to capture all the solid phase scales of the fiow, so that filtered meso-scale 

data can be derived. In most cases, reduced domains are considered, which are extracted 

from the free stream in the core of the fiow field, and periodic boundaries are applied. As 

periodic boundaries are applied, an extra gas phase pressure gradient is imposed in the 

vert ical direct.ion in order to impose a ftow driving force. It is usual to consider an extra 

gas phase pressure gradient t o exactly compensate the gravity acting on the gas-solid 

mixture. This idea is brought from fundamental studies on the instabilities that develop in 

gas-solid ftows owing to inter-particle inelastic collisions, which ultimately lead to clustering 

(Goldhirsch et al. , 1993; Tan and Goldhirsch , 1997). While those studies are valid for 

quasi-static conditions, where the particulate arranges itself in low velocity suspensions, it 

has been commonly assumed that the cluster formation mechanism that prevails is also 

relevant to any fiow topology, from bubbling, to turbulent, t o rapid gas-solid fiows. 

Following t he above basic approach, Agrawal et al. (2001) , Andrews IV et al. 

(2005) , Igci et al. (2008), Igci et al. (2010) , and Igci and Sundaresan (2011) developed 

highly resolved simulations and analyzed the behavior of filtered parameters like effective 

pressure and viscosity and effective drag coefficient. Agrawal et al. (2001) characterized the 

meso-scale o f t he gas-solid ftow as comprised o f solid coherent structures wit h dimensions 

from 10 to 100 t imes the particulate size. From their predictions the authors analyzed the 

behavior of filtered and effective dynamic viscosit ies and pressures of the solid phase. As 

observed by van der Hoef et al. (2006), Agrawal et al. (2001) showed that grid refinements 

of the order of 10 times the particulate size provided grid independent predictions for a 

particular case. They also showed that vertical boundary conditions of free slip, partial 

slip and periodic, do produce the same heterogeneous flow patt ern. Andrews IV et al. 
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(2005) explicitly proposed ad hoc closures for the effective drag, viscosity and pressure of 

t he solid phase. Igci et al. (2008) further extended the previous works of Agrawal et al. 

(2001) and Andrews IV et al. (2005), and showed that the filtered predictions depend on 

the sub-grid filter size. A posterior work also showed the filtered predictions to depend on 

the distance from walls (Igci et al. , 2010) . Further extending the work reported in Igci 

et al. (2008), Igci and Sundaresan (2011) produced correlations for the filtered effective 

drag, pressure and viscosity of t he solid phase, as a function of filter size and filtered 

solid volume fraction. The effective drag coefficient was expressed in the form of a drag 

coefficient correction relating the actual effective drag coefficient to the filtered micro-scale 

drag coefficient, as previously clone, for instance, by Zhang and VanderHeyden (2002). Igci 

et al. (2012) tested t he correlations presented in Igci and Sundaresan (2011) , including 

the wall corrections proposed in Igci et al. (2010), in coarse grid simulations of a riser flow . 

The comparisons against empirical data showed qualitative agreement, while quantitative 

differences still remaiued. 

Following the same basics of the previous works, Parmentier et al. (2012) proposed 

a similar approach to deal with the filtered effective drag, except t hey did not apply 

periodic boundaries but a small 2D bubbling bed configuration. Their correlations for the 

drag coefficient correction were alike those proposed in Igci and Sundaresan (2011), except 

for the inclusion of a macro-scale length scale in the filter size dependence of the drag 

coefficient correction. They also included a coarse grid dynamical adjustment analogous to 

the dynamic correction usually applied in large eddy simulation of t urbuleut fiows. A test 

of t heir drag coefficient correction correlation in a coarse grid simulation of a bubbling 

bed set up recovered t he correct bed expansion which carne out from a highly resolved 

simulation. The model remained to be tested for more dilute flow configurations such as 

circulating fluidized beds. Ozel et al. (2013) extended the work of Parmentier et al. (2012) 

by incorporating vertical periodic boundaries over 3D bubbling bed conditions, and also by 

extending the development to include stresses analyses as done by Agrawal et al. (2001). 

Their conclusions were similar to those of Parmentier et al. (2012). 

In the works cited so far (Agrawal et al. , 2001 ; Andrews IV et al. , 2005; Igci et 

al. , 2008; Igci and Sundaresan, 2011 ; Parmentier et al. , 2012; Ozel et al. , 2013) filtered 

parameters have been correlated to filter size and filtered solid volume fr·action. It so 

happens that different patterns, ranging from very homogeneous to very heterogeneous, 

may occur for any particular values of filter size and filtered solid fractiou. In arder to 

account for the heterogeneity of the fiow , Milioli et al. (2013) introduced an addit ional 

independent variable in filtered parameter correlation (named 2nd marker, while the solid 

volume fraction was named 1st marker). Models for efi'ective pressures and viscosities 

were proposed in analogy wit h the Smagorinsky's turbulence viscosity model, thereby 

introducing t he fil tered scalar shear rate as 2nd marker. Also, a mocl.el for the effective 

drag coefficient correction was proposed including the filtered slip velocity as a 2nd marker. 
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Ozarkar et al. (2015) applied the sub-grid models of Milioli et al. (2013) to a large scale 

simulation of a bubbling fiuidized bed, and compareci results to experiment. They found 

a very good agreement between experiment and predictions for both bed expansion and 

pressure drop through the height of thc bed. Schneiderbauer and Pirkcr (2014) followed the 

same path as Milioli et al. (2013) , and found similar results. Agrawal et al. (2013) extended 

the work of Milioli et al. (2013) by also proposing filtered models for the mass/ heat 

diffusivity coefficient and for the interphase mass/heat t ransfer coefficient, respectively 

accounting for the filtered scalar shear rate and the filtered slip velocity as 2nd marker. 

Sarkar et al. (2016) developed new sub-grid models following the work of Milioli et 

al. (2013), except that based on 3D highly resolved simulations. Similar behavior of the 

effective drag coefficient correction and effective pressures and viscosit ies were observed, 

with some quantitative differences. Regarding the effective pressures and viscosit ies, a 

correlation to the filtered slip velocity as 2nd marker was also observed which was not seen 

on the previous results of Milioli et al. (2013). In addition to sub-grid model proposition, 

Sarkar et aL (2016) also developed a validation step by comparing predictions of a large 

scale simulation against experiment for a bubbling bed situation. A very good agreement 

between predictions and experiments was found for both bed expansion and pressure drop 

through the height of the bed. 

2.1 Objectives 

Literature pre~ents sub-grid analy~es of gas-solid fiows on the b~is of highly 

resolved simulations with microscopic two-fluid modeling. Except from a few works under 

bubbling bed conditions, most of the research has been carried out under suspension like 

conditions in periodic domains. This renders flow conditions at low Reynolds numbers 

which, nevertheless, is assumed to be relevant for any gas-solid fiow no matter its macro

scale topology. 

This assumption is consistent with the scale separation hypothesis which, neverthe

less, does not hold for gas-solid ri::;er fiows. In this work, having in view the notorious lack 

of separation of scales in those fiows, an analysis was advanced which also accounted for 

the effects of the macro-scale over sub-grid filtered parameters. 

In recent works, relevant filtered parameters related to effective drag and stresses 

have been evaluated as for their relation to filtered solid volume fraction and filtered slip 

velocity. In this work the analysis was extended by also relating those relevant filtered 

parameters to macro-scale parameters, namely the domain average solid volume fraction 

and the domain average gas flow Reynolds number. In addition to the usual suspension like 

conditions, a range of domain average gas Reynolds numbers was imposed together with a 

range of domain average solid volume fractions. Those ranges were set for usual riser flow 

conditions, for a high Stokes number particulate. All the simulations were performed with 
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the microscopic two-fluid model of the open source code MFIX. 
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3 METHODOLOGY 

In two-fluid modeling all the phases, no matter fluid or particulate, are treated 

as inter-penetrating dispersed continua in thermodynamic equilibrium (Andcrson and 

Jackson, 1967; Ishii , 1975; Drew, 1971 and 1983; Delhaye, 1974 and 1981; Gidaspow, 1994; 

Enwald et al. , 1996). The hydrodynamic two-fl.u id models comprise a set of average mass 

and momentum conservative equations plus closure laws for stress tensors , viscosit ies, 

pressures and drag. In this research, highly resolved simulations (HRS) are performed in 

order to produce filtered data that are required for t he development of sub-grid filtered 

closures, which are needed in two-fluid large scale simulations (LSS) of gas-solid flows in 

fl.uidized beds. LSS is performed using t he so called filtered models, that require sub-grid 

closures, while HRS is performed using the so called microscopic models, t hat require 

micro-scale closures. 

Both the concerning formulations, the microscopic (for HRS) and the fil tered (for 

LSS) are presented next. While the filtered formulation is not resolved in t he current 

work, it is a lso prcscntcd so as to show cxactly what sub-grid paramctcrs are required , 

and should therefore be derived from HRS. 

3.1 Microscopic Two-Fiuid Model 

The gas-solid two-fluid model pre~ents variations for closure relat ions (Syamlal 

et a.l. , 1993). The micro-scale closures for the solid phase, that are required by the so 

called microscopic formulation of the two-fluid model, are established by applying the 

kinetic theory of granular flows (KTGF) (Bagnold, 1954; Jenkins and Savage, 1983; Lun 

et al., 1984; Gidaspow, 1994), where solid phase micro-scale properties are derived as a 

function of a granular tcmperaturc determined from a pseudo thcrmal encrgy balance. Thc 

microscopic formulation of the two-fiuid model is presented next. The correlation of \Ven 

and Yu (1966) is taken as the micro-scale closure for drag. Other possible interface forces 

between the phases are not accounted for , as drag is recognized as the dominant one. 

The conservation equations of continuity and momentum for both phases are: 

(3.1) 

(3.2) 
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The microscopic model also requires a conservation equation of granular pseudo

thermal energy (PTE) (Lun et al. , 1984; Gidaspow, 1994) to be resolved: 

Finally, the volumetric continuity requires that: 

(3.6) 

The deviatoric stress tensor for both phases (for f = g, s) is given by: 

u e = Pel - T e (3.7) 

Applying t he divergence operator to the stress tensor in equation (3. 7) gives: 

\7 · u e = \7 Pe- \7 · r e (3.8) 
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Considering hypotheses of isotropic and Newtonian fluid for both phases, it comes 

that: 

(3.9) 

The strain rate tensor due to viscous plus pressure effects is defined by: 

1 [ T] 1 se = 2 'Vve + ('Vve) - 3 (V · v e) I (3.10) 

For t he gas phase in an isothermal flow t he dynamic viscosity is constant (J-L9 = 

constant) , aud following the Stokes hypothesis the second coefficient of viscosity is made 

null (.>..9 = 0) . The viscous stresses of gas phase are given by: 

(3.11) 

The viscous stresses of the solid phase are given by: 

(3.12) 

Then equations (3.3), (3.4) and (3.5) can be rewritten respectively as: 
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~ [ :t (PscPs8 ) + \1. (PscPsVse )] = - (Psl + Ts) : \lvs + \1. (Ks \18) + r slip- J coll- J vis 

(3.15) 

Equations (3.13) to (3.15) require closures for stresses related parameters which 

are trivial for the gas phase. The closures for stresses in the solid phase are developed 

next, together with closures for drag. 

3.1.1 Microscopic closures for solid phase stresses 

Thc microscopic closures for stresses in t he solid phase are derived from the Kinetic 

Theory of Granular Flows (KTGF) (Lun et al. , 1984), which is an analogy with the kinetic 

theory of dense gases. 

The KTGF theory is based on many studies such as the work of Jenkins and Savage 

(1983) among others. 

The flow of granular materiais is modeled for dilute and dense concentrations of 

solids account ing for kinetic and collisional contributions as mechanisms of transport of 

momentum and energy. 

The main assumptions for developiug this granular flow t heory are: 

• The granular material is composed of smooth, hard, inelastic, uniform and spherical 

parti eles. 

• Collisions are the principal mechanism of transport of momentum and energy. 

• Collisions are considered to be almost elastic, so t hat 1 - e « 1, where e is a 

collisional restitution coeffi.cient . 

On the basis of KTGF, Lun et al. (1984) developed a set of relations describing 

propcrties of particulates treated as a continuum, which are uscd as closures in microscopic 

two-fluid models for gas-solid flows. 

The dynamic viscosity (J-Ls) and the second coefficient of vis<.:osity (bulk viscosity) 

o f the solid phase (Às) are given by: 

(3. 16) 



where: 

(:* ç 
., - 2{3Ç 

1 
+ (Ps<Ps )2go8 

Ç = 5psdp (7r8)1
/

2 

96 

a= 1.6 

1+ e 
7]= - -

2 

The radial distribution function is given by: 

1 

go = 
1 

( <Ps ) 1/3 

<Ps,max 

where: 

<Ps,max = 0.65 

The pressure of the solid phase is given by (Gidaspow, 1994): 

The closures for Equation (3. 15) are as follows. 
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(3.17) 

(3. 18) 

(3.19) 

(3.20) 

(3 .21) 

(3.22) 

(3.23) 

(3 .24) 

(3.25) 
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The granular thermal conductivity is given by: 

(3.26) 

where: 

(3.27) 
1 + 6f31 

5(ps4>s)2go8 

75p8 dp( nG )112 

~/ = 
487]( 41 - 337]) 

(3.28) 

The rate of production of granular energy due to gas-particle slip is given by: 

(3.29) 

The rate of dissipation of granular energy by collisional and viscous damping are 

given by: 

(3.30) 

J vis = 3/38 (3.31) 

3.1.2 Microscopic closures for drag 

Momentum exchanges between the gas and the solid phases may happen due to a 

number of different interface forces . Descript ions of a variety of such forces may be found in 

Gidaspow (1994) and Enwald et aL (1996), for instance. Even though interface mechanisms 

like lift and virtual mass, for instance, may be of some relevance, it is recognized that the 
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stationary drag is the most relevant interface force to account for in fiuidized gas-solid 

fiows. Most of the literature relevant to the present work, which has been reported in 

Section 2, considers drag as the only relevant mechanism for microscopic momentum 

exchanges between phases. The present work follows the same path. 

The drag effect is actually the driving force for the motion of solid particles and 

clusters of particles in gas-solid fiuidization. 

Drag is a surface force that acts in the opposite direction to the relative motion of 

particle and fiuid. So it depends on the magnitude of the relative or slip velocity: 

(3.32) 

It is a resistive force acting on the particle against its movement , which may be 

assumed as comprised of two components (Faber, 1995). The first is t he form-drag which 

is due to the pressure stress. The second is the friction-drag, which is related to the fiuid 

viscous stress. 

The drag coefficient is usually defined as the ratio of t he friction drag force per 

unit area to the dynamic pressure based on the relative velocity: 

IFdl 
c D = -=--~A"'-.__ 

~Pglvr l 2 
(3.33) 

Experiments have shown a dependence of t he drag coefficient on the Reynolds 

number cv _ cv(R e), shape and orientation of the particles. For very small Reynolds 

numbers (Re < 0.2) t he friction drag is bigger than the form drag, and for values of 

(0.2 < R e < 1000) form drag may be more significant than the friction drag. 

A balance of momentum ovcr the stcady statc motion of a sphcrical particlc 

dropping in a quiescent infinite gas expanse provides an expression for a drag coefficient 

given by (Ranade, 2002; Clift et al. , 1978): 

(3.34) 

Where lvtl is t he free fall terminal velocity of the particle. Considering the fiuid 

also in motion, the same equation prevails providing the terminal velocity is replaced with 

the modulus of the slip velocity, that is: 

(3.35) 
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In order to account for the drag over an individual particle immersed in an 

homogeneous multiparticle system, Wen and Yu (1966) proposed the following corrected 

coefficient: 

(3.36) 

While this correction suits homogeneous systems, it does not suit an heterogeneous 

situation such as t hat in riser fl.ows. See figure (6). 

Figure 6: Different topologies in gas-solid fl.ow 

HOMOGENEOUS FLOW HETEROGENEOUS FLOW 

Source: Elaborated by the author. 

This correction does not account for the effects of cluster formation and evolution 

over the drag. The presence of clusters decreases the value of the drag coeffi.cient. Also, 

Reyuolds nurnber and concentration of solids greatly a.ffect fl.ow topology (clusters), thereby 

irnposing a strong effect on drag. 

Experiment shows tha.t the drag coefficient for heterogeneous fiows is much smaller 

than tha.t for homogeneous fl.ows (Wen and Yu, 1966). 

In homogeneous fl.ows there is a high contact surface between the fl.uid and the 

particles, and t he drag results relatively high. In heterogeneous fl.ows the clustering irnposes 

bypasses for the gas, dirninishing the contact surface, and the drag results relatively low. 

Gidaspow and Ettehadieh (1983) proposed a widely accepted revised correction on 

cD which is better suited to the solid concentrations typical of riser fl.ows. It gives: 

(3.37) 

Most of the literature in highly resolved simulations of gas-solid fl.ows that are 

relevant to the present work (see Section 2) apply a drag rnodel derived from Wen and 

Yu's developments, also accounting for Gidaspow and Ettehadieh's correction. The sarne 

path is followed in the present work. 
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Following the usual procedure t he drag force of the gas over t he solid phase per 

unit volume, as it appears in Equations (3.13) and (3.14), is given by: 

Where the drag coefficient j3 is given by: 

The single part i ele drag coefficient is brought from Rowe ( 1961): 

24 ) 
cD = -R (1 + 0.15Re~·687 

ep 
for Rep < 1000 

CD = 0.44 for R ep 2: 1000 

Where the Reynolds number based on particle size is given by: 

R ep = lvg- vsl dppgcpg 
f.lg 

3.2 Filtered Two-Fiuid Model 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

A formulation of the hydrodynami<..: filtered two-fluid model applied to gas-solid 

fiows is presented next alongside with the filtered closures that are required. T he filtered 

formulation is obtained by applying a volumetric filter over the microscopic rnodel equations, 

and then a Favre mass weighed filter , also defining effective stresses and drag as appropriate. 
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The filtered equatious are as follows: 

gt (pg(/;9 ) +v· (p9(i;9v9 ) = o (3.43) 

:t (Ps(f;s ) +V· (PsCfisvs) =O (3.44) 

The filtered volumetric continuity is given by: 

(3.47) 

The divergence of t he filtered stress tensor for both phases (for f= g, s) gives: 

V· ã e =V Pe- V· r e (3.48) 

(3.49) 

The filtered deviatoric stress tensor for the gas phase is given by: 

(3.50) 
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where the filtered gas pressure anct filtered gas viscosities are: 

(3.51) 

J-l fil,g = J-lg (3.52) 

Àg = o (3.53) 

P9 comes straight from the solution of the conservative Equations (3.43) to (3.46) . 

The filtered deviatoric stress tensor for the solid phase is given by: 

(3.54) 

The filtered solid pressure and filtered solid dynamic viscosity are given by: 

(3.55) 

J-l fil ,s = Jls (3.56) 

Jl
8 

and P 8 come from applying filtered parameters over Equations (3.16) and (3.25), 

respecti vel y. 

In Equations (3.50) and (3 .5..1) the filtered strain rate tensor (for I!= g, s) is given by: 

(3.57) 
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The Reynolds-like stresses (for .e = g, s) are defined by: 

(3.58) 

In analogy wit h the viscous stresses, the Reynolds-like stresses may also be ex

pressed in terms of effective parameters for pressures and viscosities (just like the usual 

analogy in turbulencc regarding viscous and Reynolds stresses, hypothcsis of Boussinesq). 

(3.59) 

Assuming isotropy, the normal components of t he Reynolds-like stresses define the 

effective pressure as: 

(3.60) 

The shear components of the Reynolds-like stresses define t he effective viscosity as: 

I 2 -
T shear,l = 1-lefJ,eS shear,e (3.61) 

where the shear component:; of the filterecl strain rate tensor (for e= g, s) are given 

by: 

(3.62) 
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Assuming isotropy, t h<:> effective viscosity results: 

1 -r~hear,el 
MeJJ,f. = I I 2 Sshear,e (3.63) 

Accounting for t he previous developments, Equations (3.45) and (3.46) can be 

rewritten as: 

:t (Ps4>svs) + \7 · (Ps4>svsvs) = - (VPs- \7 · -rs)- \7 ·r~ 
- 1Js (VP9 - \7 · r9 ) + (B~s + M1) + Ps1Jsg 

(3.65) 

In the abovc cquations, M 1 is t he filtered drag force of the gas over the solid phase, 

given by: 

(3.66) 

and B~s is the fluctuation of the buoyancy force of the gas over the solid phase, 

given by: 

(3.67) 

(B~s + M 1 ) in Equations (3.45) and (3.46) is defined as an effective interface 

interaction force. T his generalized force is usually expressed as proportional to t he filtered 

slip velocity: 

(3.68) 
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From this equation, the effective coefficient ( called here effective drag force co

efficient owing to t he predominance of drag in the concerning composition of forces) results: 

f3eff= /3(v9 -_vs) _ [(V'P9 - V' · T"9 ) - (V'P9 -V'·r9 ) ] 

(v9 - V 5 ) (v9 - V8 ) 

(3.69) 

Also, a drag coefficient correction H may be defined by relating t he effective drag 

coefficient to the filtered micro-scale drag coefficient: 

H = 1 - f3::_ff 
/3 

~ comes from applying filtered parameters over Equation (3.39) 

(3.70) 

The above filtered formulation requires sub-grid models for H , Pfil,s, /-lfil,s, Pene 

and /-lef j,e (for e = g, s) . It is t he aim o f t his wor k to provide information useful for the 

accurate correlation of t hose parameters to relevant independent variables (in t he present 

case, macro-scale independent variables associated to fl.ow topology). 

3.3 Numerical Simulations 

In this work highly resolved simulations with microscopic two-fluid modeling are 

performed for predicting the meso-scale of gas-solid dilute fluidized fl.ows. As quite refined 

grids are needed, no real domain can bc rcsolved, but only represcntative parts of it. Onc 

way of performing such a partial domain simulation is by applying periodic boundaries. In 

this procedure entrancejexit parallel boundaries are made to match each other , so that 

the fl.ow that enters through a given boundary is exactly the same the exits through its 

parallel match. This procedure is followed in t his work, and the domain is defined as a 

2D pcriodical square. Whilc 3D simulations are not carricd out owing to computational 

limitations, the performed 2D simulations are quite suitable in view of the qualitative 

behavior analysis that is pursued. 

As illustrated in Figure (7), the behavior of any domain average variable evolving 

through time iu a periodic domain simulation shows two main stages. In a first stage the 

system initiates from its initial condition and evolves until achieving a second stage, where 
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the va.riable keeps ftuctuating around a well defined mean va lue. T his is the so called 

statistical steady state regime. 

In t his work all t he ana.lyses are performed inside the statistical steady state regime, 

where the domain average solid volume fraction and the domain average gas Reynolds 

number are imposed const ants through init ial and boundary conditions . 

Figure 7: Typical behavior of the domain a.verage of any variable while simulating in a 
periodic domain. 

3.3.1 Numerical Procedure 

initial 
stage 

statistical steady 
state stage 

Source: Elaborated by the author. 

time 

T he complex system of coupled non-linear partial different ial equat ious of the 

two-ftuid models can only be solved by numerical procedures. T here are different options 

available for that, such as the commercial codes CF X and Fluent , and t he free open code 

MFIX. All of those codes are stable, and widely used to solve two-phase ftows under 

two-fluid modeling. Numerical models in commercial appliances like CFX and Fluent do 

not allow access to t he source code, thereby preventing any modifications on formulations 

and boundary condit ions. In this research t he MFIX code is used since it is free, and since 

it allows for code modifications when t hey are required , a feature t hat may be quite useful 

in future investigations . 

MFIX (Mult iphase Flow wit h Interphase eXchanges) (Syamlal et al., 1993) is a 

numerical code specific for gas-solid flow simulations, which includes two-fluid based fonnu

lations, developed and made available by NETL (National Energy Technology Laboratory, 

DOE-USA) . Its source code is open so that any modifications and implementations on 

both formulation a nd bounda ry conditions are allowed. MFIX is a FORTRAN written 

para llelized code. The governing equations in MFIX's two-fluid model are discretized 

t hrough the finite volume method . T he result ing numerical model is solved through a point 

by point numerical technique. Diffusive terms are discretized following the second order 

central differeucing scheme. For advection terms t here are various alteruative discretizing 

methods, ranging from the first order upwind method up to higher order TVD procedures. 



52 

da Silva, Cabezas-Gómez and Milioli (2006) tested some of the discretization procedures 

for advect ive terms in MFIX, and found the Superbee procedure to provide the best results 

for the simulation of a particular r iser fiow. The Superbee procedure is followed in t he 

current work. The pressure-velocity coupling is solved through the SIMPLE algorithm. 

The numerical code of MFIX is fully described in Syamlal (1998). 

3.3.2 Simulations 

The current highly resolved simulat ions were clone for a typical fiuid catalytic 

cracking particulate whose properties are described in Table (1) together with the gas 

properties. Those are usual properties already practiced in many previous works. 

Table 1: Physical properties o f gas and solid. 

Symbol Value Units Description 

dP 7.5 x 10 5 m P article diameter 
Ps 1500 kg/m3 Particle density 
p9 1.3 kgfm3 Gas density 
/-Lg 1.8 X w-5 kg I ( ms) Gas viscosity* 
e 0.9 - Coeffi.cient of restitution 

* At Normal Temperature and Pressure (293.15 K , 1 atm) 

The free fall t erminal velocity, Stokes and Froude numbers of the particulate result 

( see Section 1. 2). 

Vt = 0.2184 (m/s) (3.71) 

Stdp = 75.83 (3.72) 

Frdp = 64.83 (3.73) 

The simulations were done by imposing the domain average solid volume fraction 

(</>s) at specific values for each simulation: 0.05, 0.15 and 0.25. These particle concentrations 

cover gas-fiuidized topologies typical of riser fiows. 

(</>s) is enforced through t he init ial conditions, and is kept constant t hrough the 

simulations owing to continuity and to the periodical boundaries. 

The domain average gas Reynold number is also set constant in each simulation 

at controlled values. T he domain average gas Reynolds number (Re
9

) based on particle 



diameter is defined as: 

(Reg) = Pg(c/>s)(v g,y)dp 
Jl,g 
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(3.74) 

Under the suspension like condition, a gas pressure gradient in t he axial (vert ical) 

direction was imposed to be the same as the total weight of the gas and solid components. 

This gives: 

(3.75) 

6..P9 is imposed over t he whole domain in the axial direction , through the initial 

conditions , and is kept constant throughout the simulations. 

The suspension like conditions give rise to the st atistical steady state domain 

average gas axial velocities t hat define (Re9 )susp· Multiples of (Reg)susp define various 

levels of higher gas flow Reynolds number that were practiced. Just as for (cf>s) and 6..Pg, 

(Reg ) are also imposed through init ial conditions andare kept constant throughout the 

simulations. 

RUN: (c/J5 ) = 0.05 - 0.15 - 0.25 

(Re9 ) / (Re9 )susp = 1.00 
4.08 
8.15 

12.23 
16.30 
20.34 
24.45 

CELL: 1.25 x 1.25 mm.• 

FILTER: f:l f "' 4 <0.5 em) c 

8 (1 .0 em) 
16 (2.0 em) 

Figure 8: Run configurat ion 

16 em. 

Souree: Elaborated by t he author. 

DOMAIN: 16 x 16 em. 

GRID: 128 x 128 

Once (Reg) susp is known, t he ratio (Reg)/(Reg) susp is set t o a range from 1 to 

about 24 times that required to sustain a gas-solid like suspension . Actually, uniformly 

distributed values were set in the simulations: 1.0, 4.08, 8.15, 12.23, 16.30, 20.34 and 24.45. 

Table (2) show the complet e simulations schedule that was followed. About the 

dimensions of t hc domain, a two-dimensional domain of 16 x 16 em was applicd , wit h a 

numerical mesh of 128 x 128 grids, producing a grid size of 1.25 mm (previous result s 

show that grid sizes between 1 and 2 mm do provide grid size independent filt ered results, 

Agrawal et a l. , 2001. F ilter sizes (6.., ) of 0 .5 cm (4 cells ), l.O cm (8 cells ) and 2.0 cm 
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(16 cells) were considered (previous works show that filter sizes up to 1/ 4 (32 cells) of the 

domain size do provi de fil tered data independent o f domain size, Igci et al., 2008. Figure 

(8) shows the set up for all simulations. 

Table 2: Set up for simulations. 

Simulation (</Js) (lte9 )/(lte9 )susp 

1 1.00 
2 4.08 
3 8.15 
4 0.05 12.23 
5 16.30 
6 20.34 
7 24.45 
8 1.00 
9 4.08 
10 8.15 
11 0.15 12.23 
12 16.30 
13 20.34 
14 24.45 
15 1.00 
16 4.08 
17 8.15 
18 0.25 12.23 
19 16.30 
20 20.34 
21 24.45 

Source: Elaborated by the author. 

3.3.3 Filtering and Binning 

Once the highly resolved simulations are accomplished, the next step is filtering. 

The results are available for each dependent variable of the TFM. Among those variables 

are gas volume fraction (</Y9 ), solid volume fraction (<Ps), velocity vectors for gas (v 9 ) and 

solid (v 5 ), pressure for gas phase (P9 ) and solid phase (P5 ) . Fields of those variables in 

space and t ime are available for filtering. T he procedure consists in calculating volume 

and Favre averages over part ial volumes inside the domain (filters), and then using such 

averages to determine different filtered parameters of concern, such as those defined in 

Equations (3.55), (3.56), (3.60) , (3.63) and (3.70) . 

T he filter comprises a number of domain grid cells and, in the present work, is 

a square filter-window that is made to sweep throughout t he domain while collecting 

averages. Figure (9) illustrates a given window over the domain. T he filtering operation 

is repeated for as many snapshots as required inside the statistical steady state regime, 



55 

and under as many different filter sizes as desired. While filtering, averaged values are 

classified according to ranges of relevant filtered parameters (markers), and statistically 

averaged for each particular filter size. This is the binning operation. 

Figure 9: Filter-window 

CELL VARIABLES · ·· · FILTERED VARIABLES 

Source: Elaborated by the author. 

In the present work two markers are considered. The first marker is the filtered 

solid volume fraction (/>
5

, and the second marker is the filtered slip velocity V stip (following 

Milioli et al., 2013). 

The particle volume fraction c/Js is defined between [O- 1] but experiments show 

a practical top value c/Js,max = 0.65. This is the maximum value allowable for practical 

purposes (Igci and Sundaresan, 2011). 

In this work, t hat permissible range [O ~ c/Js ~ c/Js,max] is divided into 64 bins, so 

that each bin corresponds to a gap of l:l(/>
8 
= 0.01. For the second marker, the filtered slip 

velocity v slip, the range ( which actually rcsults from the simulations) is divided in to 80 

bins. Consequently, the storage of filtered data was carried out over 64 x 80 bins (this 

binning resolution was found adequate in previous works, Sarkar et al. , 2016) . The detailed 

procedure for filtering and binning can be found in van der Hoef et al. (2006) and lgci et 

al. (2008). 

In summary, one must consider a suitable number of snapshots of the flow field 

in the statistical steady state regime, so that good averaging statistics are obtained. A 

snapshot shows the flow field over the whole domain for a particular fixed time. Then a 

window ( or filter) must be defined over the domain comprising a number of numerical cells. 

Averaging over this region provides averaged or filtered data. The window is rnade to move 

in space all over the domain and in time through the various snapshots, and the collected 

averaged data are classified by ranges of suitable independent variables (markers) and 

stored into bins. Different window sizes will provide filtered results for different filter sizes. 
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4 RESULTS ANO DISCUSSION 

The following section shows the results that were obtained. In all results the filtered 

solid volume fractiou is the first marker and the dimeusiouless filtered slip velocity is t he 

second marker. 

T he dimensionless form of the filt ered slip velocity is calculated by dividing it by 

t he terminal velocity ( Vt); likewise the dimensionless filter size is obtained using the length 

scale vlfg. Table (3) shows the filters that were considered. 

T he effects of filter size over filtered parameters are well described by Igci et al. 

(2008), Igci and Sundaresan (2011), Milioli et al. (2013) , Agrawal et al. (2013), Sarkar et 

al. (2016). Owing to that no analysis is performed regarding the effects of filter size. 

Results in this chapter are for dimensionless filter size ~JI(vl/g) = 2.056 (i.e. filter 

1 em. x 1 em. or 8 cells x 8 cells). In the appendixes A, B and C results are also presented 

for filters with 4 and 16 cells. Results presented in the appendixes are quite similar to 

those presented in the next sections. 

Table 3: Values for filtering. 

Filter Filter size Dimensionless filter size 

f::!. f ~f 6-Jf (vi/g) 
( cell) (em.) (-) 

4 0.5 1.028 
8 1.0 2.056 
16 2.0 4.112 

Source: Elaborated by the author. 

Figure (10) shows results of the time evolution of the domain average dimensionless 

gas velocity in the axia l direction for suspension like condit ions for various (<Ps) . The 

graphs show pro:files oscillating around well established averages in the statistical steady 

state regime, which are used to determine the respective domain average gas Reynolds 

numbers showed in Table ( 4). 

Table 4: Reynolds number for suspension condit ion runs. 

(<Ps) 
0.05 0.15 0.25 

(Re9 ) sv.sp 4.67 2.26 0.96 

Source: Elaborated by the author. 
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Figure 10: Dimensionless gas velocity in the axial direction, (v9):usp' as a function of 
dimensionless time, t*, for the runs under suspension like conditions, for domain average 
solid volume fractions (c/Js) = 0.05 (a), 0. 15 (b) and 0.25 (c). 
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The Reynolds numbers for the other runs were established taking (Reg)susp as a 

reference. Table (5) depicts all t he values of Reynolds numbers (Reg) and the domain 

average solid volume fractions for the various runs. The ratio (Reg)I(Reg)susp was kept 

constant for the different (<Ps) that were practiced. 

Table (5) shows that as the concentration of solids in the fiow increases the Reynolds 

number decreases, as the presence of more particles exerts a higher drag holding effect 

over the gas. 

Table 5: Reynolds numbers for all runs. 

(</Js) 
(Reg)I(Reg)susp 0.05 0.15 0.25 

1.00 4.67 2.26 0.96 
4.08 18.21 9.21 3.92 
8.15 36.33 18.42 7.83 
12.23 54.54 27.63 11.75 
16.30 72.67 36.83 15.67 
20.34 90.71 46.04 19.54 
24.45 109.00 55.25 23.50 

Source: Elaborated by the author. 

For all the simulat ions t he statistical steady state regime was already established 

at about t * = 45 (Figure (10) shows that for the suspension like simulations). In all t he 

cases, t he filtering was performed in a time interval from t* = 45 to 450, which provided 

suitable statistics. 

4.1 Flow t opology 

Figure 11 shows how the flow topology is affected by (Reg) and (</;8 ) . The figure 

shows snapshots of the fiow for (<Ps) of 0.05, 0.15 and 0.25, and for (Reg) I (Reg)susp = 1.00, 

8. 15, 16.30 and 24.45. Comparing all the figures it can be noticed that both parameters 

have significant effect over the spatial distribution of particles throughout the domain as 

well as over the sizes and shapes of the solid structures. 

It is seen that an increase on (Reg) I (Reg)susp for a given (<Ps) causes the regions with 

higher solid concentrations ( clusters) to stretch in the axial direction, and the fiow field to 

grow increasingly homogeneous. Otherwise, an increase on (<Ps) for a given (Reg)I(Reg)susp 

gives rise to denser and thicker structures. 

The changes on topology observed in Figure 11 , as (<Ps) and (Reg)I(Reg)susp are 

varied, point towards related effects over relevant filtered pararneters such as the drag 

coefficient correction and stresses related filtered and effective parameters. This matter is 
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addressed next . It must be noticed that more detailed analysis related to effects of inside 

filtered parameters (i.e. pt and 2nd markers) will not be pursued here since, just like effects 

related to filter size, such trends are already well addressed in literature (Igci et al. , 2008; 

Igci and Sundaresan et al., 2011; Milioli et al., 2013; Sarkar et al. , 2016) . 

Figure 11: Grayscale plots of solid volume fraction in the domain inside t he statistical 
steady state regime, for simulations with domain average solid fractions (c/Js) = 0.05, 0.15 
and 0.25 (columns), and gas Reynolds number ratios (Re9 )/(Re9 )susp = 1, 8.15, 16.30, 
24.45 (rows) 
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4.2 Drag coefficient correction 

The drag coefficient correction H is a correction applied over t he filtered Wen 

and Yu's drag coefficient (which stands for homogeneous flows), so that an effective drag 

coefficient is derived accounting for both meso-scale filtered drag anel buoyancy fluctuation 

effects (see Equation (3.70)). H closing to zero means a topology closing towards a flow 

with uniformly distributed parti eles (i. e. closing towards homogeneity). Otherwise, as a 

flow becomes more and more heterogeneous, with clusters developing and growing larger 
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aud heavier and gas by-pass becoming more dominant, effective drag progressively looses 

relevance, and H doses to unity. 

Figure (12) shows the variation of H with filtered solid volume fraction, dimen

sionless filtered slip velocity and Reynolds number ratio, for a dimensionless filter size 

6JI (vU g) = 2.056. Figures (12a), (12b) and (12c) stand for different domain average 

solid volume fractions. 

It is clear from Figures (12a) , (12b) and (12c) that H changes significantly with 

filtered solid volume fraction and filtered slip velocity. The higher the filtered solid volume 

fraction and t he higher the filt ered slip velocity, t he higher H becomes. This implies that 

higher solid fractions and higher slip velocities are related to growing non-homogeneities 

on the fiow. 

The gas Reyuolds number ratio considerably affects H for all domain average solid 

volume fractions. This infiuence ís notíceable at lower fil tered slip velocities while for 

higher values of filtered slip velocities the effect tends to decline progressively. It can be 

claimed that Reynolds number has no effect on H at high filtered slip velocit ies for t he 

domain average solid volume fractions of 0.05, 0.15 and 0.25 that were considered. 

However, at relative small filtered slip velocities, the higher the Reynolds number 

ratio t he smaller H becomes. This effect is intensified with decreasing filtered slip velocity 

aud lower filtered solid volume fractiou. This is a cousequeuce of the fiow becorniug more 

homogeneous at high gas Reynolds numbers and lower solid volume fractions, which is 

supported by the solid volume fraction grayscale plots in Figure (11). 

Figure (13) shows the variation of the drag coefficient correction H with the filtered 

solid volume fraction and dimensionless filtered slip velocity, for domain average solíd 

volume fractions (4Ys) = 0.05, 0.15 and 0.25, and Reynolds number ratios (Reg)/ (Reg) susp 

from 1 t o 20.34. The graphs stand for a dimensionless filter size b.tf (v;/g) = 2.056. 

It is seen that changing (4Ys) from 0.15 to 0.25 has no effect on H for gas Reynolds 

number ratios (Reg)I(Re9 )susp up to 8.15 (Figures (13a) and (13b)). Ot herwise, for 

(Reg) I (Reg) susp > 8.15 t he profiles depart from each other at low filtered solid vol

ume fractions, and this difference becomes negligible for high filtered solid volume fractions. 

(Figures (13c) to (13!)) 

It can be seen t hat the filtered solid volume fraction from which the profiles collapse 

t ogether is lower for larger filtered slip velocit ies. Also, the profiles grow more apart from 

each other at higher gas Reynolds number ratios. As t he profiles for (4Ys) = 0.05, not 

only they depart from the others at any (Re9 ) I (Reg) susp' but t hey also present a different 

shapc. This changc of bchavior may be relatcd to topology changes, which need to be 

further invest igated. 
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Figure 12: Drag coefficient correction, H , as a funct ion of the filtered solid volume fraction, 
Cfis, for various gas Reynolds ratios (Reg ) I (Reg) susp = 1 (-)' 4.08 (o), 8.15 ( <l)' 12.23 
(O), 16.30 (r>), 20.34 (D) , and 24.45 (v), for the domain average solid volume fraction 
(c/Js) = 0.05 (a) , 0.15 (b) and 0.25 (c). The results stand for the dimensionless filtered 
axial slip velocities V slip,y/v t = 0.85, 2.03 and 4.85, and the dimensionless filter size 
~JI (vUg) = 2.056 
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Figure 13: Drag coefficient correction, H , as a function of the filtered solid volume fraction, 
(/>8 , for the domain average solid volume fractions (<Ps) = 0.05 (full lines), 0. 15 (gray 
symbols) and 0.25 (white symbols) , for gas Reynolds ratios (Reg)/(Reg)susp = 1 (a), 
4.08 (b), 8.15 (c) , 12.23 (d), 16.30 (e) , 20.34 (f). The results stand for the dimensionless 
filtered axial slip velocit ies vslip,y/vt = 0.85, 2.03 and 4.85, and the dimensionless filter 
size ~JI (vtfg) = 2.056 
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4.3 Filtered pressure and dynamic viscosity for solid phase 

Figures (14) and (15) show the variation of the dimensionless filtered solid pressure 

P fil,s, with filtered solid volume fraction and gas Reynolds number ratios, for the dimen

sionless filter size 6.JI (vUg) = 2.056. The figures stand for t he dimensionless filtered 

slip velocity V szip,ylvt = 0.85 and 4.85, respectively. Also, each figure stands for domain 

average solid fractions (r/Js) = 0.05, 0.15 and 0.25 (graphs a, b, c). 

The filtered solid pressure p fil,s shows a general decreasing tendency as (Reg) I (Reg) susp 

increases. T his comes as a consequence of t he filtered granular temperature considerably 

dropping due to a higher dissipation of granular energy as (Reg) grows high. For the 

lower Vstip,ylv t = 0.85, Pfil,s decreases by up to one order of magnitude as (Reg) I (Reg) susp 

increases from 1 to 24.45, for all (r/Js) (0.05, 0.15 and 0.25). For the higher Vslip,ylv t = 4.85, 

a decrease of P fil,s with (Reg) I (Reg) susp is still observed, but relatively smaller. See figure 

(15). 

Figure (16) shows graphs similar to those of Figure (14), but for the dimensionless 

filtered dynamic viscosity of t he solid phase /-lfil ,s given by equation (3.56) . 

The dropping of granular temperature also causes /-lfil ,s to decrease with increasing 

(Reg), similarly to what happened for P f i l,s· Again, variations of up to one order of 

magnitude are observed as (Re9 ) I (Re9 ) susp changes from 1 to 24.45. 
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Figure 14: Filtered solid pressure, Pfil,s, as a function of the filtered solid volume fraction, 
(/J8 , for various gas Reynolds ratios (Reg)/(Re9 )susp = 1 ( - ), 4.08 (o), 8.15 (<1), 12.23 
(O), 16.30 (t>) , 20.34 (0), and 24.45 (v), for the domain average solid volume fraction 
(<Ps) = 0.05 (a), 0.15 (b) and 0.25 (c) . The results stand for the dimensionless filtered axial 
slip velocity Y stip,y/v t = 0.85 and the dimensionless filter size 1::1JI (vUg) = 2.056 
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Figure 15: Filtered solid pressure, Pfil,s, as a function of the filtered solid volume fraction, 
<fis, for various gas Reynolds ratios (Re9 )/(Re9 )

5
u.sp = 1 (-), 4.08 (o), 8.15 (<1), 12.23 

(O), 16.30 (1>), 20.34 (D), and 24.45 (v), for the domain average solid volume fraction 
(c/Js) = 0.05 (a), 0.15 (b) and 0.25 (c). The results stand for the dimensionless filtered axial 
slip velocity V stip,y/v t = 4.85 and the dimensionless fil ter size !::itf (vUg) = 2.056 
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Figure 16: Filtered solid dynamic viscosity, /-lfil ,s , as a function of the filtered solid volume 
fraction, {fi5 , for various gas Reynolds ratios (Re9 )/(Re9 )susp = 1 (-), 4.08 (o), 8.15 (<1) , 
12.23 (O), 16.30 (1> ), 20.34 (0), and 24.45 (v), for the domain average solid volume fraction 
(c/Ys) = 0.05 (a), 0.15 (b) and 0.25 (c). The results stand for the dimensionless filtered axial 
slip velocity v slip,y/v t = 0.85 and the dimensionless filter size 6,.JI (v;/g) = 2.056 
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4.4 Effective pressures and dynamic viscosities for solid and gas phases 

Figure (17) shows the variatiou of the dimeusioule:::;s effective pressure of the solid 

and gas pha.ses, Peff ,s and Peff,g, with filtered solid volume fraction and gas Reynolds 

number ratios, for the dimensionless filter size !:lJI (vUg) = 2.056. The figure stands for 

the dimensionless filtered slip velocity v slip,ylvt = 0.85 and for the domain average solid 

fractions (c/Ys) = 0.05, 0.15 and 0.25 (graphs a, b, c) . 

The curves for Pef f,s are similar to those for Pf il,s · As expected t here was difference 

in order of magnitude between the gas and the solid effective pressures (Agrawal et al. , 

2001). Both Pef f,s and Pef J,g decrease for increasing (R eg) I (R eg) susp· The eff'ect o f (R eg) 

is higher at low (/;8 , and tends to disappear for high (/;5 • 

Figure (18) shows graphs similar to those of Figure (17), but for the dimensionless 

effective viscosities of both phases J.LeJ f ,s and J.LeJ J,g· 

Just like Peff,s and Peff,g, J.LeJJ,s and J.LeJJ,g also decrcase as (R eg) I (Reg ) susp in

creases. Also similarly, t he effect of (Reg) is higher at lower (/;
5

, and tends to disappear for 

high (/;5 . 

J ust as found for Pfil,s and J.L fil,s, also for Pef f ,s, Pef f ,g, J.LeJ f ,s and J.LeJ J,g, there are 

variations of up to one order of magnitude as (Re9 ) I (Re9 ) susp changes from 1 to 24.45. 

The fact that all the effective pressures and viscosities drop as (Reg) increases is a 

result o f the fiow becoming more homogeneous ( see Figure ( 11)), with consequent reduction 

of space fiuctuations on bot h phases. It is not iceable that this behavior is opposed to t hat 

of mono-phase turbulent fiows , where higher Reynolds numbers impose higher fiuctuations, 

and then higher effect ive pressures and viscosit ies. 
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Figure 17: Effective solid and gas pressures, Peff,s and Peff,g, as a function of the fil tered 
solid volume fraction, ([;5 , for various gas Reynolds ratios (Re9 ) / (Re9 ) susp = 1 (-), 4.08 
(o), 8. 15 (<l), 12.23 (O) , 16.30 (e>), 20.34 (D) , and 24.45 (v) , for the domain average 
solid volume fraction (4>s) = 0.05 (a) , 0. 15 (b) and 0.25 (c) . The results stand for the 
dimensionless filtered axial slip velocity Vslip,y/v t = 0.85 and the dimensionless filter size 
~JI (vUg) = 2.056 
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Figure 18: Effective solid and gas dynamic viscosities , f-leff,s and. f-leff,g, as a function of 
the filtered solid volume fraction, 7fis , for various gas Reynolds rat ios (Reg)/ (Reg) susp = 1 
(-), 4.08 (o), 8.15 (<l), 12.23 (O), 16.30 (1>), 20.34 (D), and 24.45 ('V), for the domain 
average solid volume fraction (cf>s) = 0.05 (a), 0.15 (b) and 0.25 (c) . The results stand for 
the dimensionless filtered axial slip velocity Ystip,y/vt = 0.85 and the dimensionless filter 
size D.JI (vUg) = 2.056 
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5 CONCLUSIONS ANO SUGGESTIONS FOR FUTURE WORK 

5.1 Conclusions 

Large scale simulations of gas-solid riser fiows require sub-grid closure models to 

recover effects filtered by the usual coarse grids that are applied. A widely practiced method 

used to derive such sub-grid models consists of filtering over results of meso-scale highly 

resolved simulations with microscopic two-ftuid mocl.eling. In the usual procedure, relevant 

fil tered parameters such as effective drag coefficients and stresses related parameters are 

correlated to suitable filtered variables such as the filtered solid volume fraction and the 

filtered slip velocity. It comes out that the provided correlations do not take any account of 

macro-scale conditions, namely the fiow topology, which is consistent with the usual scale 

separation assumption, even t hough such a separation of scales does uot hold in ftuidized 

gas-solid fiows. This work was intended to verify whether a macro-scale dependence is 

required to be accounted for in sub-grid correlation, and to what extent . In order to do 

so, two macro-scale parameten; usually associated to fiow topology were considered as 

for t heir effects over relevant filtered paramet ers. Those are t he macro-scale average solid 

volume fraction and the macro-scale average ga.s ftow Reynolds uumber. The developments 

were carried out for dilute ftow conditions typical of riser ftows. 

The current highly resolved simulations were performed using the well established 

microscopic two-ftuid model of the MFIX code, where microscopic closures for ftuid 

properties and stresses of the solid phase are brought from the kinetic theory of granular 

ftows (Lun et al. , 1984) , and the microscopic closure for drag is provided by Wen & Yu's 

drag model (Wen & Yu, 1966) . All the simulations were carried out for a unique particulate 

typicaJ of ftuid cata.lytic cracking widely studied in previous works. As a unique Froude 

number was considered, scaling was not treat ed at any extent. The simulations were 

performed over 2D periodical domains keeping the domain average gas ftow rate and solid 

volume fraction as constants. Results werc collcctcd ovcr statistical steady state conditions 

and through a time interval large enough to provide for robust statistics. Average filtered 

results were then gathered for particular filter sizes sweeping over the domain in space 

and time, and stored as a function of relevant filtered variables (i.e. filtered solid volume 

fraction and filtered slip velocity) , for each pair of macro-scale conditions imposed in the 

simulations (i.e. domain average solid volume fraction and domain average gas Reynolds 

number). 

Results showed considcrablc topology impacts as the conccrning macro-scalc pa

rameters were varied, with very significant effects over t he filtered parameters of interest, 

namely the drag coefficient correction, and the filtered and effective pressures and vis

cosities of both phases. T he main conclusions that were drawn from t he results are as 
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follows: 

1. Grayscale plots of solid volume fraction over the whole domain, for snapshots inside 

t he statistical steady state regime, show a cousiclerable effect over the fiow topology 

of both macro-scale parameters, i.e. the domain average solid volume fraction and 

the domain a ver age gas Reynolds number. An increase on gas Reynolds number 

ratio for a given domain average solid volume fraction causes the regions with higher 

solid concentrations ( clusters) to stretch in the axial direction, and the fiow field 

to grow increasingly homogeneous. Otherwise, an increase on domain average solid 

volume fraction for a given gas Reynolds number ratio gives rise to denser and thicker 

structures. Effects similar to those were reported by Milioli and Milioli (2011) for a 

much coarser particulate (Frp = 1235.4), even though the current particulate Froude 

number is about 19 times smaller. This similitude of behavior is suggestive having 

in view future scaling concerns. 

2. The drag coefficient correction, H , stands for a correct ion over the filtered Wen and 

Yu 's drag coefficient, which is suitable to homogeneous fiows, in order to provide for 

an effective drag coefficient suitable to heterogeneous fiows. Therefore, the 1:imaller H 

is the more homogeneous is t he fiow. Irrespective of the domain average solid volume 

fraction, t he current results show that a higher domain average gas Reynolds number 

causes H to decrease, an effect that becomes more prominent at lower filtered solid 

volume fractions and lower filtered slip velocities. This behavior comes from t he fiow 

bccoming more homogencous at higher gas Rcynolds numbers and lowcr solid volume 

fractions, which is supported by solid volume fraction grayscale plots. In regions of 

lower slip velocities H is lower and, as t he gas Reynolds number increases, the spread 

among the profiles become larger and grow through a larger range of solid volume 

fractions. In summary, t he drag coefficient correction was significantly affected by the 

average gas Reynolds number noticeably at lower filtered solicl volume fractions and 

lower filtered slip velocities, no matter the average solid volume fraction. Otherwise, 

the effect of t he average solid volume fraction over the drag coefficient correction 

was significant only at higher gas Reynolds numbers. 

3. The filtered and effective pressure and viscosity of the solid phase are all considerably 

decreased as the domain average gas Reynolds number increases. For the gas Reynolds 

numbers that were imposed , ranging from suspension like condit ions up to conditions 

dose to pneumatic transport, all of t hose parameters experimented variations of 

up to one order of magnit ude. Regarding the filtered parameters, this comes as 

a consequence of the filtered granular temperature considerably dropping due to 

a higher dissipation of granular energy as the gas Reynolds number grows high. 

Regarding the effective parameters, t his comes as a result of the fiow becoming 
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more homogeneous at higher gas Reynolds numbers, with consequent reduction of 

space fluctuations on both phases. It is noticeable that the dropping with increasing 

gas Reynolds numbers of the effective pressures and viscosities in gas-solid flows is 

opposcd to what happens in mono-phase turbulence, where higher Reynolds numbers 

impose higher fl.uctuations, and thereby higher effective pressures and viscosities. In 

summary, t here were significant qua.ntitative variations of all the stresses related 

filtered parameters, which were even more intense at high a.verage gas Reynolds 

numbers. T he effective pressure and viscosity of t he gas phase have similar behavior 

as compared to those for the solid phase. 

The present results allow to conclude that the currently usual sub-grid modeling 

tha.t COlTelates relevant filtered parameters to inside filter parameters alone is clearly 

insuffi.cient. Evidence was presented pointing that a more rigorous sub-grid modeling 

must also embrace topology related effects, the macro-scale average solid volume fraction 

and the macro-scale average gas Reynolds number standing as relevant parameters to be 

accounted for . 

5.2 Some suggestions for future work 

The accuracy of the current sub-grid analysis of gas-solid fluidized fl.ows based 

on highly resolved simulations with microscopic two-fl.uid modeling ultimately depends 

on the accuracy of the microscopic formulation and closures that are applied. Therefore, 

microscopic two-fluicl model enhancements and improved closures are always wa.nted. Some 

possible issues for future research may include: 

1. Newtonian rheology is usually assumed for both phases, the gas as well as the solid 

phase that accounts for the particulate treated as a continuum. While the Newtonian 

assumption sounds correct for the gas phase, there is no evidence that it is equally 

adequate for the solid phase. This is an issue for further research. 

2. Thc grids on highly rcsolved simulations are still quite coarse from the point of view 

of the gas phase, so that under-grid scale gas turbulence is filtered. At one side, direct 

numerical simulation is still unfeasible in view of the domain sizes that need to be 

resolved and owing to computationallimitations. At another side, gas turbulence still 

needs to be accounted for in arder to unveil its possible effects on fl.ow heterogeneity 

anel thereby on filtered pa.rameters. Knowledge is very limited in those fields. While 

there is some knowledge on how particulates interact with gas turbulence depending 

on pa.rticle Stokes number, little is known regarding interactions with structures of 

particles, no matter their Stokes number. T his is an issue waiting for new ideas. 
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3. Most highly resolved simulations analyses on literature concentrate on monodisperse 

particulates. As real gas-solid fiows are usually characterized by wide granulometry 

distributions, polidisperse analyses are needed. 

4. Hydrodynamic scaling is quite a challenge in gas-solid fiuidized fiows. In order to 

exploit that matter, much extensive computational experimentation is needed for 

various Froude number particulates and macro-scale fiow conditions. That would be 

a start for addressing hydrodynamic scaling in the field. 

5. The most practiced microscopic closure for drag comes from a well accepted correla

tion by Wen and Yu (1966), which nevertheless was originally derived for gas-liquid 

unifonnly fiuidized fiows. This situation does not suit the very heterogeneous gas

solid fiuidized fiows, and new approaches are needed. A possibility would be to derive 

new micro-scale correlations from predictions with discrete element methods, for 

instance. 

6. Besides drag, other interface effects among phases may become relevant in gas-solid 

fiuidized fiows. Efl'ects such as friction, electrostatic and moisture could be assessed 

in future highly resolved simulation analyses. 

7. The kinetic theory of granular fiows, which is used to derive closure propert ies for 

solid phases treated as continua, is still to be validated. This is a challenge waiting 

for new fresh ideas. 
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APPENDIX A - DRAG COEFFICIENT CORRECTION, H 

Drag coefficient correction, H, for the dimensionless filter sizes ~JI (vUg) = 1.028 
and 4.112. 
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Figure 19: Drag coefficient correction, H, as a function of the filtered solid volume fract ion, 
(fi5 , for various gas Reynolds ratios (Re9 )/(Re9 )susp = 1 (- ), 4.08 (o), 8.15 (<1) , 12.23 
(O), 16.30 (t> ), 20.34 (D), and 24.45 (v), for the domain average solid volume fraction 
(c/Js) = 0.05 (a), 0.15 (b) and 0.25 (c). The results stand for the dimensionless filtered 
axial slip velocities v slip,y/v t = 0.85, 2.03 and 4.85, and the dimensionless filter size 
61 / (vUg) = 1.028 
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Figure 20: Drag coefficient correction, H, as a function of the filtered solid volume fraction, 
~8 , for various gas Reynolds ratios (Re9 )/(Re9 )

5
usp = 1 (- ), 4.08 (o), 8.15 (<l), 12.23 

(O), 16.30 (1> ), 20.34 (0) , and 24.45 ('il) , for the domain average solid volume fraction 
(<l>s) = 0.05 (a), 0.15 (b) and 0.25 (c) . The results stand for the dimensionless filtered 
axial slip velocit ies v slip,y/V t = 0.85, 2.03 and 4.85, and the dimensionless filter size 
6.1 / (vZfg) = 4.112 
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Figure 21: Drag coefficient correction, H , as a funct ion of the filtered solid volume fraction, 
Cfis, for the domain average solid volume fractions (</>s) = 0.05 (full lines) , 0.15 (gray 
symbols) and 0.25 (white symbols), for gas Reynolds ratios (Reg)/ (Reg) sv.sp = 1 (a), 
4.08 (b), 8.15 (c), 12.23 (d) , 16.30 (e) , 20.34 (f). The results stand for the dimensionless 
filtered axial slip velocities Yslip,y/vt = 0.85, 2.03 and 4.85, and the dimensionless filter 
size b.JI (vl/g) = 1.028 
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Figure 22: Drag coefficient correction, H , as a function of the filtered solid volume fraction, 
(fi5 , for the domain average solid volume fractions (c/>s) = 0.05 (full lines), 0.15 (gray 
symbols) and 0.25 (white symbols) , for gas Reynolds ratios (Reg)/(Reg)s .. s p = 1 (a), 
4.08 (b) , 8.15 (c) , 12.23 (d) , 16.30 (e), 20.34 (f). The results stand for the dimensionless 
filtered axial slip velocit ies v slip,y / vt = 0.85, 2.03 and 4.85, and t he dimensionless filter 
size ó.JI (vUg) = 4.112 
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Figure 22: Drag coefficient correction, H , as a function of the filtered solid volume fraction, 
4>s , for the domain average solid volume fractions (c/Js) = 0.05 (full lines), 0.15 (gray 
symbols) and 0.25 (white symbols), for gas Reynolds ratios (Re9)/(Re9 )sv.sp = 1 (a) , 
4.08 (b), 8.15 (c) , 12.23 (d ), 16.30 (e) , 20.34 (f). The results stand for the dimensionless 
filt ered axial slip velocit ies Y stip,y/vt = 0.85, 2.03 and 4.85, and the dimensionless filter 
size 6.1/ (vUg) = 4.112 
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APPENDIX B - FILTERED SOLID PRESSURE, Pfil,s ANO DYNAMIC 
VISCOSITY Jl-Jil,s 

89 

Filtered solid pressure, Pfil ,s and dynamic viscosity Jl-Jil ,s for the dimensionless filter 
sizes !1JI (v;/g) = 1.028 and 4.112. 
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Figure 23: Filtered solid pressure, P fil,s , as a function of the filtered solid volume fraction, 
(/Js, for various gas Reynolds ratios (Re9 )/(Re9 )susp = 1 (-) , 4.08 (o) , 8.15 (<J) , 12.23 
(O), 16.30 (t> ), 20.34 (D), and 24.45 (v), for the domain average solid volume fraction 
(r/>s) = 0.05 (a), 0.15 (b) and 0.25 (c). The results stand for the dimensionless filt ered axial 
slip velocity Y slip,y/v t = 0.85 and the dimensionless filter size D..JI (vt/g) = 1.028 
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Figure 24: Filtered solid pressure, PfiL,s. as a function of the filtered solid volume fraction, 
{fi5 , for various gas Reynolds ratios (Re9 )/(Re9 )susp = 1 (- ), 4.08 (o) , 8.15 (<1), 12.23 
(O), 16.30 (t> ), 20.34 (0), and 24.45 (v), for the domain average solid volume fraction 
(<l>s) = 0.05 (a), 0.15 (b) and 0.25 (c). The results stand for the dimensionless filtered axial 
slip velocity Ystip,y/vt = 0.85 and the dimensionless filter size 6.1 / (vUg) = 4.112 
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Figure 25: Filtered solid dynamic viscosity, /-tfil ,s, as a function of the filtered solid volume 
fraction, {fi8 , for various gas Reynolds ratios (Re9 )/(Re9 )susp = 1 (-), 4.08 (o), 8.15 (<1), 
12.23 (O), 16.30 (t>), 20.34 (D), and 24.45 (v) , for the domain average solid volume fraction 
(c/Js) = 0.05 (a) , 0.15 (b) and 0.25 (c). The results stand for t he dimensionless filtered axial 
slip velocity V slip,y/v t = 0.85 and the dimensionless filter size !J.1 j (vZ/g ) = 1.028 
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Figure 26: Filtered solid dynamic viscosity, /-tfil,s , as a function of the filtered solid volume 
fraction, 4Ys, for various gas Reynolds ratios (Reg)/ (Reg) susp = 1 (- ), 4.08 (o), 8.15 ( <1), 
12.23 (O), 16.30 (1> ), 20.34 (D), and 24.45 (V), for the domain average solid volume fraction 
(c/Js) = 0.05 (a) , 0.15 (b) and 0.25 (c). The results stand for t he dimensionless filtered axial 
slip velocity v slip,y/vt = 0.85 and the dimensionless filter size !::1JI (vUg) = 4.112 
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