• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.18.2013.tde-19112013-165611
Documento
Autor
Nombre completo
André Luiz Barbosa Nunes da Cunha
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2013
Director
Tribunal
Setti, José Reynaldo Anselmo (Presidente)
Figueiredo, Luiz Henrique de
Gonzaga, Adilson
Kraus Junior, Werner
Widmer, João Alexandre
Título en portugués
Sistema automático para obtenção de parâmetros do tráfego veicular a partir de imagens de vídeo usando OpenCV
Palabras clave en portugués
Diagrama espaço-tempo
Linguagem C++
Modelagem do background
OpenCV
Segmentação
Texturas
Tráfego veicular
Resumen en portugués
Esta pesquisa apresenta um sistema automático para extrair dados de tráfego veicular a partir do pós-processamento de vídeos. Os parâmetros macroscópicos e microscópicos do tráfego são derivados do diagrama espaço-tempo, que é obtido pelo processamento das imagens de tráfego. A pesquisa fundamentou-se nos conceitos de Visão Computacional, programação em linguagem C++ e a biblioteca OpenCV para o desenvolvimento do sistema. Para a detecção dos veículos, duas etapas foram propostas: modelagem do background e segmentação dos veículos. Uma imagem sem objetos (background) pode ser determinada a partir das imagens do vídeo através de vários modelos estatísticos disponíveis na literatura especializada. A avaliação de seis modelos estatísticos indicou o Scoreboard (combinação de média e moda) como o melhor método de geração do background atualizado, por apresentar eficiente tempo de processamento de 18 ms/frame e 95,7% de taxa de exatidão. A segunda etapa investigou seis métodos de segmentação, desde a subtração de fundo até métodos de segmentação por textura. Dentre os descritores de textura, é apresentado o LFP, que generaliza os demais descritores. Da análise do desempenho desses métodos em vídeos coletados em campo, conclui-se que o tradicional método Background Subtraction foi o mais adequado, por apresentar o melhor tempo de processamento (34,4 ms/frame) e a melhor taxa de acertos totais com 95,1% de média. Definido o método de segmentação, foi desenvolvido um método para se definir as trajetórias dos veículos a partir do diagrama espaço-tempo. Comparando-se os parâmetros de tráfego obtidos pelo sistema proposto com medidas obtidas em campo, a estimativa da velocidade obteve uma taxa de acerto de 92,7%, comparado com medidas de velocidade feitas por um radar; por outro lado, a estimativa da taxa de fluxo de tráfego foi prejudicada por falhas na identificação da trajetória do veículo, apresentando valores ora acima, ora abaixo dos obtidos nas coletas manuais.
Título en inglés
Automatic system to obtain traffic parameters from video images based on OpenCV
Palabras clave en inglés
Background modeling
C++ language
OpenCV
Segmentation
Space-time diagram
Textures
Traffic surveillance
Resumen en inglés
This research presents an automatic system to collect vehicular traffic data from video post-processing. The macroscopic and microscopic traffic parameters are derived from a space-time diagram, which is obtained by traffic image processing. The research was based on the concepts of Computer Vision, programming in C++, and OpenCV library to develop the system. Vehicle detection was divided in two steps: background modeling and vehicle segmentation. A background image can be determined from the video sequence through several statistical models available in literature. The evaluation of six statistical models indicated Scoreboard (combining mean and mode) as the best method to obtain an updated background, achieving a processing time of 18 ms/frame and 95.7% accuracy rate. The second step investigated six segmentation methods, from background subtraction to texture segmentation. Among texture descriptors, LFP is presented, which generalizes other descriptors. Video images collected on highways were used to analyze the performance of these methods. The traditional background subtraction method was found to be the best, achieving a processing time of 34.4 ms/frame and 95.1% accuracy rate. Once the segmentation process was chosen, a method to determine vehicle trajectories from the space-time diagram was developed. Comparing the traffic parameters obtained by the proposed system to data collected in the field, the estimates for speed were found to be very good, with 92.7% accuracy, when compared with radar-measured speeds. On the other hand, flow rate estimates were affected by failures to identify vehicle trajectories, which produced values above or below manually collected data.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
ANDRECUNHA.pdf (5.66 Mbytes)
Fecha de Publicación
2013-11-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.