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RESUMO 

 

MENDES, O. B. B. Avaliação da transferibilidade do modelo preditivo de colisões 

do Highway Safety Manual para rodovias multipistas rurais no Brasil. Dissertação 

(Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São 

Carlos, 2022. 

 

O método preditivo do Highway Safety Manual (HSM) estima a frequência de 

acidentes aplicando uma função de desempenho de segurança (SPF), em que o fator 

de calibração estima o ajuste para as condições locais. Para avaliar a transferibilidade 

em condições diferentes daquelas em que o modelo foi desenvolvido, este trabalho 

traz uma nova abordagem por meio da avaliação de rodovias brasileiras pedagiadas. 

Assim, cinco rodovias rurais de multipistas foram segmentadas e avaliadas conforme 

recomendação do HSM. Para reduzir o problema da subnotificação de dados de 

acidentes, o método foi desenvolvido para dados de colisões classificados como fatais 

ou com vítimas (FI) em comparação com os dados totais. O fator de calibração local 

(Cx) encontrado foi 2,62 para todos os tipos de acidentes e 2,35 apenas para FI. As 

medidas de avaliação de qualidade de ajuste (Goodness of Fit - GOF), foram Desvio 

Médio Absoluto (MAD), Erro Médio Percentual Absoluto (MAPE), Erro Quadrático 

Médio (RMSE), R2 e gráficos de colisões observadas versus estimadas para diferentes 

cenários. As medidas de GOF para avaliar o desempenho do HSM mostram que a 

análise com todos os tipos de severidade das colisões apresenta melhor desempenho 

em comparação ao FI. Por fim, como 2020 foi um ano atípico, em que o tráfego em 

todo o mundo foi alterado pela pandemia de COVID-19, este estudo teve também 

como objetivo avaliar a aplicação do modelo de previsão calibrado a uma perturbação 

real repentina no comportamento do tráfego. O método do HSM foi aplicado para 

prever colisões em 2020 com o Cx obtido pelos quatro anos anteriores. O resultado 

foi que para 2020, o Nobservado foi cerca de 10% inferior ao Nprevisto calibrado para todos 

os tipos de acidentes. No entanto, a previsão calibrada de colisões de FI foi muito 

próxima da contagem observada. 

 

Palavras-chave: Modelo de Previsão de Acidentes. Highway Safety Manual. 

Transferibilidade. Fator de Calibração Local. Segurança Viária. 

  



 

 

ABSTRACT 

 

MENDES, O. B. B. Assessing the transferability of the Highway Safety Manual 

crash prediction model for divided rural multilane highways in Brazil. Thesis 

(Master) - São Carlos School of Engineering of, University of São Paulo, São Carlos, 

2022. 

 

The predictive method presented in the Highway Safety Manual (HSM) estimates the 

crash frequency by combining a safety performance function (SPF) with crash 

modification factors (CMFs) and a calibration factor to consider local conditions. This 

study aims to assess the performance of HSM predictive models when applied to a 

different condition, such as found on Brazilian roads, by evaluating rural multilane 

highways. Five divided four-lane highways were segmented and considered following 

HSM guidelines. To deal with the possible underreporting number of Property Damage 

Only (PDO) crashes, further investigation was developed for total and Fatal or Injury 

(FI) severity. Calibration factors (Cx) were calculated, 2.62 for total and 2.35 for FI 

crashes. The goodness of fit (GOF) tests applied were Mean Absolute Deviation 

(MAD), Mean Absolute Percentage Error (MAPE), Mean Squared Error (RMSE), R2, 

and observed versus estimated collisions graphs for different scenarios. The 

Goodness of Fit measures to assess the HSM performance shows that models for total 

crashes perform better than FI. Finally, as 2020 was an atypical year in which the 

COVID-19 pandemic altered traffic patterns worldwide, this study aimed to assess the 

application of the calibrated prediction model to a sudden disturbance in traffic 

behavior. The HSM method was applied to 2020 using the Cx obtained from the four 

previous years. The result showed that for 2020, the observed counts were about 10% 

lower than the calibrated predictive model estimate of crash frequency for all types of 

crashes. However, the calibrated prediction of FI crashes was very close to the 

observed counts. 

 

Keywords: Crash Prediction Models; Highway Safety Manual; Transferability; Local 

Calibration Factor; Road Safety. 
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 INTRODUCTION 

  

After implementing some of the Decade of Actions for Road Safety (DARS) 

measures, the number of deaths due to road crashes in Brazil has decreased (F. R. 

de Andrade & Antunes, 2019). However, the problem persists, causing more than 15 

deaths per 100 thousand inhabitants yearly (DATASUS, 2020). This number is about 

three times higher for emerging countries than developed countries (World Health 

Organization, 2018). Various factors can contribute to the high number of crashes; 

thus, data-driven approaches can help identify road safety issues.  

Thereat, it is reasonable for nations to develop strategies to improve this 

situation, involving stricter laws to control the principal risk factors and higher 

investment in projects and research that advances road safety. Understanding the 

factors that significantly impact the probability of crashes makes it possible to predict 

the chances of their occurrence (Hauer, 2004, 2015; Hauer et al., 2012). 

Besides, as opposed to the reduction in the total number of people who died on 

federal highways between 2009 and 2019 (Figure 1), the proportion of fatal crashes in 

Brazil has increased (Figure 2). Although the increase might be related to the recent 

crash reporting system changes since 2015 leading to an underreported number of 

Property Damage Only (PDO) crashes (Brazil Ministry of Justice and Public Security, 

2015), further investigation of road safety on Brazilian highways is necessary. 

 



 

 

 

Figure 1 - Number of deaths on Brazilian Federal Highways. Source: Confederação Nacional do 

Transporte, 2020. 

 

 

 

Figure 2 - Proportion of Fatal Accidents Traffic-related in Brazil. Source: Confederação Nacional do 

Transporte, 2020. 

 

An essential question of how to support decision-makers in evaluating road 

safety countermeasures arises. Hence, data-driven approaches such as developing 

Safety Performance Functions (SPF) presented in the Highway Safety Manual (HSM) 

can help jurisdictions identify crash-contributing factors, especially in places where 

data is not extensively available, and in the absence of local SPFs (Cunto et al., 2015; 
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Elagamy et al., 2020; Farid et al., 2016, 2019; Feng et al., 2020; Silva, 2017). Hence, 

this manuscript aims to assess the transferability of HSM predictive models when 

applied to an international context, such as on Brazilian highways. 

  



 

 

 LITERATURE REVIEW 

 

2.1 Crash Prediction Models 

 

The crash prediction models presented in the literature generally explain crashes 

as a consequence of driving performance that does not suit the skills that the road 

environment demands, either due to traffic flow, geometry attributes, road signs of the 

route traveled, or vehicular characteristics (Aljanahi et al., 1999; Chang & Mannering, 

1999; Geurts & Wets, 2003; Hydén & Várhelyi, 2000; Ivan et al., 1999; Wright et al., 

1986). Some of these concepts have been developed over time through the SPF, 

which are statistical models that estimate the crash rate for a given period or exposure 

(Abdel-Aty & Radwan, 2000; Buyco & Saccomanno, 1988; Charnes et al., 1982; 

Hauer, 2004; Lord & Miranda-Moreno, 2008; Oppe, 1979; Quddus, 2008). The 

statistical analysis methods were first based on studies of risk indicators using only the 

absolute number, frequency, and crash rate, traditionally defined as determined in 

Equation 1.  

 

λ = N × p       (1) 

 

Where λ is the expected crash number, N is the exposure, and р is the crash 

rate. While authors such as Foldvary (1979) studied the mean and variance to develop 

their SPF, Oppe (1979), Ceder & Livneh (1982) obtained models using Multiple Linear 

Regression (MLR), where the dependent variable related to the rate or number of 

crashes is a function of variables related to traffic, speed and skid resistance on the 

pavement. Their analysis achieved reasonable results: the number of single-vehicle 

crashes tends to decrease as traffic flow increases, while the opposite happens to 

multiple-vehicle crashes. However, the use of MLR eventually became inadequate to 

make probabilistic statements.  

As Bernoulli's experiment, Poisson regression generated better statistic results 

for crash prediction. Nevertheless, its limitation is to identify factors that affect each 

occurrence due to the risk of invalidating test hypotheses because of incorrect 

confidence limits established in significant parameters (Jovanis & Chang, 1986). 

These models evolved to the Poisson log-linear distribution regression, which 

allows testing the statistical significance of the partial and marginal association 



 

 

between any combination of categorical factors (Buyco & Saccomanno, 1988). 

However, this method can lead to overestimation of levels of significance related to 

regression parameters. 

These unsatisfactory properties led researchers to test the Negative Binomial 

Model (NBM), also called the Poisson-Gamma model, and commonly applied to deal 

with an overdispersion in the count data. Miaou (1994) used the Maximum Likelihood 

method to estimate unknown parameters of the model and a mathematical expression 

that allows a variation to exceed the average. However, the application of NBM and 

Poisson regression models does not allow the influence of more than one underlying 

process on the frequency of accidents. 

After years of research in this subject, studies began to apply more frequently 

the Empirical Bayes method to estimate the expected number of crashes at individual 

sites for one year (Miaou & Lord, 2003). Since then, a question raised by the scientific 

community has been about small samples, which are common due to the lack of 

resources to carry out data gathering in some entities of the transport system. This 

characteristic affects the parameters that the model must have and may have biased 

results although the distinct advantage of the EB method is that it can be readily applied 

once a calibrated model is developed (AASHTO, 2010). 

 

2.2 The Highway Safety Model 

 

After the publication of the HSM, evaluating crashes using analytical techniques 

and tools to quantify the effects that result from decisions in the road network's 

planning, design, operation, and maintenance was systematized in research-based 

work. The SPFs found in the HSM were built from negative binomial (NB) regression 

models using a procedure called generalized linear models (GLM) (Srinivasan et al., 

2013) based on the infrastructure and the operational characteristics of the element to 

be evaluated.  

As shown in Equation 2 (AASHTO, 2010), the predicted number of crashes 

(𝑁𝑆𝑃𝐹𝑥) is the result of an SPF, which is the equation presented for each entity on its 

base conditions, magnified by a calibration factor 𝐶𝑥 and multiple Crash Modification 

Factors (CMFs). Each CMF reflects the operational and geometric characteristics (y) 

of an entity (x). 

 



 

 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  𝑁𝑆𝑃𝐹𝑥 × 𝐶𝑥 × (𝐶𝑀𝐹1𝑥 × 𝐶𝑀𝐹2𝑥 × … × 𝐶𝑀𝐹𝑦𝑥)  (2) 

 

 The calibration factor (Cx) should be calculated as expressed by Equation 3. 

The computed Cx is rounded to two decimal places to apply the predictive model. 

 

𝐶𝑥 =
∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠

∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠
     (3) 

 

For each facility type and year, it is recommended to calculate correspondent 𝐶𝑥 

to adjust the model. Replacing default values with locally derived values will improve 

the reliability of the predictive model. To apply the method, the HSM recommends a 

set of 30 to 50 sites as a minimum desirable sample representing at least 100 crashes 

per year (AASHTO, 2010). After the first calibration, the HSM recommends applying 

the Empirical Bayes (EB) method to provide more reliable results and compensate for 

the regression-to-the-mean effect. 

 

2.3 Previous work on the transferability of the HSM model 

 

As it has been more than ten years since the first edition of the HSM was published, 

many researchers have studied the HSM predictive model's impact, transferability, and 

parameters for different countries. Sun et al. (2013) have stated the challenges, 

practical solutions, and results of a statewide HSM calibration at rural divided multilane 

highways in the US. The calibration results indicated that the HSM predicted Missouri 

crashes reasonably well (Cx = 0.98). 

Another study described limitations in applying HSM predictive models for rural 

two-lane roads in Arizona (Srinivasan et al., 2016). At first, the study highlighted the 

importance of gathering a larger sample (196 sites, 509 homogeneous segments with 

about 151 total crashes per year) instead of limiting itself to the HSM's 

recommendation of 30 to 50 sites with at least 100 crashes per year. Second, it shows 

the importance of exploring the estimation of calibration functions whenever calibration 

factors do not fit local data well. The overall calibration factor was 1.079, which is also 

close to 1.00. It shows that the HSM model has succeeded well for the US cases, as 

expected. 



 

 

The calibration factor for other countries, such as Italian motorways, showed that 

the HSM model (Cx, not calibrated = 1.26) underestimates the observed crash counts 

(D'Agostino, 2014). La Torre et al. (2019) concluded that applying a jurisdictional-

specific base model based on the HSM's SPF represents a solid and reliable tool for 

practitioners to perform crash prediction for the Italian freeway network. 

For Brazilian studies, Rodrigues-Silva (2012) applied the HSM two-lane highways 

predictive model for the São Paulo state and found a calibration factor of 3.73. Barbosa 

et al. (2014) developed SPFs for intersections in Belo Horizonte, Brazil, and the 

calculated Cx was 2.06 following the HSM calibration procedure. Another study for the 

northeast of Brazil, using Fortaleza city data, found a calibration factor of 0.65. The 

discrepancy in the result shows how challenging is to develop an SPF that can 

represent a countrywide model.  

The study by Cunto et al. (2015) provided some initial results about the HSM's 

SPFs for urban roads in Brazil. The data was collected from the urban area of Fortaleza 

city as well. The Cx for signalized intersections was 0.98, while for stop-controlled 

intersections was 2.15.  

Waihrich & Andrade (2015)investigated the calibration of the HSM predictive 

method to multilane highways in the state of Minas Gerais (southeast of Brazil) and 

Goiás (central-west of Brazil), including the Federal District, resulting in a Cx of 2.37 

and 1.58 for each studied region, respectively. The results did not confirm the 

transferability of the original HSM model calibrated according to the studied scenarios, 

which shows the need for more work on this subject.  

Rodrigues-Silva (2017) presented a broad study investigating the transferability 

between two prediction models for two-lane highways: the HSM method and a local 

SPF. The HSM's SPF was applied to three different Brazilian regions: São Paulo and 

Minas Gerais, both in the southeast and Paraná in the south. The calculated calibration 

factors were 3.67, 3.77, and 2.60, respectively. The conclusions elucidate the lack of 

parameters to consider a model transferable and a gap in the knowledge for models in 

other facility types. 

Elagamy et al. (2020) used four types of segmentation procedures in Egypt, which 

affected the performance of the transferred SPFs. Unlike Brazil, the HSM model 

overestimates the crash occurrence on multilane rural roads in Egypt. Similarly, 

Matarage & Dissanayake (2020) assessed the HSM for Freeways facilities in 



 

 

California, Maine, and Washington and used a calibration function tool. They found 

that the model overpredicted all crashes while underpredicting PDO crashes.  

Dadvar et al. (2020) proposed a method that aims to adjust the HSM crash 

prediction model, mainly because traffic agencies and local jurisdictions need a simple 

and reliable prediction model that provides a better fit of the data than the use of the 

HSM calibration method. The study stated that using an incorrect Cx while applying 

SPFs in the "real world" can misallocate resources. On the other hand, giving local 

jurisdictions a reasonable Cx would still be a significant step.  

That is the justification for the study in Saudi Arabia by Al-Ahmadi et al. (2021), 

which found Cx values from 0.63 to 0.78 for two multi-lanes rural highway segments. 

For Saudi Arabia, PDO crashes were better estimated by the HSM SPFs than total and 

FI crashes. Therefore, it is essential to carry out an in-depth study of the local 

calibration factors as long as there is an assessment of the quality of the SPFs. 

Most researchers agreed that the transferability of a model is linked to how similar 

the site characteristics are compared to base conditions. In addition, the model must 

be built by associating regions with the same general characteristics. However, 

proceeding with its calibration and evaluating its transferability is mainly 

recommended.  

The effectiveness of the local calibration factor as a method for transferring SPFs 

developed for a particular region or nation is widely discussed in the literature. Yehia 

et al. (2021) found that the success of the transferability may be influenced by the 

socioeconomic characteristics and distributions of traffic safety data between the 

source and target regions. Concerning how traffic flow influences the transferability of 

SPFs, Farid et al. (2016) demonstrated that the AADT was significant only for single-

vehicle crashes. Moreover, Feng et al. (2020) showed that segments with high AADTs 

have crash characteristics different from those with low AADTs, which would be a 

warning sign in the transferability process. 

For diverse nations such as Brazil, the need to assess the crash prediction model 

is justified as the hunting for the best tool linking large databases such as crash counts, 

traffic volume, and infrastructure to support investment planning. 

 



 

 

2.4 The goodness of fit measures 

 

In addition to the local calibration factor (Cx), measuring the Goodness of Fit (GOF) 

of the model is very important to assess how well an SPF developed for a different 

dataset fits the observed data. Quantifying it to compare different results is essential. 

The most common measures of forecast accuracy are the Mean Absolute Percentage 

Error (MAPE) and the Mean Absolute Deviance (MAD). Table 1 shows the region, 

facility type, and estimated Cx of recent studies in which the HSM was applied to the 

Brazilian road network. It also shows GOF tests used in the prediction model. 

 
Table 1 - Works of HSM method application in Brazil. Source: Author. 

Author Region Facility Type Cx GOF 

Rodrigues-Silva 

(2012) 
SP 

Two-lane Rural 

Highways 
3,73 

Chi square test and Kolmogorov-

Smirnov 

Barbosa et al. 

(2014) 
CE Urban Intersection 

0,65 
AIC, R2 statistic, and CURE plots 

2,06 

Cunto et al (2015) 
Fortaleza 

(CE) 
Urban Roads 

0,98 MAD, MAPE, CURE, Pearson 

ꭓ
𝑝
2statistics and z-score 2,15 

Waihrich & 

Andrade (2015) 

MG Multilane Rural 

Highways 

2,37 
MAD, MAPE and R2

Efron 

GO/DF 1,58 

Rodrigues-Silva 

(2017) 

SP 
Two-lane Rural 

Highways 

3,67 
MAD, MAPE, R2

Efron, and CURE 

plots 
PR 3,77 

MG 2,60 

 

In recent studies, the Root Mean Square Error (RMSE) is also often applied to 

evaluate the prediction accuracy of prediction models (Li et al., 2017; Yao et al., 2021; 

Yehia et al., 2021). On the other hand, for (Dadvar et al., 2020), the CURE plots may 

not reveal much due to the sample size. 

Since the GOF tests measure how well the predicted and expected crashes were 

fitted after performing the calibration procedure, the Mean Absolute Deviation (MAD), 

Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and the 

observed versus predicted graphs were applied. The Mean Absolute Deviation (MAD) 

indicates the average magnitude of variability of the model (Washington et al., 2005). 

Where �̂�𝑖 corresponds to the predicted data values, 𝑌𝑖 is observed data values, and n 

is the sample size. 

 



 

 

𝑀𝐴𝐷 =  
∑ |�̂�𝑖−𝑌𝑖|𝑛

𝑖=1

𝑛
     (4) 

 

The Mean Absolute Percentage Error (MAPE) measures the deviation between 

observed and predicted values, and it was calculated based on Elagamy et al. (2020) 

to avoid dividing predicted values by a possible zero observed number of crashes. �̂�𝑖 

corresponds to the predicted data values, 𝑌𝑖 is the observed data values, and n is the 

sample size. 

 

𝑀𝐴𝑃𝐸 =  
∑ |�̂�𝑖−𝑌𝑖|𝑛

𝑖=1

∑ 𝑌𝑖
𝑛
𝑖=1

     (5) 

 

The Root Mean Square Error (RMSE) measures the residuals' standard deviation and 

how close the data points are to a fitted line. Where �̂�𝑖 corresponds to the predicted 

data values, while 𝑌𝑖 is to the observed data values, and n is the sample size. 

 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖−𝑌𝑖)2𝑛

𝑖=1

𝑛
    (6) 

 

2.5 The impact of COVID-19 on traffic safety 

 

The influence of lifestyle changes during the COVID-19 pandemic on traffic safety 

is being investigated worldwide. During the shutdown period, there was a decrease in 

traffic flow in the majority of countries affected (Yasin et al., 2021). However, there was 

a substantial rise in the severity of crashes (Ebrahim Shaik & Ahmed, 2022)  

Studies suggest that the Nonpharmaceutical Interventions (NPIs) implemented 

and the increased percentage of people staying at home could improve pedestrian and 

cyclist safety while increasing motor vehicle drivers' crash risk (N. Dong et al., 2022). 

However, the average number of cyclists killed or injured per crash tripled compared 

to previous years (J. Li & Zhao, 2022). 

Unexpectedly, many studies pointed out that substantially decreasing the traffic 

volume would not improve traffic safety, primarily because of an adverse effect of other 

risk factors that may lead to injuring or killing someone (Yao et al., 2021). It can be 

related to the homeostasis effect of risky driving behaviors such as speeding and failing 

to signal. Besides, crashes involving severe injuries are more likely to happen on 



 

 

highways (X. Dong et al., 2022). Researchers attributed this phenomenon to increased 

speeding, emptier traffic lanes, reduced law enforcement, not wearing seat belts, and 

alcohol and drug abuse (Yasin et al., 2021). Hence, law enforcement mechanisms 

should focus on preventing these behaviors. (Vanlaar et al., 2021). 

Another critical effect during this pandemic was that trip lengths shortened while 

travel frequency decreased. That would be due to doing activities online as a substitute 

for physical traveling (Ebrahim Shaik & Ahmed, 2022), changing transportation 

characteristics, and decreased traffic intensity on the roads since e-commerce has 

risen.  

Finally, sudden disturbances in traffic behavior like this pandemic may broaden the 

sample for understanding risk factors and SPF applications. Hence, the calibrated 

HSM SPF for 2020 is compared to the crash data count in 2020 to verify its capacity 

to assess the impacts of COVID-19 on the highways studied in this work. 

  



 

 

 METHODS 

 

3.1 The HSM crash prediction method for divided roadway segments 

 

The required and desirable site characteristics for calibrating the SPFs for divided 

rural multilane roadways are described in Table 2. 

 

Table 2 - Data needed to calibrate Part C predictive models by facility type for Rural Multilane Highway 

Segments. Source: AASHTO, 2010. 

Data Element 
Data Need 

Default Assumptions 
Required Desirable 

Segment length X  Need actual data 

Average annual daily traffic (AADT) X  Need actual data 

Lane width X  Need actual data 

Shoulder width X  Need actual data 

Presence of Lighting X  Assume no lighting 

Use of automated speed 

enforcement 
 X 

Base default on current 

practice 

Median width X  Need actual data 

  

The estimated cash count - Nspf - for rural multilane highways depends on the 

Annual Average Daily Traffic (AADT) for each year by segment and the segment length 

(L) in miles, as shown in Equation 7. The regression coefficients 𝑎 and 𝑏 are presented 

in the HSM (Table 3). 

 

𝑁𝑠𝑝𝑓 = 𝑒(𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+ln(𝐿))    (7) 

 

Table 3 - Regression coefficients for four-lane highways in HSM (2010). Source: AASHTO, 2010 

Facility type / Severity a b c 

4-Lane Total -9.025 1.049 1.549 

4-Lane KABC -8.837 0.958 1.687 

4-Lane KAB -8.505 0.874 1.740 

 

After obtaining the Nspf, it must be multiplied by factors that represent the road 

features to estimate the Npredicted. These factors are called Crash Modification Factors 

- CMFs (Equation 8).  



 

 

 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  𝑁𝑆𝑃𝐹𝑥 × 𝐶𝑥 × (𝐶𝑀𝐹1𝑥 × 𝐶𝑀𝐹2𝑥 × … × 𝐶𝑀𝐹𝑦𝑥)  (8) 

 

 The Calibration Factor (Cx) would be the one that represents the regional 

features of each studied highway. After obtaining the Npredicted, the EB method should 

be applied to better estimate the expected number of crashes for a single site (Elvik, 

2007), as described in Equation 9. 

 

𝑘 =
1

𝑒(𝑐 +ln(L))      (9) 

 

Where k is the overdispersion parameter associated with the roadway segment, 

L is the length of the roadway segment (miles), and c is a regression coefficient used 

to determine the overdispersion of this model (see Table 3). After defining the k value 

for every studied segment, the next step is to apply the Site-Specific EB Method, where 

k is used to obtain the weighted adjustment (w) placed on the predictive model estimate 

in Equation 10.  

 

𝑤 =  
1

1+𝑘×(∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑎𝑙𝑙 𝑠𝑡𝑢𝑑𝑦 𝑦𝑒𝑎𝑟𝑠 )
    (10) 

 

The final step is obtaining the Nexpected, as shown in Equation 11. This number 

represents the final calibrated number of crashes for each segment. 

 

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝑤 × 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 + (1 − 𝑤) × 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑        (11) 

 

The sequence of steps that must be followed on the predictive method for rural 

multilane highways is shown in Figure 3. 

 



 

 

 

Figure 3 - The HSM predictive method by steps. Source: AASHTO, 2010. 

 

3.2 Road Network Analysis 

 

Five highways in the state of São Paulo managed by toll administration were 

analyzed. The studied segments are part of the highways SP-255, SP-318, SP-330, 

SP-334, and SP-345 (Figure 4 and Figure 5). After a road network screening, the 

sections to be studied were selected based on the geometric aspects and availability 

of traffic volume information, as presented in Table 4. The length of all the studied 

roads is 235.6 km. Sensors located at strategic highway points collected the available 

traffic volume data. 

 

Define roadway limits and facility type

Define the period of study

Determine AADT and availability of crash data for every year in the period of interest

Determine geometric conditions

Divide roadway into individual roadway segments

Assign observed crashes to individual sites

Select a roadway segment

Select first or next year of the evaluation period

Select and apply SPF

Apply CMFs

Apply calibration factor

Apply EB method

Sum all sites and years

Compare and evaluate results



 

 

 

Figure 4 - Location map of the five highways in São Paulo state. Source: Google Earth, 2020. 

 

 

Figure 5 - Map of the five studied highways. Source: Google Earth, 2021. 

 



 

 

Table 4 - Main aspects of studied road segments  

Highway ID 
Start 
Point 
(km) 

Endpoint 
(km) 

Length 
(km) 

Observed 
Crashes 

(2009 - 2019) 

Traffic Volume 
Data Available 

2016 2017 2018 2019 2020 

SP 255 
255_S01 2.8 48.1 45.3 1837 X X X X X 

255_S02 77.1 83.1 6.0 215 X X X X X 

SP 318 318_S01 235.7 236.1 0.4 24    X X 

SP 330 

330_S01 241.0 267.3 26.3 1865  X X X X 

330_S02 267.3 304.0 36.7 3144 X X X X X 

330_S03 304.0 318.5 14.5 3175 X X X X X 

SP 334 

334_S01 319.3 349.5 30.2 2015 X X X X X 

334_S02 349.5 396.0 46.5 1856 X X X X X 

334_S03 396.0 406.0 10.0 1237 X X X X X 

SP 345 
345_S01 19.4 31.1 11.7 612 X X X X X 

345_S02 31.1 39.1 8.0 377    X X 

 

3.2.1 Traffic volume  

 

The traffic volume is detected by sensor devices called "SAT" or "TESC". Their 

location is shown in Figure 6. The available traffic volume data were verified to match 

the studied highways. 

 

 

Figure 6 - Location map of Traffic Sensor Devices. Source: Google Earth, 2020. 

 



 

 

The Average Annual Daily Traffic (AADT) data was collected for 2016, 2017, 

2018, 2019, and 2020, as presented in Table 5 – AADT by study period year. There 

are a few cases in which there was a lack of information. For SP 318, the available 

AADT data corresponds to 2019 and 2020 only. As recommended by HSM, the number 

has been repeated for previous years (2016, 2017, 2018). For SP330_S01, the AADT 

for 2016 was missing, completed by linear interpolating the existing data. 

 

Table 5 – AADT by study period year. Source: Highway Toll Administration, 2021.  

Homogeneous Segments AADT (veh/day) 

Sensor 
Highway 

ID 
Direction 

Start 

Point 

(km) 

Endpoint 

(km) 
2016 2017 2018 2019 2020 

SAT10 255_S01 North 48.1 2.8 3173 5725 6049 5969 6374 

SAT10 255_S01 South 2.8 48.1 3429 5889 6164 6394 6144 

SAT11 255_S02 North 83.1 77.1 6600 5741 6813 6901 6855 

SAT11 255_S02 South 77.1 83.1 7972 6602 8357 8461 8498 

TESC2 318_S01 North 235.7 236.1 8195 8195 8195 8195 1683 

TESC2 318_S01 South 236.1 235.7 8488 8488 8488 8488 1638 

SAT01 330_S01 North 241 267.8 9565 9573 9581 9575 8913 

SAT01 330_S01 South 267.8 241 8359 9322 9437 9400 8570 

SAT04 330_S02 North 267.8 304 10222 13928 13842 13318 12311 

SAT04 330_S02 South 304 267.8 27889 13969 13851 13656 12643 

SAT05 330_S03 North 304 318.5 28125 29505 19360 30589 29153 

SAT05 330_S03 South 318.5 304 27793 29690 19320 31177 29558 

SAT06 334_S01 North 319.3 349.5 10535 10985 11682 11090 9764 

SAT06 334_S01 South 349.5 319.3 9251 10746 11795 11161 9766 

SAT08 334_S02 North 349.5 396 4898 4281 4162 4402 3910 

SAT08 334_S02 South 396 349.5 4257 4252 4461 4386 3887 

SAT09 334_S03 North 396 406 9284 13758 15524 16283 15655 

SAT09 334_S03 South 406 396 7937 14159 14801 15031 13896 

SAT13 345_S01 East 31.1 19.4 6402 6750 6689 6692 6548 

SAT13 345_S01 West 19.4 31 5469 5666 5541 5788 5748 

SAT13 345_S02 East 36 31.1 6402 6750 6689 6692 6548 

SAT13 345_S02 West 31.1 36 5469 5666 5541 5788 5748 

 

3.2.2 Homogeneous Segments 

 



 

 

The homogeneous segments are portions of the highway with uniform 

geometric characteristics obtained through the segmentation procedure described in 

this work, and they are evaluated individually. Figure 7 shows the frequency of a total 

of 712 segments’ length, which presented a greater number of segments with less than 

one kilometer. 

 

 

Figure 7 - Frequency of Segment Length. Source: Author. 

 

3.2.3 Crash data 

 

The observed crash data for the study period are presented in Table 6 while 

Figure 8 shows the crash data analysis by severity.  

 

Table 6 - Main info about observed crash data for the study period. 

Severity type Total FI 

Year of Study 2016 2017 2018 2019 2016 2017 2018 2019 

∑ 1653 1597 1398 1301 451 467 406 415 

Mean 2.32 2.24 1.96 1.83 0.63 0.66 0.57 0.58 

Standard deviation 3.47 3.08 2.94 3.08 1.18 1.13 1.13 1.17 

Max 33 27 28 39 9 10 7 15 

Min 0 0 0 0 0 0 0 0 
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Figure 8 - Crash frequency by severity. Source: DATASUS, 2020. 

 

It supports the idea that KABC1 data presents lower variation than PDO data 

since 2015. As expected, the number of PDO crashes has been decreasing since 

2015, and this may be related to Brazil's change of regulation for registering PDO 

crashes, leading to the underreporting problem. Figure 9 and Figure 10 show the 

characteristics of crashes that occurred on the studied highways. 

 

 

1 This is referred to as the KABCO scale: fatal injury or killed (K), incapacitating injury (A), non-

incapacitating (B), possible injury (C), and property damage Only (O). The Abbreviated Injury Scale 

(AIS) was originally developed by the American Association for Automotive Medicine, the Organ Injury 

Scales (OIS) proposed by the American Association for the Surgery of Trauma and the Injury Severity 

Score (ISS) used by hospitals. 
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Figure 9 - Crash frequency by week days. Source: DATASUS, 2020. 

 

 

Figure 10 - Crash frequency by month. Source: DATASUS, 2020. 

 

Table 7 presents the proportion of crash data by crash type. It is essential to 

highlight that this was provided for defining CMFs. 

 

Table 7 – Proportion of crash type for studied highways. Source: Author. 

Collision Type FI PDO Total 

Single vehicle 0.649 0.755 0.724 

Multi-vehicle (total) 0.351 0.245 0.276 

M
u

lt
i-

v
e
h
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le

 Angle 0.037 0.016 0.022 

Head-on 0.011 0.001 0.004 

Rear-end 0.207 0.148 0.165 

Sideswipe 0.073 0.056 0.061 

Other multi-vehicle 0.022 0.025 0.024 

Total Crashes 1.000 1.000 1.000 
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3.3 Segmentation Procedure 

 

The predictive model for an individual roadway segment or intersection combines 

an SPF with CMFs and a calibration factor. Therefore, the method is applied to 

homogeneous segments, to ensure that the ones which have the same characteristics 

are evaluated as equal. A roadway segment is a portion of the highway that has a 

consistent roadway cross-section and is defined by two endpoints. A new 

homogeneous segment begins at the center of an intersection or where there is a 

change in at least one of the following characteristics of the roadway (AASHTO, 2010): 

• Average annual daily traffic (vehicles per day); 

• Presence of median and median width (meters2, rounded widths are 

recommended as shown in Table 8); 

 

Table 8 - Rounded median width recommended. Source: AASHTO, 2010. 

Measured Median Width (m) Rounded Median Width (m) 

0.3 ≤ Mw ≤ 4.4 3 

4.4 < Mw < 7.4 6 

7.4 ≤ Mw < 10.5 9 

10.5 ≤ Mw < 13.6 12 

13.6 ≤ Mw < 16.6 15 

16.6 ≤ Mw < 19.7 18 

19.7 ≤ Mw ≤ 22.7 21 

22.7 < Mw < 25.8 24 

25.8 ≤ Mw < 28.8 27 

Mw ≥ 28.8 30 

 

• Shoulder type; 

• Shoulder width (meters, rounded widths are recommended as shown in Table 

12); 

  

 

2   Although the manual recommends foot as unit of length, the most usual in Brazil is meter, which 

corresponds to around 3,3 feet. 



 

 

Table 9 - Rounded shoulder width recommended for paved shoulders. Source: AASHTO, 2010. 

Measured Shoulder Width (m) Rounded Shoulder Width (m) 

Sw ≤ 0.2 0 

0.2 < Sw < 0.5 0.3 

0.5 ≤ Sw < 0.8 0.6 

0.8 ≤ Sw < 1.1 0.9 

1.1 ≤ Sw ≤ 1.4 1.2 

1.4 < Sw ≤ 1.7 1.5 

1.7 < Sw ≤ 2 1.8 

2 < Sw ≤ 2.3 2.1 

Sw > 2.3 2.4 

 

• Lane width (meters, rounded widths are recommended as shown in Table 6); 

 

Table 10- Rounded lane width recommended. Source: AASHTO, 2010. 

Measured Lane Width (m) Rounded Lane Width (m) 

Lw ≤ 2.8 ≤ 2.8 

2.8 < Lw < 3 2.9 

3 ≤ Sw ≤ 3.1 3.0 

3.1 < Sw < 3.3 3.2 

3.3 ≤ Sw ≤ 3.4 3.4 

3.4 < Lw < 3.6 3.5 

Lw ≥ 3.6 3.6 

 

• Presence of lighting; 

• Presence of automated speed enforcement. 

 

The segmentation procedure aims to form a database with all possible individual 

homogeneous roadway segment data. In this study, the spreadsheet was formed by 

analyzing an orthogonal projection of the road (Figure 11) sent by the highway toll 

administration.  

 



 

 

 

Figure 11 - Orthogonal projection of the Highway SP 255 

. 

However, it could be considered biased by the lack of geometric design and traffic 

control information. Then it was necessary to complement the method through 

verification of the kilometric markers KMZ available (Figure 12) at Google Earth Pro.  

 

 

Figure 12 - Segments characteristics verification procedure at Google Earth Pro 

 

In most Brazilian crash reports, no field allows the reporting officer to designate the 

crash as intersection-related. Once the HSM predictive model has been developed to 

estimate crash frequencies separately for each site, either a segment or an 

intersection, it is very important to indicate and exclude from this study those 

Kilometer Marker 

Intersection at 



 

 

occurrences related to intersections. Therefore, to assign the crash to an intersection, 

the following steps based on (ANDRADE; SETTI, 2011), and on the guidance in the 

HSM were followed: 

• Rear-end collisions that happened from 200 meters distance before the off-

ramp to 200 meters after the on-ramp of each intersection. 

• Collisions that indicate improper traffic control at the intersection. 

In addition, Brazil's multilane highways usually have U-turn highway ramps at 

some points. For this study, all the U-turn elements are overpass bridges, but it is not 

considered an intersection (Figure 13). Once there was not enough segment sample 

to study the U-turn highway ramps, they were considered as part of the homogeneous 

segments. It is recommended to have a sample large enough to study the device for 

future work. 

 

 

Figure 13 - U-turn highway ramps overpass bridge 

  



 

 

3.4 Crash Modification Factor for Divided Roadway Segments (CMFs) 

 

The CMFs are multiplicative factors used to calculate the predicted number of 

crashes based on each road feature (Equation 9). The base conditions for each SPF 

mean that the CMF value is 1.0.  

 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  𝑁𝑆𝑃𝐹𝑥 × 𝐶𝑥 × (𝐶𝑀𝐹1𝑥 × 𝐶𝑀𝐹2𝑥 × … × 𝐶𝑀𝐹𝑦𝑥)  (9) 

 

For divided roadway segments on rural multilane highways, the default value for 

base conditions is 12 feet for lane width, 8 feet for the right-hand side shoulder width, 

30 feet for median width, no lighting, and no automated speed enforcement. A CMF 

greater than 1.0 means an expected increase in crashes due to specific road 

characteristics. At the same time, a CMF value of less than 1.0 indicates an expected 

reduction in the number of crashes. 

 

3.4.1 CMF1rd – Lane width on Divided Roadway Segments 

 

𝐶𝑀𝐹1𝑟𝑑 = (𝐶𝑀𝐹𝑅𝐴 − 1.0) × 𝑝𝑅𝐴 + 1.0    (10) 

 

Where: 

𝐶𝑀𝐹1𝑟𝑑 is the crash modification factor for total crashes; 

𝐶𝑀𝐹𝑅𝐴 is the crash modification factor for related crash types (run-off-the-road, head-

on, and sideswipe), presented in Table 11; and 

𝑝𝑅𝐴 is the proportion of total crashes constituted by related types of crashes.  

 

Table 11 - CMF for Collision Types Related to Lane Width (CMFRA) 

Lane Width Annual Average Daily Traffic (AADT) (veh/day) 

ft m <400 400 to 2000 >2000 

9 2.7 1.03 1.03 + 1.38 x 10-4 (AADT-400) 1.25 

10 3.0 1.01 1.01 + 8.75 x 10-5 (AADT-400) 1.15 

11 3.4 1.01 1.01 + 1.25 x 10-5 (AADT-400) 1.03 

12 3.7 1.00 1.00 1.00 

 



 

 

The default value of 𝑝𝑅𝐴 is 0.50, however, the HSM recommends the value to 

be updated based on local data, which in this study was calculated and found to be 

0.47 for the total number of crashes and 0.36 for KAB only (Table 12). 

 

Table 12 - CMF1rd related type of crash proportions to calculate 𝑝𝑅𝐴 

 Number of crashes Proportion of crashes 

Collision Type KAB PDO Total KAB PDO Total 

Run off Road 1328 5307 6635 0.28 0.46 0.40 

Head-on 53 9 62 0.01 0.00 0.00 

Sideswipe 347 665 1012 0.07 0.06 0.06 

CMF1rd related (∑) 1728 5981 7709 0.36 0.52 0.47 

Total Crashes 4814 11607 16421 1 1 1 

 

3.4.2 CMF2rd – Right Shoulder Width on Divided Roadway Segments  

 

The SPF base condition for the right shoulder width variable is 8 ft, which is 

about 2.44m. The recommended values of CMF for different shoulder width values are 

presented in Table 13.  

 

Table 13 - CMF for Right Shoulder Width on Divided Roadway Segments (CMF2rd). 

Average Shoulder Width 
CMF2rd 

ft m 

0 0.00 1.18 

2 0.61 1.13 

4 1.22 1.09 

6 1.83 1.04 

8 2.44 1 

 

3.4.3 CMF3rd – Median Width 

 

The HSM recommends a CMF value available in Table 14 for the Median Width 

effect on collision. The CMF value for segments with traffic barriers of any type (either 

rigid or flexible barrier) is 1.0. 

  



 

 

Table 14 - CMFs for Median Width on Divided Roadway Segmnts without a Median Barrier (CMF3rd). 

Median Width 
CMF3rd 

ft m 

10 3.05 1.04 

20 6.10 1.02 

30 9.14 1 

40 12.19 0.99 

50 15.24 0.97 

60 18.29 0.96 

70 21.33 0.96 

80 24.38 0.95 

90 27.43 0.94 

100 30.48 0.94 

 

3.4.4 CMF4rd - Lighting 

 

The equation below presents the value for CMF4rd for lighted segments only. 

The unlighted segments are considered the SPF base condition, which means the 

value is 1.0. 

 

𝐶𝑀𝐹4𝑟𝑑 = 1 − [(1 − 0.72 × 𝑝𝑖𝑛𝑟 − 0.83 × 𝑝𝑝𝑛𝑟) × 𝑝𝑛𝑟]   (11) 

 

Where: 

𝐶𝑀𝐹4𝑟𝑑 is the crash modification factor for the effect of lighting on total crashes; 

𝑝𝑖𝑛𝑟 is the proportion of total nighttime crashes for unlighted roadway segments that 

involve a fatality or injury; 

𝑝𝑝𝑛𝑟 is the proportion of total nighttime crashes for unlighted roadway segments that 

involve property damage only; and 

𝑝𝑛𝑟 is the proportion of total crashes for unlighted roadway segments that occur at 

night. 

 In the studied highway there was found similar proportions compared to the 

HSM recommended values (Table 15).  

 

 



 

 

Table 15 - Proportion of nighttime crashes to calculate pinr, ppnr, and pnr. 

 Total Proportion PDO Proportion FI Proportion 

Nighttime 7376 0,449 5138 0,697 2226 0,302 

Total 16421 1,000 11607 0,707 4814 0,293 

 

The locally derived values presented in Table 16 replaced the default values 

presented in Equation 11 to calculate CMF4rd, as recommended by the HSM. 

 

Table 16 - Nighttime Crash Proportions for Unlighted Roadway Segments. 
 

HSM Locally derived values 

pinr 0.323 0.302 

ppnr 0.677 0.697 

pnr 0.426 0.449 

 

3.4.5 CMF5rd – Automated Speed Enforcement 

 

As in the CMF4rd, the base condition of this CMF is where there is no Automated 

Speed Enforcement. The HSM recommends that the segments with fixed cameras or 

the sites where the driver cannot be sure if there is an automated speed enforcement 

should have CMF5rd value of 0.83 for FI accidents and 0.94 for all the types of 

occurrences. 

 

  



 

 

 RESULTS AND DISCUSSIONS 

 

This work applied the predictive methodology recommended in Part C in Chapter 

11 of the HSM 1st edition. The procedure consists of the method presented in item 3.1 

for obtaining Nspf for each segment based on its AADT and Length. The CMFs 

presented in section 3.4 are multiplied as expressed in Equation 1 for each segment, 

and the result would be the combined Npredicted. After that, the calibration factor Cx was 

obtained through the ratio of the observed number of crashes (Nobserved) and the 

predicted number of crashes (Npredicted), as expressed in Equation 3. 

 

4.1 The local calibration factor (Cx)  

 

The Cx was estimated separately for 2016, 2017, 2018, and 2019 and once more 

for the four years combined. The number of cashes obtained through the EB method 

is called Nexpected. Table 17 shows Nobserved, Npredicted, Nexpected, and Cx for total and FI 

crashes. The HSM assumes that the closer the local calibration factor is to 1.0, the 

more similar the road networks are to the condition for which the model was developed. 

Thus, the FI Cx compared to the total crashes Cx shows it has performed closer to the 

HSM model. Still, the value of Cx=2.62 for total crashes and Cx=2.35 for FI crashes 

shows similarities to Waihrich & Andrade (2015), which found Cx=2.37 for the state of 

Minas Gerais. To have a better insight, measuring how well the predicted points fit the 

observed data is necessary.  

 

Table 17 - Main information about Npredicted, Nexpected (EB), and Cx. 

 Severity 2016 2017 2018 2019 Four-years 

Observed Crashes 
Total 1653 1597 1398 1301 5949 

FI 451 467 406 415 1739 

Predicted Crashes 

(Npredicted) 

Total 565 570 545 587 2267 

FI 182 186 181 191 741 

Expected Crashes (EB) 

(Nexpected) 

Total 1622 1581 1402 1298 5892 

FI 457 472 420 422 1774 

Cx 
Total 2.92 2.80 2.57 2.22 2.62 

FI 2.47 2.50 2.24 2.17 2.35 

 

  



 

 

4.2 The Goodness of Fit (GOF) Measures 

 

The GOF tests measure how well the predicted and expected crashes were fitted 

after performing the calibration procedure. The GOF used were Mean Absolute 

Deviation (MAD), Mean Absolute Percentage Error (MAPE), Root Mean Square Error 

(RMSE), and the observed versus predicted graphs. For the GOF parameters 

presented, the smaller the value, the better the model fit. The results are shown in 

Table 18.  

 

Table 18 - Goodness of Fit of the HSM predictive model by MAD, MAPE, and RMSE tests. 

Goodness of Fit Test 
Calibrated Predicted Crashes Expected Crashes 

MAD MAPE RMSE MAD MAPE RMSE 

Total 4.44 53% 8.59 0.80 10% 1.33 

FI 1.92 78% 3.38 0.86 35% 1.35 

 

As expected, after applying the EB method, the estimated values fit the observed 

values quite well. The MAD, MAPE, and RMSE show that for the final step, after the 

EB application, the total crash model performs better than FI.  

On the other hand, the values found for MAD and RMSE indicate that the 

variation of calibrated predicted values is more significant when including PDO 

crashes, which is reasonable once FI represents a smaller sample (about only 30% of 

the total crash data). The MAD for FI was 43% of the MAD for total crashes, while for 

the RMSE, it was 39%. Besides, Waihrich & Andrade (2015) found a value of 5.54 for 

the MAD for total crashes in the Minas Gerais state, which is 24% greater than the 

MAD value found for total crashes in the São Paulo state (MAD=4.44).  

The results for MAPE indicate that the FI crashes have more prediction errors, 

which might be explained by the significant difference between total and FI crash 

counts. Another aspect to highlight is the change in the MAPE calculation (Equation 

5), which was adapted to avoid situations where it could be divided by zero. This was 

because, in the original equation, the term �̂�𝑖 − 𝑌𝑖 is divided by the observed crashes 

by segment (eventually, no crash happened at some points). 

The following graphs show the results of the whole study period. Figure 14 

compares the calibrated Npredicted, and the observed total and FI crashes to the 

centerline. The model's output closer to the centerline is considered more reliable as 



 

 

the predicted data is closer to the observed data. Therefore, it highlights the dispersion 

of total crashes compared to FI crashes. Also, points below the centerline indicate that 

the model underestimates the observed data, while points above the centerline signify 

the overestimation of the observed data. 

 

 

Figure 14 – The correlation of calibrated Npredicted versus Nobserved comparing total and FI crashes for 

the total period of study. 

  

Figure 15 shows the performance of the predicted values compared to observed 

data. About 56% of them are under the centerline trend, which suggests that the model 

has underpredicted most of the data. This underestimation highlights the lack of 

conformity between the model output and the Brazilian data. The greater the number 

of observed crashes in a specific segment and year, the clearer the underestimation 

becomes in the graph. 

0

20

40

60

80

100

120

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

P
R

ED
IC

TE
D

 C
A

LI
B

R
A

TE
D

 C
R

A
SH

ES

OBSERVED CRASHES

O B S ER V ED  V ER S U S  C A L I B R A T ED  P R ED I C T ED

Total FI



 

 

 

Figure 15 – Comparison between Npredicted versus Nobserved for total and FI crashes for 2016, 2017, 

2018, and 2019, respectively.  

 

Figure 16 also compares the calibrated Npredicted total and FI crashes to the 

centerline for each study year. The model's output following the centerline is 

considered more reliable since the observed data is closer to the predicted data. The 

graphs have a similar behavior: above the centerline, the points seem denser and 

closer to the centerline, while under the centerline trend, they seem loose. This 
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indicates that the overpredicted points are usually closer to matching the observed 

points than the underpredicted ones. 

The following graphs illustrate the difference between Npredicted and Nexpected (i.e., 

results of the EB application). Figures 4 and 5 show the estimated data for total 

crashes, while Figures 6 and 7 show the estimated data for FI crashes. These graphs 

enable estimation of the R2 by severity type (total or FI) and by year, as presented in 

Table 10. 

 

 

Figure 16 - The correlation between the observed crash data and the estimated calibrated Npredicted and 

Nexpected for all crashes for all study years. 

 

After applying the EB method, the performance of Nexpected corroborates the 

literature studies: the points sit closer to the centerline, which means Nexpected is very 

close to Nobserved. On the other hand, Npredicted shows a moderate dispersion. The 

predicted values above the centerline are denser, while the points under the centerline 

are more dispersed (Figure 17). 
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Figure 17 – The correlation between the observed crashes and the estimated calibrated Npredicted and 

Nexpected for all types of crashes in 2016, 2017, 2018, and 2019. 

 

The graphs for each study year are similar to the one presented in Figure 18. The 

year 2019 seems to have denser values of Npredicted, which means that the prediction 

of 2019 was closer to the actual number of crashes. On the contrary, the estimated 

values for 2016 seem diffuse. 

0

5

10

15

20

25

30

35

0 5 1 0 1 5 2 0 2 5 3 0 3 5

ES
TI

M
A

TE
D

 C
R

A
SH

ES

OBSERVED CRASHES

2 0 1 6  T O T A L  O B S E R V E D  V E R S U S  
ES T I M A T ED

Npredicted Nexpected

0

5

10

15

20

25

30

35

0 5 1 0 1 5 2 0 2 5 3 0 3 5

ES
TI

M
A

TE
D

 C
R

A
SH

ES

OBSERVED CRASHES

2 0 1 7  T O T A L  O B S ER V ED  V ER S U S  
ES T I M A T ED

Npredicted Nexpected

0

5

10

15

20

25

30

35

0 5 1 0 1 5 2 0 2 5 3 0 3 5

ES
TI

M
A

TE
D

 C
R

A
SH

ES

OBSERVED CRASHES

2 0 1 8  T O T A L  O B S E R V E D  V E R S U S  
ES T I M A T ED

Npredicted Nexpected

0

5

10

15

20

25

30

35

0 5 1 0 1 5 2 0 2 5 3 0 3 5

ES
TI

M
A

TE
D

 C
R

A
SH

ES

OBSERVED CRASHES

2 0 1 9  T O T A L  O B S ER V ED  V ER S U S  
ES T I M A T ED

Npredicted Nexpected



 

 

 

Figure 18 - The correlation between the observed crashes and the estimated calibrated Npredicted and 

Nexpected for FI crashes at the total period of study. 

 

Since the FI crashes represent a smaller sample, changing the graph scale allows 

having a clearer perception of the Npredicted performance. Again, the predicted values 

are denser above the centerline than under, implying that the model underpredicted 

values more often than overpredicted. However, most Nexpected for FI crashes are under 

the centerline, meaning that most of the expected values underpredicted the FI 

observed crashes. Thus, the EB method did not have the same performance as for all 

types of crashes. Here, the expected crashes are more scattered, and the results 

indicate underprediction. The performance of Nexpected in Figure 18 is similar to Figure 

19, which means that the EB method underpredicted the observed crash counts. The 

graphs show that, for each year, the model underestimates the FI crashes in cases 

where more than five crashes are observed in the segment. Finally, Table 19 presents 

the R2 estimated through each developed graph. 
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Figure 19 – The correlation between the observed crashes and the estimated calibrated Npredicted and 

Nexpected for FI crashes in 2016, 2017, 2018, and 2019. 
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Table 19 - R2 estimated for Npredicted and Nexpected by year and by severity type 

Severity type Total FI 

Year of Study 2016 2017 2018 2019 
2016 - 
2019 

2016 2017 2018 2019 
2016 -
2019 

Calibrated 
Npredicted 

0.26 0.43 0.34 0.40 0.45 0.12 0.19 0.10 0.23 0.24 

Nexpected 0.98 0.98 0.99 0.99 0.99 0.85 0.87 0.89 0.91 0.88 

 

The value of R2 is another GOF test result, where a number represents the 

observed versus estimated graphs. With this, it is possible to compare different 

scenarios, which could also support assessing the prediction model. Unlike the other 

GOF tests, the higher the value of R2, the better because it represents the correlation 

coefficient. As anticipated, the R2 for expected crashes is much higher than the 

predicted ones after applying the EB method because the observed number of crashes 

is accounted for in the expected number of crashes. Even so, the FI crashes have 

smaller R2 than all types (Table 20). 

 

Table 20 - Result of all the GOF tests applied for Calibrated Predicted crashes 

Calibrated Predicted Crashes 

Goodness of Fit Test MAD MAPE RMSE R2 

Total 4.44 53% 8.59 0.45 

FI 1.92 78% 3.38 0.24 

 

Table 20 shows that MAD and RMSE have lower values using FI crashes, while 

MAPE and R2 showed better performance for all crashes.  

 

Table 21 - Result of all the GOF tests applied for Expected crashes 

Expected Crashes 

Goodness of Fit Test MAD MAPE RMSE R2 

Total 0.80 10% 1.33 0.99 

FI 0.86 35% 1.35 0.88 

 

Table 21, on the other hand, comparing the GOF parameters, presented better 

results for all types of crashes. That result indicates that the prediction of crashes by 

the HSM model performed better for all crash types. 

This study highlights the importance of obtaining a deeply validated tool to 

support the financing of projects for road safety improvement, which is why the 

Highway Safety Manual was chosen. This work obtained Cx=2.62 for the total number 



 

 

of crashes and Cx=2.34 for FI for the study period from 2016 to 2019, demonstrating 

that the HSM SPF underestimates the number of crashes for the Brazilian highways 

or others that are similar. Regarding the decision-making on the severity chosen to 

develop the predictions, this study's results seem to favor the use of the total number 

of crashes, even if there is underreporting in some places. 

 

4.3 Crash data analysis for 2020 

 

As 2020 was an atypical year, traffic worldwide was altered by the COVID-19 

pandemic. Recent studies still investigate its impact on human health, including traffic-

related fatality and injury (Barnes et al., 2022). Figure 20 presents the PDO crashes, 

and Figure 21 shows the traffic-related fatalities on state highways in 2019, 2020, and 

2021 that the government has reported on its website (São Paulo state government, 

2022). There is a significant difference in PDO crashes between April 2019 and April 

2020, representing a 40% reduction in PDO crash counts. The highest reduction of 

fatal crashes was also between April 2019 and April 2020, about 27%. Although the 

lockdown started on March 22nd,  2020, in the state of São Paulo, the impact was more 

significant in April 2020. The graphs also present the moving average of crashes 

considering twelve months, showing the crash reduction for that period. The monthly 

oscillation shows that June and July have a high rate of crashes due to the usual 

vacation time in Brazil. Even so, the moving average shows that in 2020 the number 

of crashes in the Southern winter decreased compared to previous months, indicating 

an unexpected drop, even though it was a holiday and party period in Brazil. 

 



 

 

 

Figure 20 - PDO crashes on state highways in 2019, 2020, and 2021. Source: (São Paulo state 

government, 2022) 

 

 

Figure 21 - Fatal crashes on state highways in 2019, 2020, and 2021. Source: (São Paulo state 

government, 2022). 

 

Table 22 and Figure 22 show the variation of fatal crashes and AADT with the 

average and the counts of the previous year. The suggestion is that the negative 

variation of crashes is related to the reduction of AADT caused by the disease control 

measures at the time. 
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Table 22 - Comparison of estimated variance in fatalities and AADT on state highways in recent years. 

Source: (São Paulo state government, 2022). 

Year 

Fatal Crashes AADT 

Count Mean 

% Change 

compared to 
Count Mean 

% Change 

compared to 

Previous 

year 
Mean 

Previous 

year 
Mean 

2015 1872 

1836 

No data 

available 
2% 

No data 

available 
- - - 

2016 1853 -1% 1% 14598 

14137 

- 3% 

2017 1911 3% 4% 14149 -3% 0% 

2018 1876 -2% 2% 14183 0% 0% 

2019 1929 3% 5% 15128 7% 7% 

2020 1651 -14% -10% 12092 -207% -14% 

2021 1763 7% -4% 16764 39% 19% 

 

 

Figure 22 - An estimated variation of crashes and AADT for state highways. Source: (São Paulo state 

government, 2022). 

 

Thus, to explore the impact of COVID-19 on the studied segments, the crash data 

from 2020 are presented in Table 23. The decrease in crashes in 2020 compared to 

the average of the previous four years (1,487 all types and 435 FI crashes) is about 

20% and 11% for all types of crashes and FI crashes, respectively. 
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Table 23 - Main aspects related to crash data from 2016, 2017, 2018, 2019, and 2020. 

Severity type Total FI 

Year of Study 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 

∑ 1653 1597 1398 1301 1182 451 467 406 415 389 

Mean 2.32 2.24 1.96 1.83 1.66 0.63 0.66 0.57 0.58 0.55 

Standard Deviation 3.47 3.08 2.94 3.08 2.73 1.18 1.13 1.13 1.17 1.13 

Max 33 27 28 39 27 9 10 7 15 11 

Min 0 0 0 0 0 0 0 0 0 0 

 

 

The 2020 AADT data allowed the crash prediction for 2020 since the HSM 

prediction model is based on AADT values and segment length. Therefore, the 

calibration factors obtained and presented in section 4.1 (Cx, TOTAL=2.62, and Cx, 

FI=2.35) were used to calculate the calibrated Npredicted (Table 24). The four previous 

years' data was the baseline to obtain the parameters used to apply the EB method, 

allowing the calculation to obtain the Nexpected as well. 

 

Table 24 - HSM prediction model estimation compared to observed crashes. 

 Severity 2016 2017 2018 2019 
Four-years 

mean 
2020 

Observed Crashes 
Total 1653 1597 1398 1301 1487 1182 

FI 451 467 406 415 435 389 

Predicted Crashes 
(Npredicted) 

Total 565 570 545 587 567 498 

FI 182 186 181 191 185 164 

Calibrated Predicted Crashes 
(Cal. Npredicted) 

Total - - - - - 1308 

FI - - - - - 386 

Expected Crashes (EB) 
(Nexpected) 

Total 1622 1581 1402 1298 1476 1205 

FI 457 472 420 422 443 394 

 

Since the AADT has also changed due to the COVID-19 pandemic, the Nspf 

reflects the impact of the pandemic. Nevertheless, the Nobserved is still about 10% lower 

than the calibrated Npredicted for all types of crashes. On the other hand, the calibrated 

prediction of FI crashes is highly close to the observed counts. Besides, the influence 

of the observed number of crashes through the EB method application influences the 

Nexpected to be closer to Nobserved. This could indicate that the model performs well in 

predicting unseen data. 



 

 

Table 25 shows that for MAD and RMSE, the FI demonstrates a better model 

adjustment to the actual inputs. On the other hand, the MAPE and R2 indicate that 

using all types of crashes has succeeded in the model adjustment. The high MAPE 

value for 2020 is explained due to the sudden reduction of crashes, while the model 

was based on the previous years. 

 

Table 25 - Result of all the GOF tests applied for Calibrated Predicted crashes. 

Calibrated Predicted Crashes 

Goodness of Fit Test MAD MAPE RMSE R2 

Total (4 years) 4.44 53% 8.59 0.45 

FI (4 years) 1.92 78% 3.38 0.24 

Total (2020) 1.33 80% 2.30 0.32 

FI (2020) 0.62 114% 1.04 0.17 

 

GOF tests applied after the EB application, including the 2020 data, show that 

the model performs better using all types of crashes (Table 26). While further 

investigation is needed to understand the influence of infection prevention and control 

procedures on Brazilian road safety, some numbers, such as the reduction in crash 

counts shown in Table 13, suggest that some change has occurred. The reduction of 

around 14% in fatal crashes in 2020 compared to 2019 and around 10% compared to 

the average of the last five years presents a very different scenario for road safety 

analysis. Therefore, the need for a model that predicts the crash counts based on road 

geometry and AADT, being a reliable tool even for atypical moments, was the main 

reason for testing the use of the HSM prediction model for this unusual period. 

 

Table 26 - Result of all the GOF tests applied for expected crashes. 

Expected Crashes 

Goodness of Fit Test MAD MAPE RMSE R2 

Total (4 years) 0.80 10% 1.33 0.99 

FI (4 years) 0.86 35% 1.35 0.88 

Total (2020) 0.24 15% 0.37 0.98 

FI (2020) 0.29 52% 0.44 0.90 

 

  



 

 

  CONCLUSIONS 

 

The HSM is an essential source for quantitative crash analysis and evaluation. 

The estimation of crash frequency by HSM methodology is a tool to facilitate decision-

making based on Safety Performance Functions (SPFs). Because HSM's SPFs are 

regression models developed for other areas, it requires calibration to modify the SPFs 

for local use. 

Applying the HSM predictive method for different jurisdictions needs caution. It 

demands further investigation into roadway systems, driver training and behavior, and 

crash frequency and patterns that vary from the conditions in which it was developed. 

Thus, whenever data is available, the HSM recommends agencies and researchers 

either develop local SPFs or calibrate HSM-based SPFs to local conditions to improve 

the success of crash frequency estimation. 

This study intended to assess results from HSM crash prediction model 

deployment for multilane rural highway segments in the most inhabited state in Brazil. 

The HSM prediction procedure was used to estimate the local calibration factors (Cx).  

In 2015, the crash reporting system changed in Brazil. Collisions with Property 

Damage Only (PDO), which would be reported by the road police themselves, could 

then be reported online, leading to underreporting of accidents across the country. Due 

to this problem, the HSM predictive model was applied for total and fatal and injury 

severity (FI) of crashes. 

The Cx obtained in Brazil was calculated for heterogeneous segments in Brazil. 

This study obtained Cx=2.62 for all types of crashes and Cx=2.35 for FI crashes, 

showing similarities to Waihrich & Andrade (2015), which found Cx=2.37 for the same 

facility type in the state of Minas Gerais. The studies based on Brazilian crash data 

concluded that the HSM predictive models usually underestimate the number of 

crashes in Brazilian facilities. 

The goodness of fit (GOF) measures were employed after the calibration 

procedure to measure whether the predicted and expected crashes would represent a 

well-fitted. The performance metrics applied in this study were MAD, MAPE, RMSE, 

R2, and observed versus estimated crash graphs separately for all types of crashes 

and for the crashes in which someone got killed or injured (FI).  

It is relevant to note that Brazilian data is generally not always easy to obtain, and 

multiple heterogeneous variables make it difficult to generate SPFs valid for the entire 



 

 

country. Thus, to analyze the model's performance for Brazilian conditions, it is 

essential to establish some thresholds to determine a "good-enough" approach. 

Applying a calibrated version can bring insights into a data-driven approach that would 

be impossible if it were not for the HSM equations. In this way, utilizing the EB method 

is even more beneficial.  

As expected, after applying the EB method, the estimated values fit the data quite 

well. The MAD, MAPE, and RMSE show that models for all types of crashes perform 

better than FI crashes. On the other hand, the values found for MAD and RMSE 

indicate that the variation of calibrated predicted values is more remarkable when 

including PDO crashes. This is reasonable since FI crashes represent a smaller 

sample (about only 30% of the total crash data). The MAD for FI crashes was about 

43% of MAD for total crashes, while for RMSE, this proportion was about 39%. 

Besides, Andrade (2015) found 5.54 MAD for total crashes at Minas Gerais, which is 

24% greater than the MAD value found for total crashes at São Paulo (MAD=4.44). 

On the other hand, the graphs allowed us to assess the model's performance. The 

Nexpected, after application of the EB method, follows the expectation: the points are 

following the centerline, which means the Nexpected is very close to the Nobserved. After 

that, Npredicted shows a supposed dispersion. The predicted values above the centerline 

are denser, while the points under the centerline are more diffuse. 

Comparing the GOF parameters, most of them presented better results for the 

prediction using all types of crashes, which indicates that the underreporting of crashes 

does not affect model validity. However, it may have a minor impact on the absolute 

numbers.  

Finally, as 2020 was an atypical year in which the COVID-19 pandemic altered 

traffic around the world, this study aimed to assess the application of the calibrated 

prediction model to a sudden disturbance in traffic behavior. Unlike studies that 

investigated how COVID-19 changed road safety in general, this work aimed to 

analyze the model's performance during the pandemic year 2020. In that year, a 

significant reduction in AADT occurred, including the exact locations where the SPFs 

were calibrated. The HSM method was applied to 2020 using the Cx obtained from the 

four previous years. For 2020, the Nobserved was lower than the calibrated Npredicted for 

all types of crashes. This finding might indicate that additional risk factors not 

addressed by SPF play a role in safety performance. The calibrated prediction of FI 

crashes was very close to the observed counts, which expresses the model's reliability. 



 

 

As the HSM recommends the calibration process, this work can be seen as a 

reference for the Brazilian rural multilane safety assessment. The result of this study 

can be used by highway administration, municipalities, and toll agencies for practical 

safety assessment and guidance by applying the HSM's SPFs. It can also be a tool to 

support resource prospecting for the implementation of appropriate countermeasures 

to increase road safety. 

Besides that, the findings of this work are expected to be a reference for 

researchers who want to understand the transferability of SPFs in a context other than 

the HSM development, showing the different performance results of the model using 

different severities, and applied to this recent atypical year in worldwide. 

The localization aggregation process impacted the HSM SPF calibration 

procedure. Hence, it is suggested that future studies may use calibration functions and 

different calibration methods to improve the accuracy of crash prediction when 

developing a model is not feasible. Since the calibration is a function of the variables 

and not only a single factor obtained by the ratio of observed and predicted values, it 

usually improves the calculated results, even though it requires the particular expertise 

of the analyst. 

Other GOFs, such as cure plots, chi-square, and coefficient of variation, may be 

used to assess the adequacy of the calibration process. The application of the GOF 

tests must also have limits to measure what is considered a good model and whether 

the model should be applied depending on its parameters. Future studies focusing on 

jurisdiction-specific SPFs development for local conditions are desirable. Likewise, 

some additional questions about the frequency of SPF calibration and temporal 

transferability can bring more insights into this research topic in the future.  
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