Master's Dissertation
DOI
https://doi.org/10.11606/D.18.2022.tde-11102022-145205
Document
Author
Full name
Carolina Silva Costa
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2022
Supervisor
Committee
Pitombo, Cira Souza (President)
Isler, Cassiano Augusto
Uriarte, Ana Margarita Larrañaga
Title in Portuguese
Análise da substituição do transporte público pelo serviço de ridesourcing durante a pandemia da COVID-19 no Brasil
Keywords in Portuguese
Ride-hailing
Comportamento Relativo à Mobilidade Urbana
Design Eficiente Bayesiano
Modelo de Escolha Discreta
Pandemia
Pesquisa de Preferência Declarada
Transporte Público
Abstract in Portuguese
Os serviços de transporte sob demanda, por aplicativo de smartphone, como ridesourcing, vêm impactando o sistema de transportes e comportamento dos usuários. Quando ocorre a substituição do Transporte Público (TP) este impacto geralmente é negativo. Além disso, o contexto de pandemia da COVID-19 alterou a mobilidade urbana devido ao medo de contágio e às medidas restritivas de isolamento social. Dessa forma, esta pesquisa visa identificar as principais mudanças de comportamento relativo à escolha modal que ocorreram com a pandemia no Brasil, com foco na análise da substituição do TP pelo ridesourcing neste período. Para tanto, elaborou-se uma pesquisa de Preferência Revelada (PR) e Preferência Declarada (PD). O Projeto Experimental foi feito pelo método do Design Eficiente Bayesiano. Assim, realizou-se coleta de dados online em diversas cidades de todas as regiões do Brasil. Inicialmente, foi feita análise comparativa do comportamento relativo à mobilidade urbana de antes e durante a pandemia utilizando os dados de PR coletados em cada período. Realizou-se testes de hipótese, análise exploratória através do algoritmo Classification And Regression Tree (CART) e análise confirmatória pelos modelos Logit Multinomial e Logit Misto. Em seguida, fez-se modelagem da substituição do TP pelo ridesourcing utilizando dados da pesquisa de PR e PD de usuários de TP, obtidos no contexto de pandemia. Os fatores mais importantes para a escolha do TP e do ridesourcing, obtidos nas análises foram: tempo de viagem, preço da viagem, frequência de atendimento, confiabilidade de horários, segurança pessoal e o conforto do TP. A partir destes resultados, foi possível propor políticas públicas para mitigar os efeitos negativos da substituição do TP pelo ridesourcing para guiar operadores de transportes e governantes na implementação de um sistema de transportes mais democrático, sustentável e seguro no período pós-pandêmico.
Title in English
Analisys of the substitution of public transport with ridesourcing during the COVID-19 pandemic in Brazil
Keywords in English
Bayesian Efficient Design
Discrete Choice Model
Pandemic
Public Transport
Ride-hailing
Stated Preference Survey
Travel Behavior
Abstract in English
The introduction of on-demand transportation services, such as ridesourcing (Uber, 99, etc.), have been changing the transportation systems and travel behavior in the urban space. When users substitute Public Transport (PT) with ridesourcing, this impact is negative. In addition, the COVID-19 pandemic changed urban mobility due to the fear of new coronavirus contagion and the restrictive measures of social isolation. Thus, this research aims to identify the main changes in travel behavior related to modal choice that occurred during the pandemic in Brazil, focusing on the analysis of the substitution of PT with ridesourcing in this period. Therefore, a Revealed and Stated Preference survey was designed. The Experimental Project was carried out using the Bayesian Efficient Design method. Data were collected online in several cities of all regions of Brazil. Initially, a comparative analysis of travel behavior before and during the pandemic was carried out using data from the Revealed Preference survey collected in each period. Independent samples tests, exploratory analysis through the Classification And Regression Tree (CART) algorithm and confirmatory analysis through the Multinomial Logit and Mixed Logit models were performed. Then, it was conducted an analysis of the substitution of PT with ridesourcing using data from the RP and SP survey considering PT users, collected during the pandemic. The main factors that influence the choice for PT and ridesourcing were: travel time, price, comfort of PT, frequency of attendance of PT, schedule reliability of PT, safety of PT and general quality of PT. Based on the results, it was possible to propose public policies for the post-pandemic period in order to mitigate the negative effects of the pandemic and of the replacement of PT by ridesourcing to guide transport operators and the government to implement a better, more democratic, sustainable and safe transportation system.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-10-13