• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.18.2008.tde-02022009-082321
Document
Author
Full name
Pedro Henrique de Sousa Leão Araujo
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2008
Supervisor
Committee
Nagano, Marcelo Seido (President)
Pimenta Júnior, Tabajara
Rebelatto, Daisy Aparecida do Nascimento
Title in Portuguese
Elaboração de rankings por meio do uso de técnicas estruturadas: uma aplicação no setor de seguros privados
Keywords in Portuguese
Análise por envoltória de dados
Rankings
Redes neurais artificiais
Seguros privados
Abstract in Portuguese
A demanda por metodologias para classificação de empresas que possuam características em comum e que componham um mesmo setor de atividade tem instigado pesquisadores a avaliar alternativas que sejam fidedignas à representação da realidade, e que façam uso reduzido de quesitos voltados à subjetividade de julgamento. Por isso, adotou-se como objetivo desta pesquisa a elaboração de rankings utilizando as técnicas de análise por envoltória de dados e redes neurais artificiais, com aplicação no setor de seguros privados, setor este de forte influência na economia nacional. Como dados para a aplicação das duas técnicas propostas, foram considerados alguns indicadores, via de regra adotados pelo setor, para avaliar o desempenho das empresas no cumprimento de suas atividades. Como resultado obtido, foi verificado que a ponderação direta de acordo com a importância de cada indicador não representa a única forma de apresentar uma ordenação justa das empresas consideradas com base em seus desempenhos. Por meio das técnicas utilizadas, foi observado que empresas que mantiveram um resultado satisfatório na maioria das variáveis consideradas obtiveram os melhores posicionamentos nos rankings. A rede neural, mesmo requerendo um maior tempo de processamento e oferecendo uma complexidade de aplicação maior que a técnica DEA, apresentou resultados mais consistentes.
Title in English
Preparation of rankings through the use of structured techniques: an application in the sector of private insurance
Keywords in English
Data envoltory analysis
Insurance
Neural net works
Rankings
Abstract in English
The demand for methodologies and procedures to classify companies that have some characteristics in common and that are part of the same activity sector has instigated researchers to evaluate alternatives that represent the real situation according to their performance as business units, by making use of reduced amount of subjectivity in the performance judgment. Therefore, this research has as its main goal the objective to set up some rankings using the techniques of analysis and data envelopment by artificial neural networks, by making applying these techniques in the insurance sector, a activity with great influence in national economy. As data for the implementation of both techniques proposed, some indicators well known by specialists were considered to evaluate the performance of companies in their activities. As a result, it was found that the direct weighting used to enforce the importance of each indicator is not the only way to make a fair ranking of the insurance companies. About the techniques used, it was observed that companies that have maintained a satisfactory performance in most of the variables considered occupied best positions in the rankings. The neural network, even though requiring a longer processing time, and offering a greater complexity of application than DEA technique, showed some more consistent results.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2009-02-18
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.