
 

 

UNIVERSITY OF SÃO PAULO 

SÃO CARLOS SCHOOL OF ENGINEERING 

 

 

 

 

MARIA CLARA FAVA 

 

 

 

IMPROVING FLOOD FORECASTING USING REAL-TIME DATA TO UPDATE 

URBAN MODELS IN POORLY GAUGED AREAS 

 

 

 

 

 

 

 

CORRECTED VERSION (VERSÃO CORRIGIDA) 

SÃO CARLOS 

2019



 

 

 

 



MARIA CLARA FAVA 

IMPROVING FLOOD FORECASTING USING REAL-TIME DATA TO UPDATE 

URBAN MODELS IN POORLY GAUGED AREAS 

Doctoral thesis presented at São Carlos School of 

Engineering, University of São Paulo, in partial 

fulfilment of the requirements for obtaining the 

Degree of Doctor in Science: Hydraulics and 

Sanitary Engineering. 

Advisor: Prof. Dr. Eduardo Mario Mendiondo 

CORRECTED VERSION (VERSÃO CORRIGIDA) 

SÃO CARLOS 

2019 



AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Fava, Maria Clara
 F272i Improving flood forecasting using real-time data to 

update urban models in poorly gauged areas / Maria
Clara Fava; orientador Eduardo Mario Mendiondo. São
Carlos, 2019.

Tese (Doutorado) - Programa de Pós-Graduação em 
Engenharia Hidráulica e Saneamento e Área de
Concentração em Hidráulica e Saneamento -- Escola de
Engenharia de São Carlos da Universidade de São Paulo,
2019.

1. Flood modelling. 2. Data assimilation. 3. SWMM.
4. Citizen science. 5. Urban floods. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

                               1 / 1

IV

http://www.tcpdf.org


FOLHA DE JULGAMENTO

Candidata: Bacharela MARIA CLARA FAVA.

Título da tese: "Assimilação de dados na previsão de enchentes em tempo real em

áreas urbanas com dados escassos".

Da+a da defesa: 30/08/2019.

Comissão Julaadora: Resultado:

Prof. Dr. Eduardo Mário Mendiondo (Orientador) ,7 /\ ^ í. / < ,. í /_

(Escola de Engenharia de São Carlos/EESC]

Am ^.t^Dra. Luz Adriana Cuartas Pineda

(Centro Nacional de Moni+oramen+o e Alertas de Desastres Ná+urais/CEMADEN)

Prof. Dr. Massato Kobiyama Af^.'L\^\r.Y ^

(Universidade Federal do Rio Grande do Sul/UFRGS)

Prof. Associado Jó Ueyama A^^lÀPò
[Insti+u+o de Ciências Matemáticas e de Compu+açâo/ICMC-USP)

Prof. Dr. Dmitri Petrovich Solomatine /^ ^P-üV ^ FC'

(Delft Insti+u+e for Wa+er Education/UNESCO-IHE}

Coordenador do Programa de Pós-Graduaçâo em Engenharia Hidráulica e
Saneamento:
Prof. Dr. Eduardo Mário Mendiondo

Presidente da Comissão de Pós-Graduaçâo:

Prof. Titular Murilo Araújo Romero

v



vi 

Dedication 

To my parents and my brother 

for everything they represent to me. 



vii 

Acknowledgements 

Over these four years of PhD research, I have been contemplated with countless wise 

people crossing my journey, colleagues who are readily willing to help me, discuss problems, 

find solutions and even to share endless questioning. 

I want to thank my advisor Professor Eduardo Mario Mendiondo, for accepting me on 

this journey, for all the enthusiasm and the patience over these years. Thank you so much for 

all the guidelines, for the countless opportunities given, for the inspiration for always thinking 

beyond the traditional and for the partnership. I believe it will be extended throughout my 

research journey, even though the formal period is finished with the closure of this thesis. 

I greatly thank Professor Dimitri Solomatine, my advisor during my period at IHE-Delft. 

Thanks for the honour of welcoming me into his research group, for all the teaching and 

encouragement at crucial times, for your outstanding quality of conducting research, and for 

bringing me a bit more closely the hydroinformatics side of the force! 

To my great friend Narumi Abe, who always mentored and worked with me in great 

joy, since my undergraduate scientific initiation until the closing of the text of this dissertation. 

My eternal thanks for all the laughs, for always listening to my endless complaints and 

dilemmas of life, and for all the help you gave me when I needed it most. 

I also thank Dr. Maurizio Mazzoleni, my mentor during my internship in Delft, and a 

great inspiration as a young researcher. Thank you for all the help, the brilliant ideas, the 

patience and understanding as you teach.  

Thanks to João Victor Cal for helping me in my internship at CEMADEN and to all the 

professionals there who added a lot in my training. I thank Professor Bruno Kimura from 

UNIFESP for accepting the partnership, making this internship possible. 

Thank you very much, mother and father (Maria Evaneide Fava and Sidnei Fava), for 

all the love, encouragement and attachment kept despite the 1000 km away. Thank you for the 

security and stability that allowed me to choose without hesitation the academic journey. I know 

that I will always have a safe place. Thanks also to my dear brother Aldo Felipe Fava for the 

infinite friendship, love and support. Thank you to all my family and I hope you understand all 



viii 

 

 

 

my moments of absence. Special thanks to my cousin Augusto for always encouraging me to 

pursue my research career. 

Many thanks to my partner Julio for all the love, patience and support in my dissertation 

and life outbreaks. Thank you for showing me that besides successes and failures, there are 

much more important things, mainly the smiles in the day-to-day. Thank you for the partnership 

and levity you brought to my life. 

My special thanks to all NIBH / WADI colleagues and former colleagues who were an 

essential part of this journey, thank you for helping to clarify many problems and accomplish 

many tasks, for friendship and fun in the daily life at the lab, and for making my PhD journey 

much better and relaxed. To my friends at IHE-Delft for welcoming me so well, to my 

neighbours from "Little Colombia" for all the laughs, doubts and shared tips. Special thanks to 

my dear friend Thaine who gave me support in the difficult times and for the partnership and 

laughter in the good and calm times. 

Thanks to all my friends from São Carlos for the wonderful moments of relaxation and 

learning about life. Many thanks to my long-time friends from Nioaque and Campo Grande 

who I always miss. 

Special thanks to my four-legged children, Tareco and Lola, for showing that life is 

sweet, for looking me always asking for love and affection, but never inquiring about finishing 

the thesis or the papers. 

Special thanks to the Ilex paraguariensis, my dear yerba mate that makes up my daily 

tereré, which was essential to my performance on days of programming, reading and writing, 

and always remembering me where I come from and who I am, viva el alma Guarani! 

Thanks to all the staff and professors of the Department of Hydraulic Engineering and 

Sanitation. Especially to Sá and Priscilla for all the attention and help provided. 

Thanks to the University of São Paulo for the physical infrastructure provided, to the 

National Council for Scientific and Technological Development (CNPq) for the PhD 

scholarship granted, the Coordination of Improvement of Higher Education Personnel (CAPES) 

for the PhD “Sandwich” Grant and the São Paulo Research Foundation (FAPESP) for funding 

the experiments performed. 



ix 

 

 

 

Agradecimentos 

No decorrer destes quatro anos de doutorado eu fui agraciada com inúmeras e sábias 

pessoas que cruzaram a minha jornada, e que prontamente se dispuseram a me ajudar, discutir 

problemas, encontrar soluções e até mesmo partilhar infinitas dúvidas. 

Gostaria de agradecer ao meu orientador Professor Eduardo Mario Mendiondo, por me 

aceitar nessa jornada, por todo o entusiasmo e paciência durante todos esses anos. Muito 

obrigada por todos os ensinamentos, pelas inúmeras oportunidades dadas, pela inspiração a 

pensar sempre um pouco além do tradicional e pela parceria construída. Acredito que a mesma 

se estenderá por toda a minha jornada na pesquisa, ainda que o período formal seja selado com 

o fechamento desta tese.   

Agradeço enormemente ao Professor Dimitri Solomatine, meu orientador durante o meu 

período no IHE Delft Institute for Water Education, pela honra de ter me recebido em seu grupo 

de pesquisa, por todos os ensinamentos e encorajamento em momentos cruciais, pela qualidade 

ímpar em conduzir pesquisa e por me trazer um pouquinho mais para o lado hydroinformatics 

da força!  

Ao meu grande amigo Narumi Abe, que sempre me orientou e trabalhou com muita 

alegria junto comigo, desde a minha iniciação científica na graduação até o fechamento do texto 

desta tese. Meu eterno obrigada por todas as risadas, por sempre ouvir minhas intermináveis 

reclamações e dilemas da vida e por toda a ajuda prestada nos momentos em que mais precisei.  

Agradeço também ao Maurizio Mazzoleni meu mentor durante meu estágio em Delft e 

grande inspiração como jovem pesquisador. Obrigada por toda a ajuda, pelas brilhantes ideias, 

pela paciência e compreensão ao ensinar. 

Obrigada ao João Victor Cal por me ajudar no meu período de estágio no CEMADEN 

e a todos os profissionais de lá que agregaram muito em minha formação. Agradeço ao 

Professor Bruno Kimura por aceitar a parceria e possibilitar a realização desse estágio.  

Muito obrigada mãe e pai (Maria Evaneide e Sidnei Fava), por todo o amor, incentivo e 

amizade mantidos apesar dos 1000 km de distância. Obrigada pela segurança e estabilidade que 

me proporcionaram escolher sem hesitar os caminhos que me levaram a jornada acadêmica, 

pois sei que sempre terei um porto seguro. Obrigada também ao meu querido irmão Aldo Felipe, 



x 

 

 

 

pela amizade, amor e apoio infinitos. Obrigada à toda a minha família e espero que entendam 

todos os meus momentos de ausência. Um agradecimento especial ao meu primo Augusto por 

sempre ter me incentivado a seguir na carreira de pesquisa. 

Muito obrigada ao meu companheiro Júlio, por todo o amor, paciência e apoio nos meus 

surtos com a tese e com a vida. Obrigada por me mostrar que além de sucessos e fracassos 

existem coisas muito mais importantes, que são os sorrisos no dia a dia. Obrigada pela parceria 

e leveza que trouxe para minha vida. 

Meu agradecimento especial a todos os colegas e ex-colegas do NIBH/WADI que foram 

parte essencial dessa jornada. Obrigada por ajudarem na elucidação de muitos problemas e na 

realização de muitas tarefas, pela amizade e diversão no cotidiano do laboratório e por tornarem 

a vida durante o doutorado muito mais divertida. Aos meus amigos do IHE-Delft por me 

receberem tão bem, aos meus vizinhos da “Little Colômbia” por todas as risadas, dúvidas e 

dicas partilhadas. Um agradecimento especial a minha querida amiga Thaine pelo suporte nos 

momentos difíceis e pela parceria e risadas nos momentos tranquilos.  

Obrigada a todos os meus amigos de São Carlos, pelos maravilhosos momentos de 

relaxamento e aprendizados sobre a vida. Muito obrigada aos meus amigos de longa data de 

Nioaque e Campo Grande de quem sempre tenho saudades.  

Agradeço muito aos meus filhos de quatro patas, Tareco e Lola, por mostrarem que o 

mundo é doce, pelos olhares sempre pedindo amor e carinho, mas nunca inquirindo sobre o 

término da tese ou artigos. Um agradecimento especial a Ilex paraguariensis, minha querida 

erva-mate que compõe meu tereré diário, e que foi essencial para o meu rendimento nos dias e 

noites de revisão dos códigos, leitura e escrita, além de sempre me lembrar de onde venho e 

quem sou. Viva el alma Guarani!  

Obrigada a todos os funcionários e professores do Departamento de Hidráulica e 

Saneamento. Em especial a Sá e Priscila por toda atenção e ajuda prestados. 

Obrigada a Universidade de São Paulo pela infraestrutura física cedida, ao Conselho 

Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela bolsa de doutorado 

concedida, a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela 

bolsa de doutorado sanduíche concedida e a Fundação de Amparo à Pesquisa do Estado de São 

Paulo (FAPESP) pelo financiamento dos experimentos realizados. 



xi 

 

 

 

Abstract 

FAVA, M. C. (2019). Improving Flood Forecasting using Real-time Data to Update Urban 

Models in Poorly Gauged Areas. Doctoral thesis, São Carlos School of Engineering, 

University of São Paulo, São Carlos. 

Flood forecasting techniques have been widely studied as a tool to mitigate damage 

from extreme events. However, their nature in urban areas developed without properly drainage 

planning, coupled with the scarcity of hydrological monitoring data, becomes a significant 

challenge for real-time flood forecasting. This doctoral thesis proposes deterministic methods 

of data assimilation for real-time hydrological forecasting. The methodology is developed using 

the semi-distributed hydrodynamic Storm Water Management Model (SWMM). It also aims to 

evaluate the impact of using traditional monitoring data together with citizen science data for 

model updating. The first and the second chapter present the general introduction and 

methodology of the thesis. The third chapter presents an automatic calibration tool - SWMM 

calibrator - developed to allow the adjustment of SWMM model parameters with data from 

multiple sources and to use observed level data as a priori knowledge. The fourth chapter deals 

with the use of citizen science data for urban model updating through a real-time estimator. The 

fifth chapter presents a data assimilation method by updating hydrological model inputs based 

on water level observations and evaluates the effectiveness of the technique in a distributed 

manner in the catchment. The proposed methodologies are validated in a case study at the 

Monjolinho urban catchment. The sixth chapter discusses general conclusions and 

recommendations. In conclusion, SWMM calibrator tool provides flexibility in calibration, 

allowing shaping the process according to the real-world limitations, and achieved satisfactory 

calibration results at Monjolinho catchment. The deterministic data assimilation methods 

proposed in the fourth and fifth chapters have shown effective results in a significant 

improvement in simulations accuracy.  

Keywords: flood modelling; citizen science data; short-term forecasting; SWMM. 
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Resumo 

FAVA, M. C. (2019). Assimilação de Dados na Previsão de Enchentes em Tempo Real em 

Áreas Urbanas com Dados Escassos. Tese, Escola de Engenharia de São Carlos, Universidade 

de São Paulo, São Carlos. 

A previsão de enchentes para a mitigação dos danos causados por eventos extremos vem 

sendo amplamente estudada. No entanto, sua natureza em áreas urbanas desenvolvidas sem 

planejamento adequado de drenagem, associada a escassez de dados de monitoramento 

hidrológico apresentam um grande desafio para previsão de enchentes em tempo real. Esta tese 

de doutorado propõe novos métodos determinísticos de assimilação de dados em tempo real na 

previsão hidrológica, através do modelo hidrodinâmico semi-distribuído Storm Water 

Management Model (SWMM). Estes métodos visam contornar as limitações na previsão de 

enchentes em tempo real, em curto prazo e em bacias urbanas com dados escassos. Foi também 

avaliado o impacto do uso de dados de monitoramento tradicionais aliados a dados de ciência 

cidadã na atualização das simulações do modelo.  O primeiro capítulo e o segundo capítulo 

trazem a introdução e metodologia gerais da tese. O terceiro capítulo apresenta uma ferramenta 

de calibração automática – SWMM calibrator – desenvolvida para permitir o ajuste de 

parâmetros do modelo SWMM com dados provenientes de múltiplos locais de monitoramento 

e utilizando dados observados de nível como conhecimento a priori. O quarto capítulo aborda 

a utilização de dados de ciência cidadã na atualização do modelo através de um estimador em 

tempo real. O quinto capítulo apresenta um método de assimilação de dados através da 

correção das entradas do modelo hidrológico baseado em observações de nível, e avalia a 

eficácia do método de forma distribuída na bacia. As metodologias propostas foram aplicadas 

para um estudo de caso na bacia urbana do Monjolinho. O sexto capítulo apresenta as 

conclusões e recomendações gerais. Em conclusão, a ferramenta SWMM calibrator 

disponibiliza flexibilidade na calibração, permitindo moldar o processo de acordo com as 

limitações de problemas reais, e alcançou resultados satisfatórios na calibração da bacia do 

Monjolinho. Os métodos determinísticos de assimilação de dados propostos no quarto e quinto 

capítulo mostraram resultados eficazes na redução do erro das simulações de nível do modelo, 

bem como mostraram resultados satisfatórios ao assimilar dados com uma distribuição temporal 

maior que o passo de tempo do modelo.  

Palavras-chave: modelagem hidrológica; ciência cidadã; previsão de enchentes; SWMM; 

assimilação de dados.
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1 General introduction 

Historically, cities have been developed along rivers and coastal regions to benefit from 

their location and resources (Timmerman and White, 1997). The combination of human 

occupation of natural floodplains with changing of its landscape resulted in recurrent urban 

floods problems worldwide. Many studies have shown the correlation between growing 

urbanisation and the occurrence of floods (Keller & DeVecchio, 2016; Prosdocimi et al., 2015; 

Nardi et al., 2018). Also, the association of causal factors make urban floods more pronounced 

and is often common in developing cities to have all these problems together. Soil sealing and 

riparian forest removal results in a greater and faster response in terms of runoff volume, the 

microclimate of urban centres cause convective and localised rainfall, and the high population 

density implies in a large number of people affected during flood events, highlighting the 

importance of disaster prevention and vulnerability reduction in risk areas. Barreto Cordero 

(2012) described common factors regarding storm-water drainage in developing cities: the 

absence of drainage system in peripheral areas, inadequate management of land use, lack of 

drainage system maintenance in poor areas, overflows from combined sewer systems, human 

occupation of floodplains, among others.  

Over the last decades, more attention has been paid to natural disasters and their 

potential impact on the environment, mainly due to the increase of frequency that these extreme 

events occur (Smit et al., 1999; Turner et al., 2003; Gordy, 2016).  According to the United 

Nations Office for Disaster Reduction (UNISDR), Brazil is the only country in the Americas 

that is among the ten nations with the highest numbers of people affected by disasters between 

1995 and 2015 (CRED, 2015). The research developed by Mendiondo et al. (2017) shows that 

Brazil has 40,000 risk areas (landslide and flood risk) mapped for the 958 municipalities 

monitored by the Brazilian National Centre of Monitoring and Early Warning of Natural 

Disasters (CEMADEN). The study also highlights the lack of environmental monitoring and 

actions to mitigate floods and landslides risks over the country. 

Early warning systems for natural disaster reduction are one of the main approaches 

applied to mitigate the damage caused by extreme events. These systems are responsible for 

issuing warnings of disaster risk levels, thus providing a time horizon for action by the 

community under risk. In the case of flood alert systems, they are mostly composed by 

hydraulic-hydrological or hydrodynamic models and forcing by weather data (such as observed 

rainfall, remote sensing data and numerical weather forecasts) and finally a framework for 
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issuing the alerts. These systems generally aim to calculate the water level or flow in 

floodplains, the extent of flooding, predict the occurrence or likelihood of short-term flooding. 

It depends mainly on the flood forecasting model applied, the data available and the 

characteristics inherent the area.  

Many studies have shown that flood forecasting is not a trivial task, and it has been 

improved over the years (Cools and O’Brien, 2016). In floods, an overflowing river is usually 

the result of high-intensity rainfall over a long period in larger areas. However, flash-floods 

forecasting is even more complex requiring prompt responses (Mendiondo, 2005; Bodoque et 

al., 2016), and acquisition of geospatial data in real-time (Hapuarachchi et al., 2011) because it 

is generally caused by high-intensity rainfall in small areas. Thus, the early warning flood 

system solutions for those cases bring forward conflicting problems regarding the data required 

and the data availability in developing countries (Basha & Rus, 2007). 

Considering the evolution of communication, there is a possibility of interaction and 

acquiring information by groups of people who are passing by or living in risk areas. Data can 

be collected in alternative ways to aid in a crucial problem in flood forecasting models that is 

the availability of water level and rainfall gauges in all points of interest. Citizen Science has a 

very broad concept that has been applied in several areas; it usually has the main meaning is 

the involvement of citizens in the collection of data and knowledge for scientific research. The 

concept embraces both the collection of scientific data with the active participation of 

volunteers on research hypotheses and issues, as well as in less active activities such as "human 

sensors" (Roy et al., 2012). Goodchild (2007) coined the term VGI - Volunteered Geographic 

Information as digital geospatial data generated by common citizens. Leyh et al. (2017) 

emphasise that VGI is one of the practices of Citizen Science, where information provided by 

volunteers must necessarily be georeferenced. Leyh et al. (2016) raised an important question 

about how collaborative data can be distributed to be used as raw data or as input for 

hydrological models. Supposedly, data used in disaster prevention should be updated as soon 

as possible and be easily available; the internet is considered the most efficient solution to make 

these data available quickly (Rathore et al., 2016). 

Crowdsourcing platforms such as Ushahidi have been widely used for collecting citizen 

data in flood-affected areas (Heinzelman & Waters, 2010; Zook et al. 2010; Victorino and 

Estuar, 2014; Mazzoleni et al., 2017; Pánek et al., 2016). Data collection by volunteers in an 

organised way to carry out specific tasks and through different devices, in order to create and 
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publish information of interest, are called Citizen Observatories (CO) (Miorandi et al., 2013; 

Degrossi et al., 2014). The WeSenseIt project also includes in the definition of CO the idea of 

involving communities, emergency operators and policymakers in an organised platform for 

discussion, monitoring and intervention on situations, places and events (Mazumdar et al., 

2016). Many citizen observatories platforms have been developed to unify data provided by 

volunteers, improving the usability for the population and stakeholders. Degrossi et al. (2014) 

performed an experimental evaluation in the urban basin of São Carlos, Brazil using a 

crowdsourcing-based approach for obtaining useful volunteer information for the context of 

flood risk management called Flood Citizen Observatory. Wan et al. (2014) described a public 

cloud-based flood cyberinfrastructure (CyberFlood) intending to present a new way to integrate 

global flood databases. The project aims to provide global data related to floods and also collect 

crowdsourced data from the internet. Wehn et al. (2015) carried out a study comparing the 

potential use of COs in Italy, the Netherlands and the United Kingdom. The study aims to 

identify the available mechanisms of citizen participation during the different stages of the 

disaster cycle (prevention, preparation, response and recovery) and concluded that engagement 

of citizen to collect data is related to each country’s standards. Wilkinson et al. (2015) 

developed a pilot Local Environmental Virtual Observatory Flooding infrastructure with a case 

study in three basins of the United Kingdom, and they showed to be a promising tool to facilitate 

bottom-up catchment management approaches. 

A review of recent initiatives from the European Union about methods and techniques 

to prevent and manage floods carried out by Cortes et al. (2013) shows many techniques, 

including warning system and decision support system methodologies. Furthermore, the 

authors mention VGI as a complementary source of information and point out the challenge of 

integrating these data with the current Spatial Data Infrastructure (SDI). Schade et al. (2013) 

proposed a methodology for integrating VGI data into online platforms for flood management. 

However, the authors use VGI only for mining data from social media such as Flickr, using 

geotag extraction to compose the volunteered data. Smith et al. (2015) employed crowdsourced 

data from Tweeter to verify the spatial-temporal distribution of rainfall and flooded sites 

demonstrating that the use of Geotags should be done carefully and is subject to errors. Andrade 

et al. (2017) also used data reported by volunteers by Tweeter to asset their relationship to 

authoritative data concluding that they are not synchronised but are associated with a lag-time. 

Data provided by volunteers and crowdsourced data are subject to many uncertainties, and there 

is a great concern for developing methodologies to determine the reliability of these data (Fritz 
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et al., 2012). Meanwhile, some studies already present good results using volunteered data. 

Estes et al. (2016) obtained data from land cover with 91% accuracy using an open-sourced 

platform presented in a study called DIYlandcover.  

In 2003, the International Association of Hydrological Sciences (IAHS) launched an 

initiative called Predictions in Ungauged Basins (PUB). This scientific program focused on 

estimating uncertainties in predictions at poorly monitored areas and their subsequent reduction 

as the main theme (Sivapalan et al., 2003). The PUB scientific decade finished in 2012, after 

that, the IAHS introduced a new scientific decade called “Panta Rhei-Everything Flows” that 

relates hydrology development with changes in society (Montanari et al., 2013). Considering 

the challenges proposed by these initiatives, studies concentrating on short-term forecasting 

methods, data entry in locations with scarce information, vulnerability and greater involvement 

of the population in preventive measures should be carried out in more depth. Humans being 

used as sensors and internet technologies can contribute to field data collection, help in 

management processes to reduce and prevent disasters and encourage community engagement 

to reduce and respond to situations of environmental risk (Fraternali et al., 2012; Granell et al., 

2016). From the exposed, the main goal of this doctoral thesis is to develop quantitative 

methodological approaches to allow incorporating multiple data sources, as traditional data 

from sensors and voluntary-based data, in urban flood forecasting models.  

This proposal is designed under the umbrella of the Socio Hydrological Observatory for 

Water Security (SHOWS) (Souza, 2019), which is a conceptual framework based on three 

knowledge areas: socio hydrology, citizen observatories and water security, that proposes the 

use of citizen science data to build future risk scenarios using water security variables. This 

research is part of a cooperative network of thematic research at USP / Nap / CEPED-EESC: 

"Collaborative actions on reducing vulnerability to hydrological disasters using resilient 

technologies in urban drainage", FAPESP, 2008 / 58161-1 "Assessment of impacts and 

vulnerability to climate change in Brazil strategies and options for adaptation", FINEP 

01.10.0701.00" MAPLU-Management Urban Rainwater ", CNPq-CEMADEN-USP" 

Development of forecasting runoff and flooding for natural disaster prevention system" and 

Public Notice nº 24/2014 Pro-Alert "CEPED Alert - USP". 
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1.1 Text organisation 

All the particular studies presented in each chapter are related to flood management of 

the Monjolinho catchment, focusing on different methods to increase water level simulations 

accuracy aiming to overcome the lack of hydrological data and the challenger nature of urban 

floods forecasting. Six chapters compose this doctoral thesis, the first chapter brings the 

general introduction and information about thesis outline and objectives. The second chapter 

describes the general methodology employed in the experiments described in the next three 

chapters. The third chapter presents the calibration tool developed (SWMM calibrator), details 

the data used and the results obtained in the calibration and validation of the hydraulic-

hydrological model of the Monjolinho catchment. Flash floods and short-term forecasting often 

requires real-time updates to reach satisfactory results, even having a calibrated model. 

Thereby, the fourth and fifth chapter present real-time updating methods applied in the 

Monjolinho catchment model to improve the simulation accuracy: the fourth chapter presents 

a real-time estimator based on water level observations to update the water level simulations, 

and the fifth chapter presents a method that uses the difference between observed and 

simulated water levels to update the model inputs (precipitation). Finally, the sixth chapter 

discusses general conclusions and recommendations. 

1.2 Research hypothesis 

Assimilating real-time data in urban hydrodynamic models can improve flood 

forecasting hence reducing the flood risk susceptibility of poorly monitored catchments.  

Citizen science observations can be used as an alternative to fill the lack of data, 

guaranteeing improvement of model predictions when associated with traditional monitoring 

data. 

1.3 Objective 

1.3.1 General objective 

Develop data assimilation methodologies to update semi-distributed urban models using 

real-time data in poorly monitored catchments aiming to reduce flood risk. 
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1.3.2 Specific objectives 

• Develop a methodology towards hydrological semi-distributed model calibration using 

water level data in poorly gauged catchments; 

• Develop a methodology for integrating traditional monitoring data and citizen science 

data to overcome the lack of data in poorly monitored catchments; 

• To assess the effect of the number and location of the different locations of receiving 

real-time data on model accuracy. 
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1.4 Thesis synthesis 

 

Figure 1-1- Flowchart of the research. 
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2 General methodology 

The methodology of this thesis is based on the real-world constraints found in the case 

study explored in the methodological chapters. The case study is at the Monjolinho catchment 

in the city of São Carlos, Brazil. The main problems that guided the development of this 

research are: (1) an urbanised catchment with a time of concentration about two hours in the 

outlet; (2) more than one location that often suffers from flooding; and (3) absence of flow data. 

Based on the problems described above, fieldwork campaigns to collect drainage data 

and initial flow of the main urban channels are carried out. Also, the catchment morphometric 

data are extracted from a Digital Elevation Model (DEM). The collected data are used to model 

the Monjolinho catchment using the semi-distributed and physically-based Storm Water 

Management Model (SWMM). To validate the methods proposed in chapters 3, 4 and 5 data 

from water level sensors with a temporal resolution about 5-minutes installed in four locations 

over the catchment are used. The installation of these sensors is part of a pilot experimental 

project in partnership with other research groups from the University of São Paulo. As expected 

from an initial attempt, some miscommunication in the data recording and the lack of constant 

maintenance resulted in data series with failures. Issues concerning problems with data are a 

recurring problem in hydrological monitoring series. Considering it, the first contribution of 

this thesis is the development of an automatic calibration tool that circumvented these 

limitations in the dataset. Thus, a calibrator that uses water level instead of flow observations 

capable of multi-site and multi-event data adjustment has been developed. 

From a calibration performed with few hydrological events and having only water level 

data, it has been considered that in addition to the batch calibration performed, it could be 

complement with real-time updates whenever new information is available by performing data 

assimilation. Data assimilation can update model components (states and parameters), model 

output, or model input data. Due to the short time steps required from the urban model 

simulations because of the urban floods nature, and the complexity of a physically-based model, 

deterministic methods of data assimilation are proposed in chapter 4 and 5. Both methods 

perform updates based on observed water level data (Figure 2-1).  
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Figure 2-1 – Schematic diagram of updating methodologies proposed in this thesis.  

 

SWMM model 

The Storm Water Management Model (SWMM) (Rossman 2010) is a dynamic rainfall-

runoff model, with integrated hydrological and hydraulic modules, capable of simulating single 

events or long-term simulations of runoff quantity and quality in urban catchments. SWMM 

was developed and is maintained by the United States Environmental Protection Agency - EPA, 

it is free of charge, open-source, there are many groups of users on the internet, and is widely 

applied in the literature (Liong et al., 1995; Peterson & Wicks 2006; Müller & Haberlandt 2016; 

Riaño-Briceño et al., 2016). The version used: SWMM 5.1.011. Link: 

https://www.epa.gov/water-research/storm-water-management-model-swmm. 

Figure 2-2 represents the complete conceptual model of SWMM. However, in this 

thesis, only the quantity features are explored. The SWMM hydrological processes performed 

in this study are: 

- Time-varying precipitation; 

- Rainfall interception from depression storage (initial abstraction); 

- Infiltration of rainfall into unsaturated soil layers; 
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- Nonlinear reservoir routing of overland flow. 

Regarding the hydraulic processes, the following processes are performed: 

- External inflow of surface runoff; 

- Rainfall-dependent infiltration/inflow; 

- User-defined inflows; 

- Non-uniform routing through open channels. 

 

Figure 2-2 – SWMM’s model processes (Reproduced from Rossman & Huber 2016).  

The hydrological module simulates the sub-catchments behaviour, including an internal 

infiltration module. The rainfall-runoff component is lumped and conceptual at the sub-

catchment scale. The sub-catchment is conceptualised as a rectangular surface with uniform 

slope and width. Usually, urban areas are composed by a heterogeneous land-use occupation. 

Thus, the model allows dividing the sub-catchments into pervious (allow rainfall - 𝑃(𝑡) to 

infiltrate - 𝐼(𝑡) into the soil) and impervious portions (no infiltration occurs). Additionally, the 

impervious area can be divided into impervious area with depression storage and without 

depression storage (runoff of this area starts immediately after a rainfall event occurs). The 

model connects the runoff (𝑑(𝑡)) coming from these three areas to the outlet point, considering 

the different time steps and ponding areas. 
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Figure 2-3 – Idealized sub-catchment partitioning. 

Each portion of the sub-catchment is modelled as a nonlinear reservoir with a capacity 

given to the maximum depression storage. The governing equation for the overland flow is the 

mass conservation, which calculates the change in depth 𝑑 per unit of time 𝑡 the difference 

between inflow and outflow rates over the catchment: 

  
𝜕𝑑

𝜕𝑡
= 𝑖 − 𝑒 − 𝑓 − 𝑞 

(2-1) 

where i is the rate of rainfall, e is the surface evaporation, f  is the infiltration rate, and q is the 

runoff rate. 

 

Figure 2-4 – Nonlinear reservoir model of a sub-catchment. (Reproduced from Rossman & Huber 2016), 𝑑 is the 

depth of water atop the sub-catchment surface and 𝑑𝑠is the depression storage. 
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As described by Rossman and Huber (2016), the model considers that the flow is 

uniform over the catchment into a rectangular channel of constant width (W) and Slope (S), 

then the Manning equation is used to calculate the runoff’s volumetric flow rate (Q): 

𝑅𝑥 = (𝑑 − 𝑑𝑠) (2-2) 

𝐴𝑥 = 𝑊(𝑑 − 𝑑𝑠) (2-3) 

𝑄 =
1.49

𝑛
𝑊𝑆

1
2(𝑑 − 𝑑𝑠)5/3 (2-4) 

𝑞 =
1.49𝑊𝑆

1
2

𝐴 𝑛
(𝑑 − 𝑑𝑠)5/3 (2-5) 

where 𝑅𝑥 = is the hydraulic ratios, 𝐴 is the area across sub-catchments width, 𝐴𝑥 is the cross-

section area,  𝑛 is the roughness coefficient and 𝑞 is the runoff flow rate per unit of surface area. 

From the mass conservation and Manning equation, an ordinary nonlinear differential 

equation is reached to calculate the ponded depth d for each time step: 

𝜕𝑑

𝜕𝑡
= 𝑖 − 𝑒 − 𝑓 − 𝛼(𝑑 − 𝑑𝑠)5/3 (2-6) 

𝛼 =
1.49𝑊𝑆

1
2

𝐴 𝑛
 (2-7) 

To account the runoff generation for the impervious and pervious surface, the Equation 

2-5 is solved individually for each subarea (A1, A2 and A3), with the following 𝛼 terms: 

Pervious subarea A1: 

𝛼𝑝 =
1.49𝑊𝑆1/2

𝐴1𝑛𝑝
 (2-8) 
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Impervious subareas A2 and A3: 

𝛼𝑖 =
1.49𝑊𝑆1/2

𝐴2 + 𝐴3𝑛𝑖
 (2-9) 

where 𝑛𝑝 is the roughness for the pervious area (A1) and 𝑛𝑖 is the roughness for both impervious 

areas (A2 and A3). 
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3 SWMM Calibrator – Automatic Tool towards Hydrodynamic Model Calibration 

using Multi-site Water Level Measurements 

*A modified version of this chapter has been submitted as: Fava, M. C., Abe, N. & 

Mendiondo, E. M. (2020). SWMM Calibrator – Automatic Tool towards Hydrodynamic Model 

Calibration using Multi-site Water Level Measurements. Brazilian Journal of Water Resources. 

 

Abstract 

The Storm Water Management Model (SWMM) is a well-established semi-distributed 

model, which has several applications in the literature to simulate extreme events in urban and 

semi-urban catchments. The most conventional procedure to calibrate hydrological models is 

performing the process for the entire watershed, based in a gauging station in the outlet. The 

demanding of more complex and physically-based models to solve water-related problems start 

to requires the use of spatial data to calibrate and validate them. A widespread problem to 

calibrate hydrological models is the absence of discharge data, thus requiring the development 

of methodologies that allow the use of alternative data. In this study, a multi-event and multi-

site calibration tool called SWMM calibrator has been developed. It is based on single-objective 

optimisation using a Genetic Algorithm (GA) and allows the use of water level data for 

calibration. A case study in the city of São Carlos, Brazil, is carried out to evaluate the tool. 

The catchment has four monitoring locations. The results show satisfactory adjustment for three 

of the four monitoring locations, and a poor fit for validation in one monitoring location that 

has a shorter observational period.   

 

Keywords: Automatic calibration, semi-distributed hydrological model, multi-site 

calibration, SWMM. 
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3.1 Introduction 

Rainfall-runoff transformation simulations are a widely known option to provide 

support to urban water management. Rainfall-runoff models, in a simplified way, are a 

characterisation of the real-world system, more specifically when transforming rainfall into 

surface runoff. The setup of these rainfall-runoff hydrological models is usually based on the 

data available (Henonin et al., 2013). Since most of these models are based on physical 

equations such as the law of conservation of energy and mass, they provide reasonable results 

depending on the application. However, some purposes require more accurate models. In these 

cases, the available data can be used as a priori knowledge to calibrate the non-linear behaviour 

of these models. Thereby, the model will be able to extrapolate this adjustment and perform 

rainfall-runoff transformations for future events (Moradkhani and Sorooshian, 2009). The 

calibration of rainfall-runoff models often arises in discussion due to the wide range of 

methodologies available and particularities in each case that may require improvements in the 

established ones. In addition, the modeller choices, such as the monitoring sites, its 

representativeness and dataset treatment, are directly related to the efficiency of calibration 

(Shinma and Reis, 2014).  

Landscape change and ground surface sealing increase flood frequency due to 

infiltration and flow resistance reduction (and consequently, faster concentration times) (Huong 

and Pathirana, 2013). Flood forecasting is a management approach widely used to mitigate 

flood consequences. There are many rainfall-runoff models proposed and tested in the literature 

to forecast urban floods, from more complex models (distributed models) such as MIKE SHE 

(Sahoo et al., 2006) and InfoWorks ICM (Peng et al., 2016), semi-distributed models e.g. 

SWMM (Lee and Kim, 2018) and HBV-EC (Unduche et al., 2018), to simpler lumped models 

e.g. PDM (Restrepo-Estrada et al., 2018) and HEC-HMS (Halwatura & Najim, 2013).  

The increasing popularity of more complex physics-based and distributed models in 

water-related problems raises important issues related to model calibration using spatial data 

(Zhang et al., 2008; Demirel et al. 2018; Koster et al., 2018). An efficient way to calibrate 

models is using all calibration events in only one array, and select the final parameters set that 

reached better average effectiveness results of the model across all the events. However, Awol, 

Coulibaly and Tolson (2018) point out that this approach can result in under or overestimation 

of simulation of any arbitrary event. For this study, the SWMM from the U.S. Environmental 

Protection Agency (US EPA) (Rossman, 2010) is selected to be calibrated and perform water 



49 

 

 

 

level simulations. SWMM is a rainfall-runoff model capable of performing single event or long-

term runoff simulations in urban areas through hydrological and hydraulic modules. The runoff 

component is lumped and conceptual in the sub-catchment scale and physically distributed in 

the flow and water level simulations by solving full 1D Saint Venant equations.   

SWMM is one of the most widely used urban management model (Jiang et al., 2015; 

Pina et al., 2016). Many approaches to calibrate SWMM have been developed. Many 

approaches to calibrate SWMM have been developed. Formiga et al. (2016) applied multi-

objective optimisation to model an urban catchment; Krebs et al. (2013) and Shinma and Reis 

(2014) developed multi-event and multi-site calibration methodologies by using multi-objective 

optimisation. All these studies reached good results for calibration and validation, but an 

automatic and replicable software is not available. Moreover, a lack of flow monitoring data is 

often a problem all over the world (Jian et al., 2017), especially in developing countries, e.g. 

the case of Brazil which has several urban areas under flood risk and without proper monitoring 

systems (Mendiondo et al., 2017). Taking this into account, this study proposes the SWMM 

Calibrator, an automatic calibration tool based on multi-site and multi-event observed data. The 

tool is based on a single-objective optimisation method using a Genetic Algorithm (GA). A real 

case study at the Monjolinho catchment, in the urban area of São Carlos, Brazil, is performed 

to assess the usefulness of the calibrator proposed. 

3.2 Methodology 

In this study, the SWMM model is selected as a computational engine. First, the 

calibration tool is described, then the experimental area and datasets, and finally, the procedures 

for model setup and calibration - Figure 3-1 detail the main steps performed towards model 

calibration.  

3.2.1 SWMM calibrator 

This tool was developed using Python 3.6, Distributed Evolutionary Algorithms in 

Python (DEAP) library for genetic algorithms (Fortin et al., 2012) and the library SWMM5 for 

SWMM calling interface (Pathirana, 2015). Urban hydrological-hydraulic models usually 

require two datasets: the main forcing data (rainfall) and a description of the physical system: 



50 

 

 

 

topography, street network, river and sewer system (Re et al., 2019). The data required to 

calibrate the model using the calibrator are -described in the diagram in Figure 3-1. 

 

Figure 3-1 – Diagram of the processes performed for model setup, calibration and validation. 

When using the calibration tool, the first step is to define its configuration. The SWMM 

calibrator uses water levels or flows as observed data. Moreover, there is a possibility to calibrate 

the model based on observations from one or multiple monitoring stations. From this initial 

information, a proper objective function (OF), between the available, can be chosen.  The second 

step is to define the critical parameters with their boundaries (feasible ranges). The tool allows to 

divide the sub-catchments into groups with similar features and sets different feasible ranges for its 

parameters, e.g. a group of intensely urbanised areas and a group of mixed occupation areas (urban 

and rural).   

3.2.2 Objective functions 

The SWMM calibrator chooses among four OFs. Some functions combine data from 

multiple stations into a single index, which is necessary since the set GA is a single-objective 

approach.   

Objective function 1 (F1): 

The Nash-Sutcliffe efficiency (NSE) index (Nash and Sutcliffe, 1970) is a statistical 

evaluation widely used in hydrology field, which compares the simulated and observed values 

as follows: 
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𝑁𝑆𝐸 = 1 −
∑ (𝐻𝑖 − 𝐻𝑖

∗)²𝑁
𝑖=1

∑ (𝐻𝑖 − �̅�𝑖)
𝑁
𝑖=1 ²

 (3-1) 

𝐹1 = max(𝑁𝑆𝐸) (3-2) 

where: 𝐻𝑖 is the observed value at the 𝑖-th time step; 𝐻𝑖
∗ is the simulated value at the 𝑖-th time 

step. 𝑁 is the total number of observations. The range of NSE is in between −∞ and 1. An 

index of 1 represents a perfect model, and values lower than zero indicates that the mean of the 

observed values would give a better prediction than the model.  

Objective function 2 (F2): 

The Average Nash-Sutcliffe Efficiency (AVNSE) is a simple arithmetic mean of the 

NSE of multiple stations, as described in the following equation: 

𝐴𝑉𝑁𝑆𝐸 =
1

𝐾
∑ 𝑁𝑆𝐸𝑗

𝐾

𝑗=1

 (3-3) 

𝐹2 = max(𝐴𝑉𝑁𝑆𝐸) (3-4) 

where:  𝑗 is the index of stations, 𝐾 is the total number of stations. The AVNSE range is between 

−∞ and 1. 

Objective function 3 (F3): 

Spatial Nash-Sutcliffe efficiency (SPATNSE): 

𝑆𝑃𝐴𝑇𝑁𝑆𝐸 = 1 −
∑ (�̅�𝑗

∗ − �̅�𝑗)
2𝐾

𝑗=1

∑ (�̅�𝑗 −
1
𝐾

∑ �̅�𝑗
𝐾
𝑗=1 )

2
𝐾
𝑗=1

 (3-5) 

�̅�𝑗
∗ = (𝐻∗

𝑗𝑖
: 𝑖 = [1, 𝑥𝑗]) =

1

𝑥𝑗
∑ 𝐻∗

𝑗𝑖
𝑖

 (3-6) 

�̅�𝑗 = (𝐻𝑗𝑖
: 𝑖 = [1, 𝑥𝑗]) =

1

𝑥𝑗
∑ 𝐻𝑗𝑖

𝑖

 (3-7) 
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𝐹3 = max(𝑆𝑃𝐴𝑇𝑁𝑆𝐸) (3-8) 

where: 𝐻𝑗𝑖

∗  are the simulated values for the 𝑗-th station at time step 𝑖, [1, 𝐾] =  {𝑗 ∈  ℕ: 1 ≤ 𝑗 ≤

𝐾}; 𝐻𝑗𝑖
 is the observed values for the 𝑗-th station at time step 𝑖; �̅�𝑗

∗ is the average value of 𝐻𝑗
∗ 

for the 𝑗-th station; �̅�𝑗 is the average value of 𝐻𝑗 for the 𝑗-th station; 𝑥𝑗 is the number of values 

in the time series for station j; i is the index of time steps with observations in a time series of 

a station, j is the index of stations. The simulated and observed variables are water levels at 

sensor locations. The range of SPATNSE is in between −∞ and 1. 

Objective function 4 (F4): 

Regional Nash-Sutcliffe efficiency (REGNSE) combines data from all monitoring 

stations in one data series: 

𝑅𝐸𝐺𝑁𝑆𝐸 = 1 −
∑ (𝐻𝑙

∗ − 𝐻𝑙)
2𝑀

𝑙=1

∑ (𝐻𝑙 −
1
𝑀

∑ 𝐻𝑙)
𝑀
𝑙=1

2
𝑀
𝑙=1

 
(3-9) 

𝐹4 = Max(𝑅𝐸𝐺𝑁𝑆𝐸) (3-10) 

where, 𝐻𝑙
∗ is the simulated value at 𝑙-th index; 𝐻𝑙 is the observed value at 𝑙-th index; 𝑙 is the 

index over time steps with observations for all stations; 𝑀 is the total number of time steps with 

observations for all stations. The REGNSE range is between −∞ and 1. 

Objective functions 2, 3 and 4 are based on efficiency evaluation equations proposed in 

a study by Lindström (2016), which showed good results for a hydrological model calibration 

using observed water level data instead of observed discharge or establishing a rating curve.  

3.3 Case study and data sets 

3.3.1 Monjolinho catchment 

The Monjolinho catchment is located in the city of São Carlos, with 246,088 inhabitants 

(inh.) in the southeast of Brazil. The drainage area of the catchment is about 79.6 square 
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kilometres (km²), with a time of concentration about 2.1 hours at the outlet. The average annual 

rainfall is 1400 millimetres (mm) (Juares et al., 2003). Frequently, the catchment suffers from 

flooding in the urban area; however, there is a lack of hydrological monitoring data, drainage 

structure, as well as a flood management system. Some studies on frequent floods that affect 

the city of São Carlos have been carried out, but they only address floods in the region of the 

Gregório Stream (Boldrin, 2005; Barros et al., 2007; Lima et al., 2007; Righetto et al., 2007; 

Decina & Brandão, 2016). 

 

Figure 3-2 - Monjolinho catchment and its monitoring locations (bathymetry, initial flow, rainfall and water level 

measurements). 

3.3.2 Data collection 

Field campaigns are performed to collect drainage data and the initial condition of 

surface runoff. Bathymetry and flow measurements are carried out on the main river, the 

Monjolinho, and on its main tributaries: Santa Maria do Leme, Tijuco Preto, Mineirinho and 

Gregório (Figure 3-2). The Monjolinho River starts within the territory of São Carlos city and 

cuts across the entire urban extension of the municipality. During the field campaign, the 

conditions of the canal beds and their environment are evaluated. According to the canal 

conditions, ranges of roughness coefficient values for calibration are estimated. The data 

collected and the cross-sections are detailed in the supplementary material (Appendix A).  
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3.3.3 Data sets 

Data from four monitoring locations (N1, N2, N3 and N4) collecting water level data 

every fifteen minutes (Figure 3-2) are used. Sensors N1 and N4 are installed at the Monjolinho 

River. N1 is at the outlet of the catchment and N4 in a section before the junction of the 

Monjolinho River with important tributaries: Santa Maria do Leme, Tijuco Preto, Mineirinho 

and Gregório Stream. Rainfall data are acquired from four rainfall gauges (RG1 to RG4) 

measuring data every 15 minutes. 

3.3.4 Model setup 

To extract the topographic data to model the catchment, a Digital Elevation Model 

(DEM), made available by NASA through the ASTER version2 program with a resolution of 

30 m is used. The ArcGIS® Geographic Information System (GIS) with the ArcSWAT 

extension are used to delineate the Monjolinho catchment using the DEM. The river drainage 

network from elevation information, length of tributaries, length of main water bodies, average 

slopes and width of catchments, total area and sub-catchment area are extracted. Each one of 

the cross-sections are considered as the outlet of the area upstream; then the sub-catchments B1 

to B15 are delimited according to these locations (P1 to P15, Figure 3-2).  

The infiltration model set up in the SWMM model for Monjolinho catchment is based 

on the SCS Curve Number. This method is an approach adapted for the Curve Number (CN) of 

the NRCS (National Resources Conservation Service) to estimate the runoff. From the 

information gathered in the field and Google Earth® satellite images, the CN values of the 

catchments are estimated based on NRCS (2004) reference values. The selected flow 

propagation model is the dynamic wave. The infiltration module based on SCS also requires as 

input the drying time, parameter set based on the hydraulic conductivity of the soil. The soil of 

the Monjolinho catchment is predominantly Red-Yellow Latosols (Pedro & Lorandi, 2004). 

Based on it and the hydraulic conductivity values measured in the field by Maziero et al. (2004), 

Equation 3-11 is applied to determine the drying time.  

𝑇𝑑𝑟𝑦 =
3.125

√𝑘𝑠

   (3-11) 
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where: 𝑘𝑠 is the hydraulic conductivity in inches (in)/h and 𝑇𝑑𝑟𝑦 is the time it takes fully 

saturated soil to recover to a dry state in days. 

Table 3-1 - Average values of hydraulic conductivity in the urban area of São Carlos – SP. 

Soil type 𝒌𝒎𝒆𝒂𝒏 (in/h) 

Medium silty sand 10.09 

Silty fine sand 1.52 

Clay sand 0.20 

Fine silt clay 0.008 

Source: Maziero et al. (2004). 

The rainfall data acquired from the rainfall gauges (RG1 to RG4) are interpolated to 

generate the rainfall series for each area (B1 to B15, Figure 3-2) using the Inverse Distance 

Weighted (IDW) method, thus yielding weighted rainfall values for each sub-catchment, using 

their centroid as the reference point for interpolation. IDW interpolation assigns values to 

unknown points using a weighted linear combination of the points with measurements. The 

weight of each point is the inverse of a distance function. To calculate the interpolation of the 

value of a point through the IDW method, the following mathematical equation is used: 

𝑍(𝑥) =
∑ 𝜔𝑖𝑍(𝑥𝑖)𝑁

𝑖=1

∑ 𝜔𝑖
𝑁
𝑖=1

   (3-12) 

where 𝑍(𝑥) is the value of the unknown point to be interpolated; N is the number of near points 

used in the interpolation of point 𝑥; 𝑍(𝑥𝑖) is the value of point 𝑥𝑖; e 𝜔𝑖 is the weight of the point 

𝑥𝑖 value on point 𝑥. 

𝜔𝑖 =
1

h(𝑥, 𝑥𝑖)𝑝
   (3-13) 

where h(𝑥, 𝑥𝑖) is the distance between point 𝑥 and 𝑥𝑖; p is an arbitrary positive real number 

called the power parameter. 

The estimation of Manning’s coefficients for overland flow and depth of depression storage for 

pervious and impervious areas are set based on reference values presented by Yen (2001) and 

Viessman and Lewis (2002), respectively. The percentage of impermeable areas per catchment 

is estimated based on Google Earth® satellite images. For the hydraulic model in the SWMM 
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model of the Monjolinho catchment: the inflow values, flooding level and cross-section 

geometry are measured in the field campaigns. The roughness of open channels and conduits 

are estimated based on Chow’s (1959) reference values.  

3.4 Sensitivity Analysis 

After setting up the initial configuration of the model, a sensitivity analysis of 

parameters is performed to evaluate the effects on model responses due to parameter 

perturbation. It is important to recognise that the sensitivity of the parameter in the model is 

what is being determined, not the sensitivity of the parameter in nature (Saltelli et al., 2008; 

Iooss & Saltelli, 2017). The evaluated parameters are described in Table 3-2. 

Table 3-2 – Description of the parameters evaluated in the sensitivity analysis.  

Parameter Description 

Slope [%] Average surface slope of the catchment 

CN [ - ] Value dependent on land cover representing the soil’s moisture  

Width [m]* Width of overland flow path of the catchment 

PctZero [%] Per cent of impervious area with no depression storage 

N-Imperv [ - ] Manning’s coefficient for impervious area 

N-Perv [ - ] Manning’s coefficient for pervious area 

S-Imperv [mm] depth of depression storage on impervious area 

S-Perv [mm] depth of depression storage on pervious area 

Roughness [ s/m1/3 ]** Manning’s roughness coefficient of canals and conduits 

%Imperv [%] Per cent of impervious area 

 

The initial values of parameters are perturbed from –90% to 90%, with regular intervals 

of 15%, one parameter at a time (OAT). In order to evaluate the parameter sensitivity, three 

functions proposed by Gupta (2009) are used (Equations 3-14, 3-15 and 3-16):  
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𝐸1 = (𝑟 − 1)2 (3-14) 

𝐸2 = (
𝜎𝑠

𝜎𝑜
− 1)

2

 (3-15) 

𝐸3 = (
𝜇𝑠

𝜇𝑜
− 1)

2

 (3-16) 

where: r is the linear correlation coefficient between the original simulation and the simulation 

with perturbed parameters; (𝜎𝑠, 𝜎𝑜) and (𝜇𝑠, 𝜇𝑜) represent the standard deviations and means of 

simulation values with perturbed parameters and original simulation values. 

E1 is sensitive to the linear correlation between the simulated hydrographs before and 

after the parameter perturbations and can indicate if the simulated data are similar to the 

observed data concerning the peak time and rising and falling of limbs. E2 provides information 

on the variability error, which means the differences in the curves of the hydrographs. E3 can 

indicate the correspondence in the water balance (Gupta, 2009; Shinma, 2015). 

3.5 Calibration setup 

Aiming to keep the physical meaning of the model, groups of model features with a 

different range of parameters value are defined. The Curve Number and Percent of impervious 

area parameter groups are defined based on the map of land use of São Carlos city (Costa et al., 

2012). The sub-catchments chosen to be in CN Group 1 are the ones upstream, with a natural 

coverage of terrain and which contain the springs of the main streams. Group 2 for CN 

contained the sub-catchments in fully urbanised areas, and Group 3 contained the partially-

urbanised areas. The groups of the %Imperv parameter are divided into four groups, from the 

less urbanised areas (Group 1) progressively to the completely urbanised ones (Group 4). The 

roughness parameters are divided into two groups: Group 2 for constructed canals and Group 1 

for natural canals or even modified canals that are not covered with cement. The representative 

width of the surface runoff is calibrated through a multiplier value, extending the variability of 

the initial values, but still maintaining the order of magnitude of each sub-catchment. Table 3-

3 details the groups of the sub-catchments and the values range set for the parameters.   
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Table 3-3 - Parameters ranges used in the calibration. 

Hydrological parameters Value ranges Sub-catchments 

Curve number [-] – Group 1 39 ~ 85 B1, B3, B4, B15 

Curve number [-] – Group 2 84 ~ 95 B5, B7, B8, B9, B10, B12 

Curve number [-] – Group 3 65 ~90 B2, B6, B9, B11, B13, B14 

Per cent of impervious area [%] – Group 1 1 ~ 30 B3, B11 

Per cent of impervious area [%] – Group 2 5 ~ 35 B1, B5, B10, B15 

Per cent of impervious area [%] – Group 3 30 ~ 70 B2, B4, B9, B14 

Per cent of impervious area [%] – Group 4 80 ~ 95 B6, B7, B8, B12, B13 

Width multiplier value [-] 0.7 ~ 1.3 - 

Hydraulic parameters Value ranges  

Roughness [-] – Group 1 0.01 ~ 0.21 - 

Roughness [-] – Group 2 0.01 ~ 0.09 - 

Data from four water level monitoring locations (N1 to N4, Figure 3-2) are used to 

optimise the model parameters, thus optimisation with functions F2, F3 and F4 are tested to 

consider data from all the monitoring stations at the same time. A random seed governing for 

the runs is set, twenty simulation procedures are repeated for each objective function, and the 

best solution is selected. Each simulation procedure ran until reaching the number of iterations 

set, or until reaching the stop criteria. The stop criteria is based on the deviation between the 

evaluation function of the best set of decision variables found for the current generation (n) 

 [𝑓(𝑥𝑛)] and the one of the previous generation [𝑓(𝑥𝑛−1)]. A threshold of 0.0001 was defined; 

when the deviation is lower than that value during three generations in sequence, the 

optimisation process stops. Table 3-4 shows the calibration settings. The calibration tool used 

the range limits as search space.  
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Table 3-4 – Calibration settings. 

Genetic algorithm  Settings 

Two-point crossover probability 0.8 

Flip bit mutation probability 0.05 

Individuals selection Tournament selection 

Decision variables (parameters) CN, Width, %Imperv, Roughness 

Population size 300 

Generations 100 

Objective functions (OFs) F2 (AVNSE), F3 (SPATNSE), F4 (REGNSE) 

Stop criteria |𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)|/𝑓(𝑥𝑛)  ≤ 0.0001 

 

Nine rainfall events between November 2013 and April 2014 are used for calibration 

and validation (Table 3-5). The events are grouped into three subsets according to the average 

intensity rainfall: light, moderate and heavy (Table 3-6). One event of each group is chosen at 

random, dividing all events into two subsets: half of them for calibration and half for validation 

(Table 3-7). 

Table 3-5 - Selected calibration and validation events, its dates, peak level, total rainfall and duration. 

Selected 

Events 

Date 

Duration [h] Total Rainfall [mm] Peak Level [m] 

N1 N2 N3 N4 P1 P2 P3 P4 N1 N2 N3 N4 

Event 1 04/11/2013 4.67 4.58 5.08 16.20 64.60 47.40 41.60 73.80 2.00 1.56 4.02 - 

Event 2 05/11/2013 8.75 4.67 8.92 8.92 9.60 12.20 10.00 8.20 0.74 0.48 0.93 - 

Event 3 06/11/2013 9.67 10.0 9.75 10.60 45.2 40.40 37.80 48.20 1.19 1.03 1.43 - 

Event 4 07/11/2013 3.33 3.08 0.17 2.92 9.60 2.40 1.60 5.60 0.67 0.48 1.05 - 

Event 5 16/11/2013 1.25 1.42 0.00 1.33 10.60 5.60 5.20 16.40 0.79 0.49 1.84 - 

Event 6 24/11/2013 0.83 0.92 0.58 1.33 16.60 6.60 10.80 19.40 0.81 0.57 1.11 - 

Event 7 10/12/2013 3.25 1.50 1.00 1.17 13.40 9.60 - 5.20 1.25 1.22 1.51 - 

Event 8 12/04/2014 5.67 8.75 6.00 4.75 18.20 19.80 16.80 11.60 0.99 0.90 - 1.65 

Event 9 13/04/2014 1.00 1.67 1.08 0.17 26.80 25.20 38.00 0.80 2.44 2.28 - 3.00 
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Table 3-6 - Rainfall intensity classification according to the American Meteorological Society (AMS) and the 

United Kingdom Met Office (UK Met Office). 

AMS  UK Met Office 

Rainfall 

Intensity 
Classification 

Rainfall 

Intensity 
Classification 

Trace to 2.5 Light rain Less than 0.5 Slight rain 

2.5 to 7.6 Moderate rainfall 0.5 to 4 Moderate rain 

Over 7.6 Heavy rainfall Greater than 4 Heavy rain 

Source: AMS (2012); Met Office (2007). 

 

Table 3-7 - Rainfall average intensity classification of the events used for calibration and validation. 

Selected 

Events 

Intensity 

[mm/h] 

Classification Aleatory 

sorting AMS UK 

Event 1 7.14 Moderate Heavy Validation 

Event 2 1.39 Light Moderate Calibration 

Event 3 3.86 Moderate Moderate Calibration  

Event 4 3.19 Moderate Moderate Validation 

Event 5 8.41 Heavy Heavy Validation 

Event 6 8.96 Heavy Heavy Validation 

Event 7 4.80 Moderate Heavy Calibration 

Event 8 1.37 Light Moderate Validation 

Event 9 20.43 Heavy Heavy Calibration 

 

3.6 Results and discussion 

3.6.1 Model output sensitivity to parameter perturbation 

The results of the sensitivity analysis of each parameter at a time are shown in the next 

graphs. Figure 3-3 presents the sensitivity of the parameters of sub-catchment characterisation: 
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width, slope, percentage of impervious areas and percentage of impervious areas with no 

depression storage. Among these four parameters, the percentage of impervious areas is the 

most sensitive, followed by the average width of the overland flow. Width, slope and %Imperv 

parameters are very sensitive to function E2, showing that they influence the flow-duration of 

the system. PctZero is more responsive to function E3, compared to the results for function E1 

and E2, once the per cent of impermeable areas with no depression storage has some influence 

on the water balance.  

 

Figure 3-3 - Sensitivity analysis OAT results of sub-catchment parameters: width, slope, per cent of impervious 

area and per cent of the impervious area with no depression storage. 

From the graphs of Figure 3-4, it can be noticed that the parameter S-Imperv has some 

influence on function E3 and influences almost null over functions E1 and E2. The S-Perv 

parameter influences function E2 and E3. Both parameters have some relative influence on the 
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water balance because of their effect on the runoff permeability. When observing the magnitude 

of y-axes, it can be noticed that Manning’s coefficient has more influence on the evaluation 

functions. Both N-Imperv and N-Perv influence the water balance and flow duration. 

Manning’s coefficient for overland flow in impermeable areas also has some effect on the peak 

error, but only for a negative variation of the parameter above 50%.  

In the graphs in Figure 3-5, it can be seen that the CN and Roughness parameters greatly 

influence functions E2 and E3, which indicates that they have a great influence on the flow-

duration and water balance of the system. Although roughness influences the flow velocity and 

may advance or delay the peak, its effect on E1 is small compared to its influence on the other 

two functions.  

 

Figure 3-4 - Sensitivity analysis OAT results of permeable and impermeable areas parameters: depth of depression 

storage and Manning’s coefficient. 



63 

 

 

 

 

Figure 3-5 - Sensitivity analysis OAT results: the Curve Number parameter of the infiltration model and the 

roughness of channels and conduits. 

When observing the magnitude of the error functions of all the parameters, it can be 

noticed that the most sensitive parameters are: roughness, % Imperv, Width, Slope, Curve 

Number and N-Perv. Figure 3-6 shows the clustering of all parameters to compare the variation 

of the model output due to the percentage of change in their original value. The graph shows 

the parameters that most influence the output of the model are roughness and the percentage of 

impermeable areas. Less apparent than these two first, the width and the CN also stand out from 

the others. Considering these results, the four parameters selected for calibration are %Imperv, 

Roughness, Width and CN. 

 
Figure 3-6 - Analysis of model output sensitivity on parameters variation. 
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3.6.2 Calibration results 

After running all the optimisation schemes, the resulting calibrated models for the 20 

trials for each of the selected objective functions are evaluated. Table 3-8 shows the NSE of 

each station of the best solution found for each objective function to compare the results with a 

common measure for the three OFs. The best result was obtained from function F3, which used 

SPATNSE in the objective function. It can be noted that this function showed the best balance 

in the adjustment of the four sensors. Its results showed that the difference between the best 

NSE found for each station did not deviate significantly from the best NSE obtained from the 

best set evaluated by the OF, that consider the best-averaged result between the four sensors. 

The NSEs obtained for the validation period of the best calibration using function F3 are: 0.876, 

0.425, 0.288 and -4.32, for sensors N1, N2, N3 and N4, respectively. The following figures 

show the observed and simulated hydrograph for the calibration and validation events of each 

sensor. 

Table 3-8 - NSE results of the four monitoring stations. The best individual value found for each, and the best 

average value found (the best solution when considering the index for multiple stations). 

  NSE 

Sensor 

F2 F3 F4 

Individual Average Individual Average Individual Average 

N1 0.571 0.502 0.584 0.581 0.581 0.562 

N2 0.738 0.617 0.750 0.749 0.751 0.749 

N3 0.478 0.478 0.569 0.548 0.610 0.516 

N4 0.690 0.615 0.772 0.752 0.771 0.763 

Index 

result 
AVNSE 0.553 SPATNSE 0.949 REGNSE 0.172 
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Figure 3-7 - Observed and simulated water level at N1 for calibration and validation events. The calibration events 

are highlighted in red, and the validation events are highlighted in blue. In the two lower panels, the events are 

shown in detail. 

At sensor N1, the results are satisfactory for calibration events and very good results for 

validation events, 0.581 and 0.876, respectively. The hydrographs show a good fit in the peaks, 

except during event 7. There are significant errors in the initial flow of the hydrographs. The 

measurement errors in the sensors may explain it because it varies between the events.  
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Figure 3-8 - Observed and simulated water level at location N2 for calibration and validation events. The 

calibration events are highlighted in red, and the validation events are highlighted in blue. In the two lower panels, 

the events are shown in detail. 

The simulations at sensor N2 reached good results for calibration and poor results for 

validation.  In event two, an advance of the simulated hydrograph can be observed; a similar 

behaviour happened during events 5, 6 and 8. During events 7 and 9 in the calibration, the 

simulated values are underestimated compared to the observed values. Meanwhile, during 

validation events 5, 6 and 8, the simulated hydrographs are overestimated. The precipitation 

errors may explain this due to the spatially localised nature of precipitation fields in urban areas 

(Zawadzki, 1973; Segond et al., 2007).  

Similarly, the calibration results at sensor N3 for events 2, 7 and 9 showed 

underestimated simulation values, and for validation events 4, 5, 6 and 8, the hydrographs are 

overestimated. Consequently, the NSE values obtained for calibration are considered 

satisfactory and unsatisfactory for validation, according to the classification proposed by 

Moriasi et al. (2015). 
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Figure 3-9 - Observed and simulated water level at location N3 for calibration and validation events. The 

calibration events are highlighted in red, and the validation events are highlighted in blue. In the two lower panels, 

the events are shown in detail.  

The adjustment at sensor N4 has the disadvantage of having just one event for 

calibration and one for validation (Figure 3-10). For the calibration event, despite the odd 

behaviour of the observed data, the calibration fits well, reaching an NSE value of 0.763. 

However, for the validation event, the simulated hydrograph is overestimated compared to that 

observed, reaching an unsatisfactory NSE of about - 4.32. 
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Figure 3-10 - Observed and simulated water level at location N4 for calibration and validation events. The 

calibration event is highlighted in red, and the validation event is highlighted in blue. In the right panels, the events 

are shown in detail.  

Figures 3-11 and 3-12 show the evolution of the parameters during the iterations over 

the optimisation with the objective function F3 and the NSE evolution for each sensor. It can 

be observed that there are other sub-catchments and conduits in the model that influence the 

water level simulations; the graphs show only the parameter evolution of the sub-catchment 

upstream monitoring locations. Hence, B10 is the area upstream of sensor N1, B8 is the area 

upstream of sensor N2, B5 is the area upstream of sensor N3, and B6 is the area upstream of 

sensor N4. 

CN is the parameter that presented the biggest variation when comparing all the graphs 

in Figures 3- 11 and 3-12. While roughness remains almost unchanged between the iterations, 

graphically only a small variation in the first iterations at sub-basin B5 is noticeable. It is 

important to highlight that each iteration corresponds to a generation of the genetic algorithm, 

and the initial population size is 300 individuals (sets of decision variables). Therefore, several 

roughness values are evaluated, but the evolution of the parameters at each generation remained 

almost constant because the best set of decision variables did not change between generations. 

The algorithm converged relatively quickly, approximately in the thirtieth iteration or earlier. 

The analysed parameters did not show great oscillation in the efficiency values between the 

iterations, which could have happened due to an improvement in one sensor adjustment that 

would negatively affect another. When analysing the NSE evolution, it can be noticed that the 

compromise between the individual adjustment evolution and the concomitant evolution of all 

monitoring sites is relatively smooth.  
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Figure 3-11 - Evolution of parameters during the optimisation process of sub-catchments B10 and B8. NSE 

evolution of sensor N1 in the left bottom corner and of sensor N2 in the right bottom corner. 

 

 

Figure 3-12 - Evolution of parameters during the optimisation process of sub-catchments B5 and B6. NSE 

evolution of sensor N3 in the left bottom corner and of sensor N4 in the right bottom corner. 
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3.7 Conclusions 

This study reports on and discusses the results of a multi-event and multi-site calibration 

approach for the SWMM model, applied for a study case in a highly urbanised catchment, with 

a lack of hydrological monitoring data. Based on the aim of testing different objective functions, 

due to the limitation of having water level data instead of flow measurements to perform the 

parameter optimisation, and aiming to calibrate the model by selecting multiple parameter 

ranges, an automatic calibration tool is developed.  

The sensitivity analysis demonstrates that the parameters, which had more influence on 

the simulation performance are the percentages of the impervious area, Manning’s roughness 

coefficient, the width of the overland flow path and the curve number. Despite the intense 

urbanisation in the catchment, the infiltration parameter still had considerable influence in 

model output because the modelling covered the upstream areas, where are the springs of the 

streams of Monjolinho catchment. 

The quality of data plays a fundamental role in the calibration and validation of an urban 

hydrological model, especially when considering the high temporal and spatial resolution 

required. In this study, mainly the unstable quality of the observed water level data and the 

uncertainty in rainfall data affects the model adjustment. In addition, using water level data to 

calibrate the hydrological model may is not fully capable of reflecting the catchment response 

to the rainfall inputs. The calibration and validation assessment showed satisfactory results, 

considering a poorly gauged area, and that in most of the events, the model predicts well the 

water level peaks. Nevertheless, for a flood prediction system, real-time updates based on new 

observations can be a promising improvement in the simulations.  

Further studies testing calibration efficiency using other datasets, flow rather than the 

water level, only one monitoring station at a time and other evaluation statistics are strongly 

recommended. Further studies testing calibration efficiency using other datasets, flow rather 

than the water level, only one monitoring station at a time and other evaluation statistics are 

strongly recommended.  

Despite the limitations, mainly due to the lack of detailed and high-quality data, this 

study presents good results of an automatic calibration tool capable of being applied to other 

case studies. 
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4 Flood Modelling Using Synthesized Citizen Science Urban Streamflow Observations* 

*A modified version of this chapter has been published as: Fava, M. C., Abe, N., 

Restrepo‐Estrada, C., Kimura, B. Y., & Mendiondo, E. M. (2019). Flood modelling using 

synthesised citizen science urban streamflow observations. Journal of Flood Risk Management, 

12(S2), e12498. doi: https://doi.org/10.1111/jfr3.12498. 

 

Abstract 

The increase in floods and flash floods over the last decades has motivated researchers 

to develop improved methodologies for flood risk prevention and warning. Flood forecasting 

models available today have evolved technologically but are subject to limitations due to the 

lack of data and limited community participation. This study presents the Hydrological Alert 

Model with Participatory Basis (HAMPB) model, an approach for integrating water level data 

reported by citizens, which has the advantage of being inexpensive and potentially highly 

available, with traditional data to improve flood forecasting. The model assimilates 

spatiotemporal water levels measured in the field when they are available through a real-time 

estimator. Random perturbations of up to |10| and |15| cm are added to those data using the 

Monte Carlo Method to mimic the uncertainty in citizen science data collection. Applying the 

HAMPB model for urban nested-scale catchments (0.11 km² <= Area <= 21.84 km²) in Brazil 

shows: (1) significant improvements in flood simulations when field data is assimilated even 

considering the volunteered data uncertainty; (2) capability to update simulations in more than 

one point in the semi-distributed hydrological model by a regionalisation method; and (3) flood 

hazard indexes and their uncertainties show better estimations using field data for updating. 

Keywords: flood modelling; citizen science data; short-term forecasting; SWMM.   
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4.1 Introduction and scope 

According to the United Nations (UN), Brazil is among the countries with the highest 

incidence of floods. Brazil has witnessed hundreds of deaths due to drowning, flooding and 

landslides. The numbers presented by CEPED (2013) show that between 1991 and 2012, “flash 

flooding” is the category of disasters which caused the greatest number of deaths in Brazil, 

58.15% of the total number of records (floods represent the third largest cause of deaths: 13.4% 

of the total). 

Interdisciplinary studies and vulnerability testing are crucial to prevent and mitigate 

these impacts to identify, simulate and reproduce environmental conditions and water resource 

conditions derived from climate change scenarios. The impacts of disasters can be reduced by 

adopting preventive methods. It is important to develop means to disseminate them across a 

wide range of stakeholder groups (Coller et al., 2015) and to prepare the population in terms of 

how to react in disaster situations to minimise damage (Voinov & Bousquet, 2010; Innocenti, 

2014; Ramaswamy, 2016; Voinov et al., 2016). Real-time flood modelling allows authorities 

to make better decisions about where they should direct their attention and offer guidance to 

citizens to choose safer routes (Smith et al., 2015). 

Traditional data acquisition using gauge sensors is an efficient way to collect reliable 

information with good measurement and transmission frequency. However, it has 

disadvantages mainly because it is costly and difficult to ensure protection in the field. Recently, 

the concept of Citizen Science (CS) has emerged, which means volunteer members of the 

general public (i.e., non-scientists) generate new scientific knowledge (Buytaert et al., 2014) 

by collecting scientific data and actively taking part in research hypotheses and issues, as well 

as in less participative activities such as "human sensors" (Roy et al., 2012). Goodchild (2007) 

coined the term Volunteered Geographic Information (VGI) as digital geospatial data generated 

by common citizens. Leyh et al. (2017) highlight that VGI is one of the practices of Citizen 

Science, where information provided by volunteers must necessarily be georeferenced. This 

type of data can be a solution to fill the lack of data in ungauged or poorly gauged basins, having 

the advantage of being inexpensive and promoting community involvement and awareness. 

(Goodchild, 2007; Poser & Dransch, 2010; Horita et al., 2015; Seebauer & Babcicky, 2017). 

Crowdsourcing platforms, such as Ushahidi, have been widely used for collecting 

citizen data in flood-affected areas (Heinzelman & Waters, 2010; Zook et al., 2010; Victorino 
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& Estuar, 2014; Mazzoleni et al., 2017; Pánek et al., 2016). Data collected by volunteers in an 

organised way to carry out specific tasks and through different devices in order to create and 

publish information of interest are called Citizen Observatories (CO) (Miorandi et al., 2013; 

Degrossi et al., 2014). The WeSenseIt project also includes in the definition of CO the idea of 

involving communities, emergency operators and policymakers in an organised platform to 

discuss, monitor and intervene in situations, places and events (Mazumdar et al., 2016).  

Yet, data provided by volunteers and crowdsourced data are subject to many 

uncertainties, and there is a great concern about developing methodologies to determine the 

reliability of these data (Fritz et al., 2012). Hung et al. (2016) reviewed approaches for VGI 

quality assessment and developed a probability model for VGI quality evaluation. However, 

the authors mentioned the need for further research using a bigger dataset. Meanwhile, some 

studies already present good results using volunteered data. Estes et al. (2016) obtained data 

from land cover with 91% accuracy using an open-sourced platform presented in a study called 

DIYlandcover. Citizen science is a very promising solution to complement real-time sensor 

data in flood forecasting models (Davids et al., 2017). However, the literature review shows a 

few real case studies performed in that research area and highlight the importance to further 

work on this issue to develop accurate methodologies to use citizen observations for flood 

modelling (Assumpção et al., 2017).  

Data assimilation (DA) techniques have been widely used for status updating in 

hydrological models. Mazzoleni et al. (2017) developed an assimilation methodology of 

streamflow data provided by citizens for flood forecasting in conceptual hydrological and 

hydraulic models in mostly rural catchments and demonstrated the effectiveness and improving 

forecasting accuracy and promising applications in the field. Lee et al. (2012) carried out a 

study on state updating of distributed rainfall-runoff models via streamflow assimilation in the 

context of operational hydrologic forecasting, but in a different context from citizen science 

studies, without considering streamflow information provided by citizens and its uncertainty. 

DA methods using smoothing techniques, statistics and adjustments of internal and external 

variables of hydrological models have been more often used and are better than simplistic, 

direct insertion methods. However, in some cases, simpler methods, which replace the model 

estimate with the observation, may be useful (Walker et al., 2001; Reichle, 2008; Lee et al., 

2012). 
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Flood forecasting in urban catchments is based on observations and predictions of 

phenomena in places where people live. Therefore, it is fundamental to test new quantitative 

models and scientific hypotheses that integrate traditional data and information provided by the 

population. Taking this into account, a methodological approach to integrate multiple data 

sources (sensors, voluntary-based data, rain gauges) is developed, called the Hydrological Alert 

Model with Participatory Basis (HAMPB) model. The main purpose of this study is to evaluate 

the performance of the HAMPB methodology when assimilating field data to reduce 

uncertainty in a short-term flood forecasting model. The case study is carried out in a small, 

almost fully urbanised catchment called Monjolinho, located in the city of São Carlos, São 

Paulo state, Brazil. 

4.2 Case study 

This section describes the Monjolinho catchment, monitoring points, the structure 

developed to collect the different data sources and the hydrological modelling. 

4.2.1 Monjolinho catchment 

The Monjolinho catchment (Figure 4-1) is located in the city of São Carlos, Brazil a city 

of 246,088 inhabitants (inh.) in the southeast of the country. Monjolinho is the main river of the 

basin. It crosses the entire urban area, and all its springs can be found in the city. The urban 

area of São Carlos is developed within the geographical limits of the Monjolinho catchment. 

The total area delimited for this study is 79.6 square kilometres (km²), the main river is 15 

kilometres (km) long, up to the outlet defined in the modelling. The time of concentration of 

the catchment is two hours. The population density of the city is 194.53 inh./km². The average 

altitude of the catchment is 856 meters (m) above sea level and the soil is considered highly 

permeable.  

4.2.2 Hydrological modelling 

The catchment model is designed using the Storm Water Management Model (SWMM) 

from the U.S. Environmental Protection Agency (US EPA) (Rossman, 2010). SWMM is a 

physically-based and semi-distributed rainfall-runoff model capable of performing single event 

or long-term simulations through the hydrological and hydraulic modules. The Hydrological 
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module reproduces the runoff in the sub-catchments and internally includes an infiltration 

module. The Soil Conservation Service – Curve Number (SCS-CN), Green-Ampt and Horton 

models are available as infiltration options. The hydraulic module calculates the streamflow in 

rivers or channels, and the surface runoff that comes from the hydrological model to the 

watershed during rainfall events.   

 
Figure 4-1- Monjolinho catchment in the city of São Carlos and its monitoring points of water level (N1 and N3) 

and rainfall (P1 to P4). The photo shows different ways of reading volunteer data: low-cost staff gauges, a 1.75 m 

man-sized pictogram with markings on the knee, waist and neck and a colour scale indicating the hazard index 

that the person is exposed to if they fall into the canal. 

The model consists of 35 nodes and 15 sub-catchments with drainage areas ranging from 

0.11 km² to 21.84 km². In the modelling, the infiltration model based on the SCS-CN is chosen. 

This method is an approach adopted for the curve number (CN) of the National Resources 

Conservation Service (NRCS) to estimate the runoff. The adopted flow propagation model is 

the dynamic wave. The parameters used in the hydraulic module are channel roughness, length, 

cross-section at the 15 staff gauge points, initial depth and the inflow.  For the hydrological 

module, the following parameters are used: area, width, slope, curve number, percentage of 
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permeable area, percentage of impermeable area and roughness coefficient for permeable and 

impermeable areas. 

Simulations for calibration are performed at two locations of the catchment: N1 and N3 

(Figure 4-1) with a time step of 5 minutes. There are water level sensors sending data in real-

time at these points, also in time steps of 5 minutes. These data are used to evaluate and calibrate 

the hydrological model. N3 is located upstream from location N1 in the Santa Maria do Leme 

River before the confluence with the Monjolinho River. The river bed at this location presents 

a natural cover, has a width of about 2 m and the channel is 0.96 m deep. N1 is located at the 

outlet of the catchment in the Monjolinho River. The river bed at this point is rectangular and 

covered in concrete with a width of about 15 m and the channel is 3.05 m deep. Both areas are 

prone to the occurrence of floods. Five big rainfall events are used for calibration on the 

following dates: Event 1 (10/22/2013), Event 2 (04/11/2013 and 05/11/2013) Event 3 

(22/11/2013 and 23/11/2013), Event 4 (03/01/2015) and Event 5 (23/11/2015).  

The Nash-Sutcliffe Efficiency (NSE) assesses the relative magnitude of the residual 

variance compared to the measured data variance and shows how well the plot of observed data 

versus simulated data fits (Nash and Sutcliffe, 1970). Table 4-1 shows the results of the 

calibration made in the two monitoring locations of the catchment. The obtained average NSE 

value is 0.519 for location N3 and 0.879 for location N1. According to the criteria defined by 

Moriasi et al. (2007), the calibration shows satisfactory results for location N3 and very good 

results for location N1. 

4.3 Methodology 

To determine the efficiency and feasibility of using citizen science data in small urban 

catchments, a field campaign has been conducted with volunteers to collect water-level data. 

This social experiment has been conducted in the urban catchment of São Carlos, São Paulo 

state. Initially, fifteen (15) low-cost staff gauges and visual facilities (Figure 4-2) are installed 

next to bridges so that the volunteers could read the water levels and give feedback about real-

time conditions (Degrossi et al., 2014). Based on this experience of humans interacting as 

sensors for data collection in São Carlos and the need to complement the developed Citizen 

Observatory, this study developed the HAMPB model, a tool to predict and simulate flood 

events. 
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Figure 4-2 - Citizen Science data collection at Monjolinho catchment. 

Figure 4-3 shows the data used by the HAMPB model, illustrating its structures and 

information flow. The input information used in this study is rainfall data obtained from rain 

gauges, water level acquired using sensors and synthetic voluntary-based data. When the water 

level data are measured in the field, the water levels simulated by the hydrodynamic model are 

corrected/updated by the real-time estimator at the location where the information is collected. 

The regionalisation process is used to update the water levels at other points of the catchment 

under flood risk and not only where the information is measured. After obtaining: (i) the results 

from the simulations, (ii) status updating using synthetic volunteered data, and (iii) an analysis 

of extravasation limits for each sub-catchment, alerts about the current state of the catchment 

can be issued. Each one of these processes is better explained in the next sections.  



85 

 

 

 

 

Figure 4-3 - Methodological activity diagram of the HAMPB model for flood forecasting assimilating data 

provided by citizens. 

4.3.1 Water level 

The water levels used in this research are obtained by sensors installed at two points of 

the catchment (N1 and N3). These data are transmitted through a mobile network to a database 

server. The HAMPB model requires two input data types to validate the methodology: water 

level collected by sensors and water level informed by the volunteers. As described before, in 

previous studies, a CO has been built for the urban catchment of São Carlos, and some citizen 

science data collected and evaluated (Degrossi et al., 2014). The dataset does not match with 

the periods evaluated in this study because only large rainfall events have been considered. 

Furthermore, a large amount of data is required to validate the methodology proposed in this 

study. To fill the lack of volunteered data, quantitative noises are added in the data measured 

by sensors to mimic voluntary-based water level data. The process is explained in Section 3.4. 
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4.3.2 Rainfall data 

To perform the hydrological forecasting in the short term, the HAMPB model requires 

rainfall forecasting data as input. However, in this study, only measured rainfall data are used 

because it is focused on the errors associated with the assimilation of volunteered data in flood 

forecasting models. In this experimental phase, all steps are taken offline. Various rainfall 

forecasting models can be used to run real-time applications from global models to ones that 

use local data from the catchment under study. The uncertainties of each model should be 

considered before choosing the rainfall estimation model. Rainfall data are acquired from four 

rainfall gauges (P1 to P4, Figure 4-1). These data are converted into a single array using 

interpolation to simplify the input for the model using the Inverse Distance Weighted (IDW) 

method, thus yielding an average rainfall for the entire catchment. 

4.3.3 Real-time estimator 

In this study, a real-time estimator is proposed, used externally to the model that will 

assimilate water level information measured by sensors and status updating of the simulated 

values. The real-time estimator replaces the simulated data for the new information directly, 

considering it more reliable instead of the simulation made by the hydrological model. The 

sensor information is assumed to be more reliable than the hydrological model considering that 

these data are gathered directly in the field. Status updating of the model parameters and state 

variables have not been performed.  

The method performs the assimilation of field data calculating the deviation between 

the water level measured and the simulated water level obtained by the hydrodynamic model. 

This deviation is propagated over time until the system receives new field data or reaches the 

time limit (Figure 4-4). The HAMPB model has a mechanism that limits the lifespan of 

volunteered data. In the case of the catchment under study, the information is considered valid 

until one hour after it is supplied. After this period of time, the system considers that the 

simulated information without updating provides better-estimated values. Empirical 

simulations determine a one-hour limit in the study catchment.  
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Figure 4-4 – Theoretical representation of the real-time estimator. 

As Proof of Concept (PoC), a comparison is made between the forecasting performance 

when updating the runoff simulations with the real-time estimator and without updating the 

runoff simulations. The water level simulations performed by SWMM have time steps of 5 

minutes. Updating intervals of 1 hour and 2 hours are tested for all the rainfall events mentioned 

in Section 2.2 (calibration and validation events). The assimilated data is water level field data.  

4.3.4 Assessment of uncertainty 

Using citizen science data requires great care regarding data reliability. To properly use 

volunteered data, it is important to apply a reliability classification which takes into account, in 

particular, the commitment and participation of volunteer in the project (Klonner et al., 2016). 

To evaluate the predictive performance of the data assimilation considering the uncertainty in 

the data provided by citizens, the Monte Carlo Method (MCM) is chosen to add small random 

noises to the field data, emulating volunteers reading errors, assuming a randomly distributed 

error. This approach enabled to assess the predictions and, indirectly, a quantitative 

measurement of the acceptable error on the citizen data. Citizen science data may not be 

reported frequently and regularly. The water level simulations performed by SWMM have time 

steps of 5 minutes. To assess the effects of assimilating synthetic volunteered data large 

intervals between the updates of about 1 and 2 hours are tested. The asynchronous behaviour 

of CS data is not considered. 
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Eleven sets of random errors are created varying between +/-10 centimetres (cm), with 

the same size as the field data vector, and are added to them. The same process is repeated in a 

distinct vector using noises with +/-15 cm of error. The noises are added directly in the water 

level because it is the parameter which the volunteer will provide, and these ranges are adopted 

using pessimistic scenarios. Thus, the experiment is repeated using field data + errors. Updating 

intervals of 1 hour and 2 hours are tested. The efficiency of the forecasting is evaluated 

calculating the NSE between (i) the observed data and the simple simulation; (ii) observed data 

and simulation updated with the real-time estimator; (iii) observed data and simulation updated 

with the real-time estimator considering errors in citizen science data collection. 

Errors of +/- 10 cm and +/- 15 cm are chosen by configuration of low-cost staff gauges, 

usually installed for this type of measurements, taking into account two factors: (i) as the ruler 

numerically displays marks of 5 cm, the volunteer tends to round up the reading to one of the 

values written on the ruler; (ii) the variation of water levels in turbulent regimes is also 

considered since the volunteer can record the highest value, the lowest value or the average 

level reading. 

4.3.5 Regionalisation using citizen science data 

After making the corrections of values through the real-time estimator at a given point 

of the catchment, the disaggregation of the updated water depth values for other sites in the 

catchment needs to be considered. Considering distributed rainfall-runoff models, catchments 

that have multiple flood risk areas and the fact that information provided by volunteers may be 

scarce and asynchronous, the regionalisation of these values will ensure the maximum use of 

all received data. 

In order to use CS data and sensor data, initially, theoretical analysis about the use of 

volunteer data with sensor data is carried out. A methodology is developed to integrate 

voluntary information into short-term prediction models presenting a solution to fill data in 

ungauged places of the catchment: 

Given n locations to collect CS data 𝑝𝑖
𝑣 for ∀𝑖 ∈ [1, 𝑛] and k monitoring locations (water 

level sensors) 𝑝𝑗
𝑠 for ∀𝑗 ∈ [1, 𝑘]. A reference location is chosen 𝑝𝑐

𝑠 for 1 ≤ 𝑐 ≤ 𝑘 between the 

monitoring points. Given a set of simulated flow obtained by historical rainfall series at location 
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𝑝𝑐
𝑠, optimal parameters to the rainfall-runoff model are estimated. Assuming that the model has 

presented satisfactory results for the known point 𝑝𝑐
𝑠, and the points 𝑝𝑖

𝑣 are located in the same 

catchment it can be concluded that the model will also reach satisfactory simulations for these 

locations because they directly contribute to the simulations in 𝑝𝑐
𝑠. This correlation can be made 

in all 𝑝𝑗
𝑠 locations and integrated into the hydrological forecasting model exemplified here for 

the single point (𝑝𝑐
𝑠). After obtaining the hydrodynamic curves through the rainfall-runoff 

model, a linear regression between the curves obtained in 𝑝𝑐
𝑠 with the curves of the other 

locations 𝑝𝑖
𝑣is performed, resulting in a linear regression that correlates values of flow rates at 

each ungauged point with the known location 𝑝𝑐
𝑠. After obtaining the correlation curves, the CS 

data can be used to improve and update in real-time the forecasts at the monitored monitoring 

locations 𝑝𝑗
𝑠, i.e. the information obtained collaboratively can be used to produce estimated 

values at the known locations, which will be used in the model for predicting the water level at 

time t + 1, reducing the uncertainty in the model forecasts. 

To calculate the correlation between the adjusted value at the point where the 

information is given and the downstream points in the catchment, equations that relate 

streamflow values among all points of the catchment are determined. Initially, the water level 

values are converted into flow, allowing this value to be propagated to the next point. If the 

calculations are made only using flow, it would generate a large error, as each cross-section of 

the channel has its particular shape and physical characteristics, thus they probably would 

present very different flow rates for the same water level variation. To convert the flow rate 

into the water level, have rating curves are needed (also known as stage-discharge curves or H-

Q curves) for the volunteered data collection sites and the sensor-monitored locations. In places 

where the rating curve is not known, a synthetic rating curve should be determined using 

historical rainfall data and level and flow simulations performed by the hydrological model. 
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Figure 4-5 – Theoretical representation of the regionalisation method. The water levels at location B (𝐻𝐵) are 

updated from the water level values in A (𝐻𝐴), through the hydrodynamic curves that convert water level to flow 

values [𝑄𝐴 → 𝑓(𝐻𝐴) and 𝑄𝐵 → 𝑓(𝐻𝐵)].  

The rating curves of the two points of interest (N1 and N3) are estimated using values 

simulated by SWMM because there are no flow measurements in the catchment of the case 

study (Figure 4-6). In this study, these estimated rating curves are called hydrodynamic curves 

since they are not constructed using real measurements. The equations are determined by non-

linear regression (polynomial). Finally, the linear regressions between simulated flows at the 

points of interest (Figure 4-7) are defined.  

 

Figure 4-6 – Hydrodynamic curves for location N1 and location N3. 

Estimated hydrodynamic curves node N1  

𝑄𝑁1 = −4.744ℎ𝑁1
3 + 35.8ℎ𝑁1

2 + 31.181ℎ𝑁1 − 7.658 (4-1) 

𝑅2 = 0.9981  

ℎ𝑁1 = 𝑒−7𝑄𝑁1
3

− 5𝑒−5𝑄𝑁1
2

+ 0.017𝑄𝑁1 + 0.226 (4-2) 
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𝑅2 = 0.9975  

Estimated hydrodynamic curves node N3  

𝑄𝑁3 = 24.191ℎ𝑁3
3  − 41.262ℎ𝑁3

2 + 33.249ℎ𝑁3 − 5.951 (4-3) 

𝑅2 = 0.9886 

 

 

ℎ𝑁3 = 3𝑒−5𝑄𝑁3
3

− 0.003𝑄𝑁3
2 + 0.102𝑄𝑁3 + 0.207 (4-4) 

𝑅2 = 0.9954  

The model is better calibrated at location N1 compared to location N3. For this reason, 

the water level simulations for location N3 are updated by correlation with location N1. Field 

data are assimilated at location N1 through the real-time estimator. Once updating the water 

level values, the curve that correlates the depth and flow values are used for location N1 to 

calculate the correspondent flow. After obtaining the theoretical flow values for location N1, a 

regression that relates the flow values of location N1 with flow values for location N3 is applied 

to obtain the estimated flow rate for location N3. Finally, by using the hydrodynamic curve for 

location N3, its updated water level is obtained.  
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Figure 4-7 - Regression curve of flows between the two points of interest (N1 and N3). 

Correlation curve between node N1 and N3 

𝑄𝑁3 = 0.069𝑄𝑁1 + 0.2962 (4-5) 

𝑅² = 0.821  

4.3.6 Hazard Index 

Hazards are defined as situations which have the potential of resulting in harm. 

Tingsanchali and Karim (2005) point out that flood hazards always depend on a local scale, that 

represents the degree of hazard called Hazard Index (HI). In a study performed by Rotava 

(2013), the HI for people are determined, considering the structure of the urban channels at 

locations N1 and N3 in the Monjolinho catchment. The equation used to calculate HI takes into 

account the physical characteristics of the channels, water velocity and water depth to determine 

the risk that people near these sites are exposed. The study uses colour bands that classify HI 

as low, medium, high and very high corresponding to the threshold values of 0.5, 1, 1.4 and 

above 1.4, respectively. For the places where the HI is determined (location N1 and N3), a 1.75 

m man-sized pictogram with markings on the knee, waist and neck, as well as a colour scale 

beside it indicating the hazard index, are drawn on the canal wall (Figure 4-1) to make it easier 
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to collect citizen science data. The HAMPB model has a water depth forecasting as a product, 

and the conversion of these values into the HI is performed to analyse and classify flood alerts.   

4.4 Results 

The evaluation of the forecast adopting the methodology described above is performed 

based on the NSE (described in Section 2.1). All the graphs in the following Results sections 

are sampled for the flood event which occurred in the urban catchment of São Carlos on 

November 4, 2013.  The efficiency evaluation of the methodology is done for the sampled 

period in the graphs, and for all the events used in the calibration and validation of the 

hydrological model in order to obtain more reliability in the performance of the method. NSE 

for all the situations are compared in Table 4-1. 

4.4.1 Performance of the assimilation method 

Figures 4-8 and 4-9 show the performance of the real-time estimator assimilating field 

data every hour for the two observational points N1 and N3 and the surrounding details of the 

observational places. The graphs at the top in the figures show the water depth simulations 

without updating (red line), with updating every hour (blue line) and the observed values. The 

bottom graphs show the evolution of per cent error between observed and simulated values 

during the flood event to better compare the influence of assimilating data.  

 



94 

 

 

 

Figure 4-8 - Results of the updates made using the real-time estimator at location N1. Land use classification, 

according to Herold, Liu and Clarke (2003) and channel characteristics from Te Chow (1959). 

 

Figure 4-9 - Results of the updates made using the real-time estimator at location N3. Land use classification, 

according to Herold, Liu and Clarke (2003) and channel characteristics from Te Chow (1959). 

Figure 4-8 shows the improvement in the forecasting assimilating field data mainly 

during a flood wave. The values simulated by the model declined slowly, and when the field 

data are entered, the forecasting followed the levels measured by the sensor in a better way. 

This location is in the outfall of the catchment and is a very critical point in strong rainfall 

events as several flood events are reported in this area. Despite a minor contribution area to 

location N-3 (Figure 4-9), it is a region of great importance to the study due to the flood history 

in the area and because it is an easily accessible location for citizen science data to be given, 

which is essential for the methodology proposed here. N-3 is located in a residential area and 

the section is under a bridge where many people circulate. The error graph shows that the 

deviations are more concentrated at the moments when the flood wave is decreasing. It is 

important to highlight that the priority is to detect the peaks more accurately, as they are the 

most likely times to characterise a flood disaster. NSE shows that for the two monitoring 

locations, the most accurate simulation values are obtained when the field data are incorporated 

(Table 4-1). With a time interval of one and two hours between the updates, NSE for location 

N-3 has raised from 0.457 to 0.464 and 0.715 respectively. At location N1 for one and two 

hours of a time interval between the updates, NSE raised from 0.784 to 0.894 and 0.878 

respectively. However, the error charts point to a few moments when using field information 
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increased the error. Analysing these instants and comparing the error graph with the 

hydrograph, it can be observed that this happens when there is a fast water level variation and 

the reported field data at earlier times is still outdated. 

4.4.2 Effects of uncertainty in observational data 

The next figures present the results when updating the runoff simulations considering 

the possible reading errors in CS data and considering sparse intervals of updating. Figure 4-10 

shows simulations updated with the samples that have randomly distributed errors of +/- 10 cm 

and respective error behaviour. It can be observed a reduction in per cent error in the two 

monitoring points with the insertion of field data during almost the whole rainfall event. At 

location N1, it can be observed that for information entered every hour or every two hours, the 

interquartile range displayed by the boxplot is quite narrow compared to the interquartile range 

of the same conditions in location N-3. This probably happened because location N1 is better 

calibrated. For all cases, a better fit to the peak values can be observed, even considering the 

extreme values of the boxplot, showing that even the error of reading volunteered data values 

can help to improve the water level simulations when errors of +/- 10 cm are considered.  
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Figure 4-10 - The rainfall event illustrated is registered in São Carlos, São Paulo state on 04/11/2013. The graphs 

show the level simulated by SWMM, the level measured by a water level sensor, the water level corrected inserting 

hourly voluntary information (a) and (b), and inserting field data every two hours (c) and (d). The field data inserted 

has randomly distributed errors of +/- 10 cm. 
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Figure 4-11 - The rainfall event illustrated is registered in São Carlos, São Paulo state on 04/11/2013. The graphs 

show the level simulated by the SWMM, the level measured by a water level sensor, the water level corrected 

inserting hourly voluntary information (a) and (b), and inserting voluntary information every two hours (c) and 

(d). The volunteered information inserted has randomly distributed errors of +/- 15 cm. 

Figure 4-11 shows the results of the field data insertion considering +/- 15 cm of error 

for the same scenarios as Figure 4-10. An increase in the distance between the quartiles 
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compared to the graphs in Figure 4-10 can be observed. Some outliers can be noticed when the 

flood wave is decreasing at location N1. At location N3, the extreme upper value of the boxplot 

exceeds the error of the simulation at the beginning of the flood. Nonetheless, the NSE average 

still shows an improvement in simulations considering errors of +/- 15 at location N1 (average 

NSE values of 0.871 and 0.868 for one and two hours of time interval respectively). However, 

at location N3 when updating with two hours of a time interval and considering +/- 15 cm, the 

average NSE value decreases to 0.361. 

Considering that the water level results are used to determine the level of risk awareness 

necessary for each moment in the hydrograph, and after evaluating the forecasting performance 

of the real-time estimator and the CS data uncertainty, it is analysed how it affects the alerts 

related to the Hazard Index. In Figure 4-12, the black and blue lines represent the variation of 

HI in time during the flood event for the water level measured by the sensor and simulated by 

the model, respectively. The coloured lines from S1 to S11 represent the HI for the simulated 

water levels and are corrected for the assimilation of synthetic volunteered data added with 

water errors between +/- 10 cm. The data assimilation interval is one hour. The graph shows 

that updating simulations, even considering the noise, reaches HI values closer to those 

observed.  

 
Figure 4-12 - Adherence verification between the forecast and the measured data about the Hazard Index (HI). 

Through the simulation results considering the uncertainty in the CS data, the updates 

are assessed in different places than where the field information is given through the 

regionalisation method. Water level values at location N-3 are updated by correlation with 

location N1. It is performed for four situations (Figure 4-13): (a) Updating forecasting every 
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hour with field data added to a random error of +/- 10 cm; (b) Updating forecasting every hour 

with field data added to a random error of +/- 15 cm; (c) Updating forecasting every two hours 

with field data added to a random error of +/- 10 cm; (d) Updating forecasting every two hours 

added to a random error of +/- 15 cm. In all situations, the NSE ratio increased, showing a very 

significant result in the use of correlations between points of the same catchment. The best 

average NSE value obtained by correlation is 0.639 when updating every hour and using 

random error of +/-15 cm. 

Table 4-1 - NSE results for calibration, validation, real-time estimator procedure and correlations for location N3 

and location N1. 

Location Purpose NSE 

N3  

(A = 10.93 km²) 

 

Calibration 0.519 

Validation 0.457 

Updated (time interval = 1h) 0.715 

Updated (time interval = 2h) 0.464 

Updated (time interval = 1h; error = 10 cm) 0.588 

Updated (time interval = 1h; error = 15 cm) 0.471 

Updated (time interval = 2h; error = 10 cm) 0.419 

Updated (time interval = 2h; error = 15 cm) 0.361 

Updated by correlation (time interval = 1h; error = 10 cm) 0.639 

Updated by correlation (time interval = 1h; error = 15 cm) 0.652 

Updated by correlation (time interval = 2h; error = 10 cm) 0.578 

Updated by correlation (time interval = 2h; error = 15 cm) 0.612 

N1 

(A = 79.64 km²) 

Calibration 0.879 

Validation 0.784 

Updated (time interval = 1h) 0.894 

Updated (time interval = 2h) 0.878 

Updated (time interval = 1h; error = 10 cm) 0.887 

Updated (time interval = 1h; error = 15 cm) 0.871 

Updated (time interval = 2h; error = 10 cm) 0.873 

Updated (time interval = 2h; error = 15 cm) 0.868 
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Figure 4-13 - Correction for location N-3 through the correlation with location N1 for day 04/11/2013. Volunteer 

data insertion: (a) ∆t = 1h, error = +/- 10 cm; (b) ∆t = 1h, error = +/- 15 cm; (c) ∆t = 2h, error = +/- 10 cm; (d) ∆t 

= 2h, error = +/- 15 cm. 
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4.5 Discussion 

The literature review shows the trend of using the information provided by volunteers 

and developing Citizen Observatories in places exposed to flood risks in order to have an 

organised way of collecting data from the general public to improve flood risk management. 

There are few studies applying citizen science data for flood forecasting. However, many 

studies indicate that this may be an important methodology to be developed and tested for 

different flood risk scenarios, thus reinforcing the contribution of the HAMPB model.  

Results using the real-time estimator to update outputs of the hydrological model with 

instant water level information helped to improve the accuracy of the simulations. However, 

these results are obtained using water-level data measured by sensors and added to a random 

error to mimic citizen science data. The behaviour and frequency of CS data are not addressed 

in these evaluations. The results are tested when assimilating data in a regular temporal 

distribution of one and two hours. Considering the model time step of 5 minutes, there is a 

significant gap between the updates. The previous experiences in the literature review about 

collecting citizen data show that the volunteered data can be provided more or even less 

frequently than what is considered here. It depends on which way it will be organised and by 

the level of commitment and engagement of the volunteers. Moreover, an important issue 

shown by the results presented is that the moment when receiving the information can be more 

crucial than only the frequency.  

The case study presented here is performed in a particular situation where the catchment 

is almost entirely urbanised and has a short lead time. This scenario requires quick answers. 

However, as it is an urban area, it has the advantage of being able to collect data provided by 

volunteers easily. The proposed methodology is evaluated considering synthetic CS data with 

a high degree of reliability. Taking this into account, it should be noted that in order to use a 

voluntary data collection tool using the HAMPB model, people who are directly interested in 

the success of the flood forecasting model should be trained. The HAMPB model, as well as 

other rainfall-runoff models, require accurate data. Ideally, the government and responsible 

entities should organise incentives to provide training for civil defence professionals, residents 

who live in areas of risk and the general public in order to ensure the better-quality data 

collection.  
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4.6 Conclusions 

This chapter describes a methodology to integrate citizen science data into a short-term 

forecasting model presenting an inexpensive solution to estimate the water level in ungauged 

or poorly monitored catchments. The real-time estimator updating procedure adding field data 

with random errors of +/- 10 and 15 cm showed strong evidence that the assimilation method, 

even though it is a simple method, can improve forecasting.    

It can be concluded from the assessments that even in a considerable amount of time 

between the updates and considering the uncertainty in citizen science data, it can be helpful to 

improve the accuracy of forecasts. In future work, it is suggested evaluating the prediction 

model by updating simulations with water level data which come asynchronously and less 

frequently (e.g. daily, weekly, or monthly) to better represent the real citizen science 

observations, and also with different amounts of data being received simultaneously. 

Regionalisation using data correlation between different sites in the catchment is an 

important step to make better use of the field information received. The results showed an 

important contribution to updating the forecast in catchments with several places at risk of 

flooding. It is recommended to improve the method by checking points that have the strongest 

correlations with others to update the simulation. It is also suggested analysing the parameters 

that influence the correlation quality between the points such as the size of sub-catchments, 

position, and distances. Further, studies in different catchments and with several rainfall-runoff 

events should be investigated to ensure the robustness of the HAMPB model. 

Despite the limitations, the flood forecasting procedure proposed in this study is an 

innovative tool to emit alerts in ungauged catchments with scarce data. Therefore, hopefully, it 

will contribute to making cities more prepared and resilient to the occurrence of floods. 
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5 Improving Flood Forecasting using an Input Correction Method on Urban Models in 

Poorly Gauged Areas* 

*A modified version of this chapter has been accepted for publication as: Fava, M. C., 

Mazzoleni, M., Abe, N., Mendiondo, E. M., Solomatine, D. P. (2020) Improving Flood 

Forecasting using an Input Correction Method on Urban Models in Poorly Gauged Areas. 

Hydrological Sciences Journal. In press. 

 

Abstract 

Poorly monitored catchments could pose a challenge of providing accurate flood 

predictions by hydrological models, especially in urbanised areas subject to heavy rainfall 

events. Data assimilation techniques have been widely used in hydraulic and hydrological 

models for model updating (typically updating model states) to provide a more reliable 

prediction. However, such procedures in the case of non-linear systems are quite complex and 

time-consuming, making them not very suited for real-time forecasting. In this study, a data 

assimilation procedure is presented, which corrects the uncertain inputs (rainfalls), rather than 

states, of an urban catchment model by assimilating water level data. Five rainfall correction 

methods are proposed, and their effectiveness is explored in different scenarios when 

assimilating data from one or multiple sensors. The methodology is adopted in the city of São 

Carlos, Brazil. The results show a significant improvement in the simulation accuracy when 

assimilating data by all methods and scenarios.  

 

Keywords: data assimilation; semi-distributed model; flood modelling; physically-based 

model, SWMM. 
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5.1 Introduction and scope 

Intense urban growth without proper management and adequate drainage systems, along 

with the effects of increasing weather variability and climate change, are the main causes of 

urban flood aggravation in cities, especially in small catchments (Tollan, 2002; Ashley et al., 

2005; Bai et al., 2018). Additionally, the measurements of rainfall in many cities are scattered 

and not very accurate, and this is a major challenge for modelling and predicting floods in a 

timely manner for decision makers.  

In response, many research efforts have investigated how to improve flood forecasting. 

One of the approaches is data assimilation (DA) techniques, which have become widely used 

to improve hydrological predictions, updating the model as a response to real-time observations 

(Young, 2002; Hutton et al., 2012; He et al., 2017; Mazzoleni et al., 2018a). The main idea of 

most data assimilation methods is to quantify errors in field data and in simulations to update 

the hydrological states optimally, ensuring minimisation of simulation error (Collier, 2007; 

Coustau et al., 2013; McMillan et al., 2013; Thiboult & Anctil, 2015). The updates can be made 

in the inputs, parameters and states of hydrometeorological models (Refsgaard, 1997; Liu & 

Gupta, 2007; Seo et al., 2009).  

Kalman Filter (KF) is the most widely known DA method; however, it is optimal only 

for linear processes (Maybeck, 1982; Walker & Houser, 2005). To account for non-linear 

systems, several variations such as the Particle Filter (Moradkhani et al., 2005; Andrieu et al., 

2010; Moradkhani et al., 2012), Extended Kalman Filter (Francois et al., 2003) and the 

Ensemble Kalman Filter (Reichle et al., 2002; McMillan et al., 2011; Mazzoleni et al., 2018b) 

have been proposed; the latter is the most used technique in Earth sciences (Evensen, 2003; 

Chen et al., 2013). Although these methods are designed for nonlinear models, they use 

linearization during the update process (Liu et al., 2012).   

A number of authors explored the use of data assimilation methods to update urban 

models. For instance, Hutton et al. (2014) developed a methodology employing a deterministic 

Kalman Filter to update the states of an urban model as a response to downstream observations. 

The results show improvements in the discharge forecasts. However, the presence of threshold 

system behaviour in controlled urban systems affects the DA procedure ability, resulting in de-

coupling of the downstream catchment response to changes in upstream behaviour. Hansen et 

al. (2014) used DA for the distributed hydrodynamic urban drainage model MIKE URBAN. 

https://scholar.google.com.br/citations?user=n9yv6GAAAAAJ&hl=pt-BR&oi=sra
https://scholar.google.com.br/citations?user=GQzfaL8AAAAJ&hl=pt-BR&oi=sra
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The updating process is carried out in a deterministic manner and demonstrated improvements 

in the simulations, despite the fact that the uncertainties of the model structure and observational 

data are not considered. Borup et al. (2018) tested the use of Ensemble Kalman filter for the 

MIKE URBAN model in an experiment to evaluate the possibility of using constant Kalman 

gain updating to address the problem of high computational demand when the ensemble is 

calculated in real-time. The results show that the gain is nonlinear and varies greatly in time, 

requiring the use of the complete Ensemble Kalman Filter scheme.  

In fact, just a few studies have investigated the use of DA approaches for real-time 

monitoring in small urban catchments subject to flash floods (Xie & Zhang, 2010; Chen et al., 

2013). In contrast to large basins or medium-scale basins, small urban catchments may be 

affected by intense local precipitation (WMO, 2011), which combined with increased runoff by 

urbanisation, require faster responses from hydrological models to ensure their utility for flood 

forecasting (Yang et al., 2011; Chen et al., 2013; Yin et al., 2016). Furthermore, urban models 

are highly non-linear with many physical state variables and, consequently, computationally 

costly, posing a further challenge for their real-time updating (Hansen et al., 2014; Borup et al., 

2018).  

Rainfall estimation has a fundamental role to perform streamflow simulations in 

hydrological models. This is especially vivid when the quantity and intensity of rainfall vary 

depending on previous conditions (Harader et al., 2012), in urban areas where runoff is usually 

extremely sensitive to spatial distribution of rainfall, and the flood responses are caused by 

spatially localised convective precipitation (Zawadzki, 1973; Segond et al., 2007). 

Furthermore, a study performed by McMillan et al. (2011) shows that for heavy rainfall events, 

hydrological models have high multiplicative errors. The result is that uncertainty in rainfall 

measurement and forecasting leads to errors in flow forecasts, even if real-time hydrological 

models are well-calibrated (Pedersen et al., 2016). An option could be the use of DA schemes 

updating the rainfall inputs as a response to observed water levels or flow data, but only a few 

studies have proposed and explored this possibility (Kahl et al., 2008; Stanzel et al., 2008; 

Divac et al., 2009; Harader et al., 2012).  

Analysis of literature and the known practice allows concluding that data assimilation 

in physically-based models for catchments with short lead-time, and the inaccuracies in rainfall 

inputs, are important issues to be investigated for flood forecasting and monitoring in urban 

systems. Therefore, the main objectives of this study are: (a) to analyse the hydrological model 
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sensitivity to input variation (precipitation); (b) to propose a variant of DA methodology that 

corrects the model input using observed water levels from in-situ physical sensors; (c) to assess 

the effect of the number and location of the water level sensors (used to correct model input) 

on model accuracy. The methodology is used in the case study in the Monjolinho catchment, 

located in the city of São Carlos, São Paulo State, Brazil, modelled by the Storm Water 

Management Model (SWMM) (Rossman, 2010).  

5.2 Methodology 

5.2.1 Hydrological urban modelling 

The Storm Water Management Model (SWMM) is a modelling system with the 

integrated hydrological and hydraulic modelling modules, which is capable of simulating single 

events or long-term simulations of runoff in urban catchments with pipe and open flow 

networks (Rossman, 2010). The hydrological module simulates the sub-catchments behaviour, 

including an internal infiltration module. The rainfall-runoff component is lumped and 

conceptual at the sub-catchment scale. A sub-catchment can be defined by the user and is 

divided into pervious and impervious portions. Each part is modelled as a nonlinear reservoir 

with a capacity given to the maximum depression storage. The hydraulic module propagates 

the surface runoff, coming from the hydrological model, along rivers, canals and other conduits.  

The parameters of the hydrological model are width, average slope, infiltration 

parameters, Manning’s coefficient for pervious and impervious area, per cent of impervious 

area with no depression storage, depth of depression storage on pervious and impervious areas 

and the percentage of the impervious area. For the hydraulic module, the main parameters are 

the canal roughnesses. 

An automatic calibration tool for SWMM using Genetic Algorithms (GA) as the 

optimisation technique has been developed; it is written in Python 3.5. The Distributed 

Evolutionary Algorithms in Python (DEAP) was used as a framework for the GA optimisation 

(Fortin et al., 2012) and the SWMM5 library for SWMM calling interface developed by 

Pathirana (2015).  

In this study, SWMM model is calibrated using water level values instead of flow data, 

as the rating curve is not available. This decision is based on the study by Lindström (2016) 
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who showed good results for a hydrological model calibration using observed water level data 

instead of observed discharge or establishing a rating curve. The study also proposes efficiency 

evaluation equations for data from multiple water level stations, such as the Spatial Nash-

Sutcliffe efficiency (SPATNSE) (Equation (5-1)). The maximisation of the SPATNSE is set as 

the objective function in the calibration tool developed.  

𝑆𝑃𝐴𝑇𝑁𝑆𝐸 = 1 −
∑ (�̅�𝑗

∗ − �̅�𝑗)
2𝐾

𝑗=1

∑ (�̅�𝑗 −
1
𝐾

∑ �̅�𝑗
𝐾
𝑗=1 )

2
𝐾
𝑗=1

 (5-1) 
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�̅�𝑗 = (𝐻𝑗𝑖
: 𝑖 = [1, 𝑥𝑗]) =

1

𝑥𝑗
∑ 𝐻𝑗𝑖

𝑖

 (5-3) 

where: 𝐻𝑗𝑖

∗  are the simulated values for the 𝑗-th station at time step 𝑖, [1, 𝐾] =  {𝑗 ∈  ℕ: 1 ≤ 𝑗 ≤

𝐾}; 𝐻𝑗𝑖
 are the observed values for the 𝑗-th station at time step 𝑖; �̅�𝑗

∗ is the average value of 𝐻𝑗
∗ 

for the 𝑗-th station; �̅�𝑗 is the average value of 𝐻𝑗 for the 𝑗-th station; 𝑥𝑗 is the number of values 

in the time series for station 𝑗; 𝑖 is the index of time steps with observations in a time series of 

a station; j is the index of stations; 𝐾 is the total number of stations. The simulated and observed 

variables are water levels at sensors locations. The range of SPATNSE is in between −∞ and 

1. 

5.2.2 Data assimilation framework 

The relationship between the state variables of the SWMM model and observations is 

not linear, which means the observations cannot be mapped directly in the state space. In 

addition, to speedily provide results for real-time operation for urban basins subject to flash 

floods, the assimilation procedure must provide reliable results with the short computational 

time. To account for that, an approach to correct the model inputs as a response to hourly real-

time observed water level data from different in-situ sensors is proposed. The method is 
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designed to dynamically assimilating water level information from one to multiple sensors 

simultaneously. Figure 5-1 outlines the general methodology. The proposed method does not 

take into account the uncertainty of the model parameters and water level observations. 

 

Figure 5-1 - Flowchart of the data assimilation methodology. 

In the first step, SWMM simulates with the observed rainfall values as input until time 

step 𝑡, which is the moment when the water level observation 𝐻𝑡 becomes available. In the 

second step, 𝐻𝑡 is compared to the corresponding simulated water level (𝐻𝑡
∗) for the same 

location and the squared error between the model simulation and the observation is calculated 

(Figure 5-2.a). It is worth noting that there is a possibility of receiving observational data from 

more than one location simultaneously. In such a case, the error 𝜀𝑡 for receiving observed water 

level at time 𝑡, in one or more location is calculated by averaging all errors: 
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𝜀𝑡 =
1

𝑁
∑(𝐻𝑡,𝑗

∗ − 𝐻𝑡,𝑗)

𝑁

𝑗=1

²     (5.4) 

where: 𝑁 is the number of locations receiving information at time t, 𝐻𝑡,𝑗 [m] is the observed 

water level at j-th node at time t and 𝐻𝑡,𝑗
∗  [m] is the simulated value at time t. 

Seo et al. (2003) pointed out that the assimilation window must be equivalent to the 

time of response of the basin so that the memory of the system is reflected in the process of 

assimilation. In the third step, the time of concentration (Tc) of the catchment is used as the time 

window for correcting the model input, hence it is assumed that the rainfall which occurred 

before Tc does not affect the river flow at time t. Rainfall values present in the moving 

assimilation window for all the sub-catchments are corrected by the inner product of the 

measured rainfall and a matrix 𝐊 of coefficients (Equation (5-5)). The values of the matrix 

corresponding to the time step t are estimated in a quasi-optimal way to reduce the error 

calculated in step 2, and then they are propagated through the assimilation window by different 

methods. The details of the optimisation process and the methods to update rainfall are 

explained in the next sections. The corrected precipitation of the sub-catchments 𝐏+ is a matrix 

with the same dimensions of the matrix K and the rainfall P measured in the sub-catchments. 

𝐊 = (𝑘𝑖𝑗) ∈ ℝ𝑚×𝑛 (5-5) 

𝐏 = (𝑝𝑖𝑗) ∈ ℝ𝑚×𝑛 (5-6) 

𝐏+ ← 〈𝐊, 𝐏〉 ∈ ℝ𝑚×𝑛 (5-7) 

Matrix 𝐏 and matrix 𝐏+contain the original rainfall and the corrected rainfall values of 

all sub-catchments, respectively (Equation 5-5 and 5-6). The matrix 𝐊, matrix 𝐏 and matrix 

𝐏+comprise n arrays of coefficients containing m elements each, where n is the number of sub-

catchments and m is defined as Tc divided by the default time step. The change in rainfall is 

carried out with the aim to obtain a better simulation not only at the location where the field 

information is received but since it is a semi-distributed model, also throughout the basin.  
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In the fourth step, the model will re-run from time t - Tc  to time t with the updated 

rainfall values. Finally, in the fifth step, the quasi-optimal coefficients used to change rainfall 

backwards will also be applied to correct precipitation forwards from time step t until t + Tc.  

5.2.3 Optimisation method 

The real-time DA methodology proposed in this study focuses on urban basins with a 

rapid response, requiring model simulations with short time steps. The quasi-optimum values 

for the DA coefficients in K need to be found within one such time step, so settings for the data 

assimilation and optimisation algorithms have to take the simulation time constraints into 

account. 

The Objective Function (OF) to be minimised is the error between observed and 

simulated water level when receiving new field data at one or more nodes in the catchment 

(Equation (5-2)). The decision variables to be identified are the coefficients that change the 

precipitation values of each sub-catchment at the time step t, which is the moment when 

receiving field data. The first row of the matrix K corresponds to these coefficients (i = 1). 

Therefore, it is used the coefficients vector for the first line of the matrix K., i.e. for an 

observation received at time t, 𝑘𝑗 ← 𝐾1,𝑗. 

A randomised search by canonical Genetic Algorithm (GA) is used with the following 

parameters: two-point crossover, bit-flip mutation algorithm and selection by tournament, 50% 

crossover probability, 2% mutation probability and initial population size of 100 individuals. 

The GA evaluates the OF for each new vector of decision variables (minimising the average 

water level error at time t by correcting coefficients, and hence, changed rainfall inputs), and 

this is done by running SWMM from 𝑡 − Tc until 𝑡, and recalculating 𝜀𝑡 with the new rainfall 

inputs. Optimisation continues until the found solution cannot be improved (or considered 

acceptable), or until it reaches the 15-minute time limit. An absolute error of 5 cm between the 

observed and simulated water level is adopted as an acceptable error. In addition, the decision 

variables are constrained to limit the amount allowed to change rainfall – between –60% to 

+60% of the original data. This is done to preserve the characteristics of the rainfall, even 

considering the uncertainties in its estimation. Based on the previous, the optimisation problem 

is formulated as follows: 
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OF: min 𝜀𝑡 (5-8) 

Subject to: 

−0.4 ≤  𝑘𝑗 ≤ 1.6 ∶   𝑗 ∈ [1, 𝑛] 

 

5.2.4 Model input correction 

Five different rainfall correction methods are proposed. The rainfall values are corrected 

backwards in time using the n coefficients vectors of size m optimised from t until 𝑡 − Tc. In 

the first three methods (indicated as I, II and III in Figure 5-2.b), after finding the quasi-optimal 

coefficients in the steps going backwards from time step t, the rainfall values are corrected with 

these same values until t + Tc. The other two methods (indicated with IV and V in Figure 5-2.b) 

modify precipitation values only going backwards in time. The influence of methods IV and V 

for flood prediction is limited to the correction effect of rainfall only up to the time Tc. The 

methods are detailed below: 

I) Each sub-catchment has a vector 𝑘𝑗, which decreases according to a linear function 

(Equation (5-9)), the 𝑘𝑗  value is the maximum at time t and decreases linearly until 𝑡 − Tc, 

where its value is null. Thus, the change in the rainfall is highest close to the present moment 

(when receiving information) and progressively decreases to zero going backwards in time. The 

quasi-optimal coefficient values are used to propagate the rainfall correction also into the future 

(Figure 5-2.b – I), with the same scheme, but going forward in time, with the linearly 

progressively decreasing values (Equation (5-10)). 

𝑘𝑖 ← 𝐾𝑖𝑗 for each 𝑗 ∶ 𝑗 ∈ [1, 𝑛]  

𝑘𝑖 =  
(−𝑘𝑗 + 1)

𝑥
𝑖 + 𝑘𝑗 ∶  𝑖 ∈ [1, 𝑚]     (5-9) 
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𝑘𝑖
∗ =

(𝑘𝑗 − 1)

𝑥
𝑖 + 1 ∶   𝑖 ∈ [1, 𝑚]   (5-10) 

𝑥 = ⌊
𝑡 − 𝑇𝑐

𝑠
⌋  

where: 𝑘𝑖 is the i-th coefficient in the changing rainfall vector backwards, 𝑘𝑖
∗ is the i-th 

coefficient in the changing rainfall vector forward, 𝑚 is the number of elements in the rainfall 

input in the window of time between 𝑡 and Tc, and 𝑠 is the time step size. 

II) The rainfall is corrected by the 𝑘𝑗 values going backwards and forwards in time, from 

𝑡 − Tc until 𝑡 + Tc. However, in method II the coefficient values remain constant, i.e. the same 

multiplier value is used for all time steps (Figure 5-2.b – II).   

III) In that method, the rainfall is corrected going both backwards and forwards in time. 

When going backwards, the coefficient values remain constant, and when going forward, they 

decrease linearly (Equation (5-9), Figure 5-2.b – III). 

IV) This method uses updates similar to the method I, from t back to 𝑡 − Tc the 

coefficients decrease linearly (Equation (5-9), Figure 5-2.b – IV), but do not update forward 

values.    

V) Similarly, to method II, the coefficients 𝑘𝑗 remain constant for backward updating 

from t back to 𝑡 − Tc, but do not update forward values (Figure 5-2.b – V). 
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Figure 5-2 - Data assimilation with input rainfall correction: (a) calculating the error 𝜺𝒕when receiving field data; 

(b) after calculating the error, rainfall will be updated by one of the methods (I, II, III, IV or V); and (c) rainfall 

correcting process for each sub-catchment. Precipitation data is updated by the inner product of its original values 

by the optimised coefficients contained in the matrix K (Equation (5-7)). 

5.2.5 Sensitivity analysis 

Taking into account that (i) the model used is semi-distributed allowing different rainfall 

values for each sub-catchment, and (ii) the assimilation method aims to identify the (different) 

correcting coefficients, it is important to know the relative contribution of each sub-catchment 

to runoff generation when varying the model input. Therefore, the model sensitivity analysis 

with rainfall changing for each sub-catchment is performed. The measured precipitation data 

from each sub-catchment is changed, one at a time and the effects on the runoff simulation at 

the outlet are quantified. The data assimilation methods optimise the values considering the 

coefficients of variation limited between -60% and + 60%. These same values are used in the 

sensitivity analysis to vary the original amounts of rainfall, with regular intervals of 30%. 

Finally, the model output changes corresponding to rainfall variation of each sub-catchment 
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(indicating the sensitivity) are compared to the correcting coefficients identified by optimisation 

to correct the simulations. It is expected that in relative terms, there should be a certain 

agreement between the two, showing that the search method followed the physical meaning of 

rainfall changing. Otherwise, it will indicate that the optimisation is also correcting structural 

problems of the model. 

5.2.6 Evaluation criteria 

To evaluate the improvement of the data assimilation approach in the model runs 

concerning the observed water level values, the Nash-Sutcliffe efficiency (NSE) index is used 

(Nash and Sutcliffe, 1970). The method is a statistical evaluation widely used in hydrology, 

which compare the simulated and observed values as following: 

𝑁𝑆𝐸 = 1 −
∑ (𝐻𝑖 − 𝐻𝑖

∗)²𝑁
𝑖=1

∑ (𝐻𝑖 − �̅�𝑖)𝑁
𝑖=1 ²

   (5-11) 

𝐹1 = max(𝑁𝑆𝐸)   (5-12) 

where: 𝐻𝑖 is the observed water level at 𝑖-th time step; 𝐻𝑖
∗ is the simulated water level at 𝑖-th 

time step. 𝑁 is the total number of water level observations. The range of NSE is in between 

−∞ and 1. An index of 1 represents a perfect model, and values lower than zero indicates that 

the mean of the observed values would give a better prediction than the model.  

5.3 Case study and data sets 

5.3.1 Monjolinho catchment and its flood history 

The case study is located in the Monjolinho catchment (Figure 5-3), in São Carlos, state 

of São Paulo, Brazil. The total area of the catchment is 79.6 square kilometres (km²), the 

population density of the city is 194,53 inhabitants/km² and a total population estimated at 

249,415 inhabitants (IBGE, 2018). The average altitude is about 856 meters above sea level, 

and the soil is highly permeable. The catchment has its springs within the municipality of São 

Carlos to the east, almost entirely in the urban area. The city has a long history of flooding. 

Mendes and Mendiondo (2006) estimated, based on historical data from 1940 to 2004, that the 
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average time of the return of flood occurrence is 0.65 events/year with a standard deviation of 

0.84. The study also showed that the cumulative number of flood occurrences increased with 

the catchment urbanisation. This historical data suggests that there is a clear need to adopt 

structural and non-structural means for the containment of floods, but the proposals to solve the 

problem recorded in official documents are very onerous and have not yet been adopted. (Barros 

et al., 2007).  Despite the high frequency of floods, there is neither systematised flood data nor 

early warning system for São Carlos.  

 

Figure 5-3 - – Monjolinho catchment in the city of São Carlos, São Paulo State, Brazil. The photographs show the 

three water level monitoring locations N1, N2 and N3. 

5.3.2 Data sets 

5.3.2.1 Water level data 

Data from three monitoring locations (N1, N2 and N3) collecting water level data every 

fifteen minutes (Figure 5-3) are used. Sensor N1 is installed in the outlet of the catchment 

delimited for this study and in the Monjolinho River. It is a constructed canal without margin 

conservation. The riverbank has just two meters of grass coverage. The area receives a 

significant contribution of surface runoff from the drainage on the left side of the catchment 

along the Gregorio River, and frequently fluvial floods happen there. The second section 
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(sensor N2) is in the Monjolinho River after receiving the contribution from Santa Maria do 

Leme Stream. At this location, the channel is constructed with cement; this is the case also in 

an urbanised area of the city and with around two meters of grass followed by the asphalt. 

Sensor N2 is installed upstream of sensor N1, and its area does not suffer from flooding. Sensor 

N3 is installed in a section of Santa Maria do Leme Stream near the junction with Monjolinho 

River and upstream of the other monitoring locations. The river has a natural bed, which is quite 

silted at this location due to the lack of native vegetation and protected area on the banks of the 

stream. In this section, the environment consists of approximately two meters of grass, just after 

it there is the asphalt and a region of intense urbanisation. Because of the described 

characteristics, canals overflows are often observed.  

5.3.2.2 Rainfall data 

The input data come from four rain gauges shown in Figure 5-3 (RG 1 to RG 4), with 

15 minutes of temporal discretisation. To generate the spatially distributed rainfall field, the 

Inverse Distance Weighting (IDW) method is used to interpolate data from rain gauge stations 

and estimate the mean spatial value for each sub-catchment. 

5.3.3 Model setup 

The basin is delineated with 15 sub-catchments. In hydrological modelling, the 

infiltration model based on the SCS Curve Number is chosen. This method is an approach 

adapted for the curve number (CN) of the NRCS (National Resources Conservation Service) to 

estimate the runoff (Cronshey, 1986). The selected flow propagation model is based on the 

dynamic wave equations. This infiltration method is an approach adapted for the curve number 

(CN) of the NRCS (National Resources Conservation Service) to estimate the runoff (Cronshey 

1986). Originally, the method combines losses due to interception, depression storage and 

infiltration to predict the total rainfall excess. In SWMM, the CN method is used to compute 

only the infiltration losses. The surface runoff is calculated using a nonlinear reservoir model 

and applying the Manning’s equation to calculate the flow rate. The depression storage is not 

linked to the infiltration method, giving more freedom for the modeller to choose the value for 

this parameter. The moisture retention capacity of the soil (S) reduces during wet periods by 

the infiltration volume, and increases during the dry period by a first-order recovery model. 

Then, the current value of S is used when a next rainfall event starts allowing the model to 
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calculate infiltration as a function of cumulative rainfall volume. More details about the 

modified CN method can be found in Rossman and Huber (2016). 

Eight rainfall events between November 2013 and April 2014 are used for calibration 

and validation. Eight rainfall events between November 2013 and April 2014 are used for 

calibration and validation. The events are split into three subsets according to the average 

intensity rainfall: light, moderate and heavy. Then, the events are chosen at random for two 

groups: one for calibration and another for validation – with the restriction of at least one event 

of each subset for each group. The GA parameters used for the calibration are a two-point 

crossover, flip-bit mutation algorithm, selection by tournament, 80% crossover probability, 5% 

mutation probability and initial population size of 300 individuals. Model calibration resulted 

in a SPATNSE of 0.94 for the calibration period and 0.91 for the validation period. Table 5-1 

shows the events selected for the calibration and validation period.  

Table 5-1 - Total rainfall measured by the rain gauges RG1 to RG4 and the peak water level measured by sensors 

at monitoring locations N1, N2 and N3 during the events used for calibration and validation of the model. 

5.4 Experimental setup 

5.4.1 Assimilating data from one water level sensor 

The usefulness of the data assimilation methodology for a catchment with spatially 

varying characteristics, modelled by a semi-distributed model, and with more than one flood 

location is being evaluated. All this prompts for exploring various ways of assimilating 

measurements in a distributed system. This experiment aims to assess the effectiveness of DA 

methods when receiving regular information only at one location. The evaluation is made 

accounting the effects of rainfall updating throughout the catchment in the water level 

  

Event 

 

Date 
Duration (h) Total Rainfall (mm) 

Peak water level 

(m) 

   RG1 RG2 RG3 RG4 RG1 RG2 RG3 RG4 N 1 N2 N3 

C
a

li
b

ra
ti

o
n

 1 05/11/2013 08:45 04:40 08:55 08:55 9.6 12.2 10 8.2 0.74 0.48 0.93 

2 06/11/2013 09:40 10:00 09:45 10:35 45.2 40.4 37.8 48.2 1.19 1.03 1.43 

3 24/11/2013 00:50 00:55 01:00 01:20 16.6 6.6 10.8 19.4 0.81 0.57 1.11 

4 13/04/2014 01:00 01:40 01:05 00:10 26.8 25.2 38 0.8 2.44 2.28 - 

V
a

li
d

a
ti

o
n

 1 04/11/2013 04:40 04:35 05:05 16:10 64.6 47.4 41.6 73.8 2.00 1.56 4.02 

2 07/11/2013 03:20 03:05 00:10 02:55 9.6 2.4 1.6 5.6 0.67 0.48 1.05 

3 16/11/2013 01:15 01:25 00:35 01:20 10.6 5.6 5.2 16.4 0.79 0.49 1.84 

4 10/12/2013 03:15 01:30 - 01:10 13.4 9.6 - 5.2 1.25 1.22 1.51 
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simulations at the place where the sensor data is being assimilated and in the other monitoring 

locations. Assimilation of water level data at the three monitoring locations are tested, one at a 

time, described as scenarios 1, 2 and 3, depending on what of the three sensors provide data to 

assimilate (Table 5-2). The model time step is fifteen minutes, and the sensor information is 

assimilated at regular intervals of one hour. Five methods of rainfall correction, as previously 

described, are proposed, and their effectiveness is compared.  

5.4.2 Assimilating data from multiple sensors 

In this experiment, the DA scenarios handling water level information from several 

measurement locations received at the same time are tested. It is assumed that the observed 

water level data arrives synchronously with the frequency of one hour. Table 5-2 lists the 

assimilation scenarios 4, 5, 6 and 7, describing the combination of sensors providing data to be 

assimilated at the same time. For all them, the effectiveness evaluation is done considering the 

effects of rainfall updating throughout the catchment in the model runs at all the locations 

monitored by water level sensors. 

Table 5-2 - Scenarios of model input correction at three water level monitoring 

locations within the Monjolinho catchment. 

 Assimilating data at 

Scenario N1 N2 N3 

1  x  

2   x 

3 x   

4 x x x 

5 x  x 

6 x x  

7  x x 

5.5 Results and discussion 

5.5.1 Sensitivity analysis 

Figure 5-4 shows the sensitivity analysis results. The graph on the left presents the 

impact of varying the original rainfall amount in each sub-catchment on the maximum water 

level at the outlet of the catchment. The results show that increased rainfall has a more 
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significant influence on the output than its reduction. The map on the right visualises the model 

output sensitivity to rainfall variation over the catchment. The shown percentages for each sub-

catchment are the maximum water level variations at the outlet resulting from variations in 

rainfall in the range from -60% to +60% of the original rainfall values.  

 

Figure 5-4 - Analysis of model output sensitivity on rainfall variation over the 15 sub-catchments. The graph on 

the left shows the water level peak variation, and the map to the right presents the maximum water level peak 

variation, both assessed at the outlet due to changes of rainfall in sub-catchments B1 to B15. 

Table 5-3 shows the drainage area, percentage of imperviousness and slope of each sub-

catchment, which are all determined in the calibration process. It also shows the time of 

concentration, as determined by Romero (2016), and the last column presents the results of the 

sensitivity analysis in terms of the percentage of output variation. The presented parameter 

values (catchment characteristics) are useful for evaluating the output behaviour. It is worth 

mentioning, however, that the sensitivity analysis is performed considering only the effect of 

the rainfall variation at the maximum water level in the outlet of the catchment; it is not 

accounting for the influence associated with the corresponding area, time of concentration and 

other parameters, neither their combined effects, that also influence the maximum water level 

during a rainfall event. 

The sub-catchments that most contribute to increasing the water level peak in the outlet 

are B2, B6, B8, B10, B12 and B13. These catchments have a significant effect on the water 

level at location N1. Analysing the sensitivity map and the location N2, it can be concluded that 

the rain gauges influencing the water level variation to this site are B2 and B6, and for P3 these 

are B1 and B5. Analysing the sensitivity colour map, it is evident that the catchments in the 

upper part of the rivers have less influence on the runoff, the reason probably being that the 
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areas around the springs are covered with vegetation, and consequently, they are more 

permeable. The sub-catchments located in the most urbanised area of the basin are the most 

sensitive, except for sub-catchment B7. Location and land use are crucial for runoff generation, 

as well as the catchment area. This last factor is determinant to make sub-catchment B7 less 

sensitive since its drainage area is the second smallest among the 15 sub-areas, only 0.54 km².   

Table 5-3 - Model parameter values per sub-catchment and the maximum water level variation found in the 

sensitivity analysis. 

Sub-

catchment 

Area 

(km²) 

Imperviousness 

(%) 

Slope 

(%) 
𝐓𝐜 (h) 

Maximum water 

level variation 

(%) 

B1 7.30 23.50 5.45 0.23 1.62 

B2 21.84 30.35 10.30 0.54 17.52 

B3 8.75 13.54 11.67 0.41 0.20 

B4 0.94 54.04 7.90 0.38 0.81 

B5 3.68 31.28 8.37 0.30 5.39 

B6 7.43 85.49 9.49 1.66 31.00 

B7 0.54 86.54 7.80 0.13 1.62 

B8 4.82 93.84 8.96 1.89 23.72 

B9 4.32 37.47 8.21 0.49 3.23 

B10 3.89 34.34 8.55 2.13 16.17 

B11 0.11 17.00 12.75 2.13 0.27 

B12 6.09 84.91 9.12 0.99 40.16 

B13 5.50 82.77 11.51 0.56 23.45 

B14 3.31 41.37 9.77 0.54 3.50 

B15 1.03 10.23 9.40 0.23 0.20 

5.5.2 Assessing the methods of rainfall correction assimilating data from a single sensor 

Figure 5-5 shows the NSE for scenarios 1, 2 and 3 when receiving water level data at 

one location at a time, for the five updating methods (I, II, III, IV and V). The NSE values 

shown in the figure are the averages across all the rainfall events used in this study, while Table 

5-4 details the NSE values per event. 
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Figure 5-5 - NSE results of all the rainfall events in the three monitoring locations N1, N2 and N3, when 

assimilating data from one sensor at a time (scenarios 1, 2 and 3) by the five rainfall updating methods (I, II, II, 

IV and V). 

Results are mixed. When aggregating all results, across all events, methods and 

scenarios of assimilating water level data in one location at a time, it can be said that the 

assimilation leads to a significant improvement in accuracy of water level simulations in the 

outlet (N1), compared to model runs for the same location without rainfall updates. The NSE 

on initial model runs for N2 are quite low, and after correcting, the NSE raised to reasonably 

high values. One can notice a difference in the effectiveness of the correction methods at N2: 

methods II and IV have led to better results between the five methods tested. Nevertheless, it 

can be observed that in general all the methods improved the model accuracy, especially 

considering that the average of NSE without the updates is about -0.56. Only method III is not 

performing well when assimilating data at the other monitoring locations N1 and N3, 

concerning the accuracy of model runs at location N2.  

Input model updating through all methods and scenarios of DA improved the NSE of 

the water level simulations at N3, but the results are still not satisfactory. For this location, it is 

evident that methods II and IV performed better. Also, all the methods led to better simulation 

results for N3 when assimilating data on-site (scenario 2). It is important to notice that the area 

upstream of this location is the smallest among the three analysed here. In addition, this region 

has the lowest percentage of the impermeable area (Table 5-3). These two factors reduce the 

effects of increasing or decreasing rainfall input values for that place compared to the other two 

monitoring locations, which have a larger associated runoff coefficient with the catchment area 

upstream them. 

It can be seen that when assimilating data from one sensor at a time, the correction 

methods II and IV performed better than the others did. Methods I, III and V showed good 

results, but in some situations when assimilating water level data from one location, the effect 
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on the simulations in the other locations is negative. Taking into account the advantage of 

methods II and IV, they are selected to analyse the influence of their correcting effects on 

hydrographs further. The hydrographs of all methods, events and scenarios are detailed in 

Appendix C. 

Table 5-4 - NSE results of each rainfall event for the water levels simulated by the model and after input correction 

by methods I to V, when assimilating data from one sensor at a time (scenarios 1, 2 and 3).  

 

Figure 5-6 shows the Taylor diagrams for assimilation methods II and IV, for the four 

rainfall events selected, and their performance in the three locations in the basin compared to 

the simulated values without updates. The Taylor diagram features three statistics for assessing 

the degree of correspondence between the modelled and observed behaviour of data: the 

Pearson correlation coefficient, the standard deviations of the modelled and reference values, 

  N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 

  Event 1 Event 2 Event 3 Event 4 

 No update 0.89 0.77 0.69 0.79 0.69 -4.46 0.80 -1.71 -5.80 -0.10 -1.78 -6.77 

M
et

h
o

d
 I

 Scenario 1 0.73 0.30 -8.62 0.73 0.30 -8.62 0.87 -0.07 -2.90 0.53 -0.11 -0.14 

Scenario 2 0.75 0.59 -4.53 0.75 0.59 -4.53 0.85 0.13 0.17 0.76 0.43 -0.81 

Scenario 3 0.77 0.74 -7.78 0.77 0.74 -7.78 0.81 -0.32 -5.32 0.48 0.25 -0.39 

M
et

h
o

d
 I

I Scenario 1 0.89 0.62 0.74 0.72 0.26 -8.55 0.90 0.42 -0.88 0.63 0.36 -0.23 

Scenario 2 0.92 0.80 0.88 0.74 0.81 -1.15 0.91 0.28 0.55 0.75 0.43 -0.06 

Scenario 3 0.92 0.88 0.53 0.80 0.25 -7.68 0.85 -0.17 -5.32 0.66 -0.04 -0.70 

M
et

h
o

d
 I

II
 Scenario 1 0.94 0.87 0.10 0.73 0.38 -8.49 0.83 0.62 -1.70 0.62 0.14 -1.66 

Scenario 2 0.92 0.78 0.87 0.76 0.18 -2.22 0.68 -0.11 0.33 0.63 0.51 0.29 

Scenario 3 0.92 0.73 0.12 0.82 0.48 -5.83 0.57 -0.55 -2.80 0.12 0.54 -7.29 

M
et

h
o

d
 I

V
 Scenario 1 0.93 0.86 0.64 0.72 0.67 -3.44 0.90 0.03 -3.01 0.79 0.73 -1.40 

Scenario 2 0.93 0.78 0.83 0.76 0.75 -0.50 0.83 -1.31 -0.36 0.25 -1.26 -0.44 

Scenario 3 0.95 0.80 0.77 0.84 0.74 -4.69 0.77 -1.28 -6.89 0.64 -0.16 -1.11 

M
et

h
o

d
 V

 Scenario 1 0.91 0.65 0.53 0.75 0.33 -8.66 0.84 -0.06 -2.84 0.66 0.30 -0.78 

Scenario 2 0.88 0.83 0.78 0.71 0.59 -1.42 0.88 0.30 -1.04 0.43 -0.41 -0.62 

Scenario 3 0.93 0.82 0.59 0.85 0.47 -5.08 0.85 -0.46 -5.60 0.71 -0.03 -0.89 
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and the unbiased Root Mean Square Deviation (RMSD). The overall results show a majority 

improvement in the statistics for all the scenarios assimilating data, even when the information 

was given in a different location from where the results are being verified. 

 

Figure 5-6 - Taylor diagram for the four rainfall events summarising statistics for the four scenarios proposed in 

Experiment 1. The graphs show results for DA methods II and IV compared to simulations without updating.  

Figure 5-7 shows the hydrographs of the three monitoring locations N1, N2 and N3 

when assimilating data at N3 by methods II and IV. Analysing the percentage of rainfall 

changes for each sub-catchment by the two methods, one may notice that both lead mostly to 

rainfall input reduction, depicted by the red colour, instead of rainfall input increased, illustrated 

by the blue tones. These results are consistent with the fact that the simulated hydrograph is 

overestimated. The hydrograph at N3 shows that the updates made at 19h00 and 20h00 are the 

most important for correcting rainfall inputs at this event because, at these moments, the 

simulated water level has significant errors. On the one hand, the correction at 19h00 by method 

II led to rainfall input increase at sub-catchment B1 and decrease at sub-catchment B5. After 

the update, the simulation results improved immensely, reducing simulated water levels to 

values very close to those observed. On the other hand, in the assimilation at 20h00, the updates 

for catchments B1 and B5 reduced approximately 60% the rainfall inputs values, and despite 
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this significant amount of rainfall reduction, it is not enough for the model to reach the observed 

water levels.  

 

Figure 5-7 - The three hydrographs show the water levels observed, simulated and resulting from updates by the 

methods II and IV during event 2 in the three monitoring locations. The updates are performed by assimilating 

water level data from sensor N3 (scenario 2), every hour during the rainfall event.  

Figure 5-8 shows the results when assimilating data at N3 (scenario 2) during rainfall 

event 4. Neither of the two correcting methods managed has led to a satisfactory increase of 

NSE for that case. Method II increased the NSE from -6.77 to 0.06 and method IV increased to 

-0.44. During event 4 after 14h00, the model overestimated the water levels. For method II it 

can be seen that for the critical period between 14h00 and 18h00, the found optimum correcting 

coefficients for the sub-catchments B1 and B5 lead to a reduction of rainfall inputs, but still, 

simulation underestimates water levels. For method IV, a similar situation is observed.  

The simulated hydrographs for locations N1 and N2 in Figure 5-8 are overestimated, 

and after optimisation of the coefficients to correct rainfall based on water level data assimilated 

at N3, this helped to reduce the error for these two points by both correction methods. Method 

II achieves better results for N1 and N2, raising their NSE from -0.1 to 0.75 and -1.78 to 0.43, 

respectively. Method IV lead to worst effectiveness results compared to method II, increasing 

the NSE at N1 from -0.1 to 0.25 and at N2 from -1.78 to -1.26. In general, in both methods, the 

coefficient percentage shows they have reduced the rainfall inputs. It is important to emphasise 
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that the method II approach does not reduce rainfall inputs just backwards; it also changes 

values forwards from the moment when assimilating data. Consequently, updates in the 

simulation can be more significant when using method II. 

 

Figure 5-8 - The three hydrographs show the water levels observed, simulated and resulting from updates by the 

methods II and IV during event 4 in the three monitoring locations. The updates are performed by assimilating 

water level data only from sensor N3 (scenario 2), every hour during the rainfall event. 

5.5.3 Assessing model accuracy when assimilating data from multiple sensors 

From the results when assimilating data from one sensor at a time, method II and method 

IV performed better compared to the other updating methods. Taking this into account, 

scenarios assimilating water level data from multiple sensors at the same time are tested only 

for rainfall update methods II and IV. 

Figure 5-9 shows the overall NSE results for scenarios 4, 5, 6 and 7, at the three 

monitoring locations N1, N2 and N3. For the two correction methods and all the scenarios, the 

data assimilation improved the NSE. For results at location N1 and N2, the accuracy of the 

model when assimilating data by method IV is slightly better than by method II.  

At location N1, all the NSE results are very good. Scenario 7, when assimilating data at 

N2 and N3 at the same time, reached better simulation effectiveness values for N1 than when 
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assimilating data on-site in the same time with other monitoring locations (scenarios 4, 5 and 

6). At N2, the NSE results are also good, and the best results are reached in scenario 7. While 

at location N3, the NSE does not achieve satisfactory values. Through method II, when 

assimilating water level data at N1 and N3 (scenario5), the simulation results at N3 showed a 

slight improvement. The worst results for there are when assimilating data in the other two 

monitoring locations N1 and N2 (scenario 6). Even then, the NSE results at N3 improved when 

compared to the simulation accuracy without correcting rainfall. 

 

Figure 5-9 - NSE results of all the rainfall events in the three monitoring locations N1, N2 and N3, when 

assimilating water level data from multiple sensors at the same time (scenarios 4, 5, 6 and 7) by methods II and 

IV. 

Figure 5-10 shows the Taylor diagrams for the scenarios proposed by Experiment 2. 

The "x" marked on the x-axis represents the observed data standard deviation. Simulations 

closest to the marker are those that have the standard deviation closest to the aim, which is, they 

have the same pattern of variation as the observed data. Just in a few cases, the simulated data 

were closer to the observation than the updated simulations. However, it is also worth noting 

that for those same cases, the other two statistics (correlation and RMSE) have improved. 

Therefore, overall results show a majority improvement in the statistics for all the scenarios 

assimilating data.  

Table 5-5 shows in detail the resulting NSE for all scenarios and each rainfall event by 

the two methods tested. Below two scenarios and events are better detailed through the 

hydrographs produced, as well as the values of reducing and increasing rainfall inputs during 

the updates are detailed.  The hydrographs of all methods, events and scenarios are detailed in 

Appendix D. 
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Figure 5-10 - Taylor diagram for the four rainfall events summarising statistics for the four scenarios proposed in 

Experiment 2. The graphs show results for data assimilation methods 2 and 4 compared to simulations without 

updating. 

Table 5-5 - NSE results of each rainfall event comparing the water levels measured at the monitoring locations 

with the model simulations for scenarios tested in experiment 2 of rainfall updating by methods II and IV. 

  N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 

  Event 1 Event 2 Event 3 Event 4 

 No update 0.89 0.77 0.69 0.79 0.69 -4.46 0.80 -1.71 -5.80 -0.10 -1.78 -6.77 

M
et

h
o

d
 I

I 

Scenario 4 0.96 0.85 0.94 0.83 0.75 -1.08 0.86 -0.56 0.24 0.52 0.59 -0.62 

Scenario 5 0.93 0.86 0.94 0.75 -4.38 -0.54 0.87 0.02 -0.30 0.68 0.49 0.45 

Scenario 6 0.95 0.68 0.76 0.62 0.32 -8.95 0.85 0.48 -0.98 0.54 -0.62 -2.43 

Scenario 7 0.92 0.91 0.92 0.59 0.48 -1.33 0.91 0.14 -0.45 0.77 0.36 -0.41 

M
et

h
o

d
 I

V
 

Scenario 4 0.94 0.79 0.84 0.78 0.59 -2.09 0.87 -0.19 -1.44 0.61 0.58 -0.30 

Scenario 5 0.94 0.75 0.80 0.85 0.46 -1.25 0.86 -0.39 -0.33 0.73 0.49 -0.37 

Scenario 6 0.95 0.81 0.79 0.72 0.48 -9.96 0.85 0.21 -0.26 0.64 0.77 -2.30 

Scenario 7 0.93 0.82 0.86 0.79 0.67 -1.28 0.91 0.36 -2.64 0.77 0.58 -0.10 
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Figure 5-11 shows the results when assimilating water level data at N1 and N2 at the 

same time (scenario 3). The event presented in the hydrographs happened almost entirely 

between 18h00 and 20h00. The hourly updates with observed data are not enough to satisfactory 

update the rainfall that affects the rise and decrease of the flood wave. Furthermore, the 

assimilation of data at untimely moments made the simulation overestimate the water levels 

through both methods II and IV. In the first hydrograph (location N1), when the first 

information is assimilated at 18h00, the model slightly underestimates the values compared to 

the observation, then the optimisation based on this data aimed to increase the rainfall inputs. 

When new information is received subsequently at 19h00, the peak time already passed, and 

the previous correction overestimated the peak. Because of this information gap at a crucial 

time, the optimisation ends up making mistakes and worsening the estimative. The optimisation 

results based on observed values at location N1 and N2 reflected even more negatively in the 

simulations at N3. Since the beginning of the event at N3, the hydrograph is overestimated, and 

the increase in rainfall inputs values by the correcting methods raised, even more, the water 

levels. 

 

Figure 5-11 - The three hydrographs show the water levels observed, simulated and resulting from updates by the 

methods II and IV during event 4 in the three monitoring locations. The updates are performed by assimilating 

data from sensor N1 and N2 at the same time (scenario 6), every hour during the rainfall event. 

During event 3, when assimilating water level data from sensor N1 and N2 (Figure 5-

12), the results for both methods are very similar. For location N1, the rainfall input correction 
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caused the peak to be slightly overestimated while the original simulation is accurate. The 

falling limb of the model overestimated values, and the updates in rainfall made the water level 

decay faster, reaching values nearer to those observed in the hydrograph. Methods II and IV 

increased the NSE for this event at N1 from 0.8 to 0.85. At location N2, the simulated water 

levels are slightly ahead of the observed ones. The rainfall updates help to reduce the water 

level values that are overestimated, but it is not able to correct the advance of the hydrograph 

concerning the observed one. N3 has the simulation errors reduced by the updates as well. At 

this location, the simulated hydrograph is also overestimated compared to the observed. The 

reduction of rainfall inputs helped to adjust the water level values also at this location. 

 

Figure 5-12 - The three hydrographs show the water levels observed, simulated and resulting from updates by the 

methods II and IV during event 3 in the three monitoring locations. The updates are performed by assimilating 

data from sensor N1 and N2 at the same time (Scenario 6), every hour during the rainfall event. 

5.5.4 Summary of the methods´ effectiveness 

Each one of the events has different rainfall behaviour, and amount precipitated, these 

factors may influence the effectiveness of data assimilation methods. After evaluating all the 

methods and scenarios, one at a time, a comparison of effectiveness is made for method II and 

IV considering all the data series and scenarios together. In order to compare them, the NSE of 

all rainfall events are averaged, and for each scenario of receiving sensor data at different 
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locations. The efficiency measures are calculated separately for each monitoring location. 

Figure 5-13 shows the result of this comparison. 

Analysing the results for location N1, represented by the red circles, it can be observed 

that both methods have very similar effectiveness results. Although the average NSE for all 

events is already at a satisfactory value without correcting, both approaches are able to improve 

the estimates slightly. At location N2, represented by the blue circles, the correction methods 

have similar effectiveness but with some discrepancies. For scenarios 2 and 3, method II has 

better results, and for scenarios 5 and 6, method IV is more effective. Therefore, from these 

results at N2, it is not possible to define a clear effectiveness difference between the two 

methods. Among the three monitoring locations, N3 is where the model presents the most 

significant errors in producing the estimates. Method II changes the rainfall values in the 

previous instants when the information is received and after receiving sensor data. Because of 

it, the correction is slightly more significant than by method IV, which changes values of 

rainfall just going back from the moment when information is received. As a result, for location 

N3, represented by the green circles, it is possible to identify slightly better effectiveness of 

method II. 

It is interesting to note that in scenario 4 (Figure 5-13) when assimilating data from the 

three sensors, the model accuracy gained by both methods is higher but very marginal compared 

to the other scenarios assimilating data from two or only one sensors. The low-performance 

gain when the number of sensors is increased might be explained due to the nested nature of 

the sub-catchments where the sensors are installed. Since their flow must be correlated, any 

correction made in one location by the data assimilation will also be propagated in the others. 

Sensors N1 and N2 are located on the Monjolinho River in a cemented part of the canal, while 

sensor N3 is located in a tributary of the Monjolinho River that has natural coverage of the 

canal bed and a smaller cross-section compared to the ones of sensors N1 and N2. From these 

considerations, it is expected that water levels registered by sensors N1 and N2 have more 

correlated behaviour compared to sensor N3. Looking at the results for scenarios 1, 3 and 6, 

which have in common the fact that they do not assimilate data from sensor N3, it can be noticed 

that they showed a less significant improvement in the simulations' effectiveness for location 

N3. This has probably happened because they are receiving data only from sensors N1 and N2 

that are not as correlated to sensor N3 data. 
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Another aspect that needs to be assessed is the values of the coefficients found to 

perform the rainfall correction. According to the results demonstrated by the sensitivity analysis 

of the model to the rainfall variation, some sub-catchments are much more responsive for the 

runoff generation. It is expected that the optimisation method has given more emphasis on the 

rainfall variation at these catchments. However, the values found are quasi-optimal because of 

the time constraint assigned to the search algorithm. The method is outlined to run for real-time 

operation in basins with rapid responses to the rainfall; hence, the search time must be less than 

the time step of the model. 

 

Figure 5-13 - Comparison between DA methods II and IV by the mean NSE of all rainfall events used in this 

study. The values show the results obtained for all the proposed data assimilation scenarios (Scen.). 

Figure 5-14 shows the boxplots of the average percentage of rainfall variation at all 

scenarios analysed in each sub-catchment by correction methods II and IV. According to the 

sensitivity analysis of the model to rainfall inputs variation, the six most sensitive sub-

catchments in descending order are B12, B6, B8, B13, B2 and B10, while the other catchments 

are almost non-sensitive. The six sub-catchments with the most significant variation in rainfall 

given by the optimisation for the updating method II are B5, B6, B2, B13, B1 and B12. Sub-
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catchments B5 and B1 have low sensitivity to rainfall according to sensitivity analysis, and 

contrary to the expected, their rainfall inputs have high changes set by the optimisation, while 

the very sensitive sub-catchments B8 and B10 are not the ones with the biggest coefficients of 

rainfall change. By method IV, sub-catchments B6, B2 and B13 have high percentage values 

of rainfall changes compared to the others. However, sub-catchment B1, that sensitivity 

analysis showed is almost non-sensitive, is the one that received the highest percentage of 

rainfall input changing. 

 

Figure 5-14 - Box plots of the average of rainfall variation of the seven scenarios of model input correction by 

method II and IV. Values calculated for sub-catchments B1 to B15. 

5.6 Conclusions 

The proposed rainfall correction methodology based on water level observations and 

implemented in a real case study through integration with the SWMM model is a simple and 

useful tool for improving flood prediction. The model output is very sensitive to rainfall 

variation, having a considerably higher influence when increasing those values. It shows that 

the method is more effective to correct underestimation in the water level simulations. Some 
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sub-catchments are much more significant to the runoff generation; further investigation should 

be performed aiming to reduce the number of decision variables to be optimised or even to give 

different weights to them according to sub-catchment sensitivity to rainfall input variation.  

The results showed that the approach of correcting rainfall values assimilating water 

level data from only one sensor, by all the methods and regardless of its location in the 

catchment, led to improving the NSE of the water level simulations upstream and downstream 

the location where data is being assimilated. Looking at the overall results, the NSE improve 

as the number of sensors increases. However, the improvement of simulations accuracy when 

increasing the number of sensors is not strongly significant. Thus, in real situations, it will be 

necessary to weigh the cost of installing several sensors and the accuracy gain of the forecasts 

according to the specific needs of each location. It can be concluded from the assessments that 

this approach is a promising tool to improve flood-forecasting models that require rapid 

responses being computationally inadequate for ensembles, and a simple way to circumvent the 

limitation by the nonlinear correlation between observation and model states. Additional 

analyses are recommended to improve the method further. The authors suggest exploring the 

possibility to use faster models than SWMM and other optimisation schemes for future studies. 

Currently, data from traditional water level sensors are assimilated. However, this approach is 

not limited only to this type of data. For instance, data from citizen observatories can be used 

as well; further studies with assimilating asynchronous data and uncertainties in the 

observational data are strongly recommended. 

Despite the deterministic approach and limitations of the method, it is an innovative and 

promising tool to update urban hydrodynamic models. Therefore, it is hoping to contribute to 

the field of flood forecasting, helping to make cities more resilient to this kind of disaster.  

Data and software availability 

The data assimilation software for methods I to V and the SWMM calibrator tool are 

developed in Python 3.6. All the data and the spreadsheets used are available for download at 

GitHub platform. Link to access the data assimilation software: 

{https://github.com/mclarafava/Data-Assimilation}.  
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6 General conclusions 

Considering the high spatial and temporal resolution required in urban models, the 

quality of the data used to calibrate these models is essential to guarantee the quality of the 

results. The developed SWMM calibrator showed to be a tool capable of circumventing the 

limitation of not having observed flow data nor a rating curve for any monitoring location in 

the catchment. The validation results are suitable for most of the monitoring locations. 

However, for some events, the results are not satisfactory, showing the calibration using only 

water levels was not able to completely reproduce the flow response to the rainfall inputs. It 

evidences the need to develop methodologies for model updating in real-time to improve 

simulations accuracy further. 

The real-time estimator is developed to integrate citizen science data into the model as 

an inexpensive solution to improve water level predictions in ungauged or poorly monitored 

catchments. From the results, it can be concluded that even in a considerable amount of time 

between the updates (1h ~ 2h) and considering the uncertainty in citizen science data, it can be 

helpful to improve the accuracy of model forecasts. The regionalisation method, a second step 

from the results obtained with the real-time estimator, also enhanced the accuracy of the 

simulations, a substantial contribution to updating models of catchments with several flood risk 

locations.  

The model outputs of Monjolinho catchment are sensitive to rainfall variation, in 

particular when increasing the original input values, demonstrating that the deterministic 

method of input correction has the potential to improve water level simulations. Assimilation 

of water level data from only one sensor, for all the methods and regardless of its location in 

the catchment, leads to an improvement of water level simulations. Moreover, NSE values 

improved as the number of sensors increases. However, the improvement of simulations 

accuracy when increasing the number of sensors is not very notable. Thus, it is fundamental to 

properly assess the trade-off between the cost of installing several sensors and the gain in model 

accuracy. 

The proposed deterministic updating methods are a simple way to circumvent the 

limitation of nonlinear correlation between observation and model states. They demonstrate the 

potential to improve flood forecasting simulation for locations that require rapid responses, 

where, e.g., ensemble-based assimilation methods would be infeasible, in terms of 
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computational effort. The presented approaches are promising tools for increasing accuracy of 

urban hydrodynamic modelling and forecasting, and hence contributing to making cities more 

resilient to floods. 

Limitations and Recommendations 

The main limitation of this study is the deterministic way of the updating procedures, 

which are not considering the uncertainties of the model and the observed data. Moreover, this 

study only uses deterministic rainfall from rain gauges, whereas numerical weather predictions 

and remote sensing products are increasingly used and recommended for flood forecasting 

models. Besides, the model and DA methods are tested only at a case study in the Monjolinho 

catchment, further comparison in other catchments, various rainfall-runoff events, several 

combination and quantity of physical-sensors may ultimately contribute to clarify upon the 

accuracy gain due to the number of water level sensors (physical or citizen sensors). 

It is recommended to improve the DA methodologies by checking locations that have 

the strongest correlation to update the model simulations, as well as to analyse the parameters 

that influence the correlation quality between the points such as the size of sub-catchments, 

position, and distances.  

In future work, it can be recommended to assess the effect of increasing or decreasing 

the assimilation interval on model accuracy – this will allow for evaluating the usefulness of 

both updating methods (Chapters 4 and 5) when using other sources of data, such as 

(asynchronous) data from citizen observatories, which also has varying uncertainty, and also 

with different amounts of data being received simultaneously. Also, it is suggested to explore 

the possibility of using faster models than SWMM (or its surrogates) and other optimisation 

schemes.  
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Appendix A 

Bathymetry measurements are performed in five cross-sections in its course (P1, P2, P3, 

P8 and P14). The first location (P1) is approximately three kilometres (km) far from the 

Monjolinho River source. Location P2 is close to the densification of urban occupation and the 

channel still have a natural coverage but without margin protection, as in location P1. Location 

P3 and P8 are in the region of intense urbanisation. The channel has natural coverage in both 

places, although at location P8 can be noticed much more intervention in the margins and an 

enlargement of the main channel. Location P14 is in the outlet of the catchment. In this part of 

the river, the channel is modified to a constructed structure with cement coverage. 

 

 

 

Figure  1 -  Monjolinho River’s cross-section at location P1 and a photograph of the area. 
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Figure 2 - Monjolinho River’s cross-section at location P2 and a photograph of the area. 

 

 

Figure 3 - Monjolinho River’s cross-section at location P3 and a photograph of the area. 
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Figure 4 - Monjolinho River’s cross-section at location P8 and a photograph of the area. 

 

 
Figure 5 - Monjolinho River’s cross-section at location P14 and a photograph of the area. 

At Santa Maria do Leme Stream the bathymetry and initial flow are measured at two 

places, one upstream point just before intense urbanisation starts (P4) and another near to the 
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junction with Monjolinho River (P5). No alteration or lining of the channel bed is made at Santa 

Maria do Leme Stream, but there is no native vegetation on the banks of the channel in any of 

the monitored sections. Near to the junction with Monjolinho River frequently occur flood 

events. 

 

 
Figure 6 - Santa Maria do Leme Stream’s cross-section at location P4 and a photograph of the area. 

 

Tijuco Preto Stream has its source within an area of intense urbanisation (above 70%, 

Ohnuma & Mendiondo, 2003). At the bottom regions of the valley, there are improper 

occupations out of environmental governance. Location P6 is very close to the source of Tijuco 

Preto Stream, and its margins are revitalised by the FIPAI/PMSC (2003) project. Whereas, at 

location P7, there is a constructed channel covered by cement. 
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Figure 7 – Tijuco Preto stream’s cross-section at location P6 and a photograph of the area. 

 

 
Figure 8 - Tijuco Preto stream’s cross-section at location P7 and a photograph of the area. 

Mineirinho Stream has its source protected by law as a Permanent Preservation Area 

(PPA) at location P9, and a natural coverage at location P10 without natural margin 

conservation. At Gregório Stream, information is collected at four locations. Location (P15) is 

very close to its source, around 1 km far. Gregório Stream has its source inside a private 

property (Location 15), and it is protected by law as a Permanent Preservation Area (PPA). At 

location P15, P11 and P12 the bed of the stream have a natural coverage, and at P13 it is 

modified to a constructed channel coated with cement. 
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Figure 9 – Mineirinho stream’s cross-section at location P9 and a photograph of the area. 

 

 
Figure 10 - Mineirinho Stream’s cross-section at location P10 and a photograph of the area. 



156 

 

 

 

 

 
Figure 11 -   Gregório Stream’s cross-section at location P15 and a photograph of the area. 
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Figure 12 - Gregório Stream’s cross-section at location P11 and a photograph of the area. 

 

 
Figure 13 - Gregório Stream’s cross-section at location P12 and a photograph of the area. 
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Figure 14 - Gregório Stream’s cross-section at location P13 and a photograph of the area. 
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Appendix B 

 

Rainfall data 

 

Figure 1 - Rainfall event occurred on October 22th, 2013 (Event 1). 
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Figure 2 - Rainfall event occurred on November 4 and 5th, 2013 (Event 2). 

 

 

Figure 3 - Rainfall event occurred on November 22th, 2013 (Event 3). 

 

 

Figure 4 - Rainfall event occurred on March 3rd, 2015 (Event 4). 
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Figure 5 - Rainfall event occurred on November 23th, 2015 (Event 5). 

 

 

Figure 6 – Total precipitation in each rain gauge during the rainfall events. 
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Appendix C 

Hydrographs showing the water levels observed, simulated and resulting from updates 

by methods I to V of Experiment 1. 

Method I 

Method I – Event 1 

 

Method I - Event 2 
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Method I – Event 3 

 

 

 

Method I - Event 4 

 

 



164 

 

 

 

Method II 

Method II – Event 1 

 

 

 

Method II – Event 2 
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Method II – Event 3 

 

 

 

Method II – Event 4 
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Method III 

Method III – Event 1 

 

 

 

Method III – Event 2 
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Method III – Event 3 

 

 

 

Method III – Event 4 
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Method IV 

Method IV – Event 1 

  

 

 

Method IV – Event 2 
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Method IV – Event 3 
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Method IV – Event 4 

 

 

 

Method V 

Method V – Event 1 
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Method V – Event 2 

 

 

 

Method V – Event 3 
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Method V – Event 4 
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Appendix D 

Hydrographs showing the water levels observed, simulated and resulting from updates 

by methods II to IV of Experiment 2. 

Method II 

Method II – Event 1 

 

Method II – Event 2 
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Method II – Event 3 

 

 

 

Method II – Event 4 
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Method IV 

Method IV – Event 1 

 

 

 

Method IV – Event 2 

 

 



176 

 

 

 

 

 

Method IV – Event 3 

 

 

 

Method IV – Event 4 

 




