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ABSTRACT

do Lago, C., A., F., Application of Deep Learning for High-Resolution Flood
Mapping in Urban Watersheds. 2023. 118p. Thesis (Doctor) - Escola de Engenharia
de São Carlos, Universidade de São Paulo, São Carlos, 2023.

Flood events significantly threaten urban environments, causing substantial economic
damage and loss of life. Accurate prediction and mapping of these events are crucial
for effective mitigation strategies. However, current hydrodynamic models used for flood
prediction are expensive to build and often impractical for real-time applications or
simulations on large domains due to long computational times. This dissertation explores
the utility of Deep Learning (DL) models as a viable alternative for flood prediction
and floodplain mapping, addressing the evident gap in current flood modeling practices.
The research implements a three-fold methodology across three chapters, focusing on
developing and applying ANNs for flood prediction. Chapters 1 and 2 use a conditional
generative adversarial network developed for rapid pluvial flood predictions (cGAN-Flood).
Chapter 1 demonstrates a novel DL application – improving flood mapping resolution
from existing coarse hydrodynamic models using cGAN-Flood. Chapter 2 assesses the
performance of cGAN-Flood, in distinct topological settings, specifically catchments in Sao
Paulo, compared to its original training in San Antonio, Texas. Lastly, Chapter 3 outlines
the creation of a novel model that predicts pluvial flood maps using ANN, requiring only
Digital Elevation Models (DEM) and inflow inputs. General results across the chapters
show the promising efficacy of ANNs and DL models in flood prediction and floodplain
mapping. ANNs demonstrated the ability to emulate hydrodynamic models with high
precision, while cGAN-Flood’s application showed satisfactory predictive capabilities even
in geographically distinct and topologically different regions. The newly proposed model
in Chapter 3 compared favorably against FEMA floodplain maps, despite the simplicity of
its training data. In conclusion, the research demonstrates that DL models, with further
enhancements and training, can transform floodplain mapping and prediction, supporting
faster simulations and extending applicability to different locations without retraining.
This research underscores the potential of these models in bridging the gaps in current
flood modeling practices, which is particularly significant for real-time flood prediction and
the development of mitigation strategies, especially in developing regions where resources
may be scarce or in larger domains.

Keywords: Deep learning, rapid flood models, artificial neural networks, rain-on-grid,
high-resolution flood mapping.





RESUMO

do Lago, C., A., F., Aplicação de Aprendizado Profundo para Mapeamento de
Inundações em Alta Resolução em Bacias Urbanas. 2023. 118p. Tese
(Doutorado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2023.

Eventos de inundação ameaçam ambientes urbanos, causando danos econômicos e perda de
vidas. A previsão e o mapeamento desses eventos são cruciais para uma mitigação eficaz.
No entanto, os atuais modelos hidrodinâmicos usados para a previsão de inundações são
caros e muitas vezes impraticáveis para previsão em tempo real ou simulações em grande
áreas pelos longos tempos de simulação. Esta tese explora modelos de Deep Learning (DL)
como uma alternativa viável para a previsão de inundações e o mapeamento de planícies
de inundação, abordando a lacuna nas práticas atuais de modelagem de inundações. A
pesquisa foi dividida em três capítulos, focando no desenvolvimento e aplicação de Redes
Neurais Artificiais (ANNs) para a previsão de inundações. Os capítulos 1 e 2 usam uma
rede adversarial generativa condicional desenvolvida para previsões rápidas de inundações
pluviais (cGAN-Flood). O Capítulo 1 demonstra uma nova aplicação de DL - aprimorar a
resolução do mapeamento de inundações a partir de modelos hidrodinâmicos existentes
usando cGAN-Flood. O Capítulo 2 avalia o desempenho do cGAN-Flood em ambientes
topológicos distintos, especificamente bacias hidrográficas em São Paulo, comparado ao
seu treinamento original em San Antonio, Texas. Por fim, o Capítulo 3 descreve a criação
de um novo modelo que prevê mapas de inundações fluviais usando ANN, requerendo
apenas Modelos Digitais de Elevação (DEM) e hidrogramas. Os resultados mostrados nos
capítulos mostram uma eficácia promissora das ANNs na previsão de inundações e no
mapeamento de de inundação. As ANNs demonstraram a capacidade de emular modelos
hidrodinâmicos com alta precisão. Enquanto a aplicação do cGAN-Flood mostrou uma
performance satisfatórias, mesmo em regiões geograficamente distintas e topologicamente
diferentes, o novo modelo proposto no Capítulo 3 se comparou favoravelmente aos mapas
de planícies de inundação da FEMA, apesar da simplicidade de seus dados de treinamento.
Em conclusão, a pesquisa demonstra que os modelos DL, com mais desenvolvimento e
treinamento, têm o potencial para aprimorar previsão de planícies de inundação, devido
a simulações mais rápidas e estendendo a aplicabilidade a diferentes localizações sem
re-treinamento. Esta pesquisa destaca o potencial desses modelos em preencher as lacunas
nas práticas atuais de modelagem de inundações, o que é particularmente significativo para
a previsão de inundações em tempo real e o desenvolvimento de estratégias de mitigação,
especialmente em regiões em desenvolvimento, onde os recursos podem ser escassos, ou
em maior escala.



Palavras-chave: Aprendizado profundo, modelos de inundações rápidos, chuva no grid,
redes neurais artificiais, Mapeamento de inundações de alta resolução.
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1 INTRODUCTION

Frequency flood maps with depths based on the recurrence interval for design of
a particular storm are used for flood assessment. Depending on its depth and extent,
the floodplain produces different levels of damage magnitudes. The two categories of
damages—tangible and non-tangible—can be used to quantify them. According to (VELD-
HUIS, 2011), a tangible accounts for losses to infrastructure, goods, and buildings that may
be valued financially based on the depth, length, and area impacted by a flood (THIEKEN
et al., 2005). Calculating the risk of flooding in a specific area may then be done using the
quantifiable damage and the likelihood of occurrence (VELDHUIS, 2011). This practice is
frequently employed since it is analogous to safeguarding management and infrastructure
plan investments. Intangible losses, however, are indirect and more difficult to quantify.
These harms include economic and supply disruption, mass evacuation, and psychological
stress among the local people (VELDHUIS, 2011). Furthermore, floods can also harm
public health by dispersing disease (LIU et al., 2018; WIJERATHNE; SENEVIRATHNA,
2018).

Different studies in many countries (AICH et al., 2016; CLAVET-GAUMONT et
al., 2017; GAO et al., 2020; SHRESTHA; LOHPAISANKRIT, 2017; YIN et al., 2016;
LAGO et al., 2021a) provide additional evidence that climate change can increase rainfall
frequency and severity, which would subsequently increase the frequency of flood events.
The premise of climatic stationarity is, therefore, invalid as climate projections suggest, and
flood control practices should be planned and constructed to create robust flood control
systems that can function as intended under various scenarios. However, forecasting future
flood conditions is difficult given the wide range of potential greenhouse gas emission
scenarios and potential climate trajectories. Therefore, the uncertainties of the projections
make the development of mitigating strategies more difficult due to the numerous potential
outcomes (WANG et al., 2018).

Flood control management is planned and designed with the use of computational
models. Flood models are utilized to test how particular flood management practices
or modified system elements would perform in order to reduce the effects of flooding.
Today, two-dimensional (2D) hydrodynamic models have become popular due to the
advance in computational efficiency, such as HEC-RAS 2D (BRUNNER, 2016) and Tuflow
(WBM, 2008). However, these models require detailed data inputs and are computationally
expensive (AFSHARI et al., 2018). This disadvantage hampers its application in high-
resolution large-scale watersheds (hundreds of square kilometers) modeling, where detailed
hydrodynamic models would required long simulation times.

The low-complexity flood inundation models or rapid flood models are an alternative
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to costly hydrodynamic simulation models (RFM). To shorten simulation times, these
models, use simplified hydraulic ideas rather than solving difficult physical equations
(JAMALI et al., 2018). However, RFM’s simplifications of use can limit the accuracy
of how they anticipate floods. Using artificial neural network models (ANN) allows for
the computationally efficient learning of complex rules. Compared to hydrodynamic
models, recent research has effectively used ANN to predict flood maps, damages, and
susceptibility with satisfactory performance and faster simulations. Consequently, this
data-driven technique can be used to support rapid flood predictions. In 2021, NEARING
et al. suggests that the artificial intelligence combined with physically-based models will
likely be the future of hydrological predictions. Likewise, the future of flood modeling can
also greatly benefit from using data-driven methodologies.

1.1 Climate change

Scientists utilize climate models to comprehend historical and present climate
change and trends. The statistics of atmospheric conditions are predicted by general
climate models (GCMs) using the gas law (ARNBJERG-NIELSEN et al., 2013). Future
climate scenarios are predicted using Representative Concentration Pathways (RCP) to
reflect greenhouse gas emission scenarios, with incoming radiation being utilized as a
boundary condition (MOSS et al., 2010). GCMs typically have a coarse resolution and
mimic the entire planet’s climate, which prohibits accurately portraying regional climate
characteristics (DIBABA; MIEGEL; DEMISSIE, 2019). Dynamic or statistical downscaling
techniques are used to improve spatial resolution and capture regional climate subtleties.
The dynamic downscalling approach uses Regional Climate Models (RCM) powered by
the GCM or reanalysis data. In contrast, the second uses statistical analysis of local region
to make climate predictions based on results at a larger scale (TANG et al., 2016). Biases
introduced by dynamic downscaling may need to be fixed (CHEN et al., 2013). GCM and
RCM rainfall extremes can be accessed and biased corrected using statistical techniques
(ARNBJERG-NIELSEN et al., 2013). Predictions of precipitation made using GCM and
downscaled models frequently have considerable uncertainty, particularly for the high
rainfall events employed in floodplain research. Furthermore, precipitation outputs from
climate models usually have a coarse time resolution, larger than 3 hours (SIM et al., 2018),
which may be not suitable for micro-drainage studies (BERNE et al., 2004; LAGO et al.,
2023). Therefore, improving temporal resolution often make use of synthetic hyetographs
(LAGO, 2022), which adds extra uncertainties to projections.

The numerous uncertainties in future climate predictions significantly increase the
complexity of water management plans to reduce the effects of climate change (LAWRENCE
et al., 2013; SHEN et al., 2018).In 2013, SILLMANN et al. compared Phase 5’s Coupled
Model Intercomparison Project’s GCMs’ performance (CMIP5). The study used 27 indices
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for temperature, precipitation, droughts, and other factors to assess the models. Fig
1 outlines their findings for six indices that have the potential to significantly affect
how accurately future flood occurrences can be predicted: (1) The highest amount of
precipitation in a single day, (2) the highest amount of precipitation in five consecutive
days, (3) the 95th and 99th percentiles of the heaviest rainfall events, (4) the number of
days with rainfall above 10mm, and (5) the maximum amount of precipitation in 20mm.
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Figure 1 – Review uncertainties of climate change projections. Adapted from (SILLMANN
et al., 2013)

As can be observed, there are significant differences in uncertainties between the
climate models (Fig 1), which directly impact the identification of design events esti-
mated from intensity-duration frequency IDF. In 2015, CHANDRA; SAHA; MUJUMDAR
employed a Bayesian technique with 26 General Climate Models (GCM) in CMPI5 and
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discovered that IDF parameter uncertainties are more significant than GCM parameter
uncertainties. In 2018, KUNDZEWICZ et al. highlighted many sorts of climate change
and water resource uncertainties as well as potential solutions. Two strategies can be
used to deal with uncertainties that cannot be reduced. Precaution is the first approach,
considering the worst-case scenario for the mitigation preparations. The second method
uses a multi-model probabilistic approach, which could result in different results. In a
further study, (DEGAETANO; CASTELLANO, 2017) generated projected IDF for New
York State using a mix of 50 GCM and RCM. They discovered that the median increase in
rainfall intensity for the RCP 8.5 scenario is to increase by 20 to 30%. In southern Ontario,
under RCP 8.5, there is likely to be a significant increase in the 10-year storm (GANGULI;
COULIBALY, 2017). In 2016, AGILAN; UMAMAHESH used 24 GCM and discovered
that the frequency of intense rainfalls is declining in India’s central-south region. According
to (KUNDZEWICZ et al., 2018), handling climate change uncertainties should be done
with precaution or by employing a probabilistic multi-model approach. The precaution
strategy evaluates the worst-case outcome and is often used for critical infrastructures,
such as dams, which in case of failure, can cause unprecedented damages. The second
includes numerous solutions based on multiple global models’ output, so decision-makers
understand all possible climate outcomes to elaborate mitigation strategies.

Multi-probabilistic analysis has been used to understand potential climate change
impacts on precipitation volumes, flood events, and runoff quality. For example, (WASKO;
SHARMA, 2017) suggested a new methodology with variables to link the sensitivity of
rainfall to temperatures of historical series to mimic continuous rainfall. In Australia, this
method was used to simulate rainfall volumes changes in predicted by different warmer
scenarios. Their investigation showed a correlation between increased temperature and
increased rainfall extremes. JATO-ESPINO et al. (2019) used an optimization tool to
modify the model parameters to predict future runoff flows brought on by extreme rainfall
accurately. This method was deployed in Finland to provide more reliable analysis of the
effects of climate change on flooding,. According to their findings, the risk of flooding
might increase by up to five times due to climate change. WANG et al., in 2020, selected
18 future climate projections to examine the effects of land use and climate change on
severe occurrences in China. The authors employed three GCMs and three RCMs to scale
them down for two future periods. According to their findings, climate change will result in
a rise in the extreme precipitation indices, such as the maximum daily and five consecutive
days of precipitation. More than 50% of the overall increase in floods may be attributable
to climate change alone.

The most significant disadvantage of the multi-probabilistic evaluation of climate
change is the requirement for several simulation runs of different possible scenarios. In the
case of flood studies, in particular, the hydrodynamic models can often be complex and
expensive to build. In addition, the generation of detailed flood maps may require long
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simulation runs due to complex physical equations used in hydrodynamic models. These
disadvantages can make multi-probabilistic analysis harder and hamper the evaluation of
large-scale domains.

1.2 Flood Modeling Methods

This section review two types of flood modeling approaches. The first are the
hydrodynamic models, which uses the laws of physics for simulating floods. RFM uses
simplified rules, instead of complex hydrodynamic equations, to reduce simulation time
and generate faster results. This approach can be an alternative to the complex traditional
hydrodynamic models.

1.2.1 Hydrodynamic Models

Hydrodynamic models are the most popular tools used for flood predictions. These
models apply on the laws of physics to simulate mainly flood depths and water velocities.
The most widely used hydrodynamic models today are the one and two dimensional models
(1D and 2D).

Models based on one dimension (1D) portray fluid movement within river channels
by using conservation of mass and momentum principles (1D Saint-Venant equations)
between various cross-sections. These models enable the estimation of water flow and level
at each individual cross-section for every time increment (BRUNNER, 2016). Despite
their computational efficiency, 1D models have limitations in simulating floods laterally
(TENG et al., 2017). Furthermore, their inability to provide topographical information
between cross-sections may result in less accurate predictions for floodplain extents. For
instance, blocked obstacles between cross-sections that prevent flows cannot be captured.
Therefore, portions of cross-sections that do not effectively contribute to the flow, known
as ineffective flow areas, must be manually inserted in the models, increasing the labor
efforts. In addition, ineffective flow areas can be a significant source of instability issues
when misplaced. 1D flood modeling can be recommended for (USACE, 2023):

• Rivers and floodplains where the dominant flow direction aligns with the river flow.

• River systems with numerous hydraulic structures, such as bridges, culverts, weirs,
dams, and pump stations, as 1D models currently have a more comprehensive set of
hydraulic structure modules.

• Large river systems requiring long time period forecasts.

• Areas where the available data does not support the use of a 2D model due to poor
terrain accuracy.
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Two-dimensional (2D) hydrological models, essentially a reduced form of the three-
dimensional (3D) Navier-Stokes equations for fluid dynamics, conduct flood computations
within a 2D space. These models work under the presumption that the water depth is
significantly shallow when compared to the 2D domain (DHI, 2011; BRUNNER, 2016).
Horizontal velocities and water levels over time are often determined using shallow water
equations of mass and momentum conservation (BRUNNER, 2016; TENG et al., 2017).
Due to developments in computation, 2D modeling is becoming more effective and is
advised for studies of floodplains (COUNCIL, 2009). When compared to 1D flood modeling,
2D models can predict velocity in better resolution, are more reliable in low-relief areas
(MORSY et al., 2018). These advantages are relevant to replicating flooded roadways, whose
characteristics are captured due to interpolation between cross-sections in a 1D model.
However, 2D models require high-resolution elevation data to make reliable predictions.
For example, (FEMA, 2018) suggests a 3m resolution of the 2D domains for studies of
floodplains. But such models’ high computational costs limit their capacity to be used in
large-scale areas (TENG et al., 2017), which is often performed with larger cell size, which
requires extra effort in building the model (e.g. a careful placement of breaklines to better
represent the terrain and important features with the mesh). The following scenarios can
be better modeled with 2D models (USACE, 2023):

• Leveed systems prone to overtopping or breaching, causing water to flow in various
directions.

• Bays and estuaries with fluctuating tidal currents and river flows.

• Locations where the water flow path isn’t entirely clear.

• Highly braided streams and alluvial fans.

• Regions with abrupt bends that might experience significant super-elevation during
an event.

• Wide, flat floodplains with multiple flow paths.

• Applications requiring detailed velocity calculations, such as around bridge piers or
abutments.

The coupling of 1D and 2D domains is also an effective method, particularly in
situations where the water system’s complexity necessitates a comprehensive representation
of flow. This could include regions with intricate hydraulic structures, rivers with extensive
floodplains, urban settings, and watersheds where river and surface flows coexist. The
primary benefits of both approaches can be merged to provide a more trustworthy depiction
of the area under study. For instance, a 1D model could be designed for the main river,
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incorporating all hydraulic structures, and connected to a 2D domain through overbanks.
In this scenario, the river overflow is transferred to the 2D domain to provide a more
accurate portrayal of flow dynamics in detailed terrain. However, it’s important to note
that the interaction between 1D and 2D domains can lead to instability if not appropriately
modeled (BETSHOLTZ; NORDLÖF, 2017).

1.2.2 Rapid Flood Models

In order to shorten simulation time, RFM use simplified hydraulic rules rather
than solving complex physical equations (TENG et al., 2017). The HAND (Height Above
Nearest Drainage) (NOBRE et al., 2011a), for instance, is an example of a rapid flood
modeling approach for 1D modeling. The HAND metric provides a measure of elevation
above the nearest drainage (typically a river, stream, or other watercourse) for any given
location in a landscape. For each cell in the DEM, the vertical difference between its
elevation and the elevation of the nearest cell in the stream network is calculated. This
results in a HAND raster, where each cell’s value indicates its height above the nearest
drainage. It offers insights into various landscape characteristics, such as potential wetness,
flood susceptibility, and even habitats for different species.

Cellular automata (WOLFRAM, 1984), is another common approach for RFM
(JAMALI et al., 2019; GUIDOLIN et al., 2016; GHIMIRE et al., 2013; JR et al., 2023).
Flooding from one grid spreads according to a set of principles that depend on the
neighboring cells’ properties and the grid’s prior state. Examples of the application of
cellular automata used for flood simulations include the Cellular Automata for 2D Modeling
(CA2D) (GHIMIRE et al., 2013) and Weighted Cellular Automata 2D (GUIDOLIN et
al., 2016). These investigations make use of Manning’s equation to perform the overflow
distribution. The first sort the neighboring cells based on the elevation of the water’s
surface, while the second inserts weights into neighboring cells following their inflow
potential. The Cellular Automata Fast Flood Evaluation (CA-ffé), a less complex cellular
automata model that does not provide a temporal evolution of flooding, was created
by (JAMALI et al., 2018) (2018). Criteria for the distribution of flood volume include
rules such as flow when central cells have an elevation height and lower than at least
one neighboring cell; spreading when the main cells and neighboring cells have the same
elevations and; ponding when the elevation of the central cells is lower than all neighbors.
A power-type equation inspired by hydrological rating curves is used to distribute flood
volume to cells downstream. Rapid Flood Spreading Models (RFSM) (GOULDBY et
al., 2008) were evaluated and adjusted by (BERNINI; FRANCHINI, 2013). This model
is based on accumulation zones with simplified exchange qualities between them, where
excess flood volume accumulates instantly. The authors also suggested changes, such as
gradually applying the weir equation between accumulation zones and filling the areas.
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A review of the literature on five RFM models shows that the gains of computational
time are several orders of magnitude while losing relatively small performance. Fig 2
shows an analysis performed comparing flood maps of five RFMs and corresponding 2D
hydrodynamic models in different catchments worldwide. The CA2D was compared with
Urban Inundation Model (CHEN et al., 2013), WCA2D with InfoWorks (INNOVYZE,
2012), the performance of CA-ffé was tested with HEC-RAS (BRUNNER, 2016), and
TUFLOW, RUFIDAM, on the other hand, was evaluated against MIKE FLOOD (DHI,
2011), and RFSM with FLO-2D. Fig 2a shows the Root Mean Square Error (RMSE) for all
the domain cells versus how many times faster RFMs are compared to 2D hydrodynamic
models. The results indicate that most model simulations are 100 times faster while
maintaining an RMSE lower than 0.15 meters. In addition, the chart shows that RFSM
and CA-feé outperform other models in speed. The computational time in Fig 2b was
computed by dividing the total run time by the number of cells and the duration of
the simulation to eliminate the effect of the size of the spatial domain and the cell size.
It can be observed that the computational effort is greatly reduced by some orders of
magnitude when compared to hydrodynamic models. The results indicate that some models
present a clear linear relationship between the cell size and the computational time (e.g.
WCA2D), while other models are less sensitive to the resolution of the spatial domain
(e.g. RUFIDAN). RSME also seems independent of the watershed size (Fig 2c) and cell
resolution (Fig 2d). These analyses show that RFM can significantly reduce computational
time and produce reliable results.
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Figure 2 – Review of RFM performances

Despite the significant computational gains, the simplifications assumed by RFM
reduce the accuracy of flood predictions. For instance, Jamali et al. (2018) observed
that areas with high momentum and velocities showed more significant errors than
hydrodynamic outputs. Moreover, low time-steps may be required in locations with high
velocities and DEM and fine resolution to meet Courant number requirements, leading to
longer simulation times Guidolin et al. (2016). Improving the accuracy of such models would
require additional and more complex rules, which inherently increase the computational
time.

1.3 Artificial Neural Networks Applied for Flood Predictions

The use of Artificial Neural Networks (ANNs) has gained prominence in flood
estimation studies due to their computational efficiency and ability to learn complex
patterns (PETERS; SCHMITZ; CULLMANN, 2006; PANAHI et al., 2021; BOMERS et
al., 2019). ANNs are models inspired by the neural structure of the human brain. They
are comprised of interconnected nodes, known as neurons, that process and transmit
information. Each set of neuron forms a layer. A Multi-Layer Perceptron (MLP) structure
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is one of the most basic ANN types, exemplified in Fig. 3a. A MLP is a feedforward ANN
with various layers connected by weighted pathways. It encompasses an input layer that
receives the input data, with each neuron representing an individual feature. Following
this, there are hidden layers that transform this data using activation functions, such as
sigmoid, Rectified Linear Unit (ReLU), Leaky Rectified Linear Unit (Leaky ReLU) and
hyperbolic tangent (tanh). Each of the neurons in a MLP receives a correspondent bias (b),
adn all connections between neurons receives a weight (w). The information flow though a
neuron is exemplified in Fig. 3b. The values of b and w are fund during the ANN training
process. Finally, the output layer delivers the network’s predictions, adjusting its neuron
count based on the task, from single neurons in the case of regression to multiple when
the task is classification.

Figure 3 – Illustration of a MLP

Various researchers have successfully applied different forms of ANNs, such as
MLPs, Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs)
to simulate flood dynamics, produce flood probability maps, and reconstruct historical
flood events. These models have demonstrated high accuracy and have greatly reduced the
computational time compared to traditional hydrodynamic models (PETERS; SCHMITZ;
CULLMANN, 2006; KABIR et al., 2020; BERKHAHN; FUCHS; NEUWEILER, 2019).

However, a common limitation observed across these studies is the lack trans-
ferability (of generalization) of ANN models in regions beyond their training datasets
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or under different rainfall (KABIR et al., 2020; BERKHAHN; FUCHS; NEUWEILER,
2019), which often necessitates separate models for different conditions and significantly
hampers their versatility. In addition, the effectiveness of the model’s architecture and
hyperparameters may vary when applied to different regions (KABIR et al., 2020). Further,
any modification in the study domain requires updates to the physical flood model and new
simulations for training new ANNs, which is a significant drawback (BERKHAHN; FUCHS;
NEUWEILER, 2019). The incapacity of generalizing to different areas puts a significant
barrier to applying ANN to large domains, which would required the development of
extensive and detailed flood models to train the ANN. Furthermore, different DL models
might be needed according the the modling purposes (e.g. fluvial and pluvial mapping).
Therefore, ANN covering a large area, with a fine resolution, may result in a vast number
of parameters which makes the training process slower and more complex.

Deep learning (DL) that is capable of generalizing flood predictions can facilitate
DL application in large areas. In this sense, ANN can be trained with multiple smaller
domains to be applied to across different locations to cover a wider studied area. Recent
developments in ANN demonstrate that this data-driven strategy has the ability to
generalize in several domains. For instance, LOWE et al. (2021) trained a U-net based
ANN to forecast the maximum flood depths (U-Flood). U-Flood was trained with outputs
from a hydrodynamic model created for a single watershed. In their study, 20% of the
domain was divided up for testing in the U-Flood model. As a result, they could predict
flooding outside training regions for various rainfall amounts, although U-Flood tended
to underestimate inundated areas drastically. In addition, U-Flood wasn’t evaluated for
completely untested catchments. Their approach used specific watershed characteristics,
such as aspect, so their model was not created with a focus on generalization. On the
other hand, GUO; MOOSAVI; LEITÃO (2022), used WCA2D to simulate a 100-year
flood in many catchments. The authors trained a CNN-based model to forecast maximum
depths and velocities. Their findings demonstrated CNN’s ability to generalize for various
catchments. However, their strategy can only predict 100-year storms and doesn’t make
any generalizations regarding different boundary conditions (e.g., different inflows and
rainfall magnitudes). Lago et al. (2023) developed a conditional generative adversarial
for rapid flood predictions (cGAN-Flood), capable of generalizing to different catchments
and rainfall magnitudes. Given cGAN-Flood’s generalization capabilities, it is a promising
method for large-scale predictions.

1.3.1 cGAN-Flood

GANs include a generator (G) and a discriminator (D), that competes during
training. D is trained to differentiate the G’s prediction from the ground-truth, G is trained
to "fool" D by passing its output as the ground-truth (GONOG; ZHOU, 2019; WANG et
al., 2017). This compatition between generator and discriminator enhances the generators’
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capacity to create more realistic predictions (WANG et al., 2017). Traditional GANs use
random noises as inputs for generating the final images. conditional GANs (cGANs) use
labels that guide the generators in creating the final outputs.

According to Lago et al. (2023), cGAN-Flood uses two cGANs to distribute a
target runoff volume (vt) over a given are to create maximum depth pluvial flooding maps.
The summary of the whole method is shown in Fig. 4. A first generator (Generator 1),
which uses elevation, flow accumulation, slope, and imperiousness maps, is trained to rank
what cells in the domain are likely to be flooded first. A threshold τ is applied to this
map to identify whether a cell is flooded or not. In this case, a cell will be considered wet
if it is ranked above the threshold. Finally, a second generator (Generator 2) is trained
to calculate the depths of the wet cells to create the depth map. The Pix2Pix (ISOLA
et al., 2017) was the approach used to develop the cGAN-Flood. The generators are a
U-Net-based ANN that uses convolution and deconvolution layers. Details on the generator
architectures and both discriminators used during training can be seen in (LAGO et al.,
2023).

The map constructions with the generators are done by assembling results from
individual patches covering a portion of the domain. The reason is that convolutional
neural networks (the base of the generators in this study) require fixed input size issues.
The fixed input size is a major issue for scale-dependent problems (MARTINS et al., 2020).
Previous research used boundary conditions (such as hydrograph or precipitation) for
specific convolutional neural networks (CNN) patches to predict floods (GUO; MOOSAVI;
LEITÃO, 2022; LOWE et al., 2021). Consequently, the interaction between patches is lost,
making a comprehensive analysis of the entire domain—such as upholding the conservation
of mass difficult. As a result, the method of using patches to anticipate floods hinders the
creation of physics-driven ANN models.

The dual generator approach of cGAN-Flood overcomes these issues by creating
the full domain map before applying the boundary conditions. The flood magnitude of a
given rainfall event can be estimated by adjusting τ , and consequentially the number of
wet cells. In other words, the cGAN-Flood method must automatically identify the value
of τ representing the event magnitude.

The total volume to be distributed is vt is used as input to cGAN-Flood. This
volume is calculated with the sum of runoff volume flowing inside the catchment which
can be estimated via water balance with hydrological simulations. cGAN-Flood then
interactively modifies τ so that the total volume of Generator’s 2 output (v) matches vt.
The Golden Search was the algorithm used to optimize the τ to minimize the difference
between v) and vt. The simulation ends when the error between v and vt is below a
pre-defined tolerance.

cGAN-Flood demonstrated an average speed increase of 250 times compared



36

Figure 4 – cGAN-Flood Method Applies Two Generators. Source: adapted from Lago et
al. (2023)

to the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) 2D models
(BRUNNER, 2016) for the studied area where cGAN-Flood was developed and tested.
The cGAN-Flood was designed to distribute a pre-defined flood volume to generate flood
maps and was found to generalize well for various rainfalls and catchments. Nevertheless,
the model’s testing was limited to catchments smaller than 500ha, leaving its performance
unverified for large-scale modeling. Furthermore, the training and testing catchments are
located in San Antonio (Texas), and the cGAN-Flood capability of generalizing to other
regions with distinct spatial characteristics has yet to be verified. Finally, cGAN-Flood
has not been trained to predict fluvial flooding with draining areas larger than 500ha.

1.4 Objectives

Literature shows that there is still a need for improved methodologies to enhance
rapid flood predictions, especially regarding high-resolution flood plains in large-scale wa-
tersheds (over hundreds of square kilometers). The advancement in DL predictions for such
purposes can contribute to real-time predictions, climate change, and optimization studies.
Therefore, the main objective of this thesis is to advance DL modeling applicability
in large-scale domains. The following research objectives were accomplished to achieve
the main goal:

1. Adapt cGAN-Flood to predict large-scale pluvial flooding.



37

2. Test cGAN-Flood prediction performance in areas with spatial characteristics that
differs from its training locations.

3. Develop a 1D ANN flood model for fluvial flood estimation, focusing on flood
mapping generalization.

In Chapter 2, cGAN-Flood was applied to enhance a coarse HEC-RAS model,
a grid-based model, of the Upper San Antonio Watershed (UPSA) and generate high-
resolution flood maps for watershed scale. Chapter 3 evaluated cGAN-Flood’s capacity to
reproduce high-resolution flood maps in Sao Paulo catchments. Furthermore, cGAN-Flood
was used to increase the flood mapping resolution of Hydropol2D, a raster-based model, at
Aricanduva Watershed. Chapter 4 introduced an innovative flood map prediction model
using ANNs, with DEMs and inflows as its sole inputs. This model solves was trained with
1D hydrodynamic simulations for predicting fluvial flooding. Chapter 5 finally summarizes
the main findings of the thesis, with the main advantages and disadvantages of the DL
models with suggestions for future improvements.
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2 COUPLING CGAN-FLOOD WITH A MESH-BASED FLOOD MODEL FOR
EVALUATING ITS SCALABILITY FOR RAPID FLOOD PREDICTIONS

ABSTRACT

Deep learning (DL) models has shown to be an efficient alternative to hydrodynamic
models for faster flood predictions. However, the application of DL for detailed flood
predictions in large areas is hampered due to the low generalization capacity of existing
DL models. This chapter aim to narrow address this gap by improving flood mapping
resolution derived from coarse mesh-based flood models at a watershed scale. We have
used cGAN-Flood, a conditional generative adversarial-based model (cGAN), that showed
good performance in distributing a given flood volume (vt) in unseen catchments. A
coarse 2D HEC-RAS model was created for the Upper San Antonio Watershed (about
350 km2 located in San Antonio, USA), with an average cell size of 32m. The presented
methods were evaluated against a 3m resolution HEC-RAS model. Results indicate that
the DL model considerably improved flood map accuracy. The generalization capacity of
cGAN-Flood allowed large-scale prediction without needing to train the DL model for the
entire area, illustrating how DL can enhance the resolution of existing coarse models.

2.1 Introduction

Floods are the most expensive natural disasters in terms of human and economic
losses (BULTI; ABEBE, 2020; NATARAJAN; RADHAKRISHNAN, 2019). Furthermore,
climate change may intensify these effects by increasing the frequency and severity of
extreme storm events (AICH et al., 2016; CLAVET-GAUMONT et al., 2017; YIN et al.,
2018; LAGO et al., 2021b). Flood modeling is vital for urban flood mitigation planning
and design. In particular, concerns regarding pluvial flooding in urban areas have increased
in the past two decades (RANGARI et al., 2018). Although coastal and river are generally
larger and most durable types of flooding, pluvial flooding may cause more damage
to properties due to its higher occurrence frequency (SZEWRAŃSKI et al., 2018). Two-
dimensional 2D models are the most effective type of hydrodynamic model applied to urban
flood predictions (CEA; COSTABILE, 2022), and are traditionally used for predicting
pluvial flooding (BULTI; ABEBE, 2020). However, these models are computationally costly,
limiting their use in large watersheds, optimization problems requiring numerous runs,
and real-time predictions. Traditionally, large watershed modeling with 2D hydrodynamic
models leverages coarse cell resolution. This approach curtails the number of computational
nodes, enabling simulations to conclude within a manageable time frame. However, coarser
cell resolution reduces the accuracy of flood mapping (CHEN et al., 2012), especially in
urban areas where the local topology is misrepresented (FEWTRELL et al., 2008).
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Rapid Flood Models (RFMs) are an alternative to hydrodynamic models for faster
predictions. RFMs reduce simulation time by employing simplified hydraulic concepts, such
as cellular automata (JAMALI et al., 2019), instead of complex physical equations (TENG
et al., 2017). Although they offer computational speedups, their accuracy is diminished
due to simplifications assumed for the simulations.

Deep learning (DL) can be used to model complex hydrodynamic iterations while
maintaining computational efficiency. These DL models employ multi-layered structures
called Artificial Neural Networks (ANN) to handle complex representations and learn
from high-dimensional data (SIT et al., 2020). While DL-based models have demonstrated
promising results in flood prediction (BERKHAHN; FUCHS; NEUWEILER, 2019; DTIS-
SIBE et al., 2020; LOWE et al., 2021; HOFMANN; SCHÜTTRUMPF, 2021), they are
usually domain-specific and their capacity to reproduce flood predictions outside the
training dataset is restricted. The lack of generalization is still a major challenge for the
use of DL models in practical applications (KARIM et al., 2023). Particularly in large area
modeling, the inability to generalize the flood predictions requires training a DL model for
the entire domain, which can be challenging as the training process is time-consuming and
requires a significant amount of data (BENTIVOGLIO et al., 2022).

Literature shows improvements in DL models’ ability to generalize outside the
training areas. Lowe et al. (2021) applied a U-Net-based DL approach to predict maximum
water depths with local topological features and inputs and rainfall as inputs. They trained
their model on portions of the study area and were able to predict maximum water
depths in unobserved parts of the same domain. However, the capacity to generalize to
other catchments still needs to be evaluated. Guo, Moosavi e Leitão (2022) developed a
similar DL model, trained with a cellular automata model (GUIDOLIN et al., 2016) for
water depths and flow velocities predictions in different catchments. Despite the model’s
ability to generalize to unseen catchments, their method does not generalize for different
rainfall events. (LAGO et al., 2023) used a conditional generative adversarial network
(cGAN) for pluvial flood modeling (cGAN-Flood), which was, on average, 250 times faster
than Hydrologic Engineering Center’s River Analysis System (HEC-RAS) (BRUNNER,
2016). cGAN-Flood distributes a pre-defined flood volume to generate the flood map and
could generalize to different rainfalls and catchments. However, this model was tested for
catchments smaller than 500ha. Therefore, its performance on large modeling still needs
to be evaluated.

Despite the advances in the generalization capacity of DL flood models, the ap-
plicability of DL models for large predictions has yet to be shown in the literature. To
tackle this gap, our study introduces a pioneering application of DL models to enhance the
resolution of flood mapping derived from coarse hydrodynamic models. We exemplify our
methods with a coarse HEC-RAS model, a grid-based model, which provides cGAN-Flood
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with the total volume to be distributed. This approach unveils the potential to enhance
the resolution of flood mapping in pre-existing large 2D hydrodynamic models.

The chapter is organized into Methodology, Results and Discussions, and Summary
main sections. The methodology introduces the cGAN-Flood model, by describing how
this DL model works, describing the HEC-RAS model of the watershed, and the metrics
used to evaluate cGAN-Flood’s performance. In the results section, we compare coarse
and fine flood maps are and demonstrate how the DL model can improve flood mapping
predictions. In the conclusions, we summarize the main findings of this chapter, with
advantages, disadvantages, and opportunities for future research.

2.2 Methodology

2.2.1 cGAN-Flood

In this chapter, we used the cGAN-Flood (LAGO et al., 2023) DL model to increase
the resolutions of flood maps generated from a grid-based model. This DL model works
by distributing a given flood volume over a given area, which can be calculated using
low-resolution flood models. The overall methodology is presented in Fig. 5.

For generating high-resolution flood maps in a large domain, cGAN-Flood was
coupled with coarse flood models. This model calculates and routes excess precipitation,
providing cGAN-Flood with vt. In this case, the primary concern is not the hydraulic
behavior of the runoff within these coarser cells but rather their maximum stormwater
volume in each cell. Although hydrodynamic models may produce unrealistic flood maps
at low resolutions, they still maintain a proper water balance and flow between cells as a
physically-based model, provided that stability issues are addressed.

2.2.2 Upper San Antonio Watershed

First, we applied cGAN-Flood to improve flood mapping resolution from a coarse
2D HEC-RAS model, version 6.2 Brunner, created for the Upper San Antonio (UPSA)
Watershed. This coarse HEC-RAS model provides cGAN-Flood with the flood volume
to be redistributed (vt) for a high-resolution flood map output. This watershed contains
1 training, two validation, and two testing of the catchments used for cGAN-Flood
development and evaluation (Fig. 29a). (LAGO et al., 2023) showed that, although most
of the training areas are located inside the Leon Creek watershed, cGAN-Flood performed
satisfactorily on catchments inside UPSA.

The HEC-RAS domain has an area of approximately 350 km2 with a base cell size
of 100m. The terrain used for the simulations has a 3m resolution, downsampled from a 1m
resolution DEM acquired with the San Antonio River Authority (SARA,2017). Breaklines
were added for the reaches with a flow accumulation area larger than 100ha. Breaklines
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Figure 5 – The overall methodology includes the calculation of flood volumes with low-
resolution models (1), which are distributed with cGAN-Flood (2) to generate
high-resolution flood maps (3).

are modeling elements used to align the faces the the cells in a mesh with key features in
the terrain (e.g. high grounds and river centerlines). Adding breaklines improves the model
representation of the terrain and the water movement between cells. We selected a cell
size of 15m for these breaklines to improve the discretization in areas with high flows to
predict more accurately the flood dynamics. We added near repeats so that the 15m cells
cover the entire reach width where necessary. Additional breaklines were added for the
transportation infrastructure in UPSA watershed. A polyline file with the transportation
infrastructure of San Antonio was acquired from the City of San Antonio (2023). Due to
the coarser cell sizes, leakages between cells may occur if their faces need to be correctly
placed in high-ground elevations. By adding and enforcing breaklines correspondent to
streets and roads, the water flow is better represented with a more accurate vt used with
cGAN-Flood. After adding the breaklines, the average cell size of the HEC-RAS models is
32m. Furthermore, underground drainage infrastructure, such as culverts and pipes, was
burned into the terrain with their corresponding width to allow hydraulic connectivity
across the domain. A polyline with the underground drainage system and its characteristics
was also downloaded from City of San Antonio (2023).

A Manning’s n of 0.035 m1/3s−1 was used for impervious areas and channels and
0.1 m1/3s−1 for pervious areas, which is the standard Manning’s n used for training cGAN-
Flood (LAGO et al., 2023). A 1m resolution map with imperviousness areas, acquired
with the San Antonio River Authority (SARA,2017), was also downsampled to 3m. The
curve number was the infiltration method used in this model. The CN values from 155
sub-catchments were acquired from a UPSA HEC-HMS, available at D2MR website, which
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Figure 6 – UPSA watershed with cGAN-Flood training, validation and testing areas (a);
and streams, sub-catchments and CN values (b). Source: (LAGO et al., 2023)

focus on the dissemination of hydraulic and hydrological, shown in Fig. 29b. In this study,
no calibration attempts were performed, as the focus of the paper is demonstrating how DL
models can be used to improve flood mapping resolution. Different model parametrization
could affect the vt values and the final flood maps. However, the methods applied in this
paper can be reproduced with any other mesh-based model configuration and parameters.

When applying cGAN-Flood for flood volume redistribution in the UPSA, the
process is conducted independently across the 155 HEC-HMS sub-catchments. The total
flood volume (vt) for each sub-catchment is calculated by summing the volumes of all
cells within it. Since mesh cell delineation does not always coincide with sub-catchment
borders, cells on the boundaries of two sub-catchments may extend into both areas. To
address this, we redraw the sub-catchments to align with cell faces, ensuring each cell lies
entirely within a single sub-catchment for the purpose of vt redistribution. vt is calculated
via elevation-volume tables after acquiring the maximum WSE of each cell. This process is
done automatically by reading the hfd plan file of HEC-RAS (see SM.1 for further details).

Notably, cGAN-Flood was neither trained nor tested for areas larger than 500ha.
As such, we did not redistribute fluvial flooding from segments receiving stormwater from
larger areas, as previous analysis showed that cGAN-Flood was unable to predict floods
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accuratly in such conditions. To do so, we exclude fully flooded cells adjacent to a flow line
with a flow accumulation exceeding 500ha (Fig. 6b) from the redistribution process. The
flood depths for these cells, as determined by the low-resolution HEC-RAS, are maintained
in the final maps. Considering that fluvial flooding can be accurately and rapidly simulated
with 1D models in most situations, our primary objective is to enhance the resolution of
pluvial flood maps, which necessitates 2D modeling.

2.2.2.1 Performance Analysis in San Antonio Catchments

High-resolution HEC-RAS mapping of the whole UPSA was unfeasible due to
computational resources and simulation time. Simulating the UPSA with a 3m cell size
would result in approximately 39 million cells, which would not be supported due to a
lack of computational memory. In addition, the simulation time would be unpredictable.
Therefore, we have tested the performance of cGAN-Flood to improve the flood mapping
resolution of HEC-RAS model in catchments C1, C2, C3, and C4 (Fig. 29a). HEC-RAS
models with a 3m resolution were created for each catchment to be used as ground truth.
Then, coarse HEC-RAS models were created for calculating vt. The same methodology
used for selecting cell sizes, applying breaklines, and adding terrain modifications in UPSA,
was used in these catchments. The 25 and 100-year storms, with a 3-hour duration (LAGO
et al., 2023), were used to evaluate the performances.

We have simulated the 100-year storm in the whole UPSA to estimate the simulation
time of cGAN-Flood and perform a visual comparison between low-resolution HEC-RAS
and cGAN-Flood maps. Although we could not compare the whole UPSA with the
high-resolution HEC-RAS, simulation time is still a relevant performance metric when
simulating large domains.

2.2.3 Performance Metrics

We used a combination of the mean absolute error (MAE), root mean square
error (RMSE), and the Nash-Sutcliff efficiency (NSE) to assess the spatial accuracy of
low-resolution flood maps with and without applying cGAN-Flood, for all cells with depths
equal or larger than 0.01m. We also utilized the hit rate (HR), false alarm rate (FAR), and
the critical success index (CSI) to evaluate the accuracy of the predicted flooded areas.
The metrics HR, FAR, and CSI are expressed as percentages, ranging from 0% to 100%.
The optimal value for HR and CSI is 100%, while for FAR, it is 0%. The formulas for
these metrics are as follows:

HR = Hits
Misses (2.1)

FAR = Hits
Hits + False Alarms (2.2)
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CSI = Hits
Hits + False Alarms + Misses (2.3)

In this context, ’hits’ represent cells identified as flooded by both models, ’false
alarms’ denote cells flagged as flooded solely by cGAN-Flood, and ’misses’ are cells
recognized as flooded exclusively by the high-resolution HEC-RAS. We adopted thresholds
of 0.01m, 0.05m, and 0.3m for distinguishing between dry and wet cells, in line with previous
flood studies (BROWN; SPENCER; MOELLER, 2007; SHI et al., 2021; JAMALI et al.,
2018; GUIDOLIN et al., 2016; LOWE et al., 2021), to better evaluate the performances
under different depth magnitudes. HR and FAR were calculated only for a threshold of
0.05m (HR05 and FAR05), which is the mid-magnitude of the selected ones. The CSI metric
was calculated with depth thresholds (CSI01, CSI05, and CSI3), as this measurement
accounts for both false alarms and misses.

2.2.4 Hardware Specifications

All cGAN-Flood simluations NVIDIA GeForce RTX 2060 SUPER GPU (1650
MHz and 8GB of memory). Given that the HEC-RAS model lacks GPU support, its
hydrodynamic computations were carried out using an i7 10700 CPU operating at 2.9GHz.

2.3 Results and Discussion

2.3.1 Model performances at San Antonio

First, we evaluated the capability of the low-resolution HEC-RAS model to predict
maximum flood volumes. Table 1 shows that the volume calculated with the low-resolution
HEC-RAS model, which was used as input to cGAN-Flood, matches the volume predicted
with high-resolution HEC-RAS relatively well. The largest error in volume was an under-
estimation of approximately 10% for catchment C1 (25-year storm). The average error of
all simulations is -6.7%. This table also demonstrates that low-resolution HEC-RAS tends
to underestimate flood volume, meaning that the stormwater flows out of the catchment
faster than simulated with a high-resolution model. One possible explanation is leakages
from the coarse cells, which cause water to skip high-ground terrains and reach the outlet
faster.

Flood maps were created for the four sub-catchments in the UPSA watershed with
low and high-resolution HEC-RAS models and with cGAN-Flood. Table 2 shows the
metrics for the low-resolution and cGAN-Flood outputs for the 25 and 100-year storms.

When comparing the two models, based on the metrics of False Alarm Rate (FAR),
Hit Rate (HR), and the Critical Success Index (CSI), we observe that cGAN-Flood
generally outperforms low-resolution HEC-RAS, except for FAR. Fig. 7 illustrates flood
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Table 1 – Comparison of total flood volume calculated from low and high-resolution HEC-
RAS models

Storm Catchment Volume high-resolution
HEC-RAS (1000m3)

Volume low-resolution
HEC-RAS (1000m3)

Error

25-year

C1 116.5 104.3 -10.4%
C2 289.8 273.5 -5.6%
C3 118.9 113.7 -4.4%
C4 223.9 211.9 -5.3%

100-year

C1 139.4 125.6 -9.9%
C2 348.8 330.3 -5.3%
C3 142.7 132.8 -6.9%
C4 270.6 255.3 -5.6%

Table 2 – Performance metrics of low-resolution HEC-RAS and cGAN-Flood
Storm Catchment FAR05 HR05 CSI05 CSI CSI3 RSME

(m)
MAE
(m)

NSE

Low Resolution
HEC-RAS and
cGAN-Flood

25-year

C1 23% 90% 71% 83% 74% 0.07 0.013 0.75
C2 23% 91% 72% 80% 61% 0.07 0.019 0.70
C3 19% 90% 74% 84% 66% 0.06 0.014 0.76
C4 19% 87% 72% 80% 63% 0.09 0.013 0.73

100-year

C1 20% 90% 73% 84% 76% 0.07 0.014 0.78
C2 22% 92% 73% 81% 62% 0.08 0.022 0.72
C3 17% 91% 76% 86% 65% 0.07 0.016 0.77
C4 17% 88% 75% 82% 66% 0.08 0.014 0.75

Low Resolution
HEC-RAS

25-year

C1 27% 40% 35% 30% 67% 0.05 0.018 0.67
C2 17% 47% 43% 35% 62% 0.07 0.023 0.64
C3 15% 46% 42% 36% 57% 0.06 0.022 0.63
C4 23% 49% 42% 35% 51% 0.07 0.019 0.59

100-year

C1 14% 37% 35% 28% 78% 0.05 0.016 0.74
C2 15% 48% 44% 36% 62% 0.07 0.026 0.66
C3 13% 50% 46% 41% 60% 0.06 0.023 0.67
C4 19% 49% 44% 36% 55% 0.08 0.021 0.63

mapping outputs from the low-resolution HEC-RAS and cGAN-Flood, which indicates
that the DL model significantly improved flood mapping.

The cGAN-Flood could improve the HR, CSI, and CSI0.01 by 44%, 31%, and
48%, respectively. The improvement in CSI0.3 (deeper depths) was less significant, about
5%. The reason is that deeper water is more frequently present along the channel, which
was better captured in the low-resolution HEC-RAS model, demonstrated by better
CSI0.3 metrics compared to CSI0.05 and CSI0.01. Furthermore, cGAN-Flood, and other
DL models, tend to show lower performance when analyzing CSI0.3m. For FAR, which
measures the proportion of false positives in the total predicted positives, low-resolution
HEC-RAS consistently has a lower average FAR (with an average of 18%) across all
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locations compared to cGAN-Flood (an average of 20%). The reason is that HEC-RAS
consistently underestimated shallower depths across these sub-catchments, reducing false
negatives.

Figure 7 – Comparisson between flood maps generated from low-resolution HEC-RAS
model and cGAN-Flood with high-resolution HEC-RAS outputs

In addition to improving the flooded areas, cGAN-Flood also improved the flood
depths across the domains, as demonstrated with MAE and NSE metrics. The DL model
decreased the MAE from an average of 0.15 m to 0.13m and improved the NSE from
0.66 to 0.75. Fig. 8 illustrates the difference between the cGAN-Flood and low-resolution
HEC-RAS to the high-resolution one. It can be observed that, in general, the errors are
closer to zero with cGAN-Flood when compared to low-resolution HEC-RAS. However, Fig.
8 also shows that cGAN-Flood presented some localized areas with more expressive errors
(e.g., near the outlet of area C4). When comparing low- and high-resolution HEC-RAS
outputs, the flood depths are expected not to deviate significantly, as we are comparing
outputs generated with the same set of hydrodynamic equations and solver strategy.
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Consequently, the RSME increased by an average of 0.008m after applying cGAN-Flood,
as the more significant errors are magnified with the root operation of this metric.

Figure 8 – Error depths of cGAN-Floos and low-resolution HEC-RAS maps.

2.3.1.1 High-Resolution Prediction of UPSA Watershed

The comprehensive flood maps produced by the low-resolution HEC-RAS model,
enhanced by the cGAN-Flood volume redistribution, are displayed in Fig. 8. Integrating
a low-resolution hydrodynamic model and cGAN-Flood led to significant enhancements in
flood map predictions throughout the UPSA watershed, particularly in depicting shallower
depths. Such details regarding shallow cells can provide valuable insights to local authorities
during emergencies. For instance, vehicular aquaplaning can occur at speeds of 70km/h
or 62km/h when water depths reach 0.01m and 0.02m, respectively (OH et al., 2008).
More precise flood maps can enhance the effectiveness of responses, such as evacuation
strategies, and contribute to safeguarding local residents.

From a time efficiency perspective, the low-resolution HEC-RAS model (570k
cells) required 31 minutes, while the cGAN-Flood volume redistribution across the entire
UPSA took an additional 37 minutes. Therefore, the total computation time to generate
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high-resolution flood maps for about 38 million cells was 68 minutes. In comparison, the
prediction of a 25-year flood map in area C1 (approximately 150k cells) alone consumed
37 minutes. Notably, the simulation time per cell reduces with a low-resolution model, as
coarser model decrease the Courant Number and allows for larger timesteps. If we presume
that the computation time scales with the number of cells, a rough estimate suggests that
a full HEC-RAS simulation with a 3m resolution for the UPSA would take approximately
160 hours (or nearly one week), assuming the simulation time per cell is equivalent to that
of area C1. These results underscore the potential of DL models for enhancing efficiency in
predictions of large areas. However, it is worth noting that the fluvial flooding in segments
draining over 500ha was calculated with 15m cells in the low-resolution model HEC-RAS
model. Applying finer cell sizes or a combination with a 1D HEC-RAS can improve the
flood predictions at these locations, which can affect the total prediction time. HEC-RAS
1D models have been traditionally used for fluvial flood predictions and may be a preferred
option for rapid flood modeling as it is less computationally demanding.

Figure 9 – Flood maps of entire UPSA watershed with a low-resolution HEC-RAS model
and after coupling it with cGAN-Flood. Depths are visualized with equalized
histogram for better illustration.

2.4 Conclusions and Future Model Improvements

This study addressed an important gap in the field of flood predictions in a large
domain, demonstrating a pioneering application of Deep Learning (DL) models to enhance
flood mapping resolution originating from coarse hydrodynamic models. This presents a
significant leap toward refining flood modeling while maintaining computational feasibility.
Our work showcased the use of cGAN-Flood with a coarse mesh-based hydrodynamic
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model. Therefore, the methods presented in this chapter underscored the potential to
ameliorate the resolution of flood mapping in pre-existing 2D hydrodynamic models.

However, some limitations of cGAN-Flood needs can be highlighted. First, the
model was not trained to account for underground drainage systems. The incorporation
of such systems in the model could improve its predictions, especially in urban settings
where these systems are prominent and significantly influence flood dynamics. Future work
should focus on expanding the model’s capacity to include underground drainage systems.
Also, cGAN-Flood was not evaluated with previous hydrological conditions. It is suggested
to train the model with different initial soil moisture to make it sensitive to different
previous climate conditions. cGAN-Flood is also strictly confined to a 3m raster resolution.
The inability to adapt to finer or coarser cells restricts its application in situations where
data resolution varies or in scenarios requiring more detailed flood predictions. Further
adaptations should be made to enable the model to work with different resolutions, thereby
broadening its application scope. Finally, cGAN-Flood was trained with models that were
not calibrated and its results reproduce the outputs from generic HEC-RAS models. It is
recommended to evaluate how using calibrated models to train cGAN-Flood can improve
its predictions capabilities.

In conclusion, while this study presented a novel and promising approach to large
flood modeling, it has also revealed pathways for future research that could further
enhance the performance and applicability of DL models in flood predictions. It has not
only demonstrated this technology’s potential but also outlined a clear pathway for future
research. Literature reveals substantial progress in utilizing DL for flood prediction in
recent years, offering encouraging results for practical, real-world application scenarios in
the near future.
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3 EVALUATING CGAN-FLOOD TRANSFERABILITY TO CATCHMENTS WITH
DISTINCT TOPOLOGICAL CHARACTERISTICS

ABSTRACT

Deep learning (DL) models for flood predictions have gained popularity. However,
these models still struggle to accurately predict floods to different topologies and boundary
conditions. Recently, a DL model based on a conditional generative adversarial network
(cGAN-Flood) was developed with a focus on generalization to different catchments and
rainfall events, trained and tested within San Antonio, Texas. Despite its satisfactory
efficiency in predicting floods to unseen catchments, the tested areas are closed to training
ones, with similar topological characteristics. This chapter aims to discuss cGAN-Flood
methods and evaluate their accuracy for catchments in Sao Paulo. HEC-RAS models were
developed for three catchments in Sao Paulo, whose results were compared to cGAN-
Flood’s outputs. Furthermore, we demonstrate how cGAN-Flood can be coupled with
a raster-based model for enhancing resolution at the Aricanduva watershed (150km2).
Results showed a drop in the performance of cGAN-Flood from testing areas in San
Antonio compared to the ones in Sao Paulo. The reason is the significant differences in
the input data and higher slopes in Sao Paulo. Despite the drop in accuracy, cGAN-Flood
was still able to predict flooding with relative efficiency, improving the overall accuracy of
low-resolution Hydropol2D model.

3.1 Introduction

A key tool for designing and planning flood mitigation strategies in urban areas
is flood modeling. Today, the most accurate models for predicting urban floods are two-
dimensional (2D) hydrodynamic (CEA; COSTABILE, 2022). However, their applicability
in large watersheds or when several runs are necessary is hampered by their high computing
cost (e.g., for Monte Carlo simulation and optimization problems). Furthermore, rain-
on-grid modeling, which consists in simulating flood distribution directly from rainfall
inputs upon the domain, takes even longer simulation times. The reason is that with the
application of rainfall, every cell in the domain contains water in which the shallow water
equations (SWE) are applied to compute the flood dynamics.

In an effort to expedite flood predictions, Rapid Flood Models (RFMs) have been
developed. Deep learning models (DL), including artificial neural networks (ANN), offer a
potential solution for improving rapid flood predictions. ANNs, known for their learning
capabilities and efficiency, have been successfully employed in numerous flood-related
studies (DTISSIBE et al., 2020; ZHAO et al., 2020; SONG et al., 2020; LE et al., 2019;
FANG et al., 2021; PETERS; SCHMITZ; CULLMANN, 2006; SHRESTHA; THEOBALD;
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NESTMANN, 2005; BOMERS et al., 2019; PANAHI et al., 2021; ??; BERKHAHN;
FUCHS; NEUWEILER, 2019). DL models showed promising results in reproducing
hydrodynamic models, which are often data-demanding and expensive to be created.This
opens the opportunity to train DL models in areas where reliable hydrodynamic models
exists to be replicated in areas with low investments for such purpose. However, it is
necessary to investigate the transferability of DL models between areas with distinct
topological features and wether the performance can be maintained. However, generalizing
flood predictions is still a challenge (BENTIVOGLIO et al., 2022).

Do Lago et. al (2022) developed cGAN-Flood, which uses a conditional adver-
sarial network (cGAN) to solve a rain-on-grid problem. This approach distributes a
pre-determined flood volume over a catchment, which can be previously calculated with
horological simulations. cGAN-Flood was trained and validated in different catchments in
San Antonio, Texas. The generalization capabilities of cGAN-Flood were evaluated in a
variety of unseen catchments, within the same city, under different rainfall magnitudes.
Although the results were satisfactory, showing that the model can generalize to both
boundary and topological conditions, cGAN-Flood was tested in catchments that are
geographically close and with similar topological characteristics.

3.1.1 Background on cGAN-Flood Training and Validation

According to Lago et al. (2023), ten, two, and five testing catchments were used
for the training (TR), validation (VA), and testing (TE) datasets, respectively. All these
catchments are located in San Antonio, Texas, within Upper San Antonio and Leon Creek
watersheds (Fig. 4a) . Most of the training sub-catchments are gathered around Leon
Creek’s eastern limits. The testing areas TE1, TE2, and TE3 are located closer to the
training cluster than the TE4, TE5, and the validations areas. In order to evaluate cGAN-
Flood under various spatial conditions, areas were chosen for testing and validation that
comprise catchments with various sizes, average cell slopes, and percentages of impervious
surface.

These areas presented different characteristics so that cGAN-Flood could be trained
and validated under various catchment scenarios for predictions. Their size varied from
54.4 to 463.8 ha. In terms of cell-to-cell average slope, TR1 presented the highest value
of 17.5◦. As for the percent impervious area, the most urbanized catchment within the
studied areas is 63.8 % impervious.

HEC-RAS (BRUNNER, 2016) was the hydrodynamic model used as ground-truth
to train the generators. HEC-RAS 2D models with 3m grid resolution were created in for
each catchment. The DEM and imperviousness map used for HEC-RAS modeling had the
same resolutions. For impermeable cells, Manning’s roughness coefficient of 0.03 m1/3s−1

was chosen, as suggested for concrete regions (BRUNNER, 2016), as these models were not
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Table 3 – Characteristics of the testing, validation, and training areas

Location Area
(ha)

Number of
Cells (x103)

Average cell
slope (◦)

Impervious
Area (%)

TR1 226.9 252.1 17.5 44.7
TR2 84.8 94.2 14.7 43.1
TR3 99.8 110.9 14.7 46.9
TR4 187.6 208.5 10.9 46.8
TR5 463.8 515.3 13.3 58.9
TR6 371.5 412.8 14.5 36.1
TR7 309.6 344 12.7 48.4
TR8 383.6 426.3 14.7 46
TR9 307.3 341.4 15.4 38.4

TR10 378.1 420.1 17.1 57.2
VA1 134.6 149.5 13.1 29.9
VA2 341.9 379.8 13.7 48.9
TE1 258.9 287.7 14.7 33.4
TE2 54.4 60.4 13.8 63.8
TE3 406.5 451.6 12.5 43.2
TE4 251 277.8 8.2 45.5
TE5 146.9 163.2 12.2 54.1

calibrated. For previous areas, n equal to 0.1 m1/3s−1 was selected to represent different
pervious covers (e.g. bare field, grass, row crops, sparsely vegetated surfaces, and others)
(ENGMAN, 1986). The HEC-RAS depth output maps were used to train generator 2 and
to create the rank maps, used for training generator 1. Because the catchment areas are
relatively small (under 500 ha), it is expected that spatially homogeneous precipitation
will predominate. Therefore, only spatially uniform precipitation was used for training,
validating, and testing cGAN-Flood. Using cGAN-Flood for larger watersheds means
dividing the area into smaller sections. The deep learning model would then independently
manage the volume distribution in each section. Though the rainfall might is more
uniformly distributed in these smaller portions, its characteristics can vary significantly
across different parts of the domain.

The rainfall used for training presented an increasing intensity Fig 9b. Therefore,
the ranking map used to train generator 1 was created according to when the cells started
to be flooded. In addition, depth maps were collected at different times of this event to
represent different flood magnitudes when training generator 2.

Furthermore, terrain modifications were applied to each training area to make
the generators sensitive to different elevations. These terrain modifications multiplied
the DEM with different factors varying from 0.8 to 1.2. Therefore, the training of the
generators also included catchments that were 20 % smoother and enhanced regarding
the elevations. Smoothing the terrain reduces the difference in elevations between cells.
It makes the catchment more prone to flooding, as the channels will be shallower and
likely experience lower velocities due to lower slopes. On the other hand, enhancing the
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elevation increases the overall velocity and reduces the chances of overflows in channels as
the difference between the channel bottom and riverbanks increases.

The cGAN training processes were carried out using 200 epochs and a batch size
of 128. A learning rate of 0.005 was utilized with the Adam optimizer (KIEFER, 1953).
The parameters of both generators were saved for each epoch so they could be utilized
for validation. We used 25- and 100-year (Fig. 10c and d) design storm simulations to
determine the maximum depths in areas VA1 and VA2 in order to validate both generators.
The distribution of rainfall for the design storms was then determined using the alternating
blocks method.

Figure 10 – Training, validation, and testing areas of cGAN-Flood. Source: (LAGO, 2022)

3.1.2 cGAN-Flood Testing and Performance

The testing areas in San Antonio were tested with both 25 and 100-year storms Fig.
10c and d (LAGO et al., 2023). In addition, two observed events were also used for testing
Fig 10e and f to evaluate different rainfall distributions in cGAN-Flood’s performance.
The performance metrics of in all testing areas, for the four rainfall events, are shown
in Table 4. The model presented a satisfactory overall performance for all catchments
and events, despite the differences in area, slopes, imperiousness, and total flood volume
distributed. Therefore, cGAN-Flood was capable of generalizing to different topology and
boundary conditions.

The maximum root squared mean error (RSME) was 0.18m, with a minimum of
0.69 of R2. The hit rate (HR), false alarm rate (FAR), and critical success index (CSI) used
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to evaluate the performance of the model to identify dry and wet cells, were calculated
for all flood cells above 0.01m. This shallow depth was chosen to better evaluate the
performance of generator 1, which accounted for every cell with a depth higher than
zero. These metrics showed that, overall, cGAN-Flood can satisfactorily predict flood
for shallow depths. The minimum CSI, which considers false alarms and missings, was
69%. In addition, CSI0.05 and CSI0.3, computed for every cell flooded with depths above
0.05 and 0.3m, were used to evaluate generator 2 capacity in predicting deeper water
depths. Despite the decrease in performance moving towards deeper depth limits, due
to the decrease in the analyzed flooded area, cGAN-Flood also presented a satisfactory
performance.

Table 4 – Performance metrics of cGAN-Flood for all testing areas

Storm Testing
Area

vt

(1000m3)
RSME

(m) R2 HR
(%)

FAR
(%)

CSI
(%)

CSI0.05
(%)

CSI0.3
(%)

TE1 285 0.09 0.90 94.4 14.8 81.1 72.7 69.0
TE2 37 0.08 0.85 88.2 11.7 78.9 71.1 68.3

25-year TE3 486 0.13 0.89 93.2 15.3 79.8 72.3 68.0
TE4 223 0.09 0.88 94.1 10.9 84.4 74.2 67.1
TE5 119 0.17 0.84 83.9 11.9 75.3 72.1 67.9
TE1 339 0.10 0.90 94.6 13.3 82.6 74.6 70.9
TE2 46 0.09 0.86 86.8 8.5 80.4 72.9 67.8

100-year TE3 595 0.14 0.87 93.5 13.4 81.7 74.4 67.5
TE4 270 0.10 0.86 94.2 9.4 85.8 76.3 65.7
TE5 143 0.16 0.78 84.3 10.3 76.9 73.7 69.3
TE1 242 0.09 0.88 94.5 17.5 78.8 70.7 65.4
TE2 34 0.08 0.84 89.0 14.8 77.1 69.3 67.1

Obs1 TE3 443 0.13 0.84 93.8 18.3 77.5 69.7 67.4
TE4 201 0.09 0.84 94.0 12.4 83.0 73.3 66.9
TE5 104 0.18 0.77 91.5 15.2 78.6 69.7 64.7
TE1 196 0.10 0.82 92.7 23.1 72.5 63.9 60.0
TE2 28 0.09 0.78 89.9 21.9 71.8 64.5 60.9

Obs2 TE3 412 0.17 0.72 94.8 28.3 69.0 58.8 61.0
TE4 179 0.11 0.74 95.3 19.9 77.0 65.5 67.2
TE5 82 0.18 0.69 92.4 24.4 71.2 61.1 58.7

3.1.3 Objective

Given the necessity in evaluating the performance of cGAN-Flood in different
domains the objective of this chapter is to evaluate how cGAN-Flood performs in
catchments with a distinct topological configuration from where it was trained.

To evaluate its transferability, cGAN-Flood was applied to different catchments
in Sao Paulo to evaluate the DL model’s performance. In addition, cGAN-Flood was to
predict high-resolution floods in Aricanduva Watershed with a low-resolution Hydropol2D
was used for calculating the flood volume, a raster-based model, which requires a different
methodology when using a mesh-based one (used in the previous chapter).
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3.2 cGAN-Flood Testing in Sao Paulo Catchments

Despite cGAN-Floods capability in predicting floods for San Antonio watersheds,
the catchment’s regional characteristics are similar, and the data source used in all areas
is the same. Therefore, there is a need to evaluate the models’ generalization capacity in
catchments located outside San Antonio’s region. In this chapter, cGAN-Flood was tested
for in Sao Paulo city.

3.2.1 Study Areas

The Aricanduva watershed is located in the city of Sao Paulo, Brazil, and has
approximately 150 km2 (Fig. 11). The watershed was modeled using HydroPol2D, a
raster-based model. HydroPol2D is a diffusive-like cellular automata model that couples
hydrologic, hydrodynamic, and water quality transport of pollutants. Please refer to (JR
et al., 2023) for a detailed model description. It also contains terrain analysis algorithms
to treat DEM issues and allow proper hydrologic continuity, allowing terrain smoothening
(SCHWANGHART; SCHERLER, 2017) and burning (PAIVA et al., 2013).

Figure 11 – Aricanduva Watershed and Testing Areas in Sao Paulo

We have used a 15m resolution for the HydroPol2D simulations. The DEM was
resampled from a 1m resolution map, with bridges and culverts manually burned using
HEC-RAS terrain modification. The channel modifications were calculated by measuring
the channel’s width close to the bridge or culvert. The permeable and impervious areas
map was resampled from a 10m map (REPORT, 2019). The terrain and impervious map
resampling operations were performed using the bilinear and nearest neighbor methods.

The flood volume vt used for redistributing with cGAN-Flood was calculated
directly from the maximum water depths maps. Unlikely HEC-RAS, which interpolates
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Location Area
(ha)

Number of
Cells (x103)

Average cell
slope (◦)

Impervious
Area (%)

C5 128 142.0 33 76.3
C6 63 70.4 28 91.5
C7 303 336.8 50 31.0

WSE between cell faces, the water depths calculated with Hydropol2D result directly
from the water balance between cells. The flood volume at each cell can be calculated by
multiplying the cells’ area by the water depth. Therefore, vt is the sum of flood volume
in each cell inside a given area. The method of calculating vt for raster-based models
makes it more accessible than mesh-based ones, which can be performed directly from
low-resolution flood maps and does not require one of the model’s source files, such as
HEC-RAS hdf plan file.

3.2.1.1 Performance Analysis in Sao Paulo Catchments

The performance of cGAN-Flood coupled with Hydropol2D was also done in
smaller catchments instead of the whole Aricanduva Watershed. Hyrodpol2D models with
a 15m resolution were created for catchments C5, C6 and C7, located across Sao Paulo
city (Fig. 11). The low-resolution Hydropol2D models were used to calculate vt to be
redistributed. Therefore, this chapter demonstrate how to couple cGAN-Flood with a raster
based model, whose methodology differ from the one presented in the previous chapter.
These catchments were selected to represent different catchment sizes, imperviousness
percentages, and average slopes, as presented in Table 3.2.1.1. HEC-RAS models with
cell sizes of 3m were created as ground truth for comparing modeling results, as it is a
hydrodynamic model with a better representation of flood dynamiics.

Considering these catchments are situated outside San Antonio, the location cGAN-
Flood training catchments, we’ve also assessed the transferability of cGAN-Flood to these
different regions. Consequently, we have compared the outputs from cGAN-Flood with the
total flood volume (vt) computed directly from the high-resolution HEC-RAS models. By
doing this, we were able to eliminate the errors associated with Hydropol2D in calculating
vt from this analysis. As a result, we can gain a more precise understanding of the errors
that are exclusively associated with the cGAN-Flood model.

Similarly to the investigations conducted in the previous chapter, the HEC-RAS
simulations were conducted on the i7 10700 CPU operating at 2.9GHz CPU and cGAN-
Flood on the 8 GB NVIDIA GeForce RTX 2060 SUPER GPU (1650 MHz). At the moment
these analysis, Hydropol2D did not have GPU compatibility and its simulations were
conducted on the CPU.
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Table 5 – Performance Metrics for Catchments in Sao Paulo
Storm Catchment HR05 FAR05 CSI05 CSI CSI3 RSME

(m)
MAE
(m)

NSE

10-year
C5 76% 21% 63% 69% 50% 0.17 0.09 0.65
C6 83% 23% 67% 73% 49% 0.09 0.05 0.70
C7 78% 28% 60% 61% 53% 0.19 0.11 0.70
C5 77% 19% 66% 72% 54% 0.17 0.10 0.68

100-year C6 84% 21% 69% 75% 54% 0.09 0.06 0.72
C7 77% 25% 61% 62% 58% 0.21 0.12 0.71

3.3 Results

The effectiveness of cGAN-Flood in Sao Paulo Catchments was evaluated by
comparing its outputs with HEC-RAS map. To exclude uncertainties related to predicting
the flood volume, the flood volume distributed with cGAN-Flood matches exactly the
volume in HEC-RAS maps for this analysis. As the catchment characteristics of the C5,
C6, and C7 catchments are significantly different from the training ones, cGAN-Flood
showed worse performance than testing catchments in San Antonio. For instance, the
average RSME and MAE were 0.15m and 0.09m for C5, C6, and C7, while the maximum
values for the catchments at UPSA were 0.09 and 0.019m. The maximum NSE in Sao
Paulo was 0.72, below the average of 0.75 for UPSA catchments.

HR, FAR, and CSI also show larger errors regarding flooded cell locations in Sao
Paulo than in San Antonio, as Table 5 show. cGAN-Flood showed better accuracy when
considering shallow depths, similar to UPSA catchments, with higher CSI01 values than
CSI05 and CSI03. CSI03 presented the lowest values, with an average of 53%. Higher
CSI values considering shallower depths were also observed in Lowe. For instance, Their
CSI0.05 ranged from 44.7 to 58.3% (average of 48.7%), and their CSI0.3 ranged from 23.5
to 59.2% (average of 37.4%).

The different spatial inputs between San Antonio and Sao Paulo catchments explain
the drop in performance. First, Sao Paulo city is more hilly, with the average cell slope of
the terrain in the selected areas varying from 28 to 50◦. As a comparison, the catchments
with the highest average cell slope used during the training phase was 21◦, including the
20% increase with the terrain modification (LAGO et al., 2023). Furthermore, Sao Paulo
tends to have fewer green spaces when compared to San Antonio. For instance, C5 and
C6 present an imperviousness percentage higher than all testing, validating, and training
catchments in San Antonio, which ranged from 29.9 to 63.8% (LAGO et al., 2023). C7
is located in a suburban area with only 31% impervious area. In addition, the spatial
patterns of the input data in Sao Paulo also differ from what cGAN-Flood has seen during
training. Fig 12 illustrates the spatial inputs in San Antonio and Sao Paulo catchments,
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represented by C1 and C5, respectively. The first major difference is the impervious data.
In San Antonio, the high resolution allows for delineating roads and buildings. In Sao
Paulo, however, an impervious map with only a 10m resolution is available, with the
impervious areas represented as continuous blocks. It can also be seen that the terrain
model in San Antonio is smoother than the one in Sao Paulo, which presents more abrupt
changes in elevation due to terrain excavations to accommodate housing. These differences
in terrain also affect the slope matrices with patterns that were unseen during training.
Moreover, our analysis did not take into account the differences in infrastructure (e.g.
bridges, culverts, and underground pipes) between San Antonio and Sao Paulo. These
differences in infrastructure between the two cities could potentially further decrease the
model’s accuracy. Recognizing and incorporating such intricate infrastructural elements is
necessary to improve model generalization, especially when ANNs are trained considering
hydraulic infrastructure elements.

Figure 12 – Illustration of the difference in spatial characteristics between San Antonio
and Sao Paulo

Despite the drop in performance, cGAN-Flood could still generate flood maps for
Sao Paulo Catchments that are similar to the ones generated with high-resolution HEC-
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RAS. Fig. 13 exemplifies food predictions for C6 and C7 catchments for depths larger than
0.01m and 0.3m. In catchments C6, the cGAN-Flood map was similar to the HEC-RAS
output, with sparse miss and false alarm cells across the catchments. cGAN-Flood tends
to overestimate the number of cells equal to or larger than 0.3m, especially along the main
channel. The reason might be the higher slope of the catchment when compared to the
training ones, and cGAN-Flood underestimated the channel’s flow capacity. Nonetheless,
cGAN-Flood could still identify the main flood locations in C7.

Figure 13 – Flood maps comparing high-resolution HEC-RAS and cGAN-Flood in Sao
Paulo catchments.

When coupling HYdropol2D with cGAN-Flood, the errors in flood volume prediction
are presented in Table 6. The error in vt calculated with the low-resolution Hydropol2D
varied from -9.8% to 21.6%. Catchments C5 and C6 presented errors comparable to those
related to the ones calculated with low-resolution HEC-RAS, ranging from -6.2 to -9.8%.



61

Table 6 – Comparison of total flood volume calculated from low-resolution Hydropol2D
and high-resolution HEC-RAS models

Storm Catchment Volume high-resolution
HEC-RAS (1000m3)

Volume low-resolution
Hydropol2D (1000m3)

Error

10-year
C5 102.1 94.6 -7.3%
C6 33.0 29.9 -9.3%
C7 196.4 224 14.1%
C5 124.6 116.9 -6.2%

100-year C6 40.4 36.4 -9.8%
C7 246.2 299.4 21.6%

Volumes calculated for C7 were significantly higher, possibly due to high catchment slopes.
As a rapid flood model, Hydropol2D does not consider inertia, which is relevant for accurate
predictions in areas with high velocities (JAMALI et al., 2018).

The performance of cGAN-Flood, when integrated with Hydropol2D, is detailed in
Table 7. Generally, a decrease in the performance of cGAN-Flood is observed when it is
coupled with Hydropol2D, primarily due to errors in the calculation of vt. For example, the
FAR05 in Catchment C7 was observed to be 31 and 30%, attributed to an overestimation
in flood volume as opposed to 28 and 25% when the volumes are well-matched (refer to
Table 5). However, when we average the metrics for the three catchments across both
the 10 and 100-year storm events, the degradation in performance is not substantial.
Specifically, the averages for CSI05 and NSE declined slightly from 64 to 63% and 0.69 to
0.68, respectively, while the average RMSE increased marginally from 0.15 to 0.16. This
analysis indicates that errors tied to the performance of the DL model in redistributing
the flood volume are more significant than uncertainties in the calculation of flood volume.
This underscores the necessity to expand the training of the cGAN-Flood model to enable
it to recognize a wider array of spatial patterns, thereby enhancing its generalization
capabilities. A sensitivity analysis is recommended to evaluate how adding extra catchment
variability during training improves the metrics when cGAN-Flood is applied to testing
areas.

In spite of the errors linked to cGAN-Flood and flood volume prediction, the
integration of the DL model with the low-resolution Hydropol2D model substantially
enhanced the precision of flood predictions when compared to Hydropol2D alone. For
example, Hydropol2D significantly underestimates flooded cells with a depth greater
than 0.05m, with HR05 values ranging between 28 and 49%. However, upon coupling
with cGAN-Flood, HR05 values increased to fall within the range of 73 to 82%. The
incorporation of cGAN-Flood resulted in an average decrease in FAR05 and RMSE by
10.5% and 0.015m, respectively, and an average increase in CSI01 and NSE by 27% and
0.25, respectively. The MAE presented an average increase of 0.02m. The advancement in
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Table 7 – Performance metrics of low-resolution Hydropol2D and cGAN-Flood
Storm Catchment FAR05 HR05 CSI05 CSI CSI3 RSME

(m)
MAE
(m)

NSE

Low Resolution
Hydropol2D and

cGAN-Flood

C5 19% 73% 63% 69% 52% 0.09 0.17 0.66
10-year C6 20% 80% 67% 73% 48% 0.05 0.09 0.70

C7 31% 80% 59% 61% 50% 0.12 0.19 0.67
C5 17% 76% 65% 71% 55% 0.10 0.18 0.68

100-year C6 18% 82% 69% 75% 54% 0.06 0.10 0.72
C7 30% 80% 60% 61% 52% 0.14 0.23 0.66

Low Resolution
Hydropol2D

C5 36% 28% 24% 41% 32% 0.13 0.16 0.36
10-year C6 30% 39% 33% 43% 41% 0.07 0.06 0.51

C7 36% 44% 35% 35% 38% 0.13 0.17 0.40
C5 34% 33% 28% 45% 36% 0.13 0.17 0.40

100-year C6 29% 42% 36% 47% 46% 0.07 0.07 0.54
C7 33% 49% 40% 35% 47% 0.12 0.19 0.45

flood mapping resolution is depicted in Fig. 14. Despite a significant error of 21% in volume
prediction for Catchment C7, the flood maps generated with the help of cGAN-Flood are
noticeably more accurate compared to those produced by the low-resolution Hydropol2D.
Notably, the low-resolution simulation from Hydropol2D failed to capture essential flood
features such as roads, a shortcoming attributable to the resampling of the terrain. These
findings also suggest that the flooded area (with depths greater than 0.01m) is generally
greatly overestimated. This pattern may explain why MAE is lower with the low-resolution
Hydropol2D. Shallow depths overestimated by Hydropol2D are registered as zero with
HEC-RAS outputs. At these locations, the discrepancy between cell depths is relatively
minimal, resulting in a reduction of the MAE.

3.3.0.1 High-Resolution Prediction of Aricanduva Watershed

The improvements in flood mapping resolution of Hydropol2D maps with cGAN-
Flood for Aricanduva Watershed are exemplified in 15. Unlikely the flood maps generated
with the low-resolution mesh-based model, which failed to generate pluvial flooding ( 15),
the low-resolution Hydropol2D could somewhat represent flood patterns with the coarse
pixel size. However, as discussed in the previous section, resampling the terrain may
misrepresent important urban features, such as roads, leading to overestimating shallow
depths. Redistributing the flooded volume with cGAN-Flood to a higher resolution results
in a more realistic prediction of flooded depth and area.

Regarding time efficiency, the low-resolution Hydropol2D model, comprising 460k
pixels with 15m resolution, demanded 75 minutes, while the cGAN-Flood volume redistri-
bution across the entire Aricandura watershed took an additional 18 minutes. Consequently,
the total computation time to create high-resolution flood maps encompassing roughly
11.5 million cells was 83 minutes. Considering the same assumption of computational
efficiency discussed in Section 2.3.2, a high-resolution HEC-RAS model with a 3m cell size



63

Figure 14 – Flood maps generated with cGAN-FLood and low-resolution Hydropol2D
compared with high-resolution HEC-RAS in C5 and C7 catchments

would take approximately 2 days of simulation for the Aricanduva watershed. This analysis
highlights the potential of increasing the resolution of coarse flood maps derived from a
raster-based model. It is worth noting the drop in efficiency when coupling cGAN-Flood
with Hydropol2D when compared to low resolution HEC-RAS, which presented a similar
computational time for a larger area.

3.4 Conclusions and Recommendations

cGAN-Flood model was originally trained and tested for catchments in San Antonio,
Texas. In this chapter, its generalization capacity to adverse topology was tested for
catchments in Sao Paulo, which presented different data characteristics, especially with
higher slopes. This chapter also presents a methodology on how to coupled a raster-based
model with cGAN-Flood for increasing pixel resolution of flood maps.

The analysis showed a drop in cGAN-Flood’s performance for Sao Paulo catchments
compared to the testing ones in San Antonio. However, cGAN-Flood could still predict
the flooded areas with results comparable to HEC-RAS, showing that major catchment
characteristics in San Antonio could somewhat be captured and reproduced in Sao Paulo.
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Figure 15 – Flood maps of the entire Aricanduva watershed with a low-resolution Hy-
dropol2D model and after coupling it with cGAN-Flood.

This is an advantage that allows training a DL model where data and reliable hydrodynamic
models exist to be later applied in areas where they lack. To achieve that goal, it is
recommended to train cGAN-Flood with a higher diversity of topological patterns so that
the model can maintain its accuracy when applied to different catchments.

This study shows that DL models can contribute significantly to rapid flood
predictions study. In addition to large-scale modeling, DL models can support real-time
predictions and optimization problems. However, DL models still need to be improved
to increase generalization capacity so they can be applied to different locations without
re-training, which is a time-consuming and data demanding process. Giving that the
training in San Antonio catchments could somewhat generate satisfactorily predictions
in Sao Paulo, we can infer that cGAN-Flood has a high generalization capacity with
the potential for great performance in a wide range of topological patterns if catchment
variability is inceased during training.
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4 RIVERINE FLOOD MAPPING USING AN ARTIFICIAL NEURAL NETWORK
RAPID FLOOD MODELING

ABSTRACT

Riverine flood mapping is often conducted using complex and data-intense hydro-
dynamic models, which hamper their application in many locations where data or funding
is lacking. The literature shows that Artificial Neural Networks (ANN) have been applied
for flood prediction and can be an alternative to the hydrodynamic models. However, the
predictive ability of ANNs to simulate floodplains in different areas outside the training
dataset needs to be better understood. This study developed a novel modeling approach
using ANN to predict floodplains. ANN modeling capacity is highly dependent of the
size of the training dataset. To improve model performance, we apply data augmentation
by dividing the spatial domain in smaller spatial windows, called target domains. The
methodology uses localized physical characteristics to increase the number of training
samples and the generalization capabilities of the model. HEC-RAS-1D models were used
to generate datasets taken as ground truth for training purposes. HEC-RAS models were
built for sixteen different locations in San Antonio, Texas: Ten locations were used for
training, three for validating, and three for testing the model. Flood predictions presented
satisfactory results compared to HEC-RAS models for the validation and testing areas,
suggesting that this approach can create ANN models capable of generating predictions
in different areas outside of the training and validation datasets. The ANN approach
outperformed more simplistic methods, such as using normal depths for all locations. In
addition, simulation for UPSA was performed with ANN and compared to FEMA. The
floodplains agree reasonably, but the is inclusion of hydraulic structures during the ANN
training is recommended to improve the predictions. A major advantage of the ANN model
is speed and it requires simpler model inputs. The ANN rapid flood model was 20 times
faster than HEC-RAS models, and can be run simply with the DEM and inflows. This
approach can be used as Rapid Flood Models to improve the real-time prediction of floods
and speed up optimization problems.

4.1 Introduction

Estimates indicate that flood events caused over $1 trillion in economic damages
and victimized more than 220,000 people from 1980 to 2013 (WINSEMIUS et al., 2016).
Furthermore, climate change projections show that the frequency and intensity of extreme
storm events tend to increase in the future (AICH et al., 2016; CLAVET-GAUMONT et
al., 2017; GAO et al., 2020; SHRESTHA; LOHPAISANKRIT, 2017; YIN et al., 2018),
which can magnify the impacts of flooding. The development of flood mitigation planning
is a essential for protecting comminities and local economies. The effectiveness of such
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plans depends on accurate and reliable floodplain mapping, typically done with the aid of
hydrodynamic simulation models. Building reliable hydrodynamic models can be time-
consuming and costly (FEMA, 2013; NRC, 2007), because it requires high-resolution data
for building and validating the models (NEAL et al., 2009; ZHANG; PAN, 2014).

It is estimated that the average cost per mile of reach mapped ranges from $5,000 to
$10,000 (WOZNICKI et al., 2019). High cost is likely a major contributor for low-coverage
floodplain mapping worldwide. In the U.S., for instance, 40% of the reaches have not yet
been modeled and mapped (WOZNICKI et al., 2019). Moreover, many floodplain maps
are outdated and don’t reflect the current and future flood risks associated with land use
and climate change.

Recent studies have applied Artificial Neural Networks (ANN), which are computing
systems inspired by biological neural networks, for flood estimation. ANN can learn and
apply complex rules to simulate very complex phenomena, including hydraulics of flood
events. ANN is also computationally efficient algorithms and can make complex predictions
for very large domains in a fraction of the computational budget required by hydrodynamic
models. For instance, PETERS; SCHMITZ; CULLMANN (2006) used HEC-RAS 1D
model to train a simple one-hidden layer ANN, for flood routing in Germany. Their model
replicated the hydrodynamic model’s results in less than 1s for a 1-year time series, which
takes around 12 hours using the original hydrodynamic model. SHRESTHA; THEOBALD;
NESTMANN (2005) applied ANN for flow routing, and their results show that the ANN
could extrapolate the predictions for flood events with different flow magnitudes from
the one used for the training model. (PANAHI et al., 2021) implemented Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN) to generate flash flood
probability maps in Iran and observed significant accuracy in predictions that could
be beneficial for planning flood mitigation strategies (PANAHI et al., 2021). On the
other hand, (BOMERS et al., 2019) combined a 1D/2D hydrodynamic model with an
Artificial Neural Network (ANN) to recreate historical flood events in the Netherlands.
This approach remarkably improved the accuracy of reproducing local flood characteristics,
and it reduced the uncertainties tied to these historical events.

As a data-driven modeling approach, one of the drawbacks of ANN is the re-
quirements of large datasets for training and validation (TAYLOR; NITSCHKE, 2018;
CARVALHO; FILHO; PORTO, 2021; ANTHONY; BARTLETT; BARTLETT, 1999;
LEE; DERRIBLE, 2020; IYER; RHINEHART, 1999). Although flooding is the most
common and fatal natural disaster worldwide (DOOCY et al., 2013; JONKMAN, 2005),
few locations contain high-resolution spatial and temporal datasets of real flood events.
This lack of observations impairs the ability of ANN to make accurate predictions because
of weak model training and validation. An alternative to the lack of datasets is to generate
synthetic datasets using physically based models, such as hydrodynamic simulators and
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data augmentation methods.

4.1.1 Chapter Goals and Contributions

The main goal of this chapter is to develop an ANN model for rapid floodplain
mapping in data-scarce and large watersheds. The literature presents several studies that
apply ANN for flood estimation with satisfactory performance (BERKHAHN; FUCHS;
NEUWEILER, 2019; BOMERS et al., 2019; DTISSIBE et al., 2020; FANG et al., 2021;
??; LE et al., 2019; PANAHI et al., 2021; PETERS; SCHMITZ; CULLMANN, 2006;
SHRESTHA; THEOBALD; NESTMANN, 2005; SONG et al., 2020; ZHAO et al., 2020).
All previous investigations, however, have assessed model performance for the same location
for which the ANN was trained. Here we address the question of whether ANN models
could be trained using data from some locations and predict flooding in other areas or
river branches in the same watershed. To achieve the main goal, this chapter contains the
following contributions:

• Two innovative ANN structures, integrating both dense and convolutional layers,
are introduced for predicting riverine flooding. This addresses the domain of pluvial
flooding, an area not covered by cGAN-Flood.

• A method for generating synthetic high-resolution floodplain datasets is described.
The method is based on 1D hydrodynamic model simulations to perform data
augmentation by altering the floodplain digital elevation model (DEM), slopes, and
cross-sections.

• The chapter tested the predictive ability of the ANN models to generate accurate
flood maps in areas outside of the training regions.

• The ANN models were evaluated for the entire Upper San Antonio Watershed.

The chapter is organized into six main sections. In Section 4.2, we describe the
ANN model, its data inputs and pre-processing, the methods for data augmentation, the
two architectures, the training and hyperparameters, and the algorithm used to create
flood maps. Next, Section 4.3 depicts the case-study used for testing the proposed
modeling approach. This section also describes how the new method was used to generate
floodplains for a large domain and how they were compared to the existing floodplain
map generated by the Federal Emergency Management Agency (FEMA). Section 4.5
presents the ANN training and mapping performance metrics. Finally, we summarized
the paper and discussed the main findings and limitations, offering recommendations for
future research directions regarding fluvial flood predictions with DL models in Section
4.6. The mathematical notation is: italicized lowercase characters represent variables or
parameters (e.g. k is kernel size, d(t) is water depth function of time). Italicized, boldface
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upper and lower case characters represent matrices and column vectors, respectively (a is
a vector and A is a matrix). The proposed ANN approach is described in five subsections:
Data Inputs and Pre-Processing, Data Augmentation, ANN Architectures, ANN Training,
and Hyperparameters, and Algorithm for Flood Predictions.

4.2 ANN Model Applied for Water Depth Predictions

4.2.1 Data Inputs and Pre-Processing

This section explains the data inputs and pre-processing treatment of the data
for the ANN flood mapping model. Given a large domain of a river channel, the goal of
the ANN model is to predict a vector output of water depths (d) in target locations (red
dot on Fig. 16) based on five inputs: a matrix containing elevation (E) obtained from a
Digital Elevation Model (DEM), slope profile vector (s), cross-section vector (x), inflow
hydrograph vector (q), and downstream water depths over time (dt). The maximum depths
are then selected from vector output to generate fluvial flood mapping. Previous model
versions included a raster map with pervious and impervious areas; however, these inputs
did not improve performance and were removed from the model to simplify operations.
Infiltration is previously accounted with a hydrological model, reflecting on the hydrograph
input of the model.

Figure 16 – Input data of the ANN: (a) elevation, (b) cross-section, (c) slope profile, (d)
hydrograph, and (e) downstream water depths. The output of the ANN is
depth time series (f) at the target location.

The input E is a 2D matrix with the target location in the center (Fig. 35a). The
algorithm rotates the DEM so that the river follows a north-south direction. The rotation
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angle is determined according to the angle of the drainage line at the target location.
Cross-sections x and slope profile s can be extracted automatically from the E, or included
externally (e.g. from topographic survey). The pre-processing algorithm extracts the cross
section with the target location point at the center of the E in a vector (Fig. 35b). The
elevations along the drainage line are also collected as a vector to represent the slope
profile as s (Fig. 35c). Given a squared matrix An×n with elevation values (a) collected
from the DEM raster, E was normalized with Eq (4.1).

[h]

ei,j = ai,j − a
n
2 , n

2

∆a
, ∀i, j = [1, . . . , n], (ai,j)n×n = A (4.1a)
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where ei,j is the normalized elevation value. The whole matrix is subtracted by the central
elevation a

n
2 , n

2 so that the target location elevation is equal to zero. ∆a is a pre-determined
difference in elevation taken from E so all e values are below one. The treated x is the
middle row of matrix E (Fig. 35-a to Fig. 35-b) described by Eq (4.2):
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Depth vector at the target location was normalized according to Eq (4.3):

[h]

dt = wset − a
n
2 , n

2

∆a
, ∀t = [1, . . . , m] (4.3a)

d = [d1, d2, . . . dm]T (4.3b)

where dt is the treated depth value and wset is the water surface elevation at time t on
the target location for a time series with duration m. The data treatment of vector dd

follows the same principle as vector d , but with wse collected downstream. Finally, the
slope profile s was treated with Eq. (4.4):

[h]

si = ai − aq

dq
i

100, ∀i = [1, . . . , q], (ai)q = a (4.4a)

s = [s1, s2, . . . sq]T (4.4b)
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where si and ai are slope and elevation values for element i in the s vector, q represents
the last entry in in the s vector , a is a vector with elevation along the drainage line, and
dq

i represents the euclidean distance between cell i and cell q. For training the ANN, the
water depth series and the q inputs were collected from hydrodynamic modeling results
(details in Section 4.3).

4.2.2 Data Augmentation

Data augmentation consists in modifying the data to increase the number of
training and validation samples. Previous studies have shown that data augmentation
can improve the accuracy of the ANN and enhance the generalization capability of the
model (ZHANG et al., 2021; ROY et al., 2019). In our approach, two techniques were
used. First, for each sample in the dataset, the x and E inputs were mirrored laterally for
the same q, d, dd and s. This technique doubled the number of training and validation
samples. Second, we performed terrain modifications, by multiplying the original DEM
raster by 0.8 to 1.2, with 0.05 increments between each alteration. Examples of how
terrain modification affects the slope profile and cross-section are shown in Fig. 17-a and b,
respectively. These modifications added eight hypothetical flood locations to be simulated
with the hydrodynamic model. The 0.8 E represents a more prone flood area, with a
mild slope profile, a shallower channel depth, and a plainer area at the overbanks. At
the current version of the DL model, surface roughness is not considered. Modifying the
HEC-RAS models with different Manning’s n is a future recommendation if such input is
included in the DL model. It is also a common practice to rotate the input images for data
augmentation when training an ANN, such as what was done with cGAN-Flood (LAGO
et al., 2023). However, for this study, the E images were treated so that the upstream
portion of the domain is maintained north. Fixating an origin helps the training process
and facilitates the ANN to recognize patterns. In face recognition, for instance, the nose
tends to be centralized in the center of the image GondhiFace2017.

4.2.3 ANN Architectures

Previous literature suggests that ensemble models can lead to better generalization
potential than single an ANN (BROWN et al., 2005; ALOBAIDI; CHEBANA; MEGUID,
2018; MORINI; PINELLI, 2021). Two ANN architectures that combine dense and convo-
lutional layers are proposed to estimate water depths (Fig. 18). Both architectures apply
2D convolutional layers (Conv2D) in E and 1D convolutional layers (Conv1D) in the
vectors s and x, followed by dense layers that process the remaining inputs vectors. Max
pooling was applied between Conv2D layers to downsample their outputs. The difference
between Architecture 1 and 2, is that the latter, uses a causal convolution layer with
a dilation rate (DR) of 3 to process the vectors q and dd before the concatenation. In
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Figure 17 – Example of data augmentation for cross-section(a) and slope profile (b).

addition, Architecture 1 includes one additional Conv1D layer for s and x inputs, and
one extra dense layer between the concatenation of q and dd and the output d. These two
architectures presented performance when evaluating the loss function during training.

Four different configurations were used in both architectures, with a different
number of filters (f) and kernel sizes (k) on the convolutional layers and nodes (D) on
dense layers, resulting in eight different topologies to generate the ensemble predictions.
The final water depth values were computed as the average output of each of the eight
ANN outputs. The selection of nodes (D) in the surrounding dense layers was set to ensure
that the nodes in middle dense layers (D∗) are less than twice the size of the input layer
(XU; CHEN, 2008) and as being 2/3 of the sum of input and output layers (SHEELA;
DEEPA, 2013). The Rectified Linear Unit (ReLU) activation function was used, which
has been successfully applied to ANNs using convolutional layers (GODIN et al., 2018;
SHANG et al., 2016). BERKHAHN; FUCHS; NEUWEILER (2019) evaluated the ANN
ensemble approach to improve the accuracy of urban flood predictions. The authors applied
ANNs as a single topology but trained with different initial weights. Even using ANN with
the same topology, ensemble predictions decreased the error of predicted floodplains and
showed to be beneficial. Tensorflow v2.1.0 (ABADI et al., 2015) was used to create the
ANN.
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Figure 18 – ANN architecture 1 and 2 used for the ensemble predictions.

4.2.4 ANN Training and Hyperparameters

A custom loss function was used to train the model (Eq. (4.5)), which is a weighted
average between the mean absolute error (MAE) between depth series and peak depths
error:

Loss = 1
w1 + w2

[
w1

(
|dH − d|

m

)
+ w2|max(dH) − max(d)|

]
, (4.5)

where dH is the vector with true depths simulated with the hydrodynamic model, d are the
predicted depths with the ANN, and m is the number of time steps of the depth vector.
w1 and w2 are the weights relative to MAE and peak depth error. We used w1 = 1 and
w2 = 2 to force a higher accuracy at peak depths, which is more relevant for floodplain
mapping.

Different batch sizes (1024 to 8192), learning rates (0.00001 to 0.001), and dropout
rates (0 to 0.1) were tested to identify the best hyperparameters configuration. Batch
sizes lower than 1024 showed significantly lower performance, while batch sizes larger than
8192 caused memory allocation issues. Very small learning rates quickly stagnated the
validation loss at high values, while the learning process presented more unstable loss
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values for larger learning rates. Random initial weights were set at the beginning of the
ANN training. A batch size of 4046 and a learning rate of 0.0005 were used, as the previous
analysis showed that these values generated the lowest minimum validation loss. Although
dropout is also applied in increasing generalization, (DAI; LE, 2015) it did not contribute
to reducing the minimum validation loss and was not applied in this study. The Nesterov
Accelerated Adaptive Moment Estimation (Nadam) (DOZAT, 2016) was used for training,
because it presented the best training performance when compared to the other optimizers
available in Tensorflow.

The sizes of the E, x, and s inputs and the most suitable topologies were determined
through trial and error, which is a common practice (JAAFRA et al., 2019) in ANN
studies. The best configuration was selected for the minimum validation loss during the
training process. Furthermore, we evaluated which of the inputs better helped to decrease
the validation loss function. Nonetheless, additional research is needed to determine if
these architectures remain optimal when applied to different catchments. For the local
information (E, s, and x), the validation loss was evaluated by training the ANN without
these components. Then, the minimum validation loss was compared to the complete ANN.
The downstream depth was modified from 5% to 200% of its original values at the outlet
of each validation and testing area. Then, the error at each point upstream was calculated
by the difference between the ANN prediction with the original downstream condition.

4.2.5 Algorithm for WSE Predictions

The eight trained ANN architectures were coupled to an algorithm for predicting
flood maps for the entire domain. The pseudo-code of the algorithm is presented as follows.

First, a drainage pathway raster map is generated, in which each cell in the drainage
line has a unique identification number that increases from the upstream to downstream
areas. This map guides the algorithm to move throughout the domain. In addition, this
map is used to indicate where an inflow is introduced in the model. If the raster map
already exists, this pre-processing step is skipped. In step 1, the first depth series is
predicted at the outlet with Manning’s equation assuming normal depth. The energy slope
at the outlet should be pre-defined. Then, in step 2, the ANNs and their optimized weights
are loaded for predicting water depths. A new target location is then identified, where the
ANN will predict the water depth series (step 3). In this step, all required input data is
automatically acquired and treated and a new depth series is generated using the ANN.
Step 3 repeats until the water depth series is determined for the whole spatial domain.
Then, new cross-sections are drawn perpendicular to the flow direction, where WSE is
calculated and interpolated linearly.

Euclidean distances of each cell to the drainage line are computed to create the
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cross-sections, which followed the greatest gradient of the distance map. These cross-
sections differ from the ones used as inputs to the ANN (Fig. 35), which are simply
collected from the E matrix to speed up the simulation. As the input cross-sections to the
ANN are straight lines, they can overlap while creating the WSE. Finally, the interpolated
WSE map is subtracted by the DEM to generate the flood depths.

Algorithm 1: Algorithm for generating floodplain using the ANN architectures.

Target location starts at the outlet. Downstream boundary condition is calculated
assuming normal depths

All trained ANN are initialized
for All Target Locations do

if Current Location is downstream to the inlet of current reach then
Target location moves 300m upstream
else if all water depths have been predicted for all reaches then

Break
else

Target location moves to the next reach at the junction
end

end
end
Local characteristics are collected: E, x, s, q and dd (d from previous
predictions).

Input data is treat and normalized.
Ensemble ANN models predict local water depths d

end
Draw cross-sections following drainage flow direction
Assign WSE to each cross-section and perform linear interpolation
Subtract interpolated WSE from DEM to generate flood depths map

4.3 Study-case

A total of seventeen urban reach segments are located in the Upper San Antonio
and Leon Creek watersheds, located in San Antonio, TX Fig. 19. Eleven reaches were
selected to generate synthetic datasets for the training of the ANN (red TR areas), three
reaches were used in the validation (yellow VA areas), and three for testing (green TR
areas).

4.3.1 Hydrodynamic Modeling

The HEC-RAS 1D was used for hydrodynamic modeling. The models used in this
work are simplified and did not include any lateral and inline structures or bridges; only
ineffective flow areas were set to the cross-sections where needed. Ineffective areas represent
the locations in the cross-sections where flow is not conveyed due to obstacles downstream.
A 3m DEM raster was acquired with San Antonio River Authority (SARA) (personal
communication, September 18, 2018) and was used to draw the cross sections.
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Figure 19 – Location of HEC-RAS models used for training (red) and validating (yellow),
and testing (green) the ANN model.
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Table 8 – Reference peak flows (500-year storm and 24 hours duration) for the training,
validating and testing areas.

Area Reference Peak flow (m3/s)
Inflow 1 Inflow 2

TR1 906 -
TR2 227 142
TR3 481 -
TR4 368 283
TR5 311 227
TR6 3,115 -
TR7 1,133 -
TR8 3,313 -
TR9 2,690 -
TR10 3,398 -
TR11 3,058 -
VA1 510 -
VA2 2,832 -
VA3 341 173
TE1 1,840 -
TE2 594 -
TE3 1,902 911

TE3 area is a simplified HEC-RAS model developed to access climate change
impacts in San Antonio (LAGO et al., 2021a). This 1D/2D model initially included 21
bridges, three culverts, and eight gates. The manning values of this model were calibrated
for the main channel, impervious and pervious areas (0.035, 0.03, and 0.3, respectively).
These values were applied to all HEC-RAS 1D models in this study. We used the peak flow
of a 500-year storm (24-hours duration) as a reference for simulating HEC-RAS 1D models,
shown in Table. 8. These areas drain different flow magnitudes, with reference peaks varying
from 142 to 3,398 m3/s. The peak flows were determined with a calibrated Hydrologic
Modeling System (HEC-HMS) (USACE, 2010) models for Leon Creek (GIACOMONI;
OLIVERA; LAGO, 2019) and Upper San Antonio Watersheds (LAGO et al., 2021a). Five
out of the 17 HEC-RAS 1D models have one tributary and require two inflow hydrographs.
The validation and testing areas include different peak flow magnitudes (ranging from
173 to 2832 m3/s), two areas with one junction, and different reach lengths (3.1 to 6.9
km). Therefore, these areas incorporate different characteristics to be representative of the
entire training dataset.

A total of 16 different hydrograph shapes were used in HEC-RAS simulations
(Fig. 20). These hydrographs were normalized by the peak flow and ranged from 0 to 1.
The inflow boundary condition of the HEC-RAS models was computed by multiplying the
normalized hydrographs by a pre-defined peak flow. Nine different peak flows were used to
build the hydrographs, which were 60, 70, 80, 85, 90, 95 105, and 110% of the reference
peak flows. The 100-year peak was approximately 60% of the 500-year peak at TE3 area
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(LAGO et al., 2021a). Hydrographs 1 to 8 (Fig. 20) were selected from different locations
at the Upper San Antonio and Leon Creek HEC-HMS models, generated with the 500-year
storm with the SCS type-III distribution. Despite the difference in flow magnitude, the
hydrographs at most locations in both watersheds can be represented by one of these
selected shapes. Hydrographs 9 to 16 are synthetic, a result of a combination of two or
more observed hydrographs. These additional hydrographs were created to increase the
number of HEC-RAS simulations and training/validation samples.

Figure 20 – Hydrographs used in HEC-RAS 1D simulations

In addition to the variety of hydrographs, simulations with all the terrain modi-
fications were performed for each TR and VA reach segment. Terrain modifications at
areas TR1 and TR3 were done between 0.6 to 1, instead of 0.8 to 1.2, due to numerical
instability problems during 1D simulations for terrain modification larger than 1. Terrain
modification was not applied to TE areas, as only the original area was used to evaluate
the model’s performance. A total of 1269 simulations (16 hydrographs, nine peak flows,
and nine elevations) were performed for each of the 14 HEC-RAS 1D models in the TR
and VA areas. Python codes were created to automate the modifications on the unsteady
flow and geometry files used by HEC-RAS, run the models, and read discharge and WSE
results for each cross-section. Due to a large number of simulations, the HEC-RAS report
file was read after each simulation to identify whether it was unstable and to fix the
model’s geometry if necessary. Therefore, it guarantees that all simulations had stable
results and did not compromise the ANN training process.
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4.3.2 Data acquisition

The hydrographs and water depths used for training the ANN were acquired from
HEC-RAS results. These time series data have a duration of one day with a 15-minute
time step. Therefore, they are vectors with dimensions 96x1 to be inserted in the ANN. dd

300m downstream to the target location has also 96x1 shape, representing a boundary
condition that affects flow upstream (see Fig. 35.

For the E, x, and s inputs for the ANN, SARA’s DEM resolution were resampled
from 3 to 21m. Using lower-resolution data, which is more accessible, allows the application
of the ANN regions where detailed data is scarce. BERKHAHN; FUCHS; NEUWEILER
(2019) reduced the DEM resolution for predicting urban flooding with ANN. The authors
argue that spatial resolution is less relevant for data-driven models (such as ANN) when
compared to physically-based ones. The E is a 2D matrix of the shape of 31x31 (651x651m)
and the x is a vector of shape 31x1 (651m). The s input is a 1D vector with a shape of 50x1
(1050 m) that represents the river bed elevation for 525m upstream and downstream of the
target location. The 500m represents a distance from where downstream conditions have
a neglectable effect (CORATO; MORAMARCO; TUCCIARELLI, 2011). This distance
may vary for different study areas but is still suitable for this study as the ANN is not
physically-based. However, the sizes of E, x, and s might require adjustments based
on the catchment, making it challenging to achieve a global generalization of the these
architectures across diverse catchments.

All required data for training and validating the ANN was collected at all the
intersections between each cross-section of the HEC-RAS models and the drainage line.
The number of samples in each location is twice the number of cross-sections times the
number of simulation, due to mirroring. Therefore, in this study, the training and validation
datasets had about 2.5 and 0.8 million samples.

4.4 Performance Evaluation and Floodplain Prediction for Large Scale Domain

Flood maps generated for validation and testing areas with this new ANN approach
were compared to HEC-RAS model. As the validation dataset can be biased (WU et al.,
2013), these areas were also included in the analysis to be compared to the testing dataset.
If the validation dataset is biased, the performance of the ANN training process might be
compromised with unrealistic validation loss values (SHIN et al., 2016). As a consequence,
the final optimized parameters of the ANN may not be suitable for other areas with the
worst performance in the testing locations. In addition, the downstream depth inputs used
in the validation dataset during training differ from the ones used for floodplain generation.
The reason is that the downstream depths used for training were directly acquired from
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HEC-RAS models, while ANN prediction results are used to feed the ANN during the
simulation (Algorithm 1, step 16). Therefore, the validation areas can also be used to
evaluate the method as a whole (e.g. how error propagates upstream).

Our approach was also compared to floodplains generated with normal depth at
each target location in validation and testing areas. This is similar to the GIS Flood model
developed by USGS (VERDIN et al., 2016). This rapid flood model consists in drawing
cross-sections where normal depth is calculated. Then, the floodplain is determined by
Height Above Nearest Drainage (HAND) (NOBRE et al., 2011b). We used interpolation
between cross-sections to generate the floodplains for comparison purposes, as HAND
is more indicated to large-scale studies where minor details can be neglected(HOCH et
al., 2018). In contrast to the previous chapter that focused on predicting pluvial flooding,
fluvial floodplains exhibit a more consistent variation in WSE. For instance, HEC-RAS
1D models interpolate WSE between cross sections to produce flood maps (BRUNNER,
2016). This uniformity enabled the conversion of water levels at discrete points.

This new approach was also tested for the whole Upper San Antonio Watershed.
The DEM, drainage lines, and inflows were the data required for the simulation (Fig. 21).
This watershed includes a flow diversion from an underground tunnel and two storage
units. The flow diversion effect on the WSE is modeled with the correspondent peak flow in
the given area, previously simulated with the hydrological model. The WSE for the storage
units was determined via storage-discharge and storage-elevation curves for Elmendorf
Lake and Olmos Dam. These curves and the official 100-year peak flows were acquired at
the San Antonio River Authority (SARA) website (SARA, 2020). The 100-year peak flows
were used to create the inflows to the model with the proper hydrographs selected for
each location, shown in Fig. 20. The final flood map was then compared to 100-year Flood
Insurance Rate Map (FIRM) FEMA maps. The comparison with the FEMA map excluded
locations where data was generated for training and validation to avoid the influence of
the training process.

The performance of the ANN model was accessed with Root Squared Mean Error
(RSME), Mean Absolute Error (MAE), Hit Rate (HR), False Alarm Ratio (FAR), and
Critical Success Index (CSI). HR, FAR and CSI metrics are given by Eqs. (4.6)-(4.8):

HR = Hits
Hits + Misses (4.6)

FAR = False Alarms
False Alarms + Hits (4.7)

CSI = Hits
Misses + False Alarms + Hits (4.8)
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Figure 21 – Data used for the prediction of WSE with ANN

4.4.1 Hardware Specifications

All ANN and HEC-RAS simulations were performed on an i7 10700 CPU operating
at 2.9GHz. No significant computational gains were obtained when predicting flood maps
with the ANN method using NVIDIA GeForce RTX 2060 SUPER GPU (operating at
1650 MHz), possibly due to interaction between ANN outputs in the algorithm to generate
the floodplains.

4.5 Results and Discussion

4.5.1 ANN Training

The final configurations found for each topology are presented in Table 9. The
validation loss is similar to all topologies, ranging from 0.274 to 0.296m. It is worth noting
that despite the loss unit being meters, it has no physical meaning. Fig. 22-a shows an
example of the training and validation losses for each epoch for topology. The validation
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Figure 22 – Example of training and validation loss (a) and effect of input data on
validation (b) for topology 1

loss drops approximately to the 100th epoch and then increases, suggesting an overfitting of
the ANN beyond that. The optimized ANN was saved at the epoch of minimum validation
loss.

Table 9 – Topologies and minimum validation losses.
Validation Loss (m) f1 f2 f3 f4 k1 k2 k3 k4 D1 D2 D3 D4

Architecture 1

Topo. 1 0.285 64 32 32 16 3 2 3 2 1024 512 512 256
Topo.2 0.274 32 32 16 16 3 2 2 2 512 256 512 256
Topo.3 0.297 32 32 64 32 3 2 3 2 512 512 512 256
Topo.4 0.277 64 32 64 32 3 2 3 2 512 256 512 256

Architecture 2

Topo.5 0.284 128 64 64 32 3 2 3 2 256 128 256 128
Topo.6 0.278 64 32 32 16 3 2 3 2 512 128 1024 512
Topo.7 0.277 64 32 32 32 3 2 3 2 256 128 512 256
Topo.8 0.296 64 32 64 32 3 3 3 2 256 128 256 128

The contribution of each input was also evaluated and is shown in Fig. 22-b. The x

and s were the inputs with the lower contribution to the ANN, with minimum validation
losses 5 and 8% higher than the complete ANN, respectively. This lower contribution was
expected, as x and ss can be acquired, somewhat, from E input. The E input contributed
to reducing the validation loss by 16%. The no x validation curve drops faster, with
minimum validation loss between the 20th and 40th epochs. The no E and no s curves
had an unstable learning process for the first epochs and reached the minimum validation
loss between 40th and 60th epochs. The models started overfitting at the first epochs for
ANN without local information and showed no learning progress.

4.5.2 ANN Performance

The performance of the ANN approach to predict WSE was compared to the
HEC-RAS 1D results for the validation and testing areas for 100 and 500-year storms
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(Table 10). Despite the fact that validation areas can be biased, the performance of the
ANN method for the testing areas is similar to the validation ones. Therefore, the ANN
training process was suitable to allow generalization. The RSME varied from 0.25 to 0.89m
and can be considered significant compared to other rapid floods, such as the WCAD2D
(GHIMIRE et al., 2013), with RMSE ranging from 0.10 to 0.36m. However, in their study,
the floodplain were generated for a rain-on-grid problem and the RSME was calculated
for every flooded cell above 0.1m. Therefore, the number of shallower flood cells for the
whole domain is larger. The flood plains included the testing and validation areas that
can reach high water depths (e.g. 10m in TE3, (see Appendix C) and increase RSME.
As a comparison, the calibration of water depth for area TE3 (LAGO et al., 2021a) was
performed with two gauges. With five observed events, the maximum error in peak depth
simulated with the HEC-RAS model was 0.64m. In approximately 28km of reach simulated
for validation and testing areas, the maximum peak depth error was 1.15m for the 500-year
storm at VA2. Overall, the outputs of ANN methos is comparable to the ones generated
with HEC-RAS models. The flood depths for each validation and testing area can be seen
in Appendix C.

The RSME was larger where the floodplain is more constrained, which makes water
level variation more significantly with discharge. This phenomenon contributed to reducing
the error on the floodplain and on the HR, FAR, and CSI metrics. TE2, for instance, had
the lowest RSME value for the 100-year and worse HR, FAR, and CSI values than VA2
(with the highest RSME). The WSE profile of VA2 and TE2 can be compared in Fig. 23-a.
It can be seen that the WSE predicted by ANN and HEC-RAS agree for most locations
at VA2 (Fig. 23-b). Up to point 1, ANN slightly overestimates the WSE. A constraint in
terrain in this location reduces the flow and increases water depths, followed by a sudden
drop in riverbed elevation. Therefore, the WSE is slightly overestimated as the ANN could
not predict it. This error does not propagate to location 1, where HEC-RAS and the ANN
water depth series match. However, the ANN significantly overestimates the WSE in point
2. The reason is a lateral diversion where the water is stored. This diversion contributes to
decreasing water depths downstream, but the ANN does not predict it. This characteristic
is not included in any of the training locations and could not be learned by the ANN. This
lack of accuracy highlights the importance of a broad training dataset covering different
locations. The error upstream to this point reduces, as shown by the WSE from points 2
to 3. The maximum error at VA2 is 1.1m, which can be seen in the area where the water
is stored. However, this overestimation by the ANN was not enough to overflow in this
location and contributed to a good performance of HR, FAR, and CSI. In area TE2, on
the other hand, the ANN approach overestimated the WSE until approximately 4000m
distance from downstream location. Despite the error being significantly smaller than in
VA2, it increases the flood extent along the reach (Fig. 23-c) which increased the FAR
(14.1%). The reason is the low-relief terrain at the over-banks in this region. After the
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4000m, the ANN underestimated the flood extent when compared to HEC-RAS.

Figure 23 – WSE predictions with HEC-RAS and ANN models for 100 and 500-year
storms on validation and testing areas
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Table 10 – Evaluation of Flood Plains Computed with Normal Depths
ANN Normal Depth

Area Storm RSME MAE HR FAR CSI RSME MAE HR FAR CSI
VA1

100-year

0.5 0.4 98.8% 1.2% 87.6% 0.65 0.48 98.1% 1.9% 90.8%
VA2 0.89 0.67 92.5% 7.5% 91.6% 1.28 1.05 86.2% 13.8% 82.2%
VA3 0.34 0.3 93.1% 6.9% 82.5% 0.64 0.42 79.7% 20.3% 74.0%
TE1 0.58 0.45 90.3% 9.7% 81.9% 1.04 0.83 71.8% 28.2% 50.1%
TE2 0.31 0.26 85.9% 14.1% 82.3% 1.05 0.94 49.5% 50.5% 49.5%
TE3 0.48 0.35 97.4% 2.6% 95.8% 0.56 0.44 93.4% 6.6% 90.1%
VA1

500-year

0.45 0.37 98.0% 2.0% 92.1% 0.56 0.4 94.8% 5.2% 91.7%
VA2 0.89 0.65 84.9% 15.1% 84.1% 1.45 1.18 77.8% 22.2% 76.5%
VA3 0.25 0.19 96.2% 3.8% 91.3% 0.73 0.54 70.6% 29.4% 68.7%
TE1 0.57 0.48 93.4% 6.6% 88.0% 0.88 0.71 67.1% 32.9% 57.2%
TE2 0.35 0.29 87.2% 12.8% 84.8% 1.45 1.31 40.4% 59.6% 40.4%
TE3 0.67 0.59 97.9% 2.1% 85.2% 0.78 0.65 85.4% 14.6% 85.2%

The errors of the floodplains determined with the ANN are significantly lower than
computing it with a single or normal depth or calculating the normal depth at each target
location (Table 10). Simulation with the ANN presented better values for all metrics in all
locations, showing that normal depths presented a higher percentage of misses and false
alarms. These results highlight the weakness of using normal depth for flood prediction,
especially in natural reaches. Normal depths require some specific conditions to occur. First,
the flow must be uniform with constant hydraulic parameters over several cross-sections
(e.g., bottom slope, wetted area, and water level) so that there is a dynamic equilibrium
between accelerating and resistance forces. Therefore, the water velocity is kept constant
within the segment. Even though normal depths are widely used for channel sizing, such
conditions are unlikely to happen in real case reaches (PORTO, 2006). Consequently,
assuming normal depth and uniform flow for flood predictions increases the uncertainty.
In addition, Manning’s equation was formulated assuming steady flow, as flood wave
propagation in the channel breaks the equilibrium of forces and variable flow prevails.
However, in this study, all simulations were performed with the unsteady flow, which can
also compromise estimating floodplains and can be relevant in real-time predictions.

The increase in WSE error (reflected by the RSME and MAE) significantly affected
the areas with a low relief terrain outside the riverbanks, such as VA3, TE1, and TE2.
In areas VA1, VA2, and TE3, where the floodplain is more confined, the errors on WSE
assuming normal depth had a lower impact on the HR, FAR, and CSI metrics. These
results agree with VERDIN et al. (2016)’s finding when comparing the GFT, which uses
normal depth for flood prediction, with hydrodynamic models. The authors stated that
GFT model should be avoided in areas with a low relief terrain.

The comparison between TE1 (low relief terrain) and VA1(well-defined relief) is
illustrated in Fig. 24 a and b. At the southern portion of the TE1 domain, up to 3000m
from downstream, the normal depth was below what was predicted with HEC-RAS,
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underestimating the flood extent and WSE. Between 3000m and 4000m, it can be seen
that the river bed becomes flattered, and the bottom slope decreases. In addition, there is
a decrease in the river width and, consequentially, in the wetter area. The combination of
these two conditions increased the WSE and generated a large floodplain to the west. One
possible explanation is the lack of momentum conservation by this approach. Simplifications
that ignore the inertia and conservation of momentum can cause higher water levels than
expected for flatter areas. This issue has also been reported in simplified 2D models
where Manning’s equation determines flow between cells (GUIDOLIN et al., 2016). This
phenomenon, however, could be captured by the ANN and did not compromise its results,
as the predicted WSE line is close to the HEC-RAS one. The error in area VA2 is smaller,
as the terrain and river characteristics are more uniform than in TE1, and the water level
simulated with HEC-RAS is closer to the normal depth. The maximum error using normal
depth in area VA1 occurs at approximately 2500m from downstream, where there is a
sudden drop in the river’s elevation and the calculated normal depth is low. As the area’s
flow has a well-defined relief, the difference in the flood extent was reduced.

Figure 24 – Comparison Between Flood Maps Generated with HEC-RAS 1D and Normal
Depths for TA1 (a) and VA1 (b)
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Figure 25 – The effects of downstream water depths
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Figure 26 – The impact of downstream boundary conditions on ANN’s capability to
produce flood maps is illustrated. The first column displays the floodplain,
utilizing the original slope to determine the normal depth as the boundary
condition. In contrast, the second and third columns demonstrate the changes
in floodplain predictions when employing a slope five times larger and five
times smaller than the original downstream slope, respectively.

A sensitivity analysis on the downstream condition was evaluated (Fig. 25) . It
can be seen that the difference in water depths, relative to no change in downstream
conditions, reduces as the predictions move upstream. Eventually, the ANN predictions
tend to normalize, and the downstream conditions do not affect the results. In general, the
water depths tend to normalize quicker for lower downstream conditions. The larger the
depth downstream, the longer it takes for the results to normalize. At areas TE1 and TE3,
for instance, the depth difference becomes irrelevant at approximately 3000m. In area
VA1 (with a downstream depth of 2.5m), on the other hand, the difference in predictions
tends to zero at approximately 1500m. These results show that the ANN was able to
understand unrealistic water depths for a given hydrograph. This capacity of the ANN
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to reduce error as the simulation moves upstream is essential for the robustness of the
model, especially for simulations of long streams. If the domain has an area where the
ANN does not perform well (e.g., in VA2 as previously discussed). In that case, the error
in this location will not propagate indefinitely upstream and compromise the final result.
On the other hand, the influence of the downstream boundary condition may represent
legitim flow conditions, such as the backwater effect (higher depths) or flow divergence
downstream (lower depths).

To evaluate the effect of downstream conditions on the floodplain, the normal
depths on the HEC-RAS and ANN models were artificially modified by multiplying and
dividing the downstream slope boundary condition by five. A higher slope increases the
flow capacity and reduces the downstream normal depth. This analysis was done with
areas VA1 and TE1 (high and low influence of the downstream boundary condition) for the
500-year storm and to compare the flood maps generated with normal depth. The flood
maps with the original downstream depths for areas VA1 and TE1 and shown in Figs. 26-a
and d, which are more accurate than floodplains predicted with normal depths (Fig. 24).
Results show that the ANN method was not able to reproduce floodplains for low water
depths downstream (Figs. 26-b and e). The reason is that the depths in the HEC-RAS
model increased almost instantaneously, and the floodplains were almost unaltered. As the
ANN depths take longer to increase until they reach the original condition, the floodplain
is significantly underestimated in locations closer downstream. For example, in area TE1,
where there is an adjacent river in the west, the water level was not high enough to flood
it as HEC-RAS model results indicate. The performance of the ANN in such drainage
conditions can be improved with further training with steeper flow conditions. Between all
training, validation, and testing areas, the highest slope used at the downstream condition
was 0.84% in TR2 (with a terrain modification of 1.2). The maximum modified slopes for
this analysis in VA1 and TE1 were 3 and 1.3%, respectively. However, as 1D modeling
is less detailed than 2D hydrodynamic models, they can be more unstable, especially in
areas with steep profiles with high velocities (LOGAH et al., 2017). Therefore, increasing
datasets with locations with a steeper profile or applying terrain modification larger than
1.2 may be challenging. In this study, in particular, the major instability issues were
detected for terrain modifications of 1.2. Despite the longer simulation times required for
the 2D modeling, it might be indicated for generating datasets with steeper conditions.

The ANN predictions with increased downstream depth were accurate (Figs. 26-c
and f). For this condition, ANN slightly overestimated the flood plains near the downstream,
increasing FAR and decreasing HR. However, the model’s overall performance (CSI)
improved compared to the original downstream due to a larger extent of the floodplain for
both locations and lower missed areas.



89

Figure 27 – Hits, misses, and false alarms of the ANN floodplain compared to FEMA map
for Upper San Antonio Watershed

4.5.3 Large Scale Flood Plain Simulation

The 100-year floodplain generated for the major reaches in Upper San Antonio
Watershed was compared to FEMA maps with hits, false alarms, and misses (Fig. 27).
JAMALI et al. (2019), for intance, developed a cellular automata model(CA) for rapid
flood prediction, with CSI values ranging from 69.3 to 82.8%, 85.5 to 94.8%, and 8.96
to 26.5%, respectively. The HR of CA developed by GHIMIRE et al. ranged from 70 to
91% and the FAR from 8 to 34%. The CSI metric for the rapid flood models tested by
(BERNINI; FRANCHINI, 2013) ranged from 64.8 to 86.9%. KABIR et al. evaluated CNN
and support vector regression (SVR) for flood predictions against hydrodynamic modeling.
The HR varied from 89 to 99% with CNN and from 74 to 97% with SVR.WOZNICKI et al.
(2019) used random forest (RF), another type of machine learning, to generate floodplains
with 30m resolution for the entire continental U.S. Their HR was 79% compared to FEMA
100-year maps. Although these models were applied to different studied areas around the
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world, these metrics values are comparable to the ones found in San Antonio using the DL
approach.

However, the FEMA maps were generated with highly detailed HEC-RAS models
for Upper San Antonio, including all infrastructures that affect flow dynamics (e.g. bridges
and weirs). The simplification of the HEC-RAS models used to train the ANN compromise
reduced its performance compared to FEMA maps. San Antonio downtown (downstream
to TR4 and TR7), for instance, includes many bridges that increase energy loss and,
consequently, water level. This phenomenon is modeled with HEC-RAS but was not
captured by the ANN. Therefore, the ANN approach underestimated the floodplain in
this region. TR9 is another location in which the ANN and the FEMA maps disagree,
where ANN is overestimating. Other modeling characteristics, such as different Manning’s
n than the one used for training, can explain this difference. Despite the differences in the
models used for training and creating the FEMA maps, the ANN maps agree reasonably
with FEMA where flooding is likely to occur.

FEMA (2013) points out that creating an HEC-RAS model is very time-consuming
and labor-intensive and should be considered while developing a floodplain study. These
drawbacks can hamper estimating floodplains in an emergency for locations where no
hydraulic model is available. In addition, reliable modeling tools require high-quality
data (APEL et al., 2009). Although the major cities in developed countries have reliable
hydrodynamic models and high-resolution data, this might not be the reality in developing
countries. This lack of data or models is a major concern, as cities in developing countries
usually have worse drainage and warning systems, placing the population at a higher
risk. Data scarcity hampers flood risk assessments in developing countries, as the lack of
funding prevents acquiring reliable and detailed input data for flood models (WANNOUS;
VELASQUEZ, 2017; GLAS et al., 2019). Despite using a 3m resolution DEM to generate
the floodplains with the hydrodynamic model, the approach proposed in this study uses
a 21m resolution DEM, which is more accessible, with similar outputs compared to the
hydrodynamic model. These results suggest ANN can be used to improve flood modeling
in these countries and the safety of the population.

Another advantage of this approach is the total simulation time. The WSE pre-
diction with the ANN for the whole Upper San Antonio Watershed took 84 seconds (0.9
s/km). As a comparison, the HEC-RAS simulation for TR1(100-year storm) was 138
seconds (23s/km). Thus, the ANN approach was more than 20 times faster than the
HEC-RAS 1D simulation. However, this difference could be even more considerable if an
HEC-RAS model was used to simulate the whole Upper San Antonio watershed. The
more complex the HEC-RAS model is, the more iterations are necessary for the numerical
solutions. Despite the 1D hydrodynamic being relatively fast, the difference in simulation
time can be significant for optimization problems to minimize floodplains since hundreds
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of thousands of simulations may be necessary. In addition, there is no guarantee that all
simulations will generate stable results with the hydrodynamic modeling, which is also a
disadvantage of hydrodynamic models pointed out by (FEMA, 2013).

4.6 Conclusion

In this paper, we developed a new model to predict flood maps using ANN,
which simply requires the DEM and inflows as inputs. The proposed approach is also
significantly faster than the 1D hydrodynamic simulations. This model was evaluated for
three validation and three testing areas with satisfactory results. In addition, simulation
on large domain was also performed and compared to FEMA maps. Despite the much
simpler HEC-RAS models used for training the ANN, the floodplains generated with our
model matched FEMA’s floodplains reasonably.

This novel approach helps improve the state-of-art of ANN applied to flood studies,
which could generalize flood modeling to different areas. However, there are still many
research opportunities to increase the performance of this approach. We recommend
increasing the number of training locations for the ANN to capture the nuances of
different river reaches. Enhancing the variability of the dataset with river segments from
several locations increases the model’s capacity to recognize different flow characteristics.
With more data and training, the predictions of the ANN are likely to get closer to the
hydrodynamic model. With enough data variability, the same ANN can eventually be
applied to most locations without the need of retraining it.

Further improvements are also suggested to the models used for training. In this
paper, we assumed the same Manning’s n for all models. However, varying Manning’s n can
make the ANN sensitive to its values. In addition, inline and lateral hydraulic structures
can also be added to the hydrodynamic models used for training and as inputs to the ANN
architectures. Including such structures can be a significant improvement to rapid flood
models. For instance, to the best of our knowledge, no rapid flood model yet considers
bridges to predict floodplains. Additionally, more training might be essential to sustain its
efficiency in catchments with distinctly different features, like non-dendritic ones.

Despite the limitations of the proposed models, the results in this paper suggest
that ANN, with the suggested improvements, can be used as a reliable surrogate model
for floodplain mapping with many practical applications. For example, faster simulations
can be an advantage in real-time flood predictions and optimization problems, where the
simulation time can be significant. Another advantage is the simplicity of the input data
and simulation approach. The ANN can be trained in areas where data is abundant and
reliable hydrodynamic models are available to be later applied where it lacks. This strategy
can increase the accuracy of flood predictions, especially in developing countries where
funding is scarce, and improve the security of the local population.
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5 GENERAL CONCLUSIONS

This dissertation has explored the potential of deep learning techniques, specifically
artificial neural networks (ANNs), in flood prediction and floodplain mapping. It demon-
strated the ability of ANNs and conditional generative adversarial networks (cGANs) to
model and predict urban flood events, and assessed their performance in diverse geographic
locations.

5.1 Summary

Chapter 2 revealed the capacity of cGAN-Flood to accurately reproduce hydrody-
namic 2D models’ results when used to improve flood mapping resolution. They significantly
reduced computational time and demonstrated the capability to be applied at the water-
shed scale (Upper San Antonio Watershed). The application of DL models improving the
resolution of coarse flood models is novel, which opens the possibility to improve flood
maps of existing hydrodynamic models. This emphasized the versatility and computational
efficiency of ANNs in modeling flood events in large-scale domains, demonstrating that
the research objective 1 was accomplished.

In Chapter 3, cGAN-Flood, was evaluated in a novel geographic context, to explore
its generalization capabilities and reach research objective 2. Although the model’s
performance decreased when applied to catchments in Sao Paulo, different from its training
ground in San Antonio, it managed to reasonably improve flood mapping resolution. This
experiment demonstrated the ability of trained DL models to adapt to different catchments,
given that they are trained with a diversity of topological patterns.

Chapter 4 introduced a new model for flood map prediction using ANNs, that
only requires digital elevation models (DEMs) and inflows as inputs. It outperformed
traditional hydrodynamic simulations in terms of speed, and its large-scale simulation
comparable to FEMA’s floodplains. The satisfactorily predictions of the model, combined
with its computational performance, shows that research objective 3 was met.

DL models have shown significant potential for use in flood prediction and floodplain
mapping. They can simplify and speed up flood predictions, making them useful for real-
time applications and optimizing mitigation strategies. Furthermore, with the appropriate
training, DL models can be applied to diverse locations without the need for re-training.
This thesis demonstrate that DL models are a viable tool to be applied to large scale-flood
predictions, which was the main objective of the thesis. The DL models were capable
of reproducing hydrodynamic outputs with a significant reduction in simulation times.
However, there is a need to advance DL technologies to overcome its limitations as discussed
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in the following section.

5.2 Recommendations for Future Studies

Despite the satisfactorily performance of DL models presented in this thesis, in
terms of prediction and simulation times, there is still a need for model improvements to
increase accuracy and reputability of their predictions, as listed below:

Inclusion of Underground Drainage Systems: The cGAN-Flood model does
not currently account for underground drainage systems. Their inclusion could significantly
improve flood prediction in urban areas where such systems significantly influence flood
dynamics. Future studies should focus on incorporating these systems into the model.

Validation against calibrated models: The deep learning models were trained
and tested using non-calibrated models. An assessment is required to determine the
potential enhancement in predictions when utilizing calibrated models.

Rainfall Distribution: The cGAN-Flood model allocates the flood volume based
on a uniform rainfall distribution. The implications of spatially varying rainfall on the
outcomes warrant additional exploration.

Soil moisture conditions: HEC-RAS models used for training the cGAN-Flood
model used a constant initial soil moisture. It would be beneficial to conduct a sensitivity
analysis to discern the situations and locations where pre-event hydrological conditions
impact the modeling outcomes.

Model Adaptability to Various Resolutions: The cGAN-Flood model is
confined to a 3m raster resolution. This limitation hinders its application in scenarios
where data resolution varies or where more detailed flood predictions are necessary.
Therefore, adaptability of the model to work with varying resolutions should be a focal
point for future research, broadening its application scope.

Parallelization: The cGAN-Flood model is employed on smaller catchments to
distribute the flood volume independently when dealing with a large study domain. This
approach allows for potential parallelization, further improving the model’s computational
efficiency. Additional investigation is suggested to assess computational requirements,
including memory allocation, during parallelization.

Model Generalization and Training: The invtigations of this thesis shows
a performance drop when the cGAN-Flood model was applied to different catchments,
such as those in Sao Paulo compared to San Antonio. Future studies should prioritize
training the model with a wider variety of topological patterns. This could enhance
its generalization capacity and maintain accuracy when applied to diverse catchments.
Capturing nuances from different locations can improve the model’s capacity to recognize
diverse flow characteristics, leading to more accurate predictions.
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Hydraulic Structures: Inline and lateral hydraulic structures should be added
to the hydrodynamic models used for training. Including structures in the models used
for training could lead to significant improvements in rapid flood models. Furthermore,
structures requires reliable data to be implemented in hydrodynamic models and are often
a major source of model instability of hydrodynamic simulations, leading to additional
costs and longer simulation times. Therefore, the application of DL to such cases can be
highly beneficial.

Investigate the Application of Other Deep Learning Models: The develop-
ment and testing of deep learning architectures can offer valuable insights and enhancements
in flood prediction. Exploring these options could provide further understanding of the
most promising DL strategy to be applied for flood predictions.

Developing Real-Time Prediction Systems with DL: Given the potential
of these models to support real-time predictions, future research could explore DL with
focus on developing robust real-time flood prediction systems. This can be crucial in flood
management and mitigation, especially in areas prone to severe flooding.

Improving Flood Modeling in Developing Regions: This research suggested
that the models could be trained in data-rich areas and then applied in areas where such
data are lacking, due to the promising generalization potential of DL models. This opens
a the oportunity for improving flood prediction accuracy in developing countries where
resources are scarce.

Predicting Flash Floods and Landslides: Considering the severe impacts of
flash floods and landslides, future research should focus on enhancing DL models to better
predict these phenomena more rapidly. Real-time data sources, such as satellite imagery
and ground sensors, combined with historical incident data can be used to train a DL
model to support prediction and mitigation of flash floods and landslides.

Evaluating Climate Change Scenarios: The great uncertainty of climate model
leads to many possible future projected scenarios. Evaluating this large number of possible
climate projections can be time consuming, especially with hydrodynamic models. As DL
can improve computational efficiency and reduce simulation times, it can be an efficient
tool for evaluating multiple scenarios and improve mitigation plans.

Despite the challenges, DL models hold great promise in improving the accuracy
and efficiency of flood predictions, which is especially valuable in regions where funding
and data are limited. As climate change projections suggests that flood risks will be
exacerbated. Therefore, the development and refinement of such tools will be essential in
bolstering the resilience of communities worldwide.





97

REFERENCES

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. Software available from tensorflow.org. Disponível em: https:
//www.tensorflow.org/.

AFSHARI, S. et al. Comparison of new generation low-complexity flood inundation
mapping tools with a hydrodynamic model. Journal of Hydrology, Elsevier, v. 556, p.
539–556, 2018.

AGILAN, V.; UMAMAHESH, N. Is the covariate based non-stationary rainfall idf curve
capable of encompassing future rainfall changes? Journal of Hydrology, Elsevier,
v. 541, p. 1441–1455, 2016.

AICH, V. et al. Flood projections within the niger river basin under future land use
and climate change. Science of The Total Environment, v. 562, p. 666–677, 2016.
ISSN 0048-9697. Disponível em: http://www.sciencedirect.com/science/article/pii/
S0048969716307021.

ALOBAIDI, M. H.; CHEBANA, F.; MEGUID, M. A. Robust ensemble learning framework
for day-ahead forecasting of household based energy consumption. Applied energy,
Elsevier, v. 212, p. 997–1012, 2018.

ANTHONY, M.; BARTLETT, P. L.; BARTLETT, P. L. Neural network learning:
Theoretical foundations. [S.l.: s.n.]: cambridge university press Cambridge, 1999. v. 9.

APEL, H. et al. Flood risk analyses—how detailed do we need to be? Natural hazards,
Springer, v. 49, n. 1, p. 79–98, 2009.

ARNBJERG-NIELSEN, K. et al. Impacts of climate change on rainfall extremes and
urban drainage systems: a review. Water science and technology, IWA Publishing,
v. 68, n. 1, p. 16–28, 2013.

BENTIVOGLIO, R. et al. Deep learning methods for flood mapping: a review of existing
applications and future research directions. Hydrology and Earth System Sciences,
Copernicus GmbH, v. 26, n. 16, p. 4345–4378, 2022.

BERKHAHN, S.; FUCHS, L.; NEUWEILER, I. An ensemble neural network model for
real-time prediction of urban floods. Journal of hydrology, v. 575, p. 743–754, 2019.
ISSN 0022-1694.

BERNE, A. et al. Temporal and spatial resolution of rainfall measurements required for
urban hydrology. Journal of Hydrology, Elsevier, v. 299, n. 3-4, p. 166–179, 2004.

BERNINI, A.; FRANCHINI, M. A rapid model for delimiting flooded areas. Water
resources management, Springer, v. 27, n. 10, p. 3825–3846, 2013.

BETSHOLTZ, A.; NORDLÖF, B. Potentials and limitations of 1d, 2d and coupled 1d-2d
flood modelling in hec-ras. TVVR17/5003, 2017.

BOMERS, A. et al. Historic flood reconstruction with the use of an artificial neural
network. Water resources research, v. 55, n. 11, p. 9673–9688, 2019. ISSN 0043-1397.

https://www.tensorflow.org/
https://www.tensorflow.org/
http://www.sciencedirect.com/science/article/pii/S0048969716307021
http://www.sciencedirect.com/science/article/pii/S0048969716307021


98

BROWN, G. et al. Managing diversity in regression ensembles. Journal of machine
learning research, v. 6, n. 9, 2005.

BROWN, J. D.; SPENCER, T.; MOELLER, I. Modeling storm surge flooding of an urban
area with particular reference to modeling uncertainties: A case study of canvey island,
united kingdom. Water Resources Research, v. 43, n. 6, 2007. ISSN 0043-1397.

BRUNNER, G. Hec-ras river analysis system, 2d modeling user’s manual, version 5.0.
Davis: US Army Corps of Engineers, hydrologic engineering center, 2016.

BULTI, D. T.; ABEBE, B. G. A review of flood modeling methods for urban pluvial flood
application. Modeling earth systems and environment, v. 6, n. 3, p. 1293–1302,
2020. ISSN 2363-6211.

CARVALHO, T. M. N.; FILHO, F. d. A. de S.; PORTO, V. C. Urban water demand
modeling using machine learning techniques: Case study of fortaleza, brazil. Journal of
Water Resources Planning and Management, American Society of Civil Engineers,
v. 147, n. 1, p. 05020026, 2021.

CEA, L.; COSTABILE, P. Flood risk in urban areas: Modelling, management and
adaptation to climate change. a review. Hydrology, MDPI, v. 9, n. 3, p. 50, 2022.

CHANDRA, R.; SAHA, U.; MUJUMDAR, P. Model and parameter uncertainty in idf
relationships under climate change. Advances in Water Resources, Elsevier, v. 79, p.
127–139, 2015.

CHEN, A. S. et al. Multi-layered coarse grid modelling in 2d urban flood simulations.
Journal of Hydrology, Elsevier, v. 470, p. 1–11, 2012.

CHEN, J. et al. Finding appropriate bias correction methods in downscaling precipitation
for hydrologic impact studies over north america. Water Resources Research, v. 49,
n. 7, p. 4187–4205, 2013. ISSN 0043-1397.

CLAVET-GAUMONT, J. et al. Probable maximum flood in a changing climate: An
overview for canadian basins. Journal of Hydrology: Regional Studies, v. 13, p.
11–25, 2017. ISSN 2214-5818. Disponível em: http://www.sciencedirect.com/science/
article/pii/S2214581817301696.

CORATO, G.; MORAMARCO, T.; TUCCIARELLI, T. Combining flow routing modelling
and direct velocity measurement for optimal discharge estimation. Hydrology & Earth
System Sciences Discussions, v. 8, n. 2, 2011. ISSN 1812-2108.

COUNCIL, N. R. Book. Urban stormwater management in the United States.
[S.l.: s.n.]: National Academies Press, 2009. ISBN 0309125391.

DAI, A. M.; LE, Q. V. Semi-supervised sequence learning. Advances in neural
information processing systems, v. 28, p. 3079–3087, 2015.

DEGAETANO, A. T.; CASTELLANO, C. M. Future projections of extreme precipitation
intensity-duration-frequency curves for climate adaptation planning in new york state.
Climate Services, Elsevier, v. 5, p. 23–35, 2017.

DHI. Mike 1d-2d modelling—user manual. DHI Water Environment, 2011.

http://www.sciencedirect.com/science/article/pii/S2214581817301696
http://www.sciencedirect.com/science/article/pii/S2214581817301696


99

DIBABA, W. T.; MIEGEL, K.; DEMISSIE, T. A. Evaluation of the cordex regional
climate models performance in simulating climate conditions of two catchments in upper
blue nile basin. Dynamics of Atmospheres and Oceans, v. 87, p. 101104, 2019. ISSN
0377-0265.

DOOCY, S. et al. The human impact of floods: a historical review of events 1980-2009
and systematic literature review. PLoS currents, Public Library of Science, v. 5, 2013.

DOZAT, T. Incorporating nesterov momentum into adam. 2016.

DTISSIBE, F. Y. et al. Flood forecasting based on an artificial neural network scheme.
Natural Hazards, Springer, v. 104, n. 2, p. 1211–1237, 2020.

ENGMAN, E. T. Roughness coefficients for routing surface runoff. Journal of Irrigation
and Drainage Engineering, American Society of Civil Engineers, v. 112, n. 1, p. 39–53,
1986.

FANG, Z. et al. Predicting flood susceptibility using lstm neural networks. Journal of
Hydrology, Elsevier, v. 594, p. 125734, 2021.

FEMA. Federal Guidelines for Inundation Mapping of Flood Risks Associated
With Dam Incidents and Failures. First. [S.l.: s.n.]: Federal Emergency Management
Agency, 2013.

FEMA. Guidance for Flood Risk Analysis and Mapping. [S.l.: s.n.]: Federal
Emergency Management Agency (FEMA), 2018.

FEWTRELL, T. et al. Evaluating the effect of scale in flood inundation modelling in
urban environments. Hydrological Processes: An International Journal, Wiley
Online Library, v. 22, n. 26, p. 5107–5118, 2008.

GANGULI, P.; COULIBALY, P. Does nonstationarity in rainfall require nonstationary
intensity–duration–frequency curves? Hydrology and Earth System Sciences,
Copernicus GmbH, v. 21, n. 12, p. 6461–6483, 2017.

GAO, C. et al. Effects of climate change on peak runoff and flood levels in qu river basin,
east china. Journal of Hydro-Environment Research, v. 28, p. 34–47, 2020. ISSN
1570-6443.

GHIMIRE, B. et al. Formulation of a fast 2d urban pluvial flood model using a cellular
automata approach. Journal of Hydroinformatics, v. 15, n. 3, p. 676–686, 2013. ISSN
1464-7141.

GIACOMONI, M.; OLIVERA, F.; LAGO, C. do. Assessing the Impacts of Super
Storm Flooding in the Transportation Infrastructure–Case Study: San
Antonio, Texas. [S.l.: s.n.]: Transportation Consortium of South-Central States -
TRAN-SET, 2019.

GLAS, H. et al. Flood risk mapping worldwide: A flexible methodology and toolbox.
Water, Multidisciplinary Digital Publishing Institute, v. 11, n. 11, p. 2371, 2019.

GODIN, F. et al. Dual rectified linear units (drelus): A replacement for tanh activation
functions in quasi-recurrent neural networks. Pattern Recognition Letters, v. 116, p.
8–14, 2018. ISSN 0167-8655.



100

GONOG, L.; ZHOU, Y. A review: generative adversarial networks. In: IEEE. 2019 14th
IEEE conference on industrial electronics and applications (ICIEA). [S.l.: s.n.],
2019. p. 505–510.

GOULDBY, B. et al. A methodology for regional-scale flood risk assessment. In: THOMAS
TELFORD LTD. Proceedings of the Institution of Civil Engineers-Water
Management. [S.l.: s.n.], 2008. v. 161, n. 3, p. 169–182.

GUIDOLIN, M. et al. A weighted cellular automata 2d inundation model for rapid
flood analysis. Environmental Modelling Software, v. 84, p. 378–394, 2016. ISSN
1364-8152.

GUO, Z.; MOOSAVI, V.; LEITÃO, J. P. Data-driven rapid flood prediction mapping with
catchment generalizability. Journal of Hydrology, Elsevier, v. 609, p. 127726, 2022.

HOCH, J. M. et al. Benchmarking flexible meshes and regular grids for large-scale fluvial
inundation modelling. Advances in Water Resources, Elsevier, v. 121, p. 350–360,
2018.

HOFMANN, J.; SCHÜTTRUMPF, H. floodgan: Using deep adversarial learning to
predict pluvial flooding in real time. Water, MDPI, v. 13, n. 16, p. 2255, 2021.

INNOVYZE. InfoWorks ICM Help. [S.l.], 2012.

ISOLA, P. et al. Image-to-image translation with conditional adversarial networks.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2017. p. 1125–1134.

IYER, M. S.; RHINEHART, R. R. A method to determine the required number of
neural-network training repetitions. IEEE Transactions on Neural Networks, IEEE,
v. 10, n. 2, p. 427–432, 1999.

JAAFRA, Y. et al. Reinforcement learning for neural architecture search: A review.
Image and Vision Computing, Elsevier, v. 89, p. 57–66, 2019.

JAMALI, B. et al. A cellular automata fast flood evaluation (ca-ffé) model. Water
Resources Research, Wiley Online Library, v. 55, n. 6, p. 4936–4953, 2019.

JAMALI, B. et al. A rapid urban flood inundation and damage assessment model.
Journal of Hydrology, Elsevier, v. 564, p. 1085–1098, 2018.

JATO-ESPINO, D. et al. A simulation-optimization methodology to model urban
catchments under non-stationary extreme rainfall events. Environmental Modelling &
Software, Elsevier, v. 122, p. 103960, 2019.

JONKMAN, S. N. Global perspectives on loss of human life caused by floods. Natural
hazards, Springer, v. 34, n. 2, p. 151–175, 2005.

JR, M. N. G. et al. Hydropol2d–distributed hydrodynamic and water quality
model: Challenges and opportunities in poorly-gauged catchments. arXiv preprint
arXiv:2304.11099, 2023.

KABIR, S. et al. A deep convolutional neural network model for rapid prediction of fluvial
flood inundation. Journal of Hydrology, v. 590, p. 125481, 2020. ISSN 0022-1694.



101

KARIM, F. et al. A review of hydrodynamic and machine learning approaches for flood
inundation modeling. Water, MDPI, v. 15, n. 3, p. 566, 2023.

KIEFER, J. Sequential minimax search for a maximum. Proceedings of the American
mathematical society, v. 4, n. 3, p. 502–506, 1953. ISSN 0002-9939.

KUNDZEWICZ, Z. W. et al. Uncertainty in climate change impacts on water resources.
Environmental Science & Policy, Elsevier, v. 79, p. 1–8, 2018.

LAGO, C. A. do et al. Generalizing rapid flood predictions to unseen urban catchments
with conditional generative adversarial networks. Journal of Hydrology, Elsevier,
v. 618, p. 129276, 2023.

LAGO, C. A. F. do. Battling Climate Change Induced Flooding: Rapid Flood
Modeling, Optimization, Uncertainties and Metrics. 2022. Tese (Doutorado) —
The University of Texas at San Antonio, 2022.

LAGO, C. A. F. do et al. Assessing the impact of climate change on transportation
infrastructure using the hydrologic-footprint-residence metric. Journal of Hydrologic
Engineering, v. 26, n. 5, p. 04021014, 2021. ISSN 1084-0699.

LAGO, C. A. F. do et al. Assessing the impact of climate change on transportation
infrastructure using the hydrologic-footprint-residence metric. Journal of Hydrologic
Engineering, American Society of Civil Engineers, v. 26, n. 5, p. 04021014, 2021.

LAGO, C. Ambrogi Ferreira do et al. Simulation and optimization framework for
evaluating the robustness of low-impact development placement solutions under climate
change in a small urban catchment. Hydrological Sciences Journal, Taylor & Francis,
p. 1–18, 2023.

LAWRENCE, J. et al. Exploring climate change uncertainties to support adaptive
management of changing flood-risk. Environmental Science Policy, v. 33, p. 133–142,
2013. ISSN 1462-9011.

LE, X.-H. et al. Application of long short-term memory (lstm) neural network for flood
forecasting. Water, Multidisciplinary Digital Publishing Institute, v. 11, n. 7, p. 1387,
2019.

LEE, D.; DERRIBLE, S. Predicting residential water demand with machine-based
statistical learning. Journal of Water Resources Planning and Management,
American Society of Civil Engineers, v. 146, n. 1, p. 04019067, 2020.

LIU, Z. et al. Association between floods and typhoid fever in yongzhou, china: effects and
vulnerable groups. Environmental research, v. 167, p. 718–724, 2018. ISSN 0013-9351.

LOGAH, F. Y. et al. Floodplain hydrodynamic modelling of the lower volta river in
ghana. Journal of Hydrology: Regional Studies, Elsevier, v. 14, p. 1–9, 2017.

LOWE, R. et al. U-flood–topographic deep learning for predicting urban pluvial flood
water depth. Journal of Hydrology, v. 603, p. 126898, 2021. ISSN 0022-1694.

MARTINS, V. S. et al. Exploring multiscale object-based convolutional neural network
(multi-ocnn) for remote sensing image classification at high spatial resolution. ISPRS
Journal of Photogrammetry and Remote Sensing, Elsevier, v. 168, p. 56–73, 2020.



102

MORINI, M.; PINELLI, M. Mathematical Modelling of Energy Systems and
Fluid Machinery. [S.l.: s.n.]: MDPI, 2021.

MORSY, M. M. et al. A cloud-based flood warning system for forecasting impacts to
transportation infrastructure systems. Environmental modelling & software, Elsevier,
v. 107, p. 231–244, 2018.

MOSS, R. H. et al. The next generation of scenarios for climate change research and
assessment. Nature, Nature Publishing Group, v. 463, n. 7282, p. 747–756, 2010.

NATARAJAN, S.; RADHAKRISHNAN, N. Simulation of extreme event-based
rainfall–runoff process of an urban catchment area using hec-hms. Modeling Earth
Systems and Environment, v. 5, n. 4, p. 1867–1881, 2019. ISSN 2363-6211.

NEAL, J. C. et al. Distributed whole city water level measurements from the carlisle
2005 urban flood event and comparison with hydraulic model simulations. Journal of
Hydrology, Elsevier, v. 368, n. 1-4, p. 42–55, 2009.

NEARING, G. S. et al. What role does hydrological science play in the age of
machine learning? Water Resources Research, v. 57, n. 3, p. e2020WR028091, 2021.
E2020WR028091 10.1029/2020WR028091. Disponível em: https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2020WR028091.

NOBRE, A. D. et al. Height above the nearest drainage–a hydrologically relevant new
terrain model. Journal of Hydrology, Elsevier, v. 404, n. 1-2, p. 13–29, 2011.

NOBRE, A. D. et al. Height above the nearest drainage–a hydrologically relevant new
terrain model. Journal of Hydrology, Elsevier, v. 404, n. 1-2, p. 13–29, 2011.

NRC. Elevation data for floodplain mapping. National Academies Press, 2007.
1-152 p. ISBN 0309104092. Disponível em: https://www.nap.edu/catalog/11829/
elevation-data-for-floodplain-mapping.

OH, C.-W. et al. Hydroplaning simulation for a straight-grooved tire by using fdm, fem
and an asymptotic method. Journal of Mechanical Science and Technology, v. 22,
n. 1, p. 34–40, 2008. ISSN 1976-3824.

PAIVA, R. C. D. D. et al. Large-scale hydrologic and hydrodynamic modeling of the
amazon river basin. Water Resources Research, Wiley Online Library, v. 49, n. 3, p.
1226–1243, 2013.

PANAHI, M. et al. Deep learning neural networks for spatially explicit prediction of flash
flood probability. Geoscience Frontiers, v. 12, n. 3, p. 101076, 2021. ISSN 1674-9871.

PETERS, R.; SCHMITZ, G.; CULLMANN, J. Flood routing modelling with artificial
neural networks. Advances in Geosciences, v. 9, p. 131–136, 2006. ISSN 1680-7340.

PORTO, R. d. M. Hidráulica básica. 4ª edição. São Carlos: EESC-USP, Projeto
REENGE, 2006.

RANGARI, V. et al. 1d-2d modeling of urban floods and risk map generation for the
part of hyderabad city. The International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, Copernicus GmbH, v. 42, p. 445–450,
2018.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028091
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028091
https://www.nap.edu/catalog/11829/elevation-data-for-floodplain-mapping
https://www.nap.edu/catalog/11829/elevation-data-for-floodplain-mapping


103

REPORT, H. U. G. S. Husqvarna Urban Green Space Index. 2019. Accessed:
01-22-2023. Disponível em: $https://www.hugsi.green/static/hugsi_space_index_2019_
report_v2_1-e4638c0d067ef9e01f0911000f57fddd.pdf$.

ROY, Y. et al. Deep learning-based electroencephalography analysis: a systematic review.
Journal of neural engineering, IOP Publishing, v. 16, n. 5, p. 051001, 2019.

SARA. Digital data modeling repository. San Antonio River Authority., Available at
<https://d2mr.sara-tx.org/>, as of July 2nd 2020., 2020.

SCHWANGHART, W.; SCHERLER, D. Bumps in river profiles: uncertainty assessment
and smoothing using quantile regression techniques. Earth Surface Dynamics,
Copernicus Publications Göttingen, Germany, v. 5, n. 4, p. 821–839, 2017.

SHANG, W. et al. Understanding and improving convolutional neural networks via
concatenated rectified linear units. In: PMLR. international conference on machine
learning. [S.l.: s.n.], 2016. p. 2217–2225.

SHEELA, K. G.; DEEPA, S. N. Review on methods to fix number of hidden neurons
in neural networks. Mathematical Problems in Engineering, v. 2013, 2013. ISSN
1024-123X.

SHEN, M. et al. Estimating uncertainty and its temporal variation related to global
climate models in quantifying climate change impacts on hydrology. Journal of
Hydrology, v. 556, p. 10–24, 2018. ISSN 0022-1694.

SHI, Z. et al. Development of integrated flooding early warning and rainfall runoff
management platform for downtown area of shanghai. Sustainability, v. 13, n. 20, p.
11250, 2021.

SHIN, H.-C. et al. Deep convolutional neural networks for computer-aided detection:
Cnn architectures, dataset characteristics and transfer learning. IEEE transactions on
medical imaging, IEEE, v. 35, n. 5, p. 1285–1298, 2016.

SHRESTHA, R. R.; THEOBALD, S.; NESTMANN, F. Simulation of flood flow in a
river system using artificial neural networks. Hydrology and earth system sciences,
Copernicus GmbH, v. 9, n. 4, p. 313–321, 2005.

SHRESTHA, S.; LOHPAISANKRIT, W. Flood hazard assessment under climate change
scenarios in the yang river basin, thailand. International Journal of Sustainable
Built Environment, v. 6, n. 2, p. 285–298, 2017. ISSN 2212-6090. Disponível em:
http://www.sciencedirect.com/science/article/pii/S221260901530025X.

SILLMANN, J. et al. Climate extremes indices in the cmip5 multimodel ensemble: Part 2.
future climate projections. Journal of Geophysical Research: Atmospheres, v. 118,
n. 6, p. 2473–2493, 2013. ISSN 2169-897X.

SIM, I. et al. Analysis of effect of temporal resolution in projected future rainfall data
on estimating future rainfall intensity-duration-frequency curves. In: EGU General
Assembly Conference Abstracts. [S.l.: s.n.], 2018. p. 2139.

SIT, M. et al. A comprehensive review of deep learning applications in hydrology and
water resources. Water Science and Technology, IWA Publishing, v. 82, n. 12, p.
2635–2670, 2020.

$https://www.hugsi.green/static/hugsi_space_index_2019_report_v2_1-e4638c0d067ef9e01f0911000f57fddd.pdf$
$https://www.hugsi.green/static/hugsi_space_index_2019_report_v2_1-e4638c0d067ef9e01f0911000f57fddd.pdf$
http://www.sciencedirect.com/science/article/pii/S221260901530025X


104

SONG, T. et al. Flash flood forecasting based on long short-term memory networks.
Water, Multidisciplinary Digital Publishing Institute, v. 12, n. 1, p. 109, 2020.

SZEWRAŃSKI, S. et al. Pluvial flood risk assessment tool (pfra) for rainwater
management and adaptation to climate change in newly urbanised areas. Water, MDPI,
v. 10, n. 4, p. 386, 2018.

TANG, J. et al. Statistical downscaling and dynamical downscaling of regional climate
in china: Present climate evaluations and future climate projections. Journal of
Geophysical Research: Atmospheres, Wiley Online Library, v. 121, n. 5, p. 2110–2129,
2016.

TAYLOR, L.; NITSCHKE, G. Improving deep learning with generic data augmentation.
In: IEEE. 2018 IEEE Symposium Series on Computational Intelligence (SSCI).
[S.l.: s.n.], 2018. p. 1542–1547.

TENG, J. et al. Flood inundation modelling: A review of methods, recent advances and
uncertainty analysis. Environmental Modelling Software, v. 90, p. 201–216, 2017.
ISSN 1364-8152.

THIEKEN, A. H. et al. Flood damage and influencing factors: New insights from the
august 2002 flood in germany. Water resources research, v. 41, n. 12, 2005. ISSN
0043-1397.

USACE. The Hydrologic Modeling System HEC-HMS Users Manual. 3rd. ed.
[S.l.], 2010.

USACE, U. A. C. of E. 1D vs 2D Hydraulic Modeling. 2023. Accessed: 2023-07-20.
Disponível em: https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest/
steady-vs-unsteady-flow-and-1d-vs-2d-modeling/1d-vs-2d-hydraulic-modeling.

VELDHUIS, J. T. How the choice of flood damage metrics influences urban flood risk
assessment. Journal of Flood Risk Management, v. 4, n. 4, p. 281–287, 2011. ISSN
1753-318X.

VERDIN, J. et al. A software tool for rapid flood inundation mapping. [S.l.], 2016.

WANG, K. et al. Generative adversarial networks: introduction and outlook. IEEE/CAA
Journal of Automatica Sinica, IEEE, v. 4, n. 4, p. 588–598, 2017.

WANG, Q. et al. Individual and combined impacts of future land-use and climate
conditions on extreme hydrological events in a representative basin of the yangtze river
delta, china. Atmospheric Research, Elsevier, v. 236, p. 104805, 2020.

WANG, Z. et al. Climate change enhances the severity and variability of drought in
the pearl river basin in south china in the 21st century. Agricultural and Forest
Meteorology, Elsevier, v. 249, p. 149–162, 2018.

WANNOUS, C.; VELASQUEZ, G. United nations office for disaster risk reduction
(unisdr)—unisdr’s contribution to science and technology for disaster risk reduction and
the role of the international consortium on landslides (icl). In: SPRINGER. Workshop
on World Landslide Forum. [S.l.: s.n.], 2017. p. 109–115.

https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest/steady-vs-unsteady-flow-and-1d-vs-2d-modeling/1d-vs-2d-hydraulic-modeling
https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest/steady-vs-unsteady-flow-and-1d-vs-2d-modeling/1d-vs-2d-hydraulic-modeling


105

WASKO, C.; SHARMA, A. Continuous rainfall generation for a warmer climate using
observed temperature sensitivities. Journal of Hydrology, Elsevier, v. 544, p. 575–590,
2017.

WBM, B. Tuflow user manual-gis based 2d/1d hydrodynamic modelling. [S.l.],
2008.

WIJERATHNE, K.; SENEVIRATHNA, E. Identify the risk for leptospirosis disease
during flooding periods (special reference to medirigiriya divisional secretariat division in
polonnaruwa district). Procedia engineering, v. 212, p. 101–108, 2018. ISSN 1877-7058.

WINSEMIUS, H. C. et al. Global drivers of future river flood risk. Nature
Climate Change, v. 6, n. 4, p. 381–385, 2016. ISSN 1758-6798. Disponível em:
https://doi.org/10.1038/nclimate2893.

WOLFRAM, S. Cellular automata as models of complexity. Nature, v. 311, n. 5985, p.
419–424, 1984. ISSN 1476-4687.

WOZNICKI, S. A. et al. Development of a spatially complete floodplain map of the
conterminous united states using random forest. Science of the total environment,
Elsevier, v. 647, p. 942–953, 2019.

WU, W. et al. A benchmarking approach for comparing data splitting methods for
modeling water resources parameters using artificial neural networks. Water Resources
Research, Wiley Online Library, v. 49, n. 11, p. 7598–7614, 2013.

XU, S.; CHEN, L. A novel approach for determining the optimal number of hidden layer
neurons for fnn’s and its application in data mining. In: 5th International Conference
on Information Technology and Applications (ICITA 2008). [S.l.: s.n.], 2008. p.
683–686. ISBN 978-0-9803267-2-7.

YIN, J. et al. A copula-based analysis of projected climate changes to bivariate flood
quantiles. Journal of hydrology, v. 566, p. 23–42, 2018. ISSN 0022-1694.

YIN, J. et al. Evaluating the impact and risk of pluvial flash flood on intra-urban road
network: A case study in the city center of shanghai, china. Journal of hydrology,
v. 537, p. 138–145, 2016. ISSN 0022-1694.

ZHANG, C. et al. Understanding deep learning (still) requires rethinking generalization.
Communications of the ACM, ACM New York, NY, USA, v. 64, n. 3, p. 107–115,
2021.

ZHANG, S.; PAN, B. An urban storm-inundation simulation method based on gis.
Journal of Hydrology, Elsevier, v. 517, p. 260–268, 2014.

ZHAO, G. et al. Urban flood susceptibility assessment based on convolutional neural
networks. Journal of Hydrology, Elsevier, v. 590, p. 125235, 2020.

https://doi.org/10.1038/nclimate2893




APPENDIX





109

APPENDIX A – COUPLING HEC-RAS WITH CGAN-FLOOD

The overall steps for predicting high-resolution flood maps with a coarse HEC-
RAS model (mesh-based) are highlighted in Figure 1a. Breaklines are integrated to
capture the specific stormwater channels and transportation infrastructure features. The
incorporation of breaklines for the channels serves a dual purpose. Firstly, they reduce
the cell size and align cell faces along the channel more accurately, thereby improving
the representation of the channel’s characteristics and flow dynamics. Breaklines for
transportation infrastructure are inserted to depict the elevation of streets along the cell
faces, generally indicating high landforms and water dividers. However, it’s important to
note that the coarse resolution of the cells can often lead to inaccurate representation of
these elevated areas. Consequently, the model may not properly recognize these as barriers
to water flow, leading to water being erroneously modeled as "leaking" through these cells.
This misrepresentation reduces the flow path incorrectly, impacting the flow dynamics
representation. Furthermore, it inaccurately decreases the total volume to be distributed
(vt), which may lead to underestimation of flood extents and depths. Although enforcing
breaklines reduces the average cell size of the mesh and increases computational time, our
previous investigations showed that they were essential for estimating vt.

Figure 28 – Flowchart depicting how HEC-RAS model is set up and coupled with cGAN-
Flood

Terrain, land use, and infiltration layers were also used in our HEC-RAS simulations.
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The terrain layer is essential for computing elevation versus volume for each cell and
generating hydraulic properties tables for their faces (BRUNNER, 2016). These hydraulic
properties tie in the elevation of every cell face with corresponding variables such as area,
wetted perimeter, and roughness. The land-use layer furnishes the model with critical
information, including roughness values and the proportion of impervious area. This data
is essential for accurately estimating the frictional resistance to flow and understanding the
percentage of the area where water infiltration into the ground is minimal or non-existent.
Conversely, the soil or infiltration layer imparts parameters related to the rate and extent
of water infiltration into the ground. It is a critical element in modeling the portion of the
rainfall that will contribute to the runoff and the portion that will infiltrate into the soil,
significantly influencing the simulated flood’s volume and timing.

cGAN-Flood is a tool capable of enhancing the resolution of coarse flood maps
by redistributing a predetermined flood volume. This volume for being redistributed
is calculated after the hydraulic simulation is concluded. However, deriving these flood
volumes directly from the output depth maps of HEC-RAS presents a challenge. The
HEC-RAS model operates on a mesh-based system with cells that vary in shape and size,
with each cell potentially containing multiple raster pixels. The model calculates depths
by interpolating each cell face’s computed water surface elevation and subtracting it from
the terrain elevation. While HEC-RAS does not include a feature for generating volume
outputs for individual cells, a workaround is available through the plan HDF file, allowing
maximum volumes to be computed. The model calculates and stores each cell’s Water
Surface Elevation (WSE) during each simulated timestep. This data, accessible via the
plan HDF file, also includes an elevation-volume curve for each cell. Consequently, each
cell’s volume (v) can be approximated from the elevation-volume curve given a specific
WSE. The sum of the maximum volume in each of the n cells of a given domain is the vt

to be redistributed with cGAN-Flood.
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APPENDIX B – COUPLING HYDROPOL2D WITH CGAN-FLOOD

Unlikely mesh-based model, which computes flow dynamics across cells according
to the hydraulic properties calculated with terrain, land use, and soil layers, raster-
based models compute water balance and calculate mass exchange in each pixel of the
input rasters. This study used Hydropol2D (JR et al., 2023) as a raster-based model for
calculating vt.

Figure 29 – Flowchart describing how Hydropol2D was used to compute vt and coupled
with cGAN-Flood

The input data for the Hydropol2D simulations comprise terrain, land use, and soil
raster datasets. The parameters within Hydropol2D are configured independently to link
surface roughness and infiltration properties with pixel values corresponding to various
land uses and soil types. All input rasters must maintain the same cell size and identical
quantities of rows and columns. These rasters were downsampled for the low-resolution
simulations conducted with Hydropol2D, effectively reducing the number of cells and the
number of computational calculus. This downsampling process has the additional benefit
of decreasing the Courant number, thereby allowing for larger time steps and expedited
simulations. However, the terrain’s hydraulic properties, especially the channels, can be lost
after reducing the terrain resolution. As such, the terrain was treated with smoothening
(SCHWANGHART; SCHERLER, 2017) and burning (PAIVA et al., 2013).
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As raster-based models compute water balance between pixels directly, the volume
in each cell can be calculated directly from the output depth map. The volume in each
cell (v) is calculated by multiplying the water depth in that particular cell (d) by its area
(pixel resolution squared). Therefore, the vt to be redistributed with cGAN-Flood is the
sum of the flood volume of all n cells within the area of interest.
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APPENDIX C – FLUVIAL FLOOD PREDICTIONS

Figure 30 – Performance of ANN model in predicting fluvial flood for area TE1
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Figure 31 – Performance of ANN model in predicting fluvial flood for area TE2
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Figure 32 – Performance of ANN model in predicting fluvial flood for area TE3
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Figure 33 – Performance of ANN model in predicting fluvial flood for area VA1
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Figure 34 – Performance of ANN model in predicting fluvial flood for area VA2
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Figure 35 – Performance of ANN model in predicting fluvial flood for area VA3
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