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ABSTRACT 

Marchezepe,, B. K. Streamflow predictions in ungauged basins by using the Grunsky’s 

Method. Master Thesis, São Carlos School of Engineering, Department of Hydraulics 

and Sanitary Engineering, University of São Paulo, São Carlos, SP, Brazil, 2023. 

Predicting runoff in ungauged basins is a significant challenge in Hydrology, and 

various advanced techniques have been developed to address this issue. However, 

returning some simplicity to the predictions might be necessary for practical uses. This 

master dissertation evaluates a generalized of Grunsky's approach and proposes its 

improvement. This approach was originally developed in the early 1900s for basins in 

San Francisco Peninsula, USA. First, we focus on the application of the Grunsky 

generalized method to 716 Brazilian catchments on interannual and monthly scales. The 

rainfall-runoff relation coefficient (α) is determined, and the method's performance is 

evaluated locally, catchment by catchment. Additionally, we regionalized and analyzed 

the catchments into hydrological groups. Then, an improved version of the previously 

tested method is proposed, incorporating a rainfall-runoff relation coefficient (α) based 

on mean annual temperature. Through multiple linear regression, the α values are 

determined using catchment attributes such as the aridity index, annual average 

temperature, and potential evapotranspiration. The generalized method presented a 

median percentage bias and Kling-Gupta Efficiency of -1% and 0.73, respectively, with 

favorable performances observed in certain groups. On a montly scale, more than 83% 

of the total studied basins had at least one month with KGE greater than 0.50. The 

performance of the improved method indicates the suitability of this approach for 

predicting runoff in Brazilian basins, with KGE = 0.899, R² = 0.82, and RMSE = 27.4% 

on the interannual scale. Here, we emphasize the practicality and reliability of the 

Grunsky approach as a simple and easy-to-use equation for predicting runoff. The 

findings suggest that this approach can serve as a viable alternative to more complex 

methods, especially in ungauged or poorly gauged basins. By incorporating both 

theoretical and empirical elements, this study contribute to the ongoing efforts to 

develop accessible and effective methods for runoff prediction, furthering our 

understanding of hydrological processes in Brazilian catchments. 

Keywords: Regionalization, hydrological group, temporal scale, tropical basins, mean 

temperature, aridity index, potential evapotranspiration. 
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RESUMO 

Marchezepe, B. K. Previsão de vazões em bacias não monitoradas usando o Método de 

Grunsky. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade 

de São Paulo, São Carlos, 2023. 

Estimar o escoamento em bacias não monitoradas é um desafio significativo em 

Hidrologia, e várias técnicas avançadas foram desenvolvidas para abordar esse 

problema. No entanto, reintroduzir certa simplicidade nas previsões pode ser necessário 

para usos práticos. Esta dissertação de mestrado avalia uma versão generalizada do 

Método de Grunsky e propõe seu aprimoramento. Essa versão foi originalmente 

desenvolvida no início dos anos 1900 para bacias na Península de São Francisco, EUA. 

Primeiramente, focou-se na aplicação do método generalizado de Grunsky a 716 bacias 

brasileiras em escalas interanuais e mensais. O coeficiente de relação precipitação-

vazão (α) é determinado, e o desempenho do método é avaliado localmente, bacia por 

bacia. Além disso, as bacias foram regionalizadas e analisadas em grupos hidrológicos. 

Em seguida, foi proposta uma versão aprimorada do método previamente testado, 

incorporando um coeficiente de relação precipitação-vazão (α) baseado na temperatura 

média anual. Por meio de regressão linear múltipla, foram determinados os valores de α 

usando atributos da bacia, como o índice de aridez, a temperatura média anual e a 

evapotranspiração potencial. O método generalizado apresentou uma mediana de 

PBIAS e Eficiência de Kling-Gupta (KGE) de -1% e 0,73, respectivamente, com 

desempenhos favoráveis observados em certos grupos. Em escala mensal, mais de 83% 

do total de bacias estudadas apresentaram pelo menos um mês com KGE maior que 

0,50. O desempenho do método aprimorado indica a adequação dessa abordagem para 

estimar o escoamento em bacias brasileiras, com KGE = 0,899, R² = 0,82 e RMSE = 

27,4% na escala interanual. Enfatiza-se aqui a praticidade e a confiabilidade da 

abordagem de Grunsky como uma equação simples e fácil de usar para estimar o 

escoamento. Os resultados sugerem que tal abordagem pode ser uma alternativa viável a 

métodos mais complexos, especialmente em bacias pouco ou não monitoradas. Ao 

incorporar elementos teóricos e empíricos, este estudo contribui para os esforços 

contínuos de desenvolvimento de métodos acessíveis e eficazes para a estimativa do 

escoamento, aprimorando a compreensão dos processos hidrológicos em bacias 

brasileiras. 

Palavras-chave: Regionalização, grupo hidrológico, escala temporal, bacias tropicais, 

temperatura média, índice de aridez, evaporação potencial.
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GENERAL INTRODUCTION 

From the ancient philosophers to the 17th Century, Science has been taken by 

classical and theoretical thinking about nature and its processes. Over the last centuries, 

with the advance of the scientific method, research passed through a great development, 

using empirical and rational approaches. Hydrology was not different, going from a 

qualitative to a quantitative perspective, turning into a branch of natural science (Nace, 

1974; Hubbart, 2011). 

Three renowned pioneers in the field were the astronomer Edmund Halley (1656-

1742), who made experiments with water storage and evaporation, Pierre Perrault 

(1608-1680), believed to be the first to make an experiment with rainfall-runoff relation, 

and the physicist Edme Marriotte (1620-1684), that did similar experiments as Perrault, 

confirming his results (Eview and Linsley, 1967; Hubbart, 2011). These first surveys 

led to an estimation of a value of runoff about 1/6 of the precipitation in the Seine river 

basin, France (Eview and Linsley, 1967). 

Across the following centuries, along with the development of hydraulic 

structures and increase of climate measurements, rainfall-runoff relations were 

estimated and summarized into empirical formulas, mentioning the works of Justin 

(1914) and, more recently, Vogel, Wilson and Daly (1999), that used parameters such as 

temperature, drainage area, catchment slope, etc. (Eview and Linsley, 1967; Santos and 

Hawkins, 2011). One of these studies is the relation found by Grunsky (1908, 1915), 

which shows a simple method to directly find average annual runoff ( ) from average 

annual precipitation ( ) in the São Francisco peninsula, California. The author 

developed this practical relation from hydrological observations during the 1900s 

decade. Despite of the simplicity of Grunsky’s proposed framework, it achieved an 

excellent performance in describing the long-term hydrological fluxes. 
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The empirical methods entered in disused since the 1930’s, with more 

sophisticated methods developed, isolating the water cycle components, and including 

other parameters to the analysis with the use of statistics, mainly from the 1950’s, when 

computational development was put into use to help hydrologists with greater datasets 

and time series (Eview and Linsley, 1967; Sivapalan et al., 2003). 

In function of the increase of computational power over the last decades, 

prediction models became more accessible and widely applied by scientists across the 

globe. Some recent methods in the field can be mentioned, including machine learning 

techniques, which focus on models based solely on data to predict hydrological 

processes (Samantaray et al., 2022), satellite-based approaches, using interpolation and 

clustering analysis (De Souza Fraga et al., 2022), and artificial neural networks, which 

show promising results for hourly daily and storm events predictions (Besaw et al., 

2010). 

Predictions are generally focused on searching the best fitting model to data, and 

may sometimes put aside the search for understanding the hydrological processes 

(Sivapalan et al., 2003; Hrachowitz et al., 2013). Methods of machine learning, for 

example, when applied to predictions in ungauged basins, result into predictions that 

might even outperform process-driven prediction methods (Kratzert et al., 2019; Singh 

et al., 2022), and operate by analyzing only previous data itself to predictions, not 

taking into account any other theoretical or physical model. 

Despite the development of sophisticated methods of predictions in ungauged 

basins, uncertainties still remain in a great part due to heterogeneity among catchments, 

by vegetation, climate, human interference and non-stationary conditions, and need for 

understanding hydrological processes in these different environments and scales 

(Hrachowitz et al., 2013; Blöschl et al., 2019; Samantaray et al., 2022). Along with all 
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difficulties that exist in predictions in ungauged basins, even with all the cited methods, 

one question arises: is there any reason to use simple, empirical methods in an era of 

advanced techniques, with machine learning and complex climate models with dozens, 

or even hundreds parameters? 

Returning the focus to Grunsky's empirical method, the original framework 

remained untouched until the development of a recent study that employed a 

generalized formula specifically designed for Mediterranean-type climate basins in 

California, Portugal, and France (Santos and Hawkins, 2011). This study produced 

promising outcomes, including a good performance (r² = 0.89) in long-term streamflow 

prediction of Portugal watersheds, and a robust correlation observed between the 

generalized formula and mean annual temperature. The above-mentioned method 

involves a straightforward approach to calculate the runoff in a catchment area. 

In order to complement modern prediction methods with didactic and easy-to-use 

models, based in theoretical and empirical methods, in chapter 1, we discuss the 

validity of the Grunsky method for Brazilian catchments, proving its applicability even 

in non-Mediterranean climate, which was not experimented since this method was first 

proposed in the early 1900’s. 

In chapter 2, we analyzed the method’s accuracy and precision by adding other 

parameters to the method in order to improve its performance. The main parameters for 

this analysis are: the aridity index, potential evapotranspiration and mean temperature. 

The latter was already proven to have high correspondence to precipitation and 

streamflow, and even proposed by Santos and Hawkins (2011). 
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OBJECTIVES 

GENERAL OBJECTIVES 

The main objective of this project is to evaluate the performance of the Grunsky 

Method to characterize rainfall-runoff relationships in Brazilian catchments. 

 

Specific Objectives 

In more detail, the present study aims to: 

 Assess the performance of a simple and fast way to compute catchment runoff on 

different time and spatial scales through its precipitation values, known as Grunsky 

Method; 

 Apply the proposed framework for the largest number of Brazilian catchments from a 

reliable database, facilitating its application by decision-makers and replication for future 

updates; 

 Evaluate the role of climatic factors on the response of runoff to precipitation in Brazilian 

catchments; 

 Analyze methods for increasing Grunsky Method efficiency. 
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Streamflow prediction in ungauged Brazilian catchments by using 

the Grunsky Method 
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Marchezepe,, B. K., Almagro, A., Ballarin, A. S. Oliveira, P. T. S. Streamflow prediction 

in ungauged Brazilian catchments by using the Grunsky Method [Manuscript submitted 

for publication]. School of Engineering of São Carlos, University of São Paulo. 

 

1. Abstract 

Establish a reliable rainfall-runoff relation capable of predicting runoff in 

ungauged basins is a matter of interest across the world for a long time and has been 

taking importance during the past decades. Machine learning methods, regionalization, 

software, and hydrological models are used to estimate runoff, with reasonable 

precision. Although, returning some simplicity to the predictions might be necessary for 

practical uses. In this paper, we re-introduce C. E. Grunsky’s approach, developed in the 

early 1900s to predict runoff from values of precipitation on a 2 equations system for 

San Francisco’s peninsula. Here, we analyze the Grunsky generalized method applied 

for 716 Brazilian catchments, on an interannual and monthly scale. First, we established 

the best method to find the rainfall-runoff relation coefficient for each catchment. Then, 

we evaluate the performance of the method on a local scale, i.e., catchment by 

catchment. Lastly, we analyze the method of regionalization, by dividing the catchments 

into 6 hydrological groups. For local scale, the Kling-Gupta Efficiency (KGE) values 

range from 0.87 to 0.93 on an interannual scale and greater than 0.50 on a monthly 

scale. For the regionalized scale, KGE varies from 0.60 to 0.84 on an interannual scale. 

We also found suitable KGE values on a montly scale, with more than 22% of 

catchments with KGE higher than 0.50, being the best performances in Non-seasonal 

and Extremely-wet basin groups, and the worst performance in Dry group. Our findings 

indicate that the Grunsky’s approach is suitable to predict runoff for Brazilian basins on 
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interannual and monthly scales. This simple and easy-to-use equation presents a reliable 

alternative to more complex methods to compute runoff from only using rainfall data. 

 

2. Keywords 

Regionalization, hydrological group, temporal scale, tropical basins. 

3. Introduction 

The understanding of the nature of temporal and spatial variability of hydrological 

fluxes, especially runoff, is crucial for hydrological studies, such as for the design of 

hydraulic structures and water resources management (Viglione et al., 2013; Beck, de 

Roo and van Dijk, 2015; Dal Molin et al., 2020). Despite its importance, the correct 

understanding of catchments’ hydrological behavior is still a challenge, given that most 

basins across the world are ungauged, which precludes a precise temporal and spatial 

characterization. Due to this lack of data, the study of the prediction parameters in those 

basins has received a great deal of attention in the last decades (Razavi, Coulibaly and 

Asce, 2012; Bloschl et al., 2013; Salinas et al., 2013). 

Recently, an initiative of the International Association of Hydrological Sciences 

called the decades of Predictions of Ungauged Basins (PUB) 2003-2012 and 2013-2022 

(Sivapalan et al., 2003; Hrachowitz et al., 2013; Montanari et al., 2013), attempted to 

merge the knowledge of the field in terms of the core questions, the benefits of models 

for the catchments study and awareness of uncertainties for more flexible approaches 

(Hrachowitz et al., 2013). Nevertheless, these initiatives did not unify the modeling 

strategies for prediction in ungauged basins, and, therefore, different approaches have 

been proposed and applied since then (Bloschl et al., 2013; Yang et al., 2020; Pool, Vis 

and Seibert, 2021). 
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In general, good performance on predictions can be reached for most catchments 

with regionalization approaches, with the major challenge remaining in the choice of the 

best method and finding gauged catchments that are good characteristics and parameters 

“donors” for the ungauged catchments (Pool, Vis and Seibert, 2021). Approximately 10 

years before the PUB Decade, during the 1990s, some of these prediction methods 

showed a complexity that might not be a practical solution for some applications, with 

the use of parameters difficult to understand and reproduce in other studies, focusing 

much more in the model than in the real-world processes (Hrachowitz et al., 2013). One 

of the main challenges recognized in PUB is to find generalizable insights that would 

bring models as learning tools for hydrological processes (Popper, 2002). Fortunately, 

this mentality has changed in the last years with the search for more flexible models, 

which indeed may lead to better knowledge about these processes and improve 

prediction itself (McDonnell, 2003; Pomeroy et al., 2007). 

At the beginning of the 20th century, in a scenario of the early forming of 

Hydrology as a science and lack of computational performance, the former president of 

the American Society of Civil Engineers (ASCE), Carl E. Grunsky (1908, 1915), 

developed somewhat of a “rule-of-thumb” (Santos and Hawkins, 2011), directly relating 

average annual runoff ( ) to average annual precipitation ( ) in the São Francisco 

peninsula, California. The author developed this practical relation from hydrological 

observations during the 1900s decade. Despite of the simplicity of Grunsky’s proposed 

framework, it achieved an excellent performance in describing the long-term 

hydrological fluxes.  

The method remained untouched, and empirical approaches were substituted by 

more sophisticated methods with the increase in physical understanding of water cycle 

components and computers’ processing power. More than a century after Grunsky’s 
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study with restricted information at his disposal, Santos and Hawkins (2011) 

generalized the method, inserting a single coefficient, called α, for studying 

Mediterranean catchments in California, Southern France, and Portugal, with areas 

ranging from 1.47 to 97,667.00 km2. They reported that the proposed approach reached 

a coefficient of determination of 0.89 for observed and predicted annual runoff in 

Portugal watersheds, and almost 1:1 relation for the France watershed, which shows an 

exceptional perspective for the method, given its simplicity. Furthermore, they have 

shown that the α coefficient led to the possibility of application in catchments with 

different responses to precipitation. However, despite the possibilities, this approach has 

only embraced long-term data, i.e. the mean values of precipitation and runoff. In 

addition, the application of this approach was limited to the Mediterranean climate and 

has not yet been investigated using a large-sample catchment dataset. Moreover, to the 

best of our knowledge, no study evaluated the performance of the Grunsky method to 

characterize streamflow fluxes at finer temporal scales. 

In this study, we investigate the performance of the Grunsky framework in 

computing monthly and interannual streamflow for runoff prediction in ungauged 

tropical basins. To this end, we applied for the first time the generalized Grunsky 

method for 716 Brazilian catchments available in the Catchments Attributes for Brazil 

(CABra) dataset (Almagro et al., 2020). Then, we proposed a streamflow 

regionalization based on the median α computed for each of the six Brazilian 

hydrological groups. Our investigation shows the suitability to use the Grunsky 

approach to estimate streamflow in ungauged basins in different climate conditions. 

With this study, we seek to answer the following questions: Up to what temporal scales 

the method can be used? Is the Grunsky framework a suitable approach to characterize 

and predict hydrological fluxes at finer temporal scales than long-term scales? Can this 
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approach be regionalized to predict streamflow in Brazilian basins? We organized this 

study as follows: in section 4, we describe the dataset used in the study, the methods 

used in the study as well as the approach to employ Grunsky’s method on an interannual 

and monthly scale. In section 5, we present and discuss the results, respectively and, in 

section 7, we highlight the main conclusions of the paper. 

 

4. Material and methods 

4.1. Dataset 

The study comprehended the use of the Catchments Attributes for Brazil (CABra) 

dataset (Almagro et al., 2020), which contains data from 735 catchments spread over 

the Brazilian territory. The attributes are grouped into 8 classes, namely: topography, 

climate, streamflow, groundwater, soil, geology, land-use and land-cover, and 

hydrologic disturbance. In addition, for each catchment, there is a 30-year daily series of 

precipitation, streamflow, and actual and potential evapotranspiration, from 1980 to 

2010, all of them containing less than 10% of missing data. 

We used daily time series of precipitation ( ) and streamflow ( ) for the 

climatological period between October 1st, 1980, to September 30th, 2010 as the main 

attributes for our analysis, comprehending 30 hydrological years.  is derived from an 

ensemble mean between a high-resolution ground-based reference dataset (Xavier, King 

and Scanlon, 2016) and the ERA5 reanalysis dataset (Hersbach et al., 2020a) while  is 

based on streamflow gauge observations over the Brazilian catchments. These daily 

values were resampled to create annualized (monthly) series. Therefore, for each 

catchment, 30 (360) values of annual (monthly) runoff and precipitation were 

computed. We excluded from our analysis years (months) with at least one day with 

missing value to maintain the annual and monthly values comparable within the same 
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catchment. In other words, we only consider years (months) with complete daily 

records. 

We also excluded 18 catchments that presented at least one year with Observed 

Annual Runoff (Qobs) higher than Observed Annual Precipitation (Pobs), and 1 

catchment that exhibited inconsistency between precipitation and evapotranspiration 

data, remaining 716 catchments for the analysis. 

 

4.2. Re-introducing Grunsky’s method 

Carl E. Grunsky, as a city engineer together with Marsden Manson, published a 

report on water supply sources in San Francisco, California. The study occurred in 1908 

and contains data on the streams in the San Francisco Peninsula and a discussion on the 

city’s water supply situation and its recommended improvement (Grunsky and Manson, 

1908). Later, in 1915, Grunsky studied the relations of rainfall-runoff in the area, which 

resulted in a practical empirical Equation 1 relating the mean annual runoff (  ), and the 

mean annual precipitation ( ), measured in inches. 

 
(1) 

 

 

Through Grunsky’s analysis (1908, 1915), a generalized method to correlate the 

annual runoff and the annual precipitation resulted in Equation 2 (Santos and Hawkins, 

2011), where α is a coefficient (mm-1) used for this generalization. The generalized 

equation was applied to California, the South of France, and Portugal, characterized by 

the Mediterranean climate, with dry summer and wet winter (Santos and Hawkins, 

2011). The good fit for Mediterranean catchments arises the interest in the study of 

other types of climates. The rainfall-runoff relationships for varying values of α are 
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presented on Supplementary Material (Figure S1). As a matter of interest, according to 

the generalized Grunsky method (Equation 2), a negative α value is only possible when 

runoff is higher than precipitation, i.e., when runoff is receives great influence from 

groundwater. On the contrary, when runoff is higher than precipitation, the method does 

not lead exclusively to a negative α value. Since catchments with Qobs > Pobs were 

excluded, there are no negative α coefficients in the analysis. 

 
(2) 

 
 

4.3. Computing α coefficient for interannual and monthly temporal 

scales on a local scale 

According to the Grunsky method, the α coefficient is calculated from  and . 

As the generalized formula consists of a system of two equations, two values of α are 

calculated, and the chosen α would be the one that satisfies the system. Nevertheless, 

the work applied the proposed framework considering a long-term temporal scale, 

obtaining, therefore, a single α value. We, in contrast, evaluated the performance of the 

Grunsky method on two other temporal scales: interannual and monthly. However, in 

this case, we obtained an α value for each evaluated temporal unit (month or year). 

Therefore, to keep the consistency with the original framework, for each evaluated 

temporal scale (interannual and monthly), we chose a single α coefficient that best 

represents the streamflow in each catchment by maintaining the generalized equation 

but using values of runoff and precipitation different from the long-term  and . 

We evaluate three different approaches to obtain this unique α coefficient on a 

local scale, i.e., one α for each catchment: (i) the mean α among all 30-year series of α 

values; (ii) the median α among all 30-year series of α values; and the α that presented 
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the Minimum Mean Squared Error (MMSE) between predicted annual runoff (Qpred) 

and observed annual runoff (Qobs). For the last one, to have more values to make the 

predictions, and since the most important is to obtain the MMSE value, we used α 

values from the two sides of Equation 2. To evaluate the best method to calculate α 

(mean, median, and MMSE), we compared their KGE’s Empirical Cumulative 

Distribution Function (ECDF) curves for both evaluated temporal scales. The KGE was 

computed considering the runoff estimated through one of the three methods to define α 

and the observed runoff. 

To evaluate the prediction performance of the Grunsky method, we applied the 

equations considering the selected α coefficient (using one of the 3 proposed 

approaches) from each catchment and the observed annual precipitation and compared 

estimated and observed streamflow values for both interannual and monthly temporal 

scales. To evaluate the model performance, we used four widely used statistical metrics: 

the coefficient of determination (R²), the Kling-Gupta Efficiency (KGE) (Gupta et al., 

2009), the Percent Bias (PBIAS), and the Root Mean Square Error (RMSE). As a matter 

of interest, R² and KGE values close to 1 represent better model performance, positive 

(negative) PBIAS indicates overestimation (underestimation) in predictions, and lower 

RMSE values indicate reduced errors. 

 

4.4. Regionalization 

Calculating the α coefficients for each one of the 716 gauged basins would not be 

the final goal of this study, but a first step for the analysis since we seek to predict 

streamflow in ungauged basins. After the computation of α, we look for the best 

classification method to cluster the catchments according to their characteristics. From 

this cluster classification, it would be possible to define an α coefficient for each group, 
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which, in turn, can be used to predict streamflow fluxes at ungauged basins belonging to 

the respective group. Prediction in Ungauged Basins passes by a reliable regionalization 

approach considering multi-criteria analysis (Pool, Vis and Seibert, 2021). 

To investigate the performance of the regionalization of the α coefficient across 

Brazil, we used the six hydrological groups proposed by Almagro (2021). To define 

these six hydrological groups, the author used hydrological signatures and attributes of 

catchments from the CABra dataset and then employed a principal component analysis 

and a random forest algorithm. The catchments were grouped based on their 

hydrological similarities and the dominant processes and their driving attributes were 

investigated. The hydrological groups are: “Non-seasonal”, “Dry”, “Rainforest”, 

“Savannah”, “Extremely-dry”, and “Extremely-wet” catchments (Figure 1). We chose 

to use these six hydrological groups for the regionalization framework because they are 

able to better represent the hydrological similarities than other geographical, climate, or 

ecosystem groups (Almagro, 2021). 

 

Figure 1: Maps of the spatial distribution of a) each catchment by area and hydrological group 

over the territory; b) the six Brazilian Biomes (Amazon, Atlantic Forest, Cerrado, Caatinga, 

Pampa, and Pantanal); and c) Brazil, in yellow, on the world map. 
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Group 1 (Non-seasonal) presents high values of mean streamflow, with no clear 

relation between precipitation and temperature throughout the year, with no definitive 

division between wet and dry seasons. The catchments are located mainly in the South 

region, with Pampa, Atlantic Forest biomes, and some in the Amazon biome. Group 2 

(“Dry”), located mainly in Cerrado biome in the region between Amazon and Caatinga 

biomes, has well-defined rainy and dry seasons, with the highest temperatures of all 

groups (20°C to 32°C). The catchment’s aridity index (the ratio between mean-annual 

potential evapotranspiration and mean-annual precipitation) has a great variance and 

low values of mean precipitation. Group 3 (Rainforest) is located mainly in the Atlantic 

Forest biome region, with high amounts of precipitation, and a well-defined rainy 

season, which coincides with the highest temperatures of summer in the region. Group 4 

(Savannah) refers to catchments that present savannah characteristics and is located 

mainly in the Cerrado biome. The vegetation is composed basically of grass and forest, 

with an aridity index varying from 1 to 2. Group 5 (Extremely-dry), located in the 

Caatinga biome, is covered mainly by grass and shrubs, showing high values of aridity 

index. This group is different from Group 2 (Dry) because of its non-perennial streams. 

Finally, Group 6 (Extremely-wet) presents the highest values of precipitation and 

streamflow. The catchments are located in the Amazon and Atlantic Forest biomes and 

are covered mainly by forests. 

To evaluate the performance of Grunsky’s framework to predict runoff in 

ungauged basins, we conducted the following regionalization framework: (i) First, for 

each catchment of each hydrological group, we computed a median α value using the 

“leave one out” cross-validation approach. That is, the α of a specific catchment was 

computed considering the median α from all the other catchments of the same group, 
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with exception of itself. This step is fundamental to preserving independence in the 

determination of α. Moreover, we use the MMSE value from each catchment as it 

obtained the best performance among the three evaluated methods (see Results section 

5.2). (ii) Then, using the Grunsky method and the median α of the step (i), we estimated 

the runoff for the 716 catchments. (iii) Finally, we evaluated the performance of the 

regionalized Grunsky’s method to estimate catchments’ runoff through R², RMSE, and 

KGE values. We then repeated the same process for each month, on a monthly scale. 

Here we present a schematic view of the analysis method (Figure 2). 

 

Figure 2: Schematic view of the analysis method. 

 

5. Results and discussion  

The results are presented in three steps: (i) we first assess the relationship between 

observed annual runoff (Qobs) and precipitation (Pobs) with Grunsky’s method and 

choose the best α value for each catchment in both interannual and monthly temporal 

scales. (ii) Then we evaluate the Grunsky’s framework for each time scale on local 
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analysis, catchment by catchment; and (iii) finally, we assess the performance of the 

proposed regionalization method to compute interannual and monthly runoff across 

Brazil. 

 

5.1. Relations between runoff and precipitation and Grunsky’s 

equation 

Figure 3 shows a scatter plot between Pobs and Qobs for each year of the 30-year 

time series of the 716 evaluated catchments, colored according to their aridity index 

computed annually, and Grunsky’s method plots for multiple α values. The aridity 

index, commonly used from the Budyko framework (1974), is given as the ratio 

between mean potential evapotranspiration (  ) and mean precipitation  and is 

notably a good and worldwide used parameter to analyze climatic influence on long-

term runoff (Meira Neto et al., 2020). We noted that the relation between Pobs and Qobs 

follows, in general, the Grunsky Generalized curve (Equation 2) and fits well for both 

low and high α values, indicating the Grunsky framework is able to capture the inter-

catchment and annual rainfall-runoff relationship variability. However, when looking at 

the aridity index values, we note lower dispersion of the Grunsky’s curve for aridest 

catchments, possibly due to the high initial abstraction during rain events in dry 

catchments (de Figueiredo et al., 2016). The highest aridity index values occur for 

catchments with lower Pobs amounts, and they show a better fit to the Grunsky’s curve 

than for lower values of aridity index when Pobs presents higher values. These results 

were somehow expected since the method was proposed and has already been applied to 

Mediterranean catchments, which are generally drier than most of climate types in 

Brazil (Spinoni et al., 2015). 
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Figure 3: Scatter plot with observed and mean annual runoff versus annual precipitation for the 

30 years series from the 716 CABra catchments, and Grunsky’s equation plots for multiple α 

values (mm-1). Colored according to the aridity index value from each catchment. 

Figure 3 shows the same plot for the long-term (mean-annual) temporal scale. The 

observed scatter values agree with the behavior of Grunsky’s generalized method 

functions, with α values ranging from 0.0001 to 0.0004. Even the catchments with 

higher long-term mean annual rainfall (  > 2,000 mm year-1) fall inside the interval 

between the theoretical curves. Our results corroborate with those reported by Santos 

and Hawkins (2011), which presented α values from 0.00009 to 0.00043 mm-1, with the 

highest Pobs = 2,770.1 mm. Values tend to be sparse for precipitations higher than 2,000 

mm year-1, as observed previously. 

 

5.2. Choosing the best method to define a single α for each catchment 

We analyzed the rainfall-runoff relations for the interannual and monthly scales, 

considering, however, a single α value for each catchment, calculated by the three 

different methods described in Section 4.3 (mean, median, and MMSE). To better 
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visualize de variability of α values calculated from the 30-year series, we presented 

them on Supplementary Material (Figure S2), separated by the different hydrological 

groups in both interannual and monthly scales. 

From the interannual analysis, it is evident that the behavior of the α coefficient 

changes according to each hydrological group. The difference between the boxplots of 

the three evaluated approaches (mean, median, and MMSE) was not so remarkable. 

Nevertheless, it is possible to note that the α values estimated through the mean 

approach exhibited a larger variability. Interestingly, although the MMSE method 

involves more complex calculations to determine α, using linear regressions between 

predicted and observed runoff to define the α that minimizes Minimum Square Error 

(MSE), it obtained a very similar variability to the median approach. This does not hold 

for the monthly temporal scale. In this case, the MMSE approach showed the lowest 

variations. As expected, α is higher for wetter catchments, and lower for drier 

catchments. Dry and Extremely-dry groups show the lowest MMSE α values for all 

methods. These values are coherent to scatter plots per hydrological group on 

Supplementary Material (Figure S3), where there’s a higher density of points near the 

curve for α = 0.0001 for these drier groups. 

The α values obtained for each month by using the three evaluated approaches 

were presented on Supplementary Material (Figure S4). We found that the α coefficient 

presents a higher range in May, June, July, and August, the driest months of the year in 

Brazil, which was expected since, during this period of the year, a great part of Brazilian 

territory is affected by climatic instability and higher variability in the rainfall-runoff 

relation (Silva and Simões, 2014; Zhang et al., 2018). For the Caatinga biome (Dry and 

Extremely-dry groups), Pinheiro et al. (2016) found that soil water content has a 

stronger influence on evapotranspiration and air temperature during the June-September 
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and December-January periods, which increases the uncertainty of the Grunsky method 

by adding more variance to hydrological processes. Differently from mean values, 

median α show lower scatter in all months, especially in May, though it still presents 

high variability in June, July, and August. We observed that the α MMSE value resulted 

in a great decrease in α dispersion, given the purpose of this method to determine an α 

value that minimizes errors for each catchment, with only the months June and July 

having a higher variability in α values. These variations were higher than that found in 

the same months for the median and mean values. We also noted that, on a monthly 

scale, α values tend to be approximately one order of magnitude higher than that 

obtained on an annual scale. This fact was already expected since annual precipitation is 

divided by the 12 months of the year, and by Equation 2, α is proportionally inverse to 

precipitation. 

From Figure 4, where KGE from all catchments by group appears in the ECDF 

curves from 0 to 1.0 (normalized number of catchments for each group), we note that 

MMSE α values present better results for all groups, especially for Dry and Extremely-

dry groups, where the difference from the other methods is more clear on an interannual 

scale. This result contradicts the already indicated in the scatter plot of Figure 3, which 

presented the best results from drier catchments, while Figure 4 shows that the best 

performances are from the Non-seasonal, Rainforest, and Savannah groups. Whereas 

KGE assumes mainly values from 0 to 1 in some groups, a part of catchments presents 

negative values, which does not imply in a bad simulation, since KGE values higher 

than -0.41 still indicate a good performance compared to a mean flow reference 

(Knoben, Freer and Woods, 2019). The MMSE α values spatialized within Brazilian 

territory, for each catchment, are found in Supplementary Material (Figure S5). 
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Figure 4: Cumulative Distribution Function (CDF) curves comparing KGE values for each 

method for determining α value on an interannual scale, for hydrological groups a) Dry, b) 

Extremely-dry, c) Extremely-wet, d) Non-seasonal, e) Rainforest and f) Savannah. 

 

On a monthly scale (Figure 5), it is more evident that MMSE α values, in general, 

for all groups, present better results than mean and median values. Among the groups, 

the best results are for the Non-seasonal group, with a great percentage of KGE > 0.5. 

The Dry group presents more than 50% of values below 0, indicating worse predictions. 

As the MMSE presented a better performance in runoff prediction than the other 

approaches evaluated for interannual and monthly temporal scales, we used α values 

obtained by the MMSE in our study, for local and regionalized analysis. For details of 
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boxplots of Monthly Observed Precipitation (mm) and Runoff (mm) for each 

hydrological group, see Supplementary Material (Figures S6, S7, and S8). 

The difference in performance on different groups and time scales comes from the 

non-linearity of arid catchments behavior, especially for hydrological extremes, which 

might affect the intra-annual behavior more than interannual and long-term runoff. On 

the other hand, more humid catchments, given their more (relative) linear behavior, tend 

to have better performance (Parajka et al., 2013; Salinas et al., 2013). 

 

Figure 5: Cumulative Distribution Function (CDF) curves comparing KGE values for each 

method for determining α value on a monthly scale, for hydrological groups a) Dry, b) 

Extremely-dry, c) Extremely-wet, d) Non-seasonal, e) Rainforest and f) Savannah. 
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5.3. Local Performance of α values 

The predicted runoff was calculated then by Grunsky’s Equation using the MMSE 

α value for each catchment on an interannual and monthly scale. The correlation 

between Predicted Runoff and Observed Runoff was then evaluated using metrics such 

as R², KGE, relative RMSE (absolute RMSE divided by mean runoff of each group), 

and Percentage Bias (PBIAS). 

 

5.3.1. Interannual scale 

Figure 6 illustrates the relations between predicted and observed annual runoff for 

each group, colored by point density with the number of neighboring points. All groups 

present R² higher than 0.80, considered a satisfactory result, especially for the Dry 

group, which shows R² = 0.93. RMSE is higher for Extremely-dry (48.3%) group, and 

smaller for Extremely-wet (13.1%), and Non-Seasonal (18.3%) groups, also 

corroborating with the previous analysis from Section 5.1, as smaller RMSE indicates 

better correlation. KGE shows values close to 1 in almost all groups, indicating a high 

correlation. Dry, Savannah and Extremely-wet groups present higher KGE (0.929, 

0.904, and 0.901, respectively). The predictions show higher KGE values than other 

studies, such as Gao et al. (2021), that predicted mean annual runoff in 35 catchments in 

the United States with the use of a water balance model calculated from Budyko-type 

equations and spatial distribution models for soil data, resulting in R² = 0.76. 
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Figure 6: Scatter plot with observed annual runoff versus predicted annual runoff from MMSE 

α value for each catchment during the 30 years series from the 716 CABra catchments, divided 

by groups. Colored by the number of neighbors for each point. 

The adjusted curves and respective equations indicate the general behavior of this 

relationship. The fact that the regression coefficient is <1 indicates that the predicted 

values tend to be lower than the observed values, in general. The ideal scenario would 

be the constant to be equal to 0 and the coefficient equal to 1, so that the predictions are 

the closest as possible to the observations. 

The results may indicate a constant behavior of each catchment during the 30-year 

series, generating an α value that well represents the catchment, thus resulting in a good 

correlation. In addition, it can be noted that catchment characteristics according to each 

group may influence α for a better correlation, although it is not possible to well 

differentiate the performance between drier and wetter groups. It is interesting to note 

that even the Non-seasonal group presented a good performance even though this group 



31 

 

 

does not present a very defined behavior of seasonality between water and energy 

availability (Almagro, 2021), with a great variety of catchments and characteristics.  

To understand the correlation between predicted and observed runoff during the 

30-year series, KGE and PBIAS values for each catchment were spatialized within the 

Brazilian territory, as shown on Figure 7. The higher values of KGE for the catchments 

are mainly located where there are the groups with higher values of precipitations (Non-

seasonal in the south region, Rainforest in the southeast, and Extremely-wet in the 

northwest). Also, Dry and Extremely-dry groups present values closer to 0, indicating a 

relatively lower correlation according to KGE. The highest positive PBIAS values 

(>20%) correspond to the northeast region (Dry and Extremely-dry groups), indicating 

an overestimation of the model. The other regions of the territory mainly present 

negative PBIAS, indicating an underestimation of Qobs. The values show good 

performance, ranging mostly from -5 to 5%. Also, as discussed for KGE, a lower value 

of PBIAS was found for the wettest catchments. One should remember that these values 

refer to one α value for each catchment, corresponding to the MMSE for each 

catchment. The regionalization prediction would be evaluated by using a single α for 

each hydrological group, discussed in Section 5.4. 
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Figure 7: (a) Map of KGE values and (b) Map of PBIAS values (mm year-1) for 

catchments, comparing observed runoff with predicted runoff with α correspondent to 

the MMSE α for each catchment. 

 

5.3.2. Monthly scale 

At the monthly scale, we calculated the MMSE α value for each catchment, and 

the spatialized values according to each month are on the Supplementary Material 

(Figure S10). It was observed that in the Southeast region (Non-seasonal, Savannah, and 

Rainforest groups), the drier months (i.e., from May to August, especially June and 

July) correspond to the lowest KGE values (Figure 8). During the other months, KGE 

values are in general higher than 0.50, also observed in Choi et al. (2021) when 

studying a prediction model for watersheds in South Korea, which indicates a good 

model prediction, especially for wetter months. Comparing RMSE values, the results 

are similar to predictions from Samantaray et al. (2022) using Support Vector Machine 

(SVM), with scenario conditions with minimum RMSE of 2.721 and 5.117 for two 

stations in India. The performance variability between dry and wet seasons was already 

observed by Zhang et al. (2018), which applied rainfall-runoff modeling for large basins 

in southeastern Brazil. 

(a) (b) 
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Figure 8: Maps of KGE from MMSE α value for each group for each month, from January (top 

left) to December (bottom right). 

PBIAS between Predicted Runoff and Observed Runoff was calculated for all 

months, and the results are shown on Supplementary Material (Figure S11). The maps 

indicate a prevalence of negative PBIAS, implying an underestimation in MMSE 

predictions, i.e., the predicted runoff is lower than the observed one. The months with 

the highest bias differ between regions, being the Southeast region with the highest 

biases, mainly from January to March, and August to October. The lowest biases are 

observed in the North region (Extremely-wet and part of the Savannah group), with the 

highest biases from August to October. 
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5.4. Regionalization of α values 

It is important to analyze the α coefficient according to catchment characteristics 

and to define a proper clustering proposal that can be used for predictions on ungauged 

basins. The clustering proposal analyzed was the hydrological group division (Almagro, 

2021), on an interannual and monthly scale. Results for the regionalization approach are 

described below. 

 

5.4.1. Interannual scale 

We evaluate the use of six α values to predict runoff across Brazil, calculated 

from the median of the MMSE α values of the catchment belonging to the groups. The 

correlation between Predicted Annual Runoff and Observed Annual Runoff was then 

evaluated by leave-one-out cross-validation, using metrics such as R², KGE, RMSE, and 

PBIAS, as described in Section 4.4. Figure 9 illustrates the relations between predicted 

and observed annual runoff for each group, colored by the scatter density with the 

number of neighboring points. 

Table 1: Median of MMSE α value (mm-1) of each hydrological group, for an interannual scale. 

Hydrological group Median of MMSE α value (mm-1) 

Non-seasonal 0.0002558485 

Dry 0.0001249390 

Rainforest 0.0002220525 

Savannah 0.0002124880 

Extremely-dry 0.0000923000 

Extremely-wet 0.0002515930 
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Figure 9: Scatter plot with observed annual runoff versus predicted annual runoff from median 

MMSE α value for each group during the 30 years series from the 716 CABra catchments, 

divided by groups. Colored by the number of neighbors for each point. 

As expected, the prediction is worse than local analysis when a single α value is 

used for each hydrological group. The group that did not perform so well is the 

Extremely-dry group (R² = 0.67 and KGE = 0.598), and the best one is the Non-

seasonal (R² = 0.74 and KGE = 0.843). Despite worse prediction indicators for each 

group, KGE and R² were higher than 0.598 and 0.49, respectively, for all groups, 

highlighting the good performance of the method on an interannual scale, considering 

all years of a series within one catchment. RMSE is higher for Extremely-dry (89.0%) 

and Dry (50.8%) groups, and smaller for Non-seasonal (22.1%) and Extremely-wet 

(16.2%). The adjusted equations follow the same behavior as the local scale analysis. 
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5.4.2. Monthly Scale 

 

The regionalization on a monthly scale was done by assuming one α coefficient 

for each group and month, from the median values from the catchments. The boxplots 

of KGE values for the 12 months divided by each group are presented in Figure 10. 

These α values and the boxplots of PBIAS values are exhibited in the Supplementary 

Material (Table S1 and Figure S12, respectively). 

 
Figure 10: Boxplot with KGE from regionalized monthly runoff prediction for each month and 

group from the 716 CABra catchments. 

The groups with the lowest values of PBIAS and highest values of KGE are Non-

seasonal and Extremely-wet, given a more constant rainfall behavior on an intra-annual 

scale (Almagro, 2021). The worse performance was the Dry group, with median 

monthly KGE < 0 for all months, and PBIAS > 100% from June to August. The 

regionalization for a monthly scale appears to have worse results than the interannual 

scale for all groups, indicating the influence of interannual and intra-annual behavior of 

streamflow on the method’s performance. The results appear to be similar to the 
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predictions by Arheimer et al., 2020, which showed relatively good results in Brazilian 

North region catchments when predicting monthly runoff, with median monthly KGE > 

0.60, and worse performance in the North-east region, with KGE < -1. Dry and 

Extremely-dry groups might have higher variance on an interannual scale, and 

particularly on an intra-annual scale due to the influence of soil water content, and high 

rates of evapotranspiration (Pinheiro et al., 2016). 

 

6. Limitations and broader implications 

This paper has demonstrated the usefulness of the Grunsky method on an annual 

and monthly scale, especially for wetter catchments. Broader studies are required for the 

performance improvement in drier catchments, such as consideration of the 

hydrological balance and inter-catchment groundwater fluxes, as proposed by Liu et al. 

(2020) and Schwamback et al. (2022). 

The analysis methods employed, due to their relative ease of application, have 

great replication capacity. That is, they may be used for a large database of 

hydrographic basins, as is the case with CABra, and can be updated in the future, as 

needed. Further studies may complement and enrich the topic discussion through the 

adaptation of the methods already described, or further analysis of other characteristics 

of hydrographic basins since the database has a great variety of data. Through the 

CABra database, especially the values of precipitation and flow in different time scales, 

it is possible to analyze the influence of environmental factors on runoff response to 

precipitation. 

Regionalization is an important tool for the estimation of water availability in 

poorly or ungauged catchments(Athira et al., 2016), and contribute for different water 

uses (Agarwal et al., 2016; Bork et al., 2021), specially in developing countries where 
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hydrological data is scarce (Beskow et al., 2016). In Brazil, legislation on water 

resources allows each state to determine its values of reference for granting water use 

privileges (Honório et al., 2020). In several Brazilian states, the reference 

environmental flow is  permanence flow, which guarantees that the flow of a 

determined river equals or passes this value on 95% of the time (ANA, 2007; Piol et al., 

2019). Broader studies might be needed seeking the performance evaluation of 

Grunsky’s Method for practical purposes such as predicting permanence flow curves for 

different water uses. 

 

7. Conclusions 

This study aims to predict runoff in ungauged basins from values of precipitation 

and the α coefficient applied on a simple and easy-to-use equation. The method could 

support fast decision-making processes, and hydraulic projects, from irrigation to dam 

constructions, and generate permanence flows for licensing projects. From this analysis, 

some conclusions deserve special attention and are described below. 

First, results could show that the Grunsky method can be applicable for Brazilian 

catchments, having a good fit, especially for Non-seasonal and Extremely-wet groups 

on annual and monthly scales, showing less variability in both interannual and intra-

annual scales. The best method to obtain α for each catchment is the MMSE method, 

showing good results for annual and monthly analysis, for all hydrological groups. 

Grunsky’s Equation ranged from annual KGE = 0.60 to 0.84 for the regionalized 

method, by using only precipitation and the α coefficient. Considering the usage of each 

approach, the regionalization method, using a single α coefficient for each hydrological 

group, has a wider use for ungauged basins, although a local analysis might be 
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convenient for analysis on poorly gauged catchments, since it shows a better 

performance. 

Our study demonstrated the possibility of Grunsky’s method to be applied to 

interannual and monthly scales. The temporal scale seems to be a paramount factor in 

the decision of whether the model is good for prediction or not. Non-seasonal 

catchments, located mainly in the South region of Brazil, show more constancy and 

better performance for predictions on an interannual and intra-annual scale. Considering 

the simplicity and practical use of the method, this work presents a reliable alternative 

to more complex methods to calculate runoff from very few parameters. We expanded 

Grunsky’s method usage from Mediterranean to tropical climate basins in Brazil, which 

might be an important tool for future studies and also for hydraulic infrastructure 

projects. 
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Improved empirical Grunsky Method for Streamflow prediction in 
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1. Abstract 

Despite the reported advances since the 2000s in streamflow prediction through 

regionalization techniques by using regression equations, hydrologic similarity, 

hydrological models, and machine learning, this remains a difficult issue in Hydrology, 

particularly for ungauged basins. Here, we proposed an improved Grunsky generalized 

method to streamflow prediction for ungauged and poorly gauged basins. This approach 

utilizes the generalization of a rainfall-runoff relation coefficient (α) based on mean 

annual temperature. We evaluate this approach in 716 Brazilian catchments for 

interannual and monthly scales. Initially, we investigate the relationship between α and 

various catchment attributes such as the aridity index, annual average temperature, and 

potential evapotranspiration. Subsequently, we calculate α for each catchment through 

multiple linear regression, utilizing annual average precipitation and temperature as 

input variables. Finally, we assess the performance of mean annual runoff prediction by 

employing the computed α for each catchment, employing leave-one-out cross-

validation. Our findings indicate that the improved Grunsky’s approach is suitable to 

predict runoff for Brazilian basins mainly on interannual scale, presenting KGE = 0.899, 

R² = 0.82 and RMSE = 27.4%. 

 

2. Keywords 

Aridity index, mean temperature, potential evapotranspiration, regionalization. 

 

3. Introduction 

Runoff prediction at ungauged or poorly gauged basins (PUB) has been an 

important matter for hydrologists and emerges as one of the most fundamental topics in 
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the hydrology field given its fundamental role for improved water resources 

management and enhanced hydrological processes understanding (Agarwal et al., 2016; 

Du et al., 2020; Zhang et al., 2023). For instance, the International Association of 

Hydrological Science (IAHS) recognized the importance of this issue and designated 

the decade of 2003-2012 for discussing and studying PUB (Sivapalan et al., 2003; 

Hrachowitz et al., 2013). Since then, several methods of PUB, ranging from empirical 

to physically-based have been developed (Arsenault et al., 2023), given the advances in 

process understanding, data-processing capability and the greater availability of 

hydroclimatic time series (Sivapalan et al., 2003).  

Currently, one of the most used PUB methods relies on data-driven approaches, 

which consist in calibrating the model with an observed dataset and further applying the 

calibrated model to predict runoff at ungauged basins, operating as a “black box”, and 

not based on hydrology principles in the basin. This approach encompasses the machine 

learning techniques such as artificial neural networks and support vector machines, and 

has seen significant improvements in prediction accuracy over the past few decades 

(Mosavi, Ozturk and Chau, 2018; Samantaray et al., 2022). Nevertheless, these 

computational methods might be of difficult replication and understanding for who is 

interested in predict runoff in a simple and fast process (Shalamu, 2009; Yaseen et al., 

2016; Seo, Kim and Singh, 2018). Another widely used PUB method, the physically-

based models, might help the understanding of relations between the hydrological 

entities (VanderKwaak and Loague, 2001), but also employs complex physical 

equations and parametric assumptions that hampers their use in a simple way (Yaseen et 

al., 2016). 

Throughout the late 1800’s and 1900’s, several empirical equations relating 

rainfall and runoff were developed in order to support the design of hydraulic 
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infrastructures (Eview and Linsley, 1967). These approaches rely on the use of 

catchments’ parameters such as mean slope, mean annual temperature and drainage 

area, besides precipitation, (Justin, 1914; Vogel, Wilson and Daly, 1999) to predict 

runoff. The Civil Engineer Carl E. Grunsky, president of the American Society of Civil 

Engineers - ASCE in 1924, developed one of these empirical methods based on data 

collected from catchments in San Francisco Peninsula in California, United States, 

which consists on a 1-variable functional form that relates mean annual precipitation to 

runoff (Grunsky and Manson, 1908; Grunsky et al., 1915). 

Grunsky's original framework remained untouched until the development of a 

recent study that employed a generalized formula specifically designed for 

Mediterranean-type climate basins in California, Portugal, and France (Santos and 

Hawkins, 2011). This study produced promising outcomes, including a good 

performance (r² = 0.89) in long-term streamflow prediction of Portugal watersheds, and 

a robust correlation observed between the generalized formula and mean annual 

temperature. Marchezepe et al. (2023) analyzed the generalized Grunsky’s method in 

716 Brazilian catchments, reporting for interannual regionalized streamflow predictions, 

a median percentage bias and Kling-Gupta Efficiency of -1% and 0.73, respectively. 

Futhermore, more than 83% of the total studied basins had at least one month with KGE 

greater than 0.50 on a montly scale.  

The results gathered so far highlighted the easiness and good performance of the 

Grunsky method for predicting runoff. While the Grunsky approach is highly applicable 

because it relies solely on precipitation data, there are currently other variables with 

abundant data availability (e.g. temperature) that could be incorporated into the 

formulation to improve its performance. Here, we seek to answer the following 

questions: Can Grunsky’s Method be improved by adding temperature data? How much 
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is the improvement? How can these variables be integrated into the main framework 

without deviating from the original objective of predicting runoff in a quick and 

straightforward manner? 

In this study, we propose an improved version of the Grunsky’s equation which 

encompasses/uses temperature data besides precipitation and investigate its performance 

in computing monthly and interannual streamflow. We applied the generalized Grunsky 

method for 716 Brazilian catchments available in the Catchments Attributes for Brazil 

(CABra) dataset (Almagro et al., 2020). We organized this study as follows: in section 

4, we describe the used dataset, presents Grunsky’s method and the parameters used for 

its improvement, on an interannual and monthly scales. In section 5, we present and 

discuss the results, respectively and, in section 7, we highlight the main conclusions of 

the paper. 

 

4. Material and methods 

4.1. Dataset 

We used the CABra dataset, which comprises several climatological and 

topographic attributes for 735 catchments in Brazil (Almagro et al., 2020). The 

catchment attributes are divided into eight categories, which include topography, 

climate, streamflow, groundwater, soil, geology, land-use and land-cover, and 

hydrologic disturbance. In addition to these static attributes, the dataset also comprises 

30-year daily records of precipitation, streamflow, and both actual and potential 

evapotranspiration from 1980 to 2010. The data for each catchment contains less than 

10% of missing information. Here, we used the CABra’s daily time series of 

precipitation (P) and streamflow (Q) between October 1st, 1980 and September 30th, 

2010, covering 30 hydrological years. P was derived from an ensemble mean between a 
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high-resolution ground-based reference dataset (Xavier, King and Scanlon, 2016) and 

the ERA5 reanalysis dataset (Hersbach et al., 2020b), while Q was based on streamflow 

gauge observations from ANA, the National Water Agency (available at 

http://www.snirh.gov.br/hidroweb/). The daily values were converted to annualized 

(monthly) series, resulting in 30 (360) annual (monthly) runoff and precipitation values 

for each catchment. To maintain the consistence of annual and monthly values within 

the same catchment, years (months) with at least one day of missing data were excluded 

from the analysis. A total of 19 catchments were also excluded from the study because 

they exhibited inconsistent values of annual Real Evapotranspiration (E), Q and P (Q > 

P or E > Q). Consequently, the study used 716 catchments for analysis. 

The Brazilian catchments were divided in six hydrological groups based on 

catchment hydrological signatures and attributes from the CABra dataset, analyzed with 

principal component analysis and random forest algorithms (Almagro, 2021). These 

hydrological groups are “Non-seasonal”, “Dry”, “Rainforest”, “Savannah”, “Extremely-

dry”, and “Extremely-wet” catchments (Figure 1). We used these six groups for 

regionalization because they represent hydrological similarities better than other 

geographic, climate, or ecosystem groups. The groups are characterized as follows: 

 Non-seasonal: high mean streamflow, no clear precipitation-temperature 

relationship, located mainly in the South region with Pampa, Atlantic 

Forest biomes, and some in the Amazon biome. 

 Dry: well-defined rainy and dry seasons, highest temperatures, located 

mainly in the Cerrado biome between Amazon and Caatinga biomes, with 

great variance in aridity index and low values of mean precipitation. 

 Rainforest: high amounts of precipitation, well-defined rainy season, 

located mainly in the Atlantic Forest biome region. 
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 Savannah: presents savannah characteristics, located mainly in the Cerrado 

biome with vegetation composed of grass and forest, aridity index varying 

from 1 to 2. 

 Extremely-dry: located in the Caatinga biome, covered mainly by grass 

and shrubs, non-perennial streams, high aridity index. 

 Extremely-wet: highest precipitation and streamflow values, located in the 

Amazon and Atlantic Forest biomes, covered mainly by forests. 

 

4.2. Relashionship between α and catchments attributes  

The study comprehended an exploratory analysis between the α coefficient, 

calculated from the generalized Grunsky’s Equation described below, and some of the 

catchment’s attributes in which may exert an important influence in the rainfall-runoff 

transformation. Equation 1 refers to the generalized Grunsky’s quation between the 

mean annual runoff (  ), and the mean annual precipitation ( ), measured in mm. Since 

there are only catchments with Qobs < Pobs, α coefficient is positive in the annual 

analysis. 

 
(1) 

 
 

The α coefficient was calculated using the Minimum Mean Square Error (MMSE) 

method, which is the same approach used by Marchezepe et al. (2023). This method 

selects an α value from the 30-year annual series that best fits the model for each 

catchment based on the KGE metrics. 

To obtain a preliminary overview of the relationship between the α parameter – 

computed for all evaluated catchments – and catchments attributes, we computed the 
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Spearman’s correlation between α and several catchments attributes, already available 

in the CABra dataset, and from this first analysis, we chose some of the higher 

correlations and previously recognized as the parameters that have stronger influence on 

Q in a catchment-scale: maximum, minimum and mean temperarature (Santos and 

Hawkins, 2011), aridity index (Meira Neto et al., 2020; Ballarin et al., 2022), and actual 

and potential evapotranspiration (ET and PET, respectively), calculated by Penman-

Monteith (Allen et al., 1998), Priestley-Taylor (Priestley and Taylor, 1972), and 

Hargreaves (1975) methods. 

 

4.3. Calculating α from a Multiple Linear Regression Method 

After identifying the catchments’ attributes well correlated with α, we fit a 

Multiple Linear Regression (MLR) considering the α as the dependent variable and 

mean precipitation ( )  and this specific catchment parameter as the independent 

variables ( ), generating an Equation 2 type equation, with A and B being the  and 

 coefficient, respectively, and C the constant term. This type of equation was used for 

mean annual and monthly scales, needing more studies for other temporal scales. 

 (2) 

 

We evaluate the performance of the MLR models in predicting α by using 

different metrics in a leave-one-out cross validation scheme. This approach involved 

generating a regression equation for each catchment by using data from all the other 

catchments except the one being analyzed. Then, we predicted the α coefficient for the 

excluded catchment and used Grunsky's generalized equation to obtain a predicted 

runoff. This process was repeated for all catchments, and the predicted runoff values 
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were compared to the observed runoff values at two different time scales: mean annual 

and mean monthly values. The analysis method can be visualized on Figure 11. 

 

Figure 11: Schematic view of the analysis method. 

 

4.4. Performance Evaluation of streamflow prediction obtained by 

using the proposed approach 

Four widely used statistical metrics were employed to evaluate the model 

performance, namely: the coefficient of determination (R²), the Kling-Gupta Efficiency 

(KGE) (Gupta et al., 2009), the Percent Bias (PBIAS), and the Root Mean Square Error 

(RMSE). R² and KGE values close to 1 indicate better model performance, positive 

(negative) PBIAS represents overestimation (underestimation) in predictions, and lower 

RMSE values imply reduced errors. 
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5. Results and discussion 

The results are presented in two steps: (i) we first assess the relationship between 

α coefficient and climate parameters, and choose the parameter that best correlates with 

α coefficient. (ii) Then we evaluate the performance of an improved Grunsky’s 

framework, proposed in the present study, on an annual and monthly time scales for all 

catchments, by calculating α coefficient from a multiple linear regression equation using 

mean temperature. 

 

5.1. Relashionship between α and catchments characteristics 

The Spearman correlation between annual α coefficient with the selected 

catchments parameters is displayed in Figure 2, which also includes the inter correlation 

between the selected parameters. The correlation values between α and catchments 

attributes ranged from -0.5 to -0.57 with α and all parameters, excepting actual 

evapotransporation. Since potential evapotranspiration, temperature and aridity index 

are strictly related, these results were already expected. 
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Figure 12: Spearman correlation matrix between alpha and climatic parameters of CABra dataset. 

By analyzing scatterplots from Figure 13, it can be seen that temperature, PET 

and aridity index present negative correlation with α. From Equation 1, we observe that 

α presents a positive correlation with precipitation, which is negatively correlated with 

PET, and therefore, with mean temperature, according to the Penman-Monteith 

framework (Zotarelli et al., 2014), and also, by definition, inversely proportional to 

aridity index (Budyko, 1974). Especially, mean temperature and potential annual 

evapotranspiration by Penman-Monteith equation present a similar scatter pattern, also 

demonstrated by Figure 12, where these two parameters have a positive correlation 

higher than 0.8. However, the aridity index plot (Figure 13b) showed a distinct 

distribution, due to a lower absolute correlation with α and the other parameters. One of 

the reasons might be that aridity index associates potential evapotranspiration and 
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precipitation, which adds more variability to the scatter, since α is not strongly 

correlated with precipitation from the Spearman correlation observed on Figure 12. 

Among the hydrological groups, the Dry and Extremely-dry groups exhibit the 

lowest values of α, suggesting that catchment attributes significantly influence the 

conversion of precipitation into runoff. This influence, here represented by α, is also 

manifested by the highest values of mean temperature, PET and Aridity Index for these 

groups, meaning that lower α indicates that precipitation has a stronger tendency to 

losses before turning into runoff, in opposition to Non-seasonal and Rainforest groups, 

with higher α. 

 

 

Figure 13: Scatterplots of alpha coefficient and a) Mean Temperature (°C), b) Aridity Index, and c) Potential Annual 

Evapotranspiration by Penman-Monteith equation. 

b) c) 

a) 
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As long as this study aims to search the most simple possible method to find 

runoff from an ungauged catchment’s parameters, and since potential evapotranspiration 

and mean temperature are highly correlated, we chose the mean temperature as the 

center parameter of the analysis, on an annual and monthly scales, taking into account 

this being a direct and simpler parameter regarding quantification over the global 

atmosphere (Morice et al., 2012; Xavier, King and Scanlon, 2016). 

On a montly scale, as described in Marchezepe et al. (2023), the driest months of 

the year, i.e. from May to August, there is a higher variation of α values, and even 

negative results for Rainforest, Savannah and Dry groups, implying on Q > P for these 

months through the historical series, implying that the runoff is influenced by 

groundwater for these months. These results put in evidence that, during these drier 

months, runoff receives relatively more contribution from groundwater, especially for 

these groups, also noted by Almagro (2021). The other groups did not present this 

behavior, suggested by the inexistence of dry/wet seasons for Non-seasonal group, the 

water scarcity on Extremely-dry catchments, leading to non-perennial streams and 

streamflow influenced by surface flow, and high precipitation rates throughout the year 

on Extremely-wet groups (Almagro, 2021). The impact of seasonality in predictions 

might request a proper approach for these months and groups, taking into account the 

groundwater effect on runoff. The wetter months presented a similar scatter behavior as 

the annual scale, with a negative correlation between mean temperature and α 

coefficient. 
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Figure 14: Scatterplot of alpha coefficient versus mean monthly temperature (°C) by group. 

 

5.2. Calculating α from a Multiple Linear Regression Method 

Since mean temperature is the chosen focus parameter of the analysis, we 

computed a multiple linear regression equation, relating α coefficient to the Mean 

Annual Temperature ( ), and Mean Annual Precipitation ( ) from all 716 catchments, 

generating an Equation 2 type equation. The equations were calculated by the leave-

one-out cross validation. 

The calculated multiple linear regression model for all catchments on an annual 

scale resulted on Equation 3. 

 (3) 

 

From the same process for all catchments, the observed and predicted annual 

runoff values were compared, presenting KGE = 0.9, R² = 0.82 and RMSE = 27.3% 

(Figure 15). These inputs represent an increase in performance of the original method 

from Marchezepe et al. (2023), that presented KGE = 0.6 to 0.84, R² = 0.49 to 0.74 and 
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RMSE = 16.5% to 87.8% for annual scale and each group. Results show similar 

performance than the water balance modeling based on the Budyko framework from 

Zhang et al. (2008), that showed a coefficient of efficiency of 0.93, and from 

Samantaray et al. (2022), that reached R² = 0.97 for monthly scale predictions using 

machine learning techniques for monthly scales using rainfall, temperature and 

humidiy. Also, results are better than studies such as from Singh et al. (2022) that use 

machine learning techniques for regionalization in ungauged basins (R² = 0.7). 

 

Figure 15: Observed runoff versus predicted runoff on an annual scale. 

 

The same analysis method using leave-one-out cross validation was used for the 

monthly scale analysis (Figure 16). The results put in evidence the previous 

observations of higher variation mainly on drier months (May to August), when runoff 

remains supplied by groundwater, and exceed precipitation, leading to negative values 

of α, and decreasing prediction performance for these months. On the other hand, even 

though wetter months performed relatively better, results do not follow the mean annual 

predictions, indicating great intra-annual influence of different factors other than simply 
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mean temperature and precipitation. This difference between wet and dry seasons 

predictions was already observed for Southeast Brazil (Zhang et al., 2018). 

 

Figure 16: Observed runoff versus predicted runoff on a monthly scale. 
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The equations coefficients and performance indicadors for each month are 

described on Table 2. One can note adverse values of these indicators, mainly for 

October, taking into account that there was no exclusion of outliers in the analysis. 

There were counted data with discrepant values from the other catchments. 

Table 2: Multiple linear regression equation coefficients and performance metrics for each month. 

Month A B C KGE RMSE R² 

1 -1.550252e-04 -9.977739e-08 0.004542756 0.539 51.8 0.54 

2 -1.946228e-04 -7.198937e-07 0.006048492 0.482 51.4 0.54 

3 -2.548126e-04 5.026635e-07 0.007223951 0.473 53.6 0.47 

4 -1.427797e-04 -6.749037e-06 0.006624364 0.322 65.2 0.32 

5 -2.176534e-04 -1.334365e-05 0.009476049 -1.971 283.4 0.23 

6 9.903585e-05 1.116949e-04 -0.014463027 -7.615 891.4 0.03 

7 3.888679e-04 1.546483e-04 -0.021028256 -0.733 254.0 0.11 

8 -9.213360e-05 -4.612289e-06 0.006441633 0.472 64.2 0.86 

9 6.001941e-06 -1.639433e-07 0.001965425 0.462 62.7 0.85 

10 -1.103967e-04 7.255341e-06 0.002810552 -98.812 10045.1 0.01 

11 -1.780340e-04 -2.940251e-06 0.005529575 0.330 66.1 0.36 

12 -1.823458e-04 -2.493800e-06 0.005695633 0.537 52.9 0.39 

 

6. Limitations and broader implications 

This paper has demonstrated the usefulness of the improved Grunsky method on 

an annual scale, especially. On a monthly scale, there were better results for wetter 

months. Broader studies are required for the performance improvement in drier 

catchments, such as using the direct runoff instead of total runoff, which might improve 

the predictability since direct runoff is closely related to precipitation events and 

predictions performances are influenced by dry and wet seasons (Zhang et al., 2018; 

Meira Neto et al., 2020). 

The analysis methods employed, due to their relative easy application, have great 

replication capacity. That is, they may be used for a large database of hydrographic 
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basins, as is the case with CABra, and can be updated in the future, as needed. Through 

the CABra database, it is possible to analyze the influence of other environmental 

factors on runoff response to precipitation, especially the values of precipitation and 

flow in monthly scale. 

 

7. Conclusions 

This study aims to improve the Grunsky’s method, which predicts runoff in 

ungauged basins from values of precipitation associated with other parameter, resulting 

in a simple equation with better performance than the original method. From this 

analysis, some conclusions deserve special attention and are described below. 

First, it can be said that the proposed method improves Grunsky’s generalized 

framework by adding mean temperature to a multiple linear regression equation to 

predict α coefficient. Performance indicators such as KGE, R² and RMSE show a better 

performance than the original method. 

Secondly, time scale do influence the method performance, as already mentioned 

for the original method and confirmed by the present study. On a monthly scale, results 

show a high variability of α and, consequently, of predicted runoff, leading to lower 

performance indicators than for mean annual scale. This variability might be a 

consequence of baseflow influence on intra-annual scales, since the highest variabilities 

are presented on the driest months, when total runoff exceeds total precipitation, 

indicating a high influence of baseflow, and leading to negative α coefficients. 

At last, it is noteworthy that the improved method could support fast decision-

making processes, and hydraulic projects, from irrigation to dam constructions, and 

generate permanence flows for licensing projects. The multiple linear regression 



64 

 

 

equation is one of the fastest methods to calculate a parameter from independent 

variables. In addition, these variables, mean temperature and mean precipitation, are 

widely used and available from many sources, such as satellite images and gauge 

stations (Morice et al., 2012; Xavier, King and Scanlon, 2016). 
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GENERAL CONCLUSIONS 

Grunsky’s Method proved to be a relatively reliable prediction method, given its 

simplicity and transparency with hydrological parameters. 

In Chapter 1, we discussed the validity of the method for Brazilian catchments, 

proving its applicability even in non-Mediterranean climate, which was not 

experimented since the method was first proposed in the early 1900’s. 

In Chapter 2, we analyzed the introduction of other parameters to the method in 

order to improve it. The main parameter for this analysis was mean temperature, that 

was already proven to have high correspondence to precipitation and streamflow, and 

even proposed by (Santos and Hawkins, 2011). 

As it is a matter of increasing relevance within the scope of climate change, the 

present study will be able to offer parameters that allow a succinct, but well-founded, 

assessment of the predictions of ungauged Brazilian catchments. This assessment, 

represents another tool in favor of better strategic planning for watershed management, 

engineering projects and environmental studies for issuance purposes. 

The analysis methods employed, due to their relative ease of application, have 

great replication capacity. That is, they can be used for a large database of hydrographic 

basins, as is the case with CABra, and can be updated in the future, as needed. If 

necessary, it is also possible to complement and enrich the study through the adaptation 

of the methods already described, or further analysis of other characteristics of 

hydrographic basins, since the database has a great variety of data. Through the CABra 

database, especially the values of precipitation and flow in different time scales, it is 

possible to analyze the influence of environmental factors on runoff response to 

precipitation. It is expected, with the large number of hydrological basins analyzed, a 

study of greater reliability. 
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1. Contents of this file  

This supporting information contains additional figures that support the findings 

of the paper. First, Figure S17 presents a plot of Grunsky’s method equation considering 

different α coefficient values. In Figure S18 we dispose boxplots of α coefficient values 

divided by the hydrological groups. Figure S19 provides the scatter plots of Annual 

Observed Precipitation (mm) and Runoff (mm) for each hydrological group. Figure S20 

exhibits boxplots of α coefficient values by month. In Figure S21, we show the 

spatialization of MMSE α values on Brazilian territory in order to observe any spatial 

distribution of its values. Figure S22, Figure S23 and  

The regionalization on a monthly scale was done by assuming one α coefficient 

for each group and month, from the median values from the catchments. The boxplots 

of KGE values for the 12 months divided by each group are presented in Figure 10. 

These α values and the boxplots of PBIAS values are exhibited in the Supplementary 

Material (Table S1 and Figure S12, respectively). 
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Figure 10: Boxplot with KGE from regionalized monthly runoff prediction for each month and 

group from the 716 CABra catchments. 

The groups with the lowest values of PBIAS and highest values of KGE are Non-

seasonal and Extremely-wet, given a more constant rainfall behavior on an intra-annual 

scale (Almagro, 2021). The worse performance was the Dry group, with median 

monthly KGE < 0 for all months, and PBIAS > 100% from June to August. The 

regionalization for a monthly scale appears to have worse results than the interannual 

scale for all groups, indicating the influence of interannual and intra-annual behavior of 

streamflow on the method’s performance. The results appear to be similar to the 

predictions by Arheimer et al., 2020, which showed relatively good results in Brazilian 

North region catchments when predicting monthly runoff, with median monthly KGE > 

0.60, and worse performance in the North-east region, with KGE < -1. Dry and 

Extremely-dry groups might have higher variance on an interannual scale, and 

particularly on an intra-annual scale due to the influence of soil water content, and high 

rates of evapotranspiration (Pinheiro et al., 2016). display boxplots for mean, median 

and MMSE α values, respectively, for each month and hydrological group. Erro! Fonte 

de referência não encontrada. shows the spatialized KGE and PBIAS values from the 

local analysis on interannual scale. Figure S25 presents the spatial distribution for 

MMSE α value on the Brazilian territory for the monthly scale, and Figure S26, the 

respective PBIAS values. Table S1 contains the median values for MMSE α for each 
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month and group. Figure S27 exhibits the boxplots with PBIAS from regionalized 

monthly runoff prediction for each month and group from the 716 CABra catchments. 
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2. Grunsky method plot 

 
Figure S17: Grunsky's equation plot for various values of α (mm-1), and lines with 

relations between  (annual runoff) and  (annual precipitation). 
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3. Boxplots of α coefficient by group 

 
Figure S18: α coefficient of all 716 evaluated catchments, divided according to their 

hydrological groups for both (a) interannual and (b) monthly temporal scales.  
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4. Grunsky curve for hydrological groups on annual scale 

 
Figure S19: Scatter plot with observed annual runoff versus observed annual 

precipitation for each year of the 30 years series from the 735 CABra catchments, and 

Grunsky’s equation plots for multiple α values (mm-1), divided by cluster. 

As it can be seen, Group 1 (Non-seasonal) shows a large range of precipitation 

and runoff, resulting in a high variance of α values. Although, the point cloud indicates 

higher density of points for α between 0.0002 and 0.0003. Group 2 (Dry) shows values 

of α between 0.0001 and 0.0002, which means that runoff represent a minor part of 

precipitation and a high rate of infiltration. The majority of catchments show 

precipitations below 1500 mm year-1. Group 3 (Rainforest) presents high density of 

points with precipitation between 1000 and 2000 mm year-1, and a great variety of α 

values. Although, it is noted that there is a high density between 0.0002 and 0.0003. An 

interesting fact is that, for some catchments with high values of Pobs, α is approximate 

0.0001, indicating high rate of infiltration. 

Group 4 (Savannah) indicates a majority of points with α very close to 0.0002 

curve, and very few points with α > 0.0004. Group 5 (Extremely-dry), as expected, 

shows great density of points with low values of precipitation, and as observed in the 

biome analysis, have a relatively good fit in the Grunsky’s Equation, with α between 

0.0001 and 0.0002. Group 6 (Extremely-wet) clearly shows the highest variability of α 
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values, with higher density of points between 0.0002 and 0.0004. Points with Qobs > Pobs 

may indicate that the runoff values of these catchments have a high percentage of water 

importation (Almagro, 2021). 

The groups within Amazon and Atlantic Forest biomes, with wetter climate, show 

great variability of α values, mainly for higher Pobs and Qobs. Pampa biome is located in 

the south region, with temperate climate, plain topography and grass vegetation, and 

shows a better fit for α = 0.0002 to 0.0004. Pantanal biome, containing the world’s 

largest tropical wetland area, is hardly represented in the plot, but the few points show a 

great fit for α = 0.0001. While Cerrado biome shows a higher variability of α values, the 

scatter plot for Caatinga biome seems to follow the curve for α = 0.0001, which 

indicates that a great part of the precipitation does not turn into runoff, but instead, it is 

lost by infiltration or evapotranspiration, agreeing with findings of Pinheiro et al. 

(2016), which found out that approximately 75% (±17%) of precipitation in Caatinga 

catchments is lost by evapotranspiration. 
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5. Boxplots of α coefficient by month 

 
Figure S20: Boxplot of (a) Mean, (b) Median, and (c) MMSE α values, for the 12 

months of the year, from the 716 catchments. 
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6. Interannual scale analysis 

The MMSE α values were plotted within the Brazilian territory in order to observe 

any spatial distribution of its values, and is presented on Figure S21.  

 
Figure S21: Map of α values correspondent to the MSE for each catchment. 

As it can be seen, α values are lower in the northeast region, where groups 2 (Dry) 

and 5 (Extremely-dry) are predominant, as already verified on the boxplot of Figure S2. 

In addition, the highest values are presented on the south and northwest regions, where 

the Group 1 (Non-seasonal) and 6 (Extremely-wet) are located, respectively. In the 

center and eastern regions, the values vary more, as this region corresponds to groups 3 

and 4 (Rainforest and Savannah, respectively), confirming a higher variability. It is 

noted that the behavior is similar to hydrological groups spatial distribution. 
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7. Monthly scale analysis 

i) Mean value 

 
Non-seasonal 

 
Dry 

 
Rainforest 

 
Savannah 

 
Extremely-dry 

 
Extremely-wet 

Figure S22: Boxplots α Mean Monthly Values by hydrological group. 

 

According to Figure S22, the division of boxplots with the value of α for each 

month separated by hydrological group agrees with the behavior already seen in the all-

catchments analysis: higher variation on drier months, and more cohesive values in 

other months. Although, the α values are different among the groups. The highest 

variabilities are found on Dry and Savannah groups, while the lowest ones are presented 

on Non-seasonal group. 

Negative α values are less common to find in Non-seasonal and Extremely-dry 

groups. According to Generalized Grunsky’s Equation (Equation 1), a negative α value 

is only possible when runoff is higher than precipitation (the opposite is not valid, i.e., 

runoff higher than precipitation not only leads to negative α value). This observation 
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might indicate that runoff is intrinsically dependent on precipitation, or precipitation is 

almost constant during all year, and its relation with runoff hardly changes. 

 

ii) Median value 

 
Non-seasonal 

 
Dry 

 
Rainforest 

 
Savannah 

 
Extremely-dry 

 
Extremely-wet 

Figure S23: Boxplots α Median Monthly α values by hydrological group. 

 

By analyzing Figure S23, it is clear again that by calculating α value for each 

catchment by the median of the 30-years series results in lower variability on values. 

Dry and Savannah group still present higher scatter, though it has decreased in 

magnitude and number of months with high variability, comparing to the method i) 

mean value. Non-seasonal has decreased even more its variability. 
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iii) MMSE value 

 
Non-seasonal 
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Figure S24: Boxplots α MMSE Monthly Values by hydrological group. 

 

 

The regionalization on a monthly scale was done by assuming one α coefficient 

for each group and month, from the median values from the catchments. The boxplots 

of KGE values for the 12 months divided by each group are presented in Figure 10. 

These α values and the boxplots of PBIAS values are exhibited in the Supplementary 

Material (Table S1 and Figure S12, respectively). 
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Figure 10: Boxplot with KGE from regionalized monthly runoff prediction for each month and 

group from the 716 CABra catchments. 

The groups with the lowest values of PBIAS and highest values of KGE are Non-

seasonal and Extremely-wet, given a more constant rainfall behavior on an intra-annual 

scale (Almagro, 2021). The worse performance was the Dry group, with median 

monthly KGE < 0 for all months, and PBIAS > 100% from June to August. The 

regionalization for a monthly scale appears to have worse results than the interannual 

scale for all groups, indicating the influence of interannual and intra-annual behavior of 

streamflow on the method’s performance. The results appear to be similar to the 

predictions by Arheimer et al., 2020, which showed relatively good results in Brazilian 

North region catchments when predicting monthly runoff, with median monthly KGE > 

0.60, and worse performance in the North-east region, with KGE < -1. Dry and 

Extremely-dry groups might have higher variance on an interannual scale, and 

particularly on an intra-annual scale due to the influence of soil water content, and high 

rates of evapotranspiration (Pinheiro et al., 2016). presents the boxplots of MMSE α 

values, with decrease of variability compared to the method of item i) mean value. 

Although, its results seem a little difference from the item ii) median value, as shown 

below. Apparently, the groups with the lowest variabilities are Non-seasonal and 

Extremely-dry, while the other groups show similar magnitudes of variation to the mean 
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α values. In addition, negative α values are less common to find in Non-seasonal and 

Extremely-dry groups. 

8. Spatial distribution of local analysis on a monthly scale 

 
Figure S25: Maps of MMSE α value for each group for each month, from January (top 

left) do December (bottom right). 

 

The spatial distribution for MMSE α value is presented on Figure S25. The lowest 

α values are exhibited in May, June and July for few catchments in the central region 

The values go from nearly 0.002 in April to close to or below zero from May to August. 

For Northeast region, α values are lower from October to March, varying from 0.0005 

to 0.002. PBIAS spatial distribution is shown in Figure S26. 
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Figure S26: Maps of PBIAS from MMSE α value for each group for each month, from 

January (top left) to December (bottom right). 
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9. Regionalization results for the monthy scale 

By regionalizing the α coefficients by month and group, Table S1 presents the results. 

Table S3: Median alpha values from the regionalization on a monthly scale. 

Group Month 
Median 

α 

1 

1 
0.0014

41779 

2 
0.0017

83571 

3 
0.0021

55377 

4 
0.0022

81761 

5 
0.0028

70428 

6 
0.0043

85096 

7 
0.0060

76298 

8 
0.0050

08543 

9 
0.0024

80084 

10 
0.0030

42482 

11 
0.0023

77738 

12 
0.0017

76446 

2 

1 
0.0002

27684 

2 
0.0005

05705 

3 
0.0003

15033 

4 
0.0008

67098 

5 
0.0013

70199 

6 

-

0.0109

99635 

7 

-

0.0143

10653 

8 

-

0.0158

54241 

9 
0.0050

79955 

10 
0.0006

45941 

11 
0.0003

03946 

12 
0.0002

11039 

3 

1 
0.0009

20937 

2 
0.0012

91106 

Group Month 
Median 

α 

3 
0.0015

52959 

4 
0.0037

92639 

5 
0.0029

71881 

6 

-

0.0077

25215 

7 
0.0015

40382 

8 
0.0032

55095 

9 
0.0014

72394 

10 
0.0013

46934 

11 
0.0009

76754 

12 
0.0007

95681 

4 

1 
0.0006

96192 

2 
0.0012

29448 

3 
0.0011

21238 

4 
0.0035

86983 

5 
0.0048

68715 

6 

-

0.0136

52271 

7 

-

0.0133

98232 

8 
0.0042

42868 

9 
0.0022

85178 

10 
0.0008

23669 

11 
0.0006

09988 

12 
0.0006

4883 

5 

1 
0.0001

35825 

2 
0.0003

77692 

3 
0.0003

0591 

4 
0.0005

38056 

Group Month 
Median 

α 

5 
0.0010

49056 

6 
0.0009

88222 

7 
0.0014

0903 

8 
0.0012

48355 

9 
0.0010

26862 

10 
0.0005

3345 

11 
0.0002

57496 

12 
0.0001

99181 

6 

1 
0.0019

02146 

2 
0.0015

71838 

3 
0.0014

53796 

4 
0.0012

38644 

5 
0.0014

55963 

6 
0.0027

0638 

7 

-

0.0024

27728 

8 

-

0.0061

44618 

9 
0.0051

66935 

10 
0.0020

12781 

11 
0.0026

27158 

12 
0.0023

19432 
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Figure S27: Boxplots with PBIAS from regionalized monthly runoff prediction for each 

month and group from the 716 CABra catchments. 

 

 




