• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.18.2018.tde-01022018-122501
Documento
Autor
Nombre completo
Benedito Coutinho Neto
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2000
Director
Tribunal
Fabbri, Glauco Tulio Pessa (Presidente)
Silva, Antônio Nélson Rodrigues da
Suzuki, Carlos Yukio
Título en portugués
Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
Palabras clave en portugués
Análise de pavimento
Aparelhos deflectométricos
Procedimentos de retroanálise
Redes neurais artificiais
Retroanálise de pavimentos flexíveis
Resumen en portugués
Este trabalho investiga um procedimento para retroanálise utilizando Redes Neurais Artificiais (RNAs). Nesta pesquisa foram utilizadas 35.472 bacias de deflexões hipotéticas, criadas pelo programa ELSYM5. A base de dados de treinamento das RNAs consistiu dessas bacias de deflexão e dos módulos e espessuras que as geraram. A camada de entrada das RNAs foi compostas da(s) espessura(s) da(s) camada(s) do pavimento, da bacia de deflexão (na simulação com a viga Benkelman, além desses parâmetros, incluiu-se o raio de curvatura (R)) e a camada de saída foi composta pelos módulos resilientes das camadas do pavimento. Esses dados serviram de entrada para o processo de aprendizagem, utilizando-se o simulador EasyNN 3.2, que se baseia em redes Multilayer Perceptron e no algoritmo de treinamento Backpropagation. Para o procedimento de retroanálise proposto foram implementadas seis RNAs: duas simulando o procedimento para pavimento de duas camadas (uma simulando o ensaio da viga Benkelman e a outra a do Falling Weight Deflectometer), duas para pavimento de três camadas (simulação com os mesmos aparelhos) e duas para pavimento de quatro camadas (simulando os ensaios descritos anteriormente). Mediante as regressões lineares entre os módulos reais (ELSYM5) e os previstos pela RNA, obtiveram-se coeficientes de determinação (R2) e erros médios relativos (EMR). Estes parâmetros demonstraram uma boa correlação linear entre os módulos reais (ELSYM5) e os previstos (RNA). Com os resultados obtidos, conclui-se que as RNAs são ferramentas potentes para serem utilizadas como procedimento de retroanálise para pavimentos flexíveis de duas, três e quatro camadas.
Título en inglés
Artificial neural networks as a backcalculation procedure flexible pavements
Palabras clave en inglés
Artificial neural networks
Backcalculation of flexible pavements
Backcalculation procedure
Deflectometrical equipments
Pavement analysis
Resumen en inglés
This paper investigates a backcalculation procedure using Artificial Neural Networks (ANNs). In the research 35,472 hypothetical deflection basins were used, created by the program ELSYM5. The ANNs training database consisted of these basins, and of the moduli and thickness used to generate them. The input layer of these ANNs was composed by thickness(es) of the pavement layer(s), the deflection basin (in the simulation with the Benkelman beam, beyond of those parameters, the curvature radius included (R)) and the output layer was composed by the resilient moduli of the layers of the pavement. Those data were used as output for the learning process, using the easyNN 3.2 simulator, which is based on Multilayer Perceptron and in the training algorithm Backpropagation. For the backcalculation procedure proposed six ANNs they were implemented: two simulating the procedure for pavement of two layers (a simulating the testing of the Benkelman beam and the other the one of Falling Weight Deflectometer), two for pavement of three layers (simulation with the same equipments) and two for pavement of for layers (simulating the testing described previously). The values founds throught linear regression between the real moduli (ELSYM5) and the predicted of ones for ANN, were obtained determination coefficients (R2) and relative average errors (EMR). These parameters demonstrated a good linear correlation between the real moduli (ELSYM5) and the predicted of ones (ANN). The conclusion .is that ANNs are potent tools for they be used in backcalculation procedures flexible pavements of two, three and four layers.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-02-05
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.