• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.18.2018.tde-01022018-122501
Document
Author
Full name
Benedito Coutinho Neto
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2000
Supervisor
Committee
Fabbri, Glauco Tulio Pessa (President)
Silva, Antônio Nélson Rodrigues da
Suzuki, Carlos Yukio
Title in Portuguese
Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
Keywords in Portuguese
Análise de pavimento
Aparelhos deflectométricos
Procedimentos de retroanálise
Redes neurais artificiais
Retroanálise de pavimentos flexíveis
Abstract in Portuguese
Este trabalho investiga um procedimento para retroanálise utilizando Redes Neurais Artificiais (RNAs). Nesta pesquisa foram utilizadas 35.472 bacias de deflexões hipotéticas, criadas pelo programa ELSYM5. A base de dados de treinamento das RNAs consistiu dessas bacias de deflexão e dos módulos e espessuras que as geraram. A camada de entrada das RNAs foi compostas da(s) espessura(s) da(s) camada(s) do pavimento, da bacia de deflexão (na simulação com a viga Benkelman, além desses parâmetros, incluiu-se o raio de curvatura (R)) e a camada de saída foi composta pelos módulos resilientes das camadas do pavimento. Esses dados serviram de entrada para o processo de aprendizagem, utilizando-se o simulador EasyNN 3.2, que se baseia em redes Multilayer Perceptron e no algoritmo de treinamento Backpropagation. Para o procedimento de retroanálise proposto foram implementadas seis RNAs: duas simulando o procedimento para pavimento de duas camadas (uma simulando o ensaio da viga Benkelman e a outra a do Falling Weight Deflectometer), duas para pavimento de três camadas (simulação com os mesmos aparelhos) e duas para pavimento de quatro camadas (simulando os ensaios descritos anteriormente). Mediante as regressões lineares entre os módulos reais (ELSYM5) e os previstos pela RNA, obtiveram-se coeficientes de determinação (R2) e erros médios relativos (EMR). Estes parâmetros demonstraram uma boa correlação linear entre os módulos reais (ELSYM5) e os previstos (RNA). Com os resultados obtidos, conclui-se que as RNAs são ferramentas potentes para serem utilizadas como procedimento de retroanálise para pavimentos flexíveis de duas, três e quatro camadas.
Title in English
Artificial neural networks as a backcalculation procedure flexible pavements
Keywords in English
Artificial neural networks
Backcalculation of flexible pavements
Backcalculation procedure
Deflectometrical equipments
Pavement analysis
Abstract in English
This paper investigates a backcalculation procedure using Artificial Neural Networks (ANNs). In the research 35,472 hypothetical deflection basins were used, created by the program ELSYM5. The ANNs training database consisted of these basins, and of the moduli and thickness used to generate them. The input layer of these ANNs was composed by thickness(es) of the pavement layer(s), the deflection basin (in the simulation with the Benkelman beam, beyond of those parameters, the curvature radius included (R)) and the output layer was composed by the resilient moduli of the layers of the pavement. Those data were used as output for the learning process, using the easyNN 3.2 simulator, which is based on Multilayer Perceptron and in the training algorithm Backpropagation. For the backcalculation procedure proposed six ANNs they were implemented: two simulating the procedure for pavement of two layers (a simulating the testing of the Benkelman beam and the other the one of Falling Weight Deflectometer), two for pavement of three layers (simulation with the same equipments) and two for pavement of for layers (simulating the testing described previously). The values founds throught linear regression between the real moduli (ELSYM5) and the predicted of ones for ANN, were obtained determination coefficients (R2) and relative average errors (EMR). These parameters demonstrated a good linear correlation between the real moduli (ELSYM5) and the predicted of ones (ANN). The conclusion .is that ANNs are potent tools for they be used in backcalculation procedures flexible pavements of two, three and four layers.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-02-05
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.