MODELAGEM DE CUSTOS EM SISTEMAS DE MANUFATURA UTILIZANDO REDES DE PETRI

ANDREA RIBARI YOSHIZAWA DA SILVA

Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, para concorrer ao título de Mestre, pelo curso de pós-graduação em Engenharia Mecânica – área de concentração: Manufatura.

Orientador: Prof. Dr. Ricardo Yassushi Inamasu

São Carlos
2002
Dedicado aos meus pais Toyo e Maria, à minha tia Kikue, ao meu marido Marcos e ao meu filho Angelo.
AGRADECIMENTOS

À Coordenadoria de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES), pelo apoio financeiro concedido.

Ao professor Ricardo Yassushi Inamasu, por sua amizade e orientação durante o período em que trabalhamos juntos. Aos professores Arthur Porto e Eduardo Vila (SEM), Wilson Tachibana (SEP) e Ruth Duarte (SHS) pela colaboração.

A todos os meus amigos e, especialmente ao Paulo (seu empenho foi o que me trouxe para este departamento).

Aos companheiros do Laboratório de Simulação Patrícia, Sayuri, Marcelo, Zé Luiz, Simone, Mamoru, Silvia, Mariella, Victor, Jader e Douglas.

Aos funcionários que colaboraram de alguma forma com a concretização deste trabalho, em especial Beth (Simulação), Ana Paula e Diego (Pós), Trud, Elenise, Rosana e Nivaldo (Biblioteca Central) e Ronaldo (Oficina do NUMA).

A Deus pois, sem sua ajuda, a concretização deste trabalho certamente não seria possível.

A toda minha família, por sua total compreensão e seu incondicional apoio.
SUMÁRIO

LISTA DE FIGURAS ... VI
LISTA DE TABELAS ... VII
LISTA DE ABBREVIAÇÕES E SIGLAS .. VIII
LISTA DE SÍMBOLOS... IX
RÉSUMO ... XIII
ABSTRACT ... XIV

1 INTRODUÇÃO ... 1
1.1 MOTIVAÇÃO .. 1
1.2 OBJETIVOS .. 5
1.3 JUSTIFICATIVA... 5
1.4 ORGANIZAÇÃO DO TRABALHO .. 6

2 REVISÃO BIBLIOGRÁFICA .. 8
2.1 REDES DE PETRI (PN’s) .. 8
2.1.1 Componentes de uma PN lugar/transição (L/T) 8
2.1.2 Definição formal .. 9
2.1.3 Marcação, habilitação e disparo de transições 10
2.1.4 Propriedades comportamentais das PN’s 11
2.1.5 Métodos de análise em PN’s .. 13
2.2 REDE DE PETRI TEMPORIZADA E REDE DE PETRI ESTOCÁSTICA 16
2.3 REDES DE PETRI NO AMBIENTE DE MANUFATURA 21
2.4 REDES DE PETRI E O PLANEJAMENTO DE PROCESSOS 23
2.5 REDES DE PETRI E A ESTIMAÇÃO DE CUSTOS 25
2.6 O EDITOR/SIMULADOR PETRI NET TOOLS 2000 27
2.7 CUSTOS .. 29
2.7.1 Gastos, custos e despesas .. 29
2.7.2 Classificação e nomenclatura dos custos 29
2.7.3 Rateio dos custos indiretos ... 32
2.7.4 Depreciação ... 37
2.7.5 Tempos de fabricação ... 38

3 CUSTOS PARA TOMADA DE DECISÃO 40
3.1 CUSTEIO BASEADO EM ATIVIDADES (ACTIVITY BASED COSTING) 40
3.1.1 Identificação das atividades relevantes 40
3.1.2 Atribuição de custos às atividades 41
3.1.3 Identificação e seleção dos direcionadores de custos 42
3.1.4 Atribuição dos custos das atividades aos produtos 43
3.2 CUSTEIO POR ABSORÇÃO .. 43
3.3 MARGEM DE CONTRIBUIÇÃO, CUSTOS FIXOS IDENTIFICADOS 44
3.3.1 Conceito de margem de contribuição 44
3.3.2 Custos fixos identificados .. 44
3.4 CUSTEIO VARIÁVEL (DIRETO) ... 45

4 TÉCNICAS EM REDES DE PETRI PARA ESTIMAÇÃO DE CUSTOS 47
 4.1 ESTIMAÇÃO DE CUSTOS ATRAVÉS DO SISTEMA PPC 48
 4.2 ESTIMAÇÃO DE CUSTOS ATRAVÉS DA PP-NET GENERALIZADA 49
 4.3 REDE DE PETRI ESTOCÁSTICA .. 53

5 MODELO PROPOSTO ... 55
 5.1 CONSIDERAÇÕES INICIAIS ... 56
 5.2 FÓRMULAS PARA O CÁLCULO DOS ITENS DE CUSTO 57
 5.2.1 Custo de operação da máquina (opCost) 57
 5.2.2 Custo do transporte entre duas máquinas (mCost) 59
 5.2.3 Custo de setup das máquinas (sCost) .. 59
 5.2.4 Custo de troca das ferramentas (tCost) 60

6 ESTUDO DE CASO ... 61

7 RESULTADOS E DISCUSSÕES.. 82

8 CONCLUSÕES E SUGESTÕES .. 84

ANEXO A .. 86

ANEXO B ...

REFERÊNCIAS BIBLIOGRÁFICAS ... 91
LISTA DE FIGURAS

Figura 1.1 – Fluxo das informações no sistema de manufatura.................2
Figura 2.1 – Roteiro básico para fabricação de peças...............................24
Figura 2.2 – Ilustração conceitual do template para a plataforma...............28
Figura 2.3 – Módulo de análise e simulação...28
Figura 5.1 – Itens de contribuição de custos..56
Figura 6.1 – Peça-exemplo do estudo de caso......................................62
Figura 6.2 – Modelo em rede de Petri do estudo de caso.........................65
Figura 6.3 – Árvore de cobertura do modelo..67
Figura 6.4 – Árvore de cobertura: operações de fresa..............................68
Figura 6.5 – Árvore de cobertura: operações de acabamento.....................68
Figura 6.6 – Árvore de cobertura: operações de furação...........................69
LISTA DE TABELAS

Tabela 2.1 – Algumas interpretações típicas para transições e lugares.......9
Tabela 6.1 – Tabela de usinagem correspondente à Figura 6.163
Tabela 6.2 – Ferramentas, eixos, superfície da peça, transições63
Tabela 6.3 – Tabela de usinagem (Tab. 6.1 dividida).............................66
Tabela 6.4 – Plano de processos final para o exemplo da Fig. 6.1..........70
Tabela 6.5 – Dados de custos...72
Tabela 6.6 – Tempos de setup inicial, troca de setup, troca de ferramenta e usinagem (horas) ...72
Tabela 6.7 – Outros dados relevantes..73
Tabela A.1 – Associação das entidades de design com as operações de usinagem...87
<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE</td>
<td>Computer Aided Engineering (Engenharia auxiliada por computador)</td>
</tr>
<tr>
<td>CAPP</td>
<td>Computer Aided Process Planning (Planejamento de processos auxiliado por computador)</td>
</tr>
<tr>
<td>CN</td>
<td>Comando numérico</td>
</tr>
<tr>
<td>CIF</td>
<td>Custos indiretos de fabricação</td>
</tr>
<tr>
<td>FAC</td>
<td>Flexible Assembly Cell (Célula de montagem flexível)</td>
</tr>
<tr>
<td>FMC</td>
<td>Flexible Manufacturing Cell (Célula de manufatura flexível)</td>
</tr>
<tr>
<td>FMS</td>
<td>Flexible Manufacturing System (Sistema de manufatura flexível)</td>
</tr>
<tr>
<td>hm</td>
<td>Abreviação de horas-máquina</td>
</tr>
<tr>
<td>L/T</td>
<td>Lugar/transição</td>
</tr>
<tr>
<td>L(M0)</td>
<td>Abreviação de L(N,M0)</td>
</tr>
<tr>
<td>PN</td>
<td>Petri net (rede de Petri)</td>
</tr>
<tr>
<td>PPC</td>
<td>Process Planning Cost (Custos de planejamento de processos)</td>
</tr>
<tr>
<td>PP-net</td>
<td>Process Planning net (Rede de planejamento de processos)</td>
</tr>
<tr>
<td>R(M0)</td>
<td>Abreviação de R(N,M0)</td>
</tr>
<tr>
<td>SPN</td>
<td>Stochastic Petri net (Rede de Petri Estocástica)</td>
</tr>
<tr>
<td>TPN</td>
<td>Temporized Petri net (Rede de Petri Temporizada)</td>
</tr>
</tbody>
</table>
LISTA DE SÍMBOLOS

Rede de Petri

- **(N,M₀)**: Rede de Petri com marcação inicial (M₀)
- **A**: Matriz de incidência da rede de Petri
- **aᵢⱼ⁺**: Valor peso do arco do lugar i (entrada) à transição j
- **aᵢⱼ⁻**: Valor peso do arco da transição i ao lugar j (saída)
- **F**: Conjunto dos arcos de entrada e saída da rede de Petri
- **I**: Mapeamento dos arcos de entrada das transições da rede de Petri
- **k**: Representação genérica do número de marcas em um lugar
- **L(N,M₀)**: Conjunto das seqüências de disparo possíveis a partir da marcação inicial
- **M₀**: Marcação inicial de uma rede
- **M(p)**: Número de marcas no lugar p
- **N**: Rede de Petri sem marcação inicial
- **O**: Mapeamento dos arcos de saída das transições da rede de Petri
- **P**: Conjunto de todos os lugares da rede de Petri
- **p**: Representação genérica de lugar
- **R(N,M₀)**: Conjunto de todas as marcações alcançáveis da marcação inicial
- **T**: Conjunto de todas as transições da rede de Petri
- **t**: Representação genérica de transição
- **uₖ**: Vetor controle
- **x**: Vetor contador de disparos das transições da rede de Petri, em uma dada sequência de disparos (σ)
- **W**: Conjunto de todos os pesos da rede de Petri
- **w(p,t)**: Valor peso do arco que liga o lugar p à transição t
w(t,p) Valor peso do arco que liga a transição t ao lugar p
α Função que escolhe, para cada transição da rede de Petri temporizada, um valor fixo e apropriado no conjunto (ℑ)
ΔM Taxa de variação entre marcações (Md - M0)
λ Taxa exponencial de disparo de transição, na rede de Petri Estocástica
σ Seqüência de disparos de transições na rede de Petri
σ(t_i) Número de vezes que a transição t_i disparou, na seqüência σ
ℑ Conjunto de valores pontuais, intervalos ou funções de distribuição, utilizado por determinada função (α), na escolha de valores para disparo das transições da rede de Petri Temporizada

Custos

C_e Custo da energia elétrica por peça
C_f Custos fixos em determinado período
C_M Custo da máquina por hora
C_MP Custos totais em matéria-prima
C_m Custo da manutenção das máquinas por peça
Cost[O_i] Custo da operação de usinagem O_i
C_T Custos totais
C_{t_j} Custo devido a tempos improdutivos
C_{t_p} Custo devido a tempo de setup das máquinas
C_{tr} Custo de transporte entre duas máquinas
C_t(1) Custo unitário do produto
C_t(2) Custo de operação da máquina
H_{MAQ} Número de horas de utilização das máquinas, em determinado período de produção
H_{MDO} Número de horas de mão-de-obra direta em determinado período de produção
k - Número de períodos nos quais se deseja calcular a depreciação de um bem

M_j - Determinada máquina utilizada na fabricação da peça

$mCost$ - Custo do transporte da peça entre duas máquinas

N - Quota periódica de depreciação por ano

n_{hm} - Número de horas-máquina da peça

n_1 - Tempo de utilização da máquina

n_2 - Vida útil da máquina em anos

$opCost$ - Custo de cada operação efetuada na peça

p - Total de períodos produtivos por ano

S_O - Salário do operador por hora

$sCost$ - Custo da troca de setup em uma mesma máquina

T_{CF} - Taxa que relaciona custos fixos de uma empresa com número de horas de mão-de-obra direta

t - Taxa mínima de atratividade

$tCost$ - Custo da troca de ferramenta em uma mesma máquina

t_f - Tempo de troca da ferramenta em grupo

t_{f_i} - Tempo de troca correspondente a i-ésima ferramenta

$t_{f,g}$ - Tempo de troca da ferramenta correspondente ao g-ésimo grupo

t_{M_j} - Tempo em que a máquina M_j ficou parada

t_p - Tempo de setup da máquina

t_t - Tempo de mudança de máquina

V_0 - Valor atual da máquina

$V_{0,f}$ - Valor atual da ferramenta

V_e - Valor pago pela utilização de energia elétrica

V_R - Valor residual da máquina

$V_{R,f}$ - Valor residual da ferramenta

Z_T - Número de peças usinadas pela vida T de uma ferramenta

$Z_{i_{i}}$ - Número de peças usinadas, por vida, pela i-ésima ferramenta
$Z_{r,g}$ Número de peças usinadas, por vida, pela ferramenta padrão
do g-ésimo grupo

Z'_T Número de peças usinadas, por vida, pela ferramenta-padrão

z Tamanho do lote
RESUMO

Apresenta uma análise da estimação de custos em sistemas de manufatura utilizando rede de Petri (PN), ferramenta gráfica e matemática para modelagem e simulação. Esta análise permite a apresentação de um sistema aplicável à programação e otimização de processos de fabricação aliadas à estimação dos custos ao longo do processo. Para uma determinada peça, a partir de conceitos sobre custeio de produtos, é proposto um modelo que visa conectar as transições da PN com as informações de custos de produção. O estudo de caso mostra que informações importantes à tomada de decisão podem ser obtidas através do uso de uma metodologia que incorpore planejamento de processos, métodos de custeio e redes de Petri. Finalmente, traz sugestão de um trabalho subsequente: a partir do modelo proposto, implementar um template no editor/simulador de redes de Petri, Petri Net Tools 2000, capaz de realizar os cálculos necessários para estimativas de custo e fornecer resultados relevantes para um planejamento real.

Palavras-chave: custos em sistemas de manufatura, custos para tomada de decisão, modelagem de custos, planejamento de processos, redes de Petri.
This work presents a cost estimation analysis in manufacturing systems based in Petri net (PN), which is a graphical and mathematical tool. This analysis allows the presentation of a system, applicable to the programming and optimizing of manufacturing processes joined with cost estimation. A cost model is proposed using concepts of product costing. It seeks for connecting PN transitions to the data manufacturing cost of a certain part. The case study shows that important information to decision support can be found through the use of a methodology which joins process planning, costing systems and Petri nets. There is also a suggestion of a later work: a template implementation, on Petri Net Tools 2000 editor/simulator of PN models, which is able to accomplish the necessary calculations for cost estimates and, to supply important results to a real planning.

Keywords: cost modeling, costs in manufacturing systems, decision support costs, Petri nets, process planning.

1 INTRODUÇÃO

1.1 Motivação

Agostinho (2002) estabelece alguns níveis de informação tecnológica que representam as bases nas quais as atividades de manufatura são organizadas. Tais informações são classificadas em:

- desenhos que representam o formato final do produto (design) nos quais está fixada a tecnologia de produto da empresa;
- roteiros de manufatura (processos), nos quais se fixa tecnologia de manufatura da empresa e
- tempos necessários para cada operação do processo de manufatura, incluindo: condições de usinagem, roteiro da peça no parque de máquinas e quantidade de trabalho.

A Figura 1.1 mostra o esquema do fluxo geral da informação em um sistema de manufatura, indicando a influência dos parâmetros descritos nas atividades posteriores.

A observação do fluxo geral das informações do sistema de manufatura permite perceber a importância do feedback entre as atividades interligadas. Um exemplo mostrado na Fig. 1.1 é a interligação entre os departamentos de Engenharia de Produto, Engenharia de Fabricação e, entre Engenharia de Fabricação e Engenharia de Produção. Por este exemplo é razoável compreender que as informações sobre tempos e, mais detalhadamente, sobre custos de produção são de grande importância para situações de controle e tomada de decisão, em todos os departamentos de uma empresa.

1 Feedback (substantivo masculino) - Eletrônica: Realimentação, retroalimentação. (DICIONÁRIO AURÉLIO ELETRÔNICO SÉCULO XXI, 1999, versão 3.0, nov).
Figura 1.1 – Fluxo das Informações no sistema de manufatura
Fonte: Agostinho, 2002

A teoria de rede de Petri (PN) é recente e surgiu da tese Kommunikation mit automaten (Comunicação com autômatos), defendida por Carl Adam Petri na Universidade de Darmstadt, Alemanha, em 1962. As bases da PN foram lançadas entre 1968 e 1976, a partir de um grupo de pesquisadores conduzidos por Anatol W. Holt, do Instituto de Tecnologia de Massachusetts (MIT), nos Estados Unidos.

As redes de Petri têm sido amplamente utilizadas para modelar, analisar, simular e controlar sistemas de manufatura (Desrochers & Al-Jaar, 1994). Elas fornecem modelos muito úteis pois:
• abstraem as relações de precedência e interações estruturais de eventos estocásticos, concorrentes e assíncronos;
• a natureza gráfica ajuda na visualização de grandes sistemas;
• conflitos e tamanhos de buffer podem ser modelados de maneira fácil e eficiente;
• travamentos do sistema podem ser detectados;
• os modelos representam ferramentas de modelagem hierárquica com bem fundamentadas bases matemática e prática;
• várias extensões de PN (temporizada, estocástica, colorida, etc.) permitem análises qualitativas e quantitativas de utilização de recursos, falhas, taxa de processamento, etc. e
• os modelos podem ser utilizados também para implementar sistemas de controle em tempo real para sistemas flexíveis de manufatura (FMS) logo, podem substituir controladores lógico-programáveis.

De acordo com Cardoso & Valette (1997), por ser uma ferramenta gráfica e matemática, a PN é adaptável a várias aplicações em que são importantes os conceitos de eventos e evoluções simultâneas de um sistema.

A complexidade dos sistemas a eventos discretos, em particular no caso de sistemas de fabricação automatizada, leva à decomposição hierárquica com vários níveis de controle. Normalmente utilizam-se cinco níveis: planejamento, escalonamento, coordenação global, coordenação de subsistemas e controle direto.

Resumidamente, as vantagens da utilização de técnicas de PN para modelar sistemas de modo geral são (Cardoso & Valette, 1997):
• maior flexibilidade através da descrição da ordem parcial entre vários eventos;
• os estados e eventos do sistema são representados implicitamente;

1 Buffer (substantivo masculino) - Informática: Dispositivo de armazenamento de caráter transitório, utilizado durante uma operação de transferência ou transmissão de dados entre unidades de armazenamento ou de processamento que operam com tempo de acesso, velocidades ou formatos distintos. (DICIONÁRIO AURÉLIO ELETRÔNICO SÉCULO XXI, 1999, versão 3.0, nov).
uma única família de ferramentas é utilizada através da especificação, modelagem, análise, avaliação do desempenho e implementação do modelo e possibilita descrição precisa e formal das sincronizações, o que torna o funcionamento do sistema muito seguro.

Murata (1989) também apresenta algumas características que considera importantes na utilização das PN’s:

- visualização através de representação gráfica;
- modelagem através de vários níveis de abstração;
- modelagem de sistemas paralelos e concorrentes;
- sincronização de eventos e
- verificação das propriedades dos sistemas, de forma sistemática.

Uma relação das principais ferramentas para PN existentes no mercado pode ser encontrada na Internet (Petri, 2001). Cada uma dessas ferramentas oferece funcionalidades específicas para diversas soluções procuradas. As principais ferramentas apresentadas nessa referência também estão descritas no Apêndice.

Segundo Kiritsis et al. (1999), a estimação de custos é a atividade de calcular e predizer os custos de um conjunto de atividades, antes de elas acontecerem realmente. No que se refere à manufatura de peças mecânicas, a estimação de custos pode ser vista como a predição dos custos das operações de usinagem e outras atividades associadas, necessárias à fabricação da peça. Esse tipo de estimação é útil na fase de design de um produto, quando são determinados 70% dos custos.

Apesar de alguns trabalhos apresentarem propostas que buscam integrar facilidades das redes de Petri com benefícios de obter informações sobre custos em sistemas de manufatura e planejamento de processos, essa área ainda é nova na pesquisa científica.
1.2 Objetivos

Este trabalho tem por objetivo principal propor uma metodologia que viabilize a integração entre métodos consagrados de estimação de custos (Sistemas de Custeio) e redes de Petri. Na integração, a proposta é obter, em uma única ferramenta matemática e gráfica, a modelagem de custos de produção, planejamento, simulação e controle de processos.

Como um dos objetivos parciais do trabalho, apresentamos um estudo sobre suas vantagens, desvantagens e sobre o potencial alcançável da integração, permitindo analisar o desempenho das redes de Petri na modelagem de custos em planejamento de processos.

1.3 Justificativa

Atualmente, as informações de custo atendem a exigências como fornecer dados sobre os custos dos processos e propostas de melhorias, com o objetivo de, com eficiência, otimizar o uso de recursos das empresas. A insensibilidade no custeio pode resultar na perda de competitividade, em vários aspectos.

Os dados obtidos dos custos são aproveitados com mais eficácia nas tomadas de decisão quando é feito estudo criterioso dos gastos mais consideráveis e quando existe possibilidade de, mais objetivamente, identificá-los com processos ou produtos.

As informações provenientes dos custos de manufatura são muito importantes nas tomadas de decisão em relação a quais produtos manufaturar, na determinação dos melhores processos, máquinas e equipamentos a usar na produção, além de ajudar, também, na estipulação de preços de mercado dos produtos, preparação de orçamentos, alocação de recursos da empresa e avaliação de desempenho.

Se a estimação dos custos de manufatura puder ser integrada ao processo de design, poderá ser avaliado o impacto desse custo nas alternativas dentro do projeto. Isto resultaria na escolha com desejável acordo entre o desempenho do produto e seu custo. Por isso, a atual
competitividade do mercado mundial requer mais rigor nas abordagens utilizadas na estimação de custos durante o design de um produto.

O ideal é que o engenheiro projetista possua estimativas das consequências econômicas das possíveis alterações dentro de um projeto. Para isso, devem ser desenvolvidos meios eficientes e rápidos na estimação de custos de manufatura provenientes de cada alteração feita durante o processo de design. Isso implica que, para cada modificação do projeto, deve ser simultaneamente obtido o plano de processos de manufatura associado.

A representação gráfica e a formalidade matemática são as maiores vantagens da rede de Petri, como uma técnica de modelagem, simulação e análise de sistemas. A formalidade permite obter informações sobre o comportamento do sistema modelado, através da análise de suas propriedades.

São muito recentes as pesquisas na área de modelagem de Custos em Sistemas de Manufatura utilizando redes de Petri. Entretanto, já foram apresentados alguns modelos, por exemplo Liebers & Kals (1997), Eversheim et al. (1994) e Kiritsis et al. (1999).

1.4 Organização do trabalho

Neste capítulo foram apresentados: motivação e objetivos do trabalho.

Os próximos capituloss apresentam as seguintes atividades:

- capítulo 2: revisão bibliográfica sobre redes de Petri e sobre custos.
- capítulo 3: apresentação dos vários sistemas de custeio utilizados para tomada de decisão.
- capítulo 4: apresentação das técnicas de PN para estimação de custos.
- capítulo 5: proposição do modelo de custos.

1 Design (substantivo masculino) - 1. Concepção de um projeto ou modelo; planejamento. 2. O produto desse planejamento. 3. Desenho industrial. 4. Desenho-de-produto. 5. Programação visual. (DICIONÁRIO AURÉLIO ELETRÓNICO SÉCULO XXI, 1999, versão 3.0, nov).
• capítulo 6: apresentação do estudo de caso para o modelo proposto.
• capítulo 7: resultados e discussões da proposta e estudo de caso.
• capítulo 8: conclusões finais sobre o trabalho e sugestão de futuros trabalhos.
2 REVISÃO BIBLIOGRÁFICA

2.1 Redes de Petri (PN’s)

Redes de Petri são tipos particulares e bipartidos de grafos direcionados que podem ou não possuir um estado inicial. Cardoso & Valette (1997) apresentam a PN como um modelo formal, de três maneiras diferentes:

- um grafo com dois tipos de nós e comportamento dinâmico;
- um conjunto de matrizes de inteiros positivos ou nulos, cujo comportamento dinâmico é descrito por um sistema linear e
- estruturalmente, um sistema de regras baseado na representação do conhecimento, sob a forma condição → ação.

A diferença entre os modelos de rede de Petri gráfico e matricial, é dada apenas pela forma de apresentação. Dos dois modos é possível verificar se as transições são paralelas ou possuem conflito, se uma transição está ou não habilitada e, também, efetuar o disparo de uma transição habilitada, fazendo a rede evoluir. A representação através de um sistema de regras visa compatibilidade com Inteligência Artificial.

Embora a representação gráfica seja uma vantagem da PN, sua característica mais importante é a formalidade, o que torna possível obter informações sobre o comportamento do sistema modelado, através da análise de suas propriedades.

2.1.1 Componentes de uma PN lugar/transição (L/T)

O grafo N de uma PN é direcionado e bipartido, possui pesos e dois tipos de componentes, chamados lugares e transições com arcos que vão de um lugar a uma transição ou de uma transição a um lugar.
Graficamente, representamos lugares com círculos e transições com barras ou retângulos. Os arcos são rotulados com seus pesos (exceto se o peso for igual a um), e um arco de peso k pode ser interpretado como k arcos paralelos.

Caso o conceito de condição-evento estiver sendo usado na modelagem de um sistema, lugares e transições representam respectivamente condições e eventos. Uma transição possui um certo número de lugares de entrada e saída, o que representa as pré e pós-condições do evento observado. Algumas interpretações típicas de transições e seus lugares de entrada e saída são mostradas na tabela a seguir:

Tabela 2.1: Algumas interpretações típicas para transições e lugares

<table>
<thead>
<tr>
<th>Lugares de entrada</th>
<th>Transição</th>
<th>Lugares de Saída</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-condições</td>
<td>Evento</td>
<td>Pós-condições</td>
</tr>
<tr>
<td>Dados de entrada</td>
<td>Passo computacional</td>
<td>Dados de saída</td>
</tr>
<tr>
<td>Sinais de entrada</td>
<td>Processador de sinais</td>
<td>Sinais de saída</td>
</tr>
<tr>
<td>Recursos requeridos</td>
<td>Tarefa</td>
<td>Recursos liberados</td>
</tr>
<tr>
<td>Condições</td>
<td>Cláusula lógica</td>
<td>Conclusões</td>
</tr>
<tr>
<td>Buffers</td>
<td>Processador</td>
<td>Buffers</td>
</tr>
</tbody>
</table>

2.1.2 Definição formal

Murata (1989) define formalmente PN como uma quintupla PN = (P, T, F, W, M₀), onde:

P = { p₁, p₂, ..., pₘ } é um conjunto finito de lugares,
T = { t₁, t₂, ..., tₙ } é um conjunto finito de transições,
F ⊆ (P x T) ∪ (T x P) é um conjunto de arcos (relação de fluxo),
W: F → {1, 2, 3, ...} é uma função de peso,
M₀: P → {0, 1, 2, 3, ...} é a marcação inicial e,
P ∩ T = ∅ e P ∪ T ≠ ∅.
Uma estrutura de PN, \(N = (P, T, F, W) \) sem um estado inicial específico é denotada por \(N \). Uma PN com estado inicial determinado é denotada por \((N, M_0) \).

2.1.3 Marcação, habilitação e disparo de transições

Uma marcação, ou estado, associa um inteiro \(k \), não-negativo, a cada lugar. Podemos dizer então que o lugar \(p \) está marcado com \(k \) marcas e, graficamente, colocamos um número \(k \) de pontos pretos em \(p \).

Denotamos uma marcação por um vetor \(M \), de dimensão \(m \) (número total de lugares). O \(p \)-ésimo componente de \(M \) (denotado por \(M(p) \)), é o número de marcas no lugar \(p \).

O comportamento de muitos sistemas pode ser descrito quanto a seus estados e mudanças dos mesmos. A simulação do comportamento dinâmico de um sistema acontece com o disparo das transições, onde os estados ou marcações da PN correspondente são modificados.

Segundo Cardoso & Valette (1997), o estado de um sistema é dado pelas quantidades de marcas nos lugares da PN, onde cada lugar representa um estado parcial do sistema. Uma transição no modelo de PN é associada a cada evento que ocorre no sistema real. Quando acontece algum evento (o que desencadeia a troca do estado atual para o próximo estado) a transição à qual este evento está associado dispara.

Murata (1989) apresenta a seguinte regra de disparo de transições:

- uma transição \(t \) está habilitada se cada lugar de entrada \(p_i \) de \(t \) está marcado com pelo menos \(w(p_i, t) \) (peso do arco de \(p_i \) a \(t \)) marcas;
- uma transição habilitada pode ou não disparar (dependendo de quando o evento realmente acontece) e
- o disparo de uma transição habilitada \(t \) remove \(w(p_i, t) \) marcas de cada lugar de entrada \(p_i \) de \(t \), e coloca \(w(t, p_j) \) (peso do arco de \(t \) para \(p_j \)) marcas em cada lugar de saída \(p_j \) de \(t \).
2.1.4 Propriedades comportamentais das PN’s

Redes de Petri podem fornecer excelente suporte à análise de muitas propriedades e problemas associados a sistemas concorrentes. Podemos estudar dois tipos de propriedades através de um modelo em PN: as que dependem da marcação inicial e as que não dependem.

As propriedades dependentes de um estado inicial são mais comumente chamadas de Propriedades Comportamentais e, algumas delas serão discutidas a seguir.

- **Alcançabilidade** (*Reachability*)
 Essa propriedade é fundamental para estudar o dinamismo de qualquer sistema. O disparo de uma transição habilitada mudará a marcação de uma rede, de acordo com a regra de disparo anteriormente descrita. Uma sequência de disparos resultará uma sequência de marcações.

 Uma marcação M_n é alcançável da marcação M_0 quando existir sequência de disparos que transforma M_0 em M_n. Uma sequência de disparos (ou sequência de ocorrência) é denotada por $\sigma = M_0 t_1 M_1 t_2 M_2 \ldots t_n M_n$ ou, por $\sigma = t_1 t_2 \ldots t_n$.

 Neste caso, dizemos que M_n é alcançável de M_0 por σ, e escrevemos $M_0[\sigma > M_n]$.

 O conjunto de todas as possíveis marcações alcançáveis de M_0, em uma rede (N, M_0) é denotado por $R(N, M_0)$ ou, simplesmente, $R(M_0)$. O conjunto de todas as possíveis sequências de disparo de M_0 é denotada por $L(N, M_0)$ ou, $L(M_0)$.

- **Limitação** (*Boundedness*)
 Uma PN (N, M_0) é k-limitada (ou limitada) se, em qualquer marcação alcançável de M_0, o número de marcas em cada lugar não excede um número k, finito.

 Se uma PN é 1-limitada então, ela é chamada segura. Verificando-se, em alguns sistemas, se uma rede é limitada ou segura, consegue-se garantir que não ocorrerá insuficiência de memória nos buffers ou registros, não importando qual sequência de disparos seja tomada.
• Vivacidade (Liveness)

De acordo com Cardoso & Valette (1997), uma PN é viva se, e somente se, todas as suas transições são vivas\(^1\).

Uma rede que possui essa propriedade garante que nenhum bloqueio pode ser provocado por sua própria estrutura. Entretanto, tal propriedade não assegura a ausência de eventuais bloqueios causados por interação ruim entre a PN e seu ambiente externo.

A vivacidade de uma rede garante também a ausência de partes mortas (nunca atingidas) no modelo.

• Reversibilidade (Reversibility) e estado de origem (Home State)

Uma PN é reversível se a marcação inicial \(M_0\) é alcançável de toda marcação \(M \in R(M_0)\). Na maioria das vezes, não é necessário voltar ao estado inicial do sistema, desde que se possa voltar a algum outro estado. Assim, a condição de reversibilidade pode ser afrouxada e um estado, chamado estado de origem, definido. Uma marcação \(M'\) é chamada estado de origem se, para cada marcação \(M \in R(M_0)\), \(M'\) é alcançável de \(M\).

• Abrangência ou cobertura (Coverability)

Uma marcação \(M\) é abrangível se existe uma marcação \(M' \in R(M_0)\) tal que \(M'(p) \geq M(p)\), para cada lugar \(p\) da rede. Esta propriedade está intimamente relacionada à vivacidade do tipo \(L_1\).

Seja \(M\) a marcação mínima necessária para habilitar a transição \(t\). Então, \(t\) é uma transição morta se, e somente se, \(M\) não pode ser abrangida (coberta) por outra marcação qualquer.

• Persistência (Persistence)

Uma PN é chamada persistente se, para quaisquer duas transições habilitadas, o disparo de uma não desabilita a outra. Uma transição deste tipo, uma vez habilitada, permanece nesse estado até seu disparo. As redes que possuem essa propriedade são livres de conflitos e podem ser transformadas em grafos marcados acrescentando algumas transições e lugares à rede original.

\(^1\) Uma transição é denominada viva quando ela pode disparar pelo menos uma vez em alguma sequência de disparo. Neste caso, podemos dizer que a transição possui vivacidade do tipo \(L_1\) (Murata, 1989).
- Distância sincrônica

A distância sincrônica é a métrica de PN relacionada com o grau de dependência mútua entre dois eventos, em um sistema do tipo condição-evento. Definimos a distância sincrônica entre duas transições \(t_1 \) e \(t_2 \) por:

\[
d_{12} = \max_{\sigma} \left| \bar{\sigma}(t_1) - \bar{\sigma}(t_2) \right|
\]

onde \(\sigma \) é a sequência de disparo que começa em qualquer marcação \(M \in \mathbb{R}(M_0) \) e, \(\bar{\sigma}(t_1) \) é o número de vezes que a transição \(t_i \) disparou em \(\sigma \).

2.1.5 Métodos de análise em PN’s

Os métodos de análise podem ser classificados em três grupos: abrangência (cobertura), aproximação por equações matriciais (caso a rede seja pura\(^1\)) e técnicas de redução ou decomposição.

O primeiro método consiste na enumeração de todas as marcações alcançáveis da inicial. É aplicável a todas as classes de redes, mas é limitada às redes de pequeno porte devido à explosão do espaço de estados existente nos modelos que representam sistemas mais complexos\(^2\). Por outro lado, os dois outros métodos são muito mais poderosos mas, em alguns casos, são aplicáveis somente a subclasses especiais de PN ou a situações especiais.

Resumidamente, cada um dos três métodos pode ser descrito da seguinte maneira:

1 Um par lugar-transição \((p,t) \) é chamado de laço (self-loop) se é entrada e, ao mesmo tempo, saída da transição; uma rede de Petri que não possui nenhum par lugar-transição desse tipo é chamada de pura (Murata, 1989).

2 No contexto deste trabalho, o termo sistema complexo refere-se à uma grande quantidade de elementos constituintes do mesmo, o que pode dificultar visualização gráfica, simulação e análise de um modelo.
• Árvore de alcançabilidade

Segundo Cardoso & Valette (1997), este método é um algoritmo que permite decidir se uma PN é ou não k-limitada. De acordo com este algoritmo, deve-se partir da marcação inicial e, de cada transição habilitada por essa marcação origina-se um ramo da árvore. As marcações obtidas através do disparo das transições habilitadas são calculadas e o processo recomeça para cada marcação obtida. Deve-se interromper o processo quando:

• Encontrar marcação igual a alguma outra já calculada anteriormente e para a qual todos os sucessores já foram ou serão calculados, ou
• Encontrar marcação muito superior à marcação do ramo que está sendo explorado, o que mostra que a não limitação da rede.

Quando a rede é finita, a árvore de alcançabilidade pode também ser chamada de árvore de cobertura.

• Matriz de incidência e Equação de estado

De acordo com Murata (1989), o comportamento dinâmico de alguns sistemas estudados na engenharia pode ser descrito através de equações diferenciais ou algébricas. Seria interessante se pudéssemos descrever e analisar completamente esse comportamento utilizando PN’s e resolver algumas equações. De fato, existem equações matriciais que governam tal comportamento em sistemas concorrentes modelados por PN’s. Entretanto, a solução das mesmas é limitada, parte por causa da natureza não determinística dos modelos e parte porque as soluções devem ser encontradas na forma de inteiros não-negativos. Assim sendo, para trabalhar com esse tipo de método de análise, é necessário afirmar que a PN seja pura ou torná-la pura pela adição de um par fictício lugar-transição.

Os elementos $A = [a_{ij}]$ da matriz de incidência de uma PN com n transições e m lugares são números inteiros não-negativos dados por:
onde $a_{ij}^* = w(i, j)$ é o peso do arco, da transição i ao seu lugar de saída j e, $a_{ji}^* = w(j, i)$ é o peso do arco, do lugar de entrada j à transição i.

As marcações M_k de uma rede podem ser escritas também na forma matricial, como vetores coluna de dimensão $m \times 1$. A j-ésima entrada de M_k refere-se ao número de marcas no lugar j, imediatamente após o k-ésimo disparo de alguma sequência. O k-ésimo disparo ou o vetor controle u_k, é um vetor coluna $n \times 1$, com $n-1$ zeros e com apenas uma entrada diferente de zero. Essa entrada, um número um (1) colocado na i-ésima posição do vetor, indica que a transição i disparou no k-ésimo disparo. Como a i-ésima linha da matriz de incidência A denota a mudança de marcação resultante do disparo da transição i, podemos escrever a seguinte equação de estado para uma rede de Petri:

$$M_k = M_{k-1} + A^T \cdot u_k, \quad k = 1, 2, ...$$

(2.3)

Suponha que uma determinada marcação M_d possa ser alcançada de M_0, através de uma seqüência de disparo $\{u_1, u_2, ..., u_d\}$. Escrevendo a equação de estado (2.3) para $i = 1, 2, ..., d$ e somando-as, obtemos:

$$M_d = M_0 + A^T \cdot \sum_{k=1}^{d} u_k$$

(2.4)

- **Regras de redução**

O método de análise por árvore de alcançabilidade torna-se extremamente complicado conforme aumentar o tamanho do conjunto de marcações a serem exploradas. Neste caso, a solução mais viável é aplicar regras de redução, de maneira que a PN inicial e a reduzida possuam equivalência em suas propriedades.

Existem casos básicos de redução utilizados em modelos de PN (Cardoso & Valette, 1997):

- lugar substituível - é um lugar que serve unicamente de etapa intermediária entre duas transições ou dois conjuntos de transições;
• lugar implicito - é um lugar redundante, do ponto de vista do disparo de sua transição de saída, pois sua marcação é combinação linear da marcação de algum conjunto de lugares;
• transição neutra ou identidade - é uma transição que, se retirada da rede, não modifica seu comportamento, ou seja, seu disparo não modifica a marcação e
• transições idênticas - duas transições são idênticas se, e somente se, nas matrizes Pre e $Post$ as colunas correspondentes a essas transições são idênticas.

2.2 Rede de Petri Temporizada (TPN) e rede de Petri Estocástica (SPN)

Atualmente, a metodologia utilizada para representar tempo em PN’s baseia-se em duas técnicas: duração por disparo e duração por habilitação. Como as transições simbolizam os eventos de um sistema, é natural que se associe a elas o atraso de tempo, isto é, a duração de disparo de cada transição é associada ao tempo que um evento leva para ocorrer dentro de um sistema (Bowden, 2000).

Lugares e arcos também podem ser associados ao tempo de um modelo, o que apenas provoca mudanças na interpretação da rede.

As principais formas de registrar tempo em PN’s são:
• No disparo das transições:
 Nos modelos de PN’s não temporizadas, as transições habilitadas podem disparar a qualquer momento, removendo marcas de entrada e criando marcas de saída. Neste caso, com o acréscimo do atraso de tempo, cada transição habilitada provoca remoção

1 Pre é a matriz cujos elementos a_{ij} são os pesos dos arcos que vão dos lugares de entrada às transições da rede de Petri; $Post$ é a matriz cujos elementos b_{ij} são os pesos dos arcos que vão das transições aos lugares de saída (Cardoso e Valette, 1997).
imediatamente as marcas de entrada mas, somente depois de terminado o tempo de disparo é que as marcas de saída são criadas.

Além das mudanças nas regras de execução da rede ocorre, ainda, surgimento de novos estados, ocasionando a necessidade de redefinição da árvore de alcançabilidade gerada pela PN; cada marcação (estado) passa a possuir informações sobre condições das transições. A principal desvantagem em usar esse tipo de temporização é o aumento do grafo, pois as marcações da PN passam a ter múltiplos estados associados.

- Na indisponibilidade de marcas:

Essa temporização classifica as marcas em dois tipos: disponível e indisponível. A diferença entre as duas é que as disponíveis podem ser usadas para habilitar transições, e a indisponível não pode.

A cada transição é associado atraso de tempo e, quando uma delas dispara, a ação de remover e criar marcas é feita instantaneamente. Entretanto, uma marca criada fica indisponível para habilitar novas transições enquanto não tiver passado o tempo especificado pela transição que a criou.

Graficamente, uma marca indisponível é representada por um círculo cujo centro não está preenchido (O). A árvore de alcançabilidade, neste caso, também deve armazenar a quantidade de tempo em que as marcas indisponíveis permanecem não usáveis, o que torna o grafo mais complicado.

Esse tipo de temporização é similar ao anterior; a única modificação é que, neste caso, as marcas ficam “presas” nas transições e, no primeiro elas ficam “presas” nos lugares.

- Na habilitação das transições:

O disparo de transições acontece imediatamente, isto é, marcações são removidas e criadas simultaneamente e os atrasos de tempo obrigam que as transições fiquem habilitadas por um período de tempo especificado, antes que elas possam disparar.

A principal diferença entre os dois últimos tipos de temporização acontece nas situações de conflito. Mudar a política de...
tempo em uma PN provoca alteração dramática na maneira de execução da rede e pode evitar que aconteça algum conflito entre as transições do modelo.

Um modo de facilitar a modelagem de uma rede é utilizar transições imediatas (representadas por traços verticais), as quais possuem atraso de tempo igual a zero e sempre disparam antes das que possuem tempo maior. De fato, elas só precisam ser colocadas antes das transições que podem estar em situação de conflito.

A árvore de alcançabilidade, neste caso, deve conter informações sobre o tempo decorrido antes do disparo de uma transição habilitada.

O atraso de tempo nas habilitações permite a modelagem de interrupções e, quando são utilizadas transições imediatas, tal atraso funciona como no caso anterior, o que fornece grande flexibilidade ao modelo. A combinação desses dois tipos de atrasos permite a modelagem de compartilhamento de recursos e de interrupções (timeouts).

Formalmente, a rede de Petri temporizada é definida por uma múltipla (Bowden, 2000) $\text{TPN} = \{P, T, I, O, \mathcal{S}, \alpha, M_0\}$, onde P, T, I, O, \mathcal{S} e M_0 são os mesmos de uma rede de Petri não temporizada (Desrochers & AL-Jaar, 1994) e:

- \mathcal{S} é uma coleção de valores pontuais, intervalos e/ou funções de distribuição;
- $\alpha: T \rightarrow \mathcal{S}$ é o mapeamento das transições em \mathcal{S}. Para cada transição, α escolhe um item fixo e apropriado da coleção \mathcal{S}, que é usado na determinação de um valor amostral para o tempo; assim, um valor pontual corresponde a um atraso de tempo determinístico; um intervalo fornece um conjunto de valores dos quais é retirada uma amostra e similarmente, uma função de distribuição pode prescrever o mecanismo de escolha para um valor amostral;

1 I e O são as notações utilizadas por alguns autores para representar, respectivamente, os conjuntos de arcos de entrada e de saída das transições ou dos lugares de uma rede.
no caso de tempo associado à lugares, \(\alpha: P \rightarrow \mathcal{I} \) passa a ser uma função que mapeia os lugares em \(\mathcal{I} \) isto é, seu domínio é mudado de forma que \(P \), (conjunto de lugares) é mapeado em \(\mathcal{I} \) e

- quando o tempo é associado aos arcos de entrada, \(\alpha \) é um mapeamento de \(A \subset P \times T \), tal que \(I(a) \neq 0, A \rightarrow \mathcal{I} \forall a \in A \), isto é, \(\alpha \) forma o mapeamento dos arcos de entrada para \(\mathcal{I} \).

Existem três maneiras de associar um valor ao tempo que um evento leva para acontecer: deterministicamente, estocasticamente e por intervalo. A escolha depende do sistema que desejamos modelar e da maneira como a análise será conduzida.

Nos primeiros trabalhos sobre TPN com temporização nas habilitações foram utilizados atrasos de tempo determinísticos, o que progrediu depois para uso de funções de distribuição de probabilidades e intervalos. Com atrasos de tempo estocásticos, a duração de um evento é determinada por função de distribuição de probabilidades; originalmente, usava-se a distribuição exponencial, mas é possível gerar durações com outros tipos de função.

Quando se trabalha com intervalos, as durações definidas na rede estão entre um valor máximo e mínimo definidos. O valor utilizado para disparo ou habilitação de uma transição em particular é tomado nesse intervalo. Estudos nessa área não especificam como o tempo é amostrado, diz-se simplesmente que ele é calculado no intervalo. Esse tipo de representação é útil se os atrasos no sistema real são variáveis, mas não se sabe o suficiente sobre eles para determinar suas distribuições.

Cada transição possui uma prioridade; apenas transições com o mesmo nível de prioridade podem estar em conflito, porque transições habilitadas de prioridade maior desabilitam todas as que possuem prioridade inferior. Logo, ao modelar um sistema, as transições em conflito no sistema real podem ser especificadas com algum nível de prioridade e pode ser criada uma política de disparo para um grupo cujas transições estejam no mesmo nível.

Segundo Desrochers & AL-Jaar (1994), uma classe superior de rede de Petri que abrange a anterior é a Estocástica, que foi desenvolvida para
aplicar temporização a modelos não determinísticos. Formalmente, podemos dizer que uma SPN de tempo contínuo é temporizada nas transições e possui um conjunto de atrasos de tempo exponencialmente distribuídos, com taxas de disparo \(\lambda > 0 \).

As SPN’s vivas e limitadas são isomorfas a cadeias de Markov homogêneas, isto é, a partir de um modelo vivo e limitado com marcação inicial limitada, pode ser obtida e analisada uma cadeia de Markov equivalente. Isso permite a análise de desempenho de sistemas autômatos de manufatura. Basicamente, o que se tem a fazer é modelar o sistema com PN e então, tomando como ponto de partida a marcação inicial, gerar a árvore de alcançabilidade para obter e analisar a cadeia de Markov equivalente.

A principal vantagem da PN é que ela simplifica a geração da cadeia de Markov e provê representação mais compacta e lógica do sistema; além disso existem pacotes computacionais que automaticamente conseguem converter uma SPN em sua cadeia de Markov equivalente.

Na SPN generalizada transições temporizadas têm tempos de disparo distribuidos exponencialmente e disparam, em média, a \(1/\lambda \) unidades de tempo depois de habilitadas. É comum dizer que essas transições têm taxa de disparo \(\lambda \).

As probabilidades da equação de estado obtidas da cadeia de Markov são usadas para calcular: o número esperado de marcas em determinado lugar, a probabilidade de um lugar não estar vazio e a probabilidade de uma transição estar habilitada. É possível também obter medidas de desempenho tais como: taxa média de produção, média do inventário em processo, média de utilização dos recursos, etc.

Existem dois tipos especiais de marcações nas redes de Petri Estocásticas: tangíveis (tangible) e sumidiças (vanishing). As marcações nas quais pelo menos uma transição imediata esteja habilitada são chamadas sumidiças; o nome é apropriado, uma vez que transições imediatas disparam em tempo igual a zero. As marcações que possuem

1 Sumidico (adjetivo) – Que some ou desaparece facilmente. (DICIONÁRIO AURÉLIO ELETRÔNICO SÉCULO XXI, 1999, versão 3.0, nov).
somente transições exponenciais habilitadas (com tempos de disparo distribuídos exponencialmente) são chamadas de tangíveis.

Uma PN que possua marcações dos dois tipos ainda continua equivalente a uma cadeia de Markov. Se removermos as marcações sumidiças, teremos uma cadeia de Markov reduzida, usada para calcular probabilidades de um lugar estar marcado ou não.

A combinação de transições imediatas com exponenciais é possível, mas não conseguimos entender facilmente o que acontece com as propriedades estruturais e comportamentais da rede. Por isso, costumamos utilizar o modelo não temporizado para estudar tais propriedades, as quais estão intimamente ligadas à existência de distribuição de probabilidade das equações de estado da cadeia de Markov correspondente. Tal distribuição existe se:

- a rede não temporizada é limitada;
- a marcação inicial é alcançável de todas as marcações possíveis (isto é, existe um estado de origem) e
- os tempos de disparo são variáveis aleatórias exponencialmente distribuídas.

2.3 Redes de Petri no ambiente de manufatura

Cecil et al. (1992) afirmam que as PN's a cada vez são mais aplicadas em modelagem, análise e controle de sistemas discretos de manufatura. Isso porque elas os descrevem graficamente, propiciam melhor entendimento de suas interações mais complexas e indicam possíveis pontos onde o controle pode ser exercido de forma efetiva e eficiente. Tais características resultam em base para a modelação de sistemas de manufatura em vários níveis de abstração.

De acordo com Desrochers & AL-Jaar (1994), o uso de uma PN para simular o ambiente de manufatura, pode ser interpretado da seguinte maneira:

- lugares representam recursos e a existência de uma ou mais marcas em determinado lugar representa a disponibilidade de um algum recurso; o propósito dos lugares é capturar a natureza
descentralizada e o estado distribuído da informação, em um sistema de manufatura complexo;

- o disparo de uma transição representa uma atividade que começa e termina com dois eventos consecutivos. O tempo entre eventos pode ser zero, o que corresponde a uma transição imediata e

- lugares e transições, em conjunto, representam condições e relações de preferência nas operações de um sistema.

Os sistemas CAPP (Computer Aided Process Planning) podem ser classificados segundo vários critérios, tais como: métodos de planejamento, nível de automação, função de planejamento, tipo de peça planejada, tipo de processo planejado, tipo de inferência, etc. A combinação desses fatores resulta em elevado número de possíveis sistemas. A classificação usual dos sistemas CAPP utiliza o critério dos métodos de planejamento: variante e generativo (Rozenfeld, 1989).

No sistema variante, o planejamento tem como base uma folha de processos pré-existente e geralmente é voltado para famílias de peças. No generativo, é utilizada a representação da peça no computador e, através de inferências, a folha de processos é especificada.

Segundo Srihari & Emerson (1990), os sistemas CAPP são predominantemente estáticos e, portanto, há necessidade de flexibilização. Para obter um sistema CAPP dinâmico de um FMS, o componente estático do sistema CAPP interage com um módulo de PN, o qual consegue manter, entre outras características, o tempo real da informação vindo diretamente da linha de produção.

Trabalhar com sistemas CAPP basicamente é lidar com três tipos de operações: as que são seqüenciais por natureza, as que ocorrem concorrentemente e as que são mutuamente exclusivas. É justamente ai que entram as PN’s, uma vez que elas podem realizar várias tarefas, como: modelar laços (loopings), representar concorrência de eventos ou operações interativas, além de em uma dada sequência de operações, modelar pré-condições, se estas existirem. Resumindo, PN é uma metodologia que possui a capacidade de representar procedimentos, processos, organização e dispositivos nos sistemas onde existe fluxo regular de trabalho.
Segundo Inamasu (1995), em sistemas do tipo FMS, uma extensão de PN muito utilizada é a temporizada. Cada transição leva determinada quantidade de tempo em seu disparo, contado desde o momento da retirada da(s) marca(s) de seu lugar de entrada até a colocação da(s) mesma(s) em seu lugar de saída.

Em modelos de FMS são importantes algumas propriedades das PN's, como vivacidade e alcançabilidade. A primeira refere-se ao fato da rede não possuir situações de travamento. A segunda versa sobre a possibilidade de existir seqüência de transições que leva a marcação M_i até a M_j, o que torna a rede alcançável de M_i a M_j.

2.4 Redes de Petri e o planejamento de processos

O intuito do planejamento de processos é selecionar e definir os processos que precisam ser executados em uma peça, de maneira econômica e de acordo com as especificações do projeto. O resultado do planejamento é um plano de processos (roteiro de fabricação, folha de processos, folha de operações), no qual constam: seqüência de operações, máquinas, ferramentas, tempos de fabricação, centros de custo, materiais e outros itens relativos aos vários estágios de usinagem de uma peça. Tais informações variam de empresa para empresa e servem para apoiar os demais departamentos ligados ao planejamento, organização e contabilidade (Rozenfeld & Módolo, 1991).

De acordo com Rozenfeld (1989), as funções de planejamento de processos podem ser divididas em dois grupos principais:

- em nível macro, com a determinação de: dados organizacionais, peça bruta, processos, operações de usinagem, seqüência das operações e maquinário necessário e
- em nível operacional, com detalhamento de: sub-operações, programas CN, ferramental, condições de usinagem e tempos de fabricação.

Essas funções são válidas tanto para o método variante como para o generativo mas, no primeiro, é verificada a validade das informações
existentes e, caso elas não se adaptem a uma nova peça, devem ser reformuladas.

Agostinho (2002) classifica o planejamento de processos em:
- roteiro de manufatura – no qual é estabelecido o caminho lógico das operações do processo de fabricação e
- planejamento das operações – no qual cada operação do roteiro é detalhada, o que permite o encadeamento entre operações.

As operações, por sua vez podem ser divididas em (Figura 2.1):
- operações iniciais – que introduzem o sistema inicial de referência a ser seguido nas operações seguintes do roteiro de fabricação;
- operações intermediárias – cujas dimensões e especificações não são ainda as finais e
- operações finais – que determinam dimensões, tolerâncias e especificações presentes no desenho da peça.

Figura 2.1 – Roteiro básico para fabricação de peças
Fonte: Agostinho, 2002.
Kiritsis & Porchet (1996) discutem as idéias básicas de uma abordagem gráfica para planejamento de processos através das PN’s e apresentam um modelo dinâmico e genérico. O uso de tal modelo é duplamente funcional: além do uso como ferramenta de simulação para detectar possíveis problemas durante o planejamento, a análise da árvore de alcançabilidade da PN retorna todos os planos possíveis para a fabricação de determinada peça, sob condições distintas. Consequentemente, um plano de processos ótimo pode ser encontrado através da aplicação de algum método de otimização.

O planejamento de processos não lineares, interessante e aplicável não somente em fábricas tradicionais, como também em FMC’s ou em FAC’s, aumenta a flexibilidade do planejamento temporal e do controle de sistemas atuantes no ambiente de manufatura (Porto, 1990). Neste caso, as PN’s participam da representação de processos e também da geração do planejamento (Kruth & Detand, 1992).

2.5 Redes de Petri e a estimação de custos

O termo estimação de custos de manufatura, de maneira geral, refere-se a qualquer estimação de custos envolvidos na manufatura de uma peça, submontagem ou montagem de um produto. Incluem-se nestes custos: material, mão-de-obra, máquinas e ferramentas. A estimação pode ser efetuada de várias formas como: conferência, comparação ou análise detalhada. O método mais confiável é o da análise detalhada, uma vez que este inclui exame completo de todos os fatores importantes na manufatura de uma peça (Khoshnevis et al., 1994).

Resumidamente, em um sistema de manufatura, a estimação de custos consiste na atividade de calcular e predizer o custo de um conjunto de atividades antes que elas realmente aconteçam. Existem dois tipos principais de modelos de estimação de custos: um que se baseia nas estatísticas de produção disponíveis em uma companhia e outro que é obtido pela análise das características do projeto da peça, requerendo informações detalhadas do plano de processos que resulta na ordem de produção da mesma.
O planejamento de processos que acontece de forma convencional e não sistemática, causa aumento no custo de fabricação de uma peça; além disso, o planejamento convencional não tem rapidez suficiente para corrigir uma folha de processos e, ao mesmo tempo, preparar um orçamento que acompanhe tal mudança. Estes fatores implicam na procura pela implantação de um sistema CAPP nas empresas (Rozenfeld, 1989).

Para Liebers & Kals (1997), o design de uma peça é tarefa importante e está diretamente relacionada aos custos da manufatura. Além disso, a cada momento outros dois critérios devem ser observados na tomada de decisões na produção: tempo de entrega e qualidade do produto. A principal causa de custos desnecessários na manufatura são falhas na análise dos objetivos de um sistema, durante o planejamento das tarefas a serem executadas. Os esforços requeridos para a geração de informações úteis ao planejamento dos custos, dependem do nível de detalhamento desejado e da familiaridade com o sistema e com a situação em questão.

Feng et al. (1996) propôem uma metodologia para classificação e avaliação de custos, através de características pertinentes ao formato das peças e à relação entre os formatos das diversas peças produzidas em um sistema de manufatura. Ficou evidente em seu trabalho que essa metodologia beneficia o estabelecimento de padrões, mesmo que houver características individuais para cada peça. O custo unitário de manufatura é determinado por dois fatores principais: atividades na produção e tempo correspondente requerido na execução dessas atividades.

Kiritsis et al. (1999) sugerem um novo método para a estimação de custos na fabricação de uma peça, baseado na descrição de suas características e, na junção entre as operações da manufatura com os recursos requeridos nessas operações. O artigo apresenta duas técnicas para a modelagem dinâmica de planejamento de processos de fabricação. A primeira modela separadamente máquinas, tempos de setup e operações de troca de ferramentas como PN's específicas e independentes que são integradas em um modelo comum, chamado de Sistema PPC. A segunda técnica não calcula os custos distintamente, mas faz uso da PP-net generalizada, que combina os estados da PP-net com os estados externos do ambiente de produção, o que faz com que suas transições sejam sincronizadas com as transições do ambiente de troca.
2.6 O editor/simulador Petri Net Tools 2000

De acordo com Soares (2001) e Soares et al. (2001), o editor/simulador Petri Net Tools 2000 foi elaborado com características de um sistema aberto1, no qual novas ferramentas podem ser facilmente implementadas, tendo como base o suporte de modelagem e simulação de PN’s L/T. A caracterização desse sistema como aberto provém do módulo de templates, os quais contêm modelos de funcionamento do editor e que podem ser implementados, adicionados e removidos do mesmo, pelo usuário. A implementação ocorre com base em conceitos de reutilização de código, no qual será elaborado um pequeno framework.

A plataforma do editor pode ser dividida em dois módulos principais. O primeiro consiste no módulo de edição ou de interface com o usuário. O segundo é o de análise e simulação onde são realizadas as operações matemáticas. A ligação entre esses dois módulos é uma estrutura de parâmetros que especifica a rede em L/T, isto é, qualquer modelo editado em outro tipo de rede baseado em rede de Petri é convertido para uma estrutura do tipo L/T. Assim sendo, para que essa estrutura possa ser aproveitada em outros tipos de redes de Petri, precisa acontecer uma passagem de parâmetros adicionais nos elementos Lugar, Transição e Arco, através dos quais ocorre transmissão de dados que podem ser convenientemente interpretados pelo módulo de análise.

O módulo de edição que fornece a interface para editar graficamente a rede, trabalha com templates (Fig. 2.2). Nestes, existe padrão gráfico da rede que o usuário do aplicativo pretende utilizar, bem como funções para cada elemento. Para construir um novo template é necessário que esteja bem definida a equivalência da rede a ser trabalhada com a PN L/T.

1 Aberto, neste caso, se refere ao fato do editor estar disponível para download na página de web do grupo. Além disso, o código-fonte está disponível para reutilização em outras implementações feitas também pelo grupo.
Como se pode observar na Fig. (2.3), o módulo de edição transmite ao módulo de análise e simulação os parâmetros matemáticos da rede, como: conjuntos de lugares, transições, etc., além de passar também parâmetros adicionais que possam ser associados aos elementos da PN L/T.
2.7 Custos

2.7.1 Gastos, custos e despesas

Antes de diferenciar custo e despesa, é necessário definir o que seja gasto. Costuma-se utilizar este termo como um sinônimo para custo, e vice-versa, o que é errado, já que o primeiro é muito mais abrangente. De acordo com Martins (2000), gasto é qualquer sacrifício financeiro efetuado pela empresa, na obtenção ou venda de um produto ou serviço. Entretanto, nem todos os sacrifícios são gastos como, por exemplo, o “custo de oportunidade” ou os juros sobre o capital próprio, os quais não implicam na entrega de ativos.

Na Contabilidade de Custos, os gastos podem ser subdivididos em custos e despesas. Custos são gastos que, armazenados na forma de investimento, entram como fator de produção na fabricação de um produto ou na execução de um serviço. Resumidamente, custo é o que se gasta na fábrica, no processo produtivo, e que vai para o estoque. Despesas são os sacrifícios feitos para se obter receitas, compondo o resultado para verificar lucro ou prejuízo, ao serem deduzidas da receita.

2.7.2 Classificação e nomenclatura dos custos

Existem duas maneiras de classificar custos com relação a produtos. Uma classificação é apresentada por Novaski1 apud Usry & Hammer (1991), na qual o custo total de fabricação de uma peça consiste dos custos de produção e despesas corporativas.

O custo de produção, também conhecido como custo de fabricação ou custo de manufatura, é a soma do custo do material direto, mão-de-obra

direta e custos indiretos de fabricação. Podemos combinar os custos referentes ao material e à mão-de-obra, em uma única parcela chamada custos primários.

Despesas corporativas se dividem em: despesas de distribuição e despesas administrativas. Despesas de distribuição referem-se à comercialização ou venda de produtos manufaturados e surgem ao término da produção, quando o produto está em condições de ser vendido. Estas despesas cobrem custos para efetuar vendas e entregar produtos aos clientes. Despesas administrativas referem-se às despesas ocorridas na direção, controle e administração da empresa.

2.7.2.1 Custos relacionados aos produtos

A classificação feita por Martins (2000) primeiramente divide os custos em três grupos:
- custo da produção do período - soma dos custos incorridos no período, dentro da fábrica;
- custo da produção acabada - soma dos custos incorridos na produção acabada no período que pode conter, também, os custos de produção de períodos anteriores, existentes em unidades que só foram completadas no presente período e
- custo dos produtos vendidos - soma dos custos incorridos na fabricação dos bens que estão sendo vendidos que pode conter, também, custos de produção de diversos períodos, caso os itens vendidos tenham sido produzidos em épocas diferentes.

Alguns custos podem ser diretamente associados aos produtos, desde que exista alguma medida de consumo. Estes custos são chamados custos diretos com relação aos produtos. Custos indiretos são aqueles que não possuem medidas objetivas e a tentativa de alocação aos produtos precisa ser feita de maneira estimada e arbitrária.

A classificação de custos em diretos e indiretos é altamente relacionada ao produto e não à produção de maneira geral ou, aos departamentos da empresa. Em determinadas situações, um custo direto
pode ser tratado como indireto devido à sua irrelevância ou, ainda, devido à dificuldades encontradas em sua medição.

2.7.2.2 Custos relacionados ao volume de produção

Outra classificação importante é a que leva em consideração a relação entre os custos e o volume de atividade em uma determinada unidade de tempo. Esta divide os custos em fixos e variáveis (Martins, 2000):

1. custo fixo - cujo valor é independente do aumento ou diminuição no volume de produção do período (por exemplo, o aluguel da fábrica).
 1.1. repetitivo - repete-se com o mesmo valor em vários períodos seguintes (por exemplo, a depreciação das máquinas).
 1.2. não-repetitivo - possui valores diferentes para cada período de produção (por exemplo, energia elétrica).
2. custo variável - cujo valor varia conforme o volume de produção (por exemplo, quantidade de matéria-prima).

A classificação dos custos em fixos e variáveis leva em consideração três fatores: unidade de tempo, valor total dos custos nessa unidade e, volume de atividade. Em contrapartida, quando utilizamos a divisão de custos em diretos e indiretos, existe estreito relacionamento com a unidade produzida.

Todos os custos podem, ao mesmo tempo, ser classificados em fixos e variáveis ou em diretos e indiretos. Por exemplo, a matéria-prima é um custo direto e variável, os materiais de consumo geralmente são custos indiretos e variáveis, etc. Podemos notar que custos diretos são variáveis, quase sem exceção, mas os indiretos tanto podem ser fixos como variáveis.

Novaski (1991), também apresenta uma divisão dos custos de fabricação em: variáveis e fixos, em relação ao volume de produção de um determinado período. Os custos variáveis são os que representam gastos diretamente relacionados com o produto manufaturado. Estes custos modificam-se com o processo de produção, tais como aqueles devidos à matéria-prima ou à energia.
Os custos fixos, por sua vez, possuem como elementos todos os gastos de fabricação que não podem ser diretamente imputados aos produtos manufaturados ou aos serviços executados. Por esse motivo, esses custos são incorporados aos bens ou serviços, através de taxas de aplicação obtidas por critérios especiais.

2.7.3 Rateio dos custos indiretos

Os custos indiretos só podem ser indiretamente associados aos produtos, ou seja, através da utilização de estimativas, critérios de rateio, previsões de comportamento de custos, etc. Para que esta apropriação ocorra em aceitável nível de arbitrariedade, é necessário proceder como na Contabilidade de Custos, isto é, seguir alguns passos que procuram facilitar a real apropriação dos custos aos produtos. São estes os passos:

- separação entre custos e despesas;
- alocação direta dos custos diretos aos produtos e
- alocação dos custos indiretos aos produtos, através de rateio.

O rateio por taxa (Novaski, 1991) consiste na determinação de certo valor, a partir da relação entre custos fixos e quantidades de produtos ou horas de produção.

Na determinação da taxa de custos fixos (T_{CF}) tem-se as seguintes possibilidades:

- empresa com produto único - neste caso, não há necessidade da empresa calcular a taxa de custos fixos; ela determina o custo unitário de seu produto, relacionando o total de custos às unidades produzidas em determinado período e
- empresa com vários produtos:
• taxa em função da matéria-prima - esta taxa pode levar a grandes equivocos e somente é utilizada quando a empresa desconhece os tempos operacionais de seus produtos ou quando ela está produzindo vários produtos com valores semelhantes em matéria-prima e em tempos operacionais. Assim, dado o valor dos custos fixos da empresa em um determinado período e os custos totais de matéria-prima de um determinado produto no mesmo período, a taxa dos custos fixos é:

\[T_{CF} = \frac{C_F}{C_M p} \] (2.5)

• taxa em função da mão-de-obra - este é um método bem mais exato que o anterior. Ele não garante, porém, correção de cálculo no caso em que cada produto utiliza mão-de-obra de diferentes valores. Esta taxa é obtida através da relação entre o valor da mão-de-obra direta e de encargos sociais incorridos em certo período de produção e custos fixos do mesmo período:

\[T_{CF} = \frac{C_F}{S} \] (2.6)

• taxa em função das horas de mão-de-obra direta - este método exige a departamentalização da empresa e também o cálculo da carga horária por centro de custo, devido à diferença no custo operacional entre os diversos setores de uma empresa. Esta, por sua vez, deve atualizar constantemente seu custo/hora para acompanhar a evolução dos preços. Relacionando os custos indiretos ao total de horas de mão-de-obra direta trabalhada, é obtido um valor médio de custos indiretos para cada hora trabalhada. Esse valor fornece exatidão maior que a taxa anterior, pois elimina o problema da aplicação dos custos fixos em função dos salários e garante total relação com o fator tempo:

1 A determinação da hora dos custos fixos é feita em função dos custos históricos, no período de tempo representativo da atividade normal da empresa.
São necessárias algumas previsões quando uma empresa pretende apurar o custo de cada produto à medida que eles vão sendo fabricados. Devem ser estimados os custos indiretos de fabricação (CIF) que vão ocorrer naquele período, assim como a forma de distribuição dos mesmos pelos departamentos e de alocação aos produtos (Martins, 2000). São necessárias:

- previsão do volume de produção;
- previsão dos CIF variáveis totais (a partir do volume de produção);
- previsão dos CIF fixos para o período e
- fixação do critério de apropriação dos CIF aos produtos.

Assim, é possível prever a taxa de aplicação dos CIF, como anteriormente mostrado.

Para encontrar uma taxa de aplicação ótima é necessário dividir os custos em fixos evariáveis pois o total desses custos depende diretamente do volume de produção.

A previsão do volume de atividade da produção é o primeiro passo para se chegar à taxa de aplicação de CIF. Na prática, o valor utilizado na previsão é o normal para a empresa, mas a melhor alternativa é usar um valor esperado para o período em que a mesma será utilizada.

O uso da taxa é importante quando existem grandes variações no volume de produção durante o exercício (devido a férias coletivas, por exemplo), ou quando existe certos tipos de custos indiretos que aparecem com maior intensidade em determinados meses do ano.

Segundo Martins (2000), os custos que são comuns a vários departamentos são rateados em função de sua natureza. Entretanto, ao atribuir-se os custos de um departamento para outros, é preciso basear-se em algum critério e fazer a alocação a partir do montante todo. Para isso, é necessário verificar-se quais as bases de rateio mais adequadas para cada caso, que podem ser:

- rateio com base em horas-máquina;
• rateio com base em mão-de-obra direta;
• rateio com base em matéria-prima aplicada e,
• rateio com base em custo direto total (custo primário).

O exemplo a seguir mostra como é feito o rateio utilizando as bases anteriormente citadas:

Suponhamos que o departamento X de produção possua um custo indireto total de $5.400 e precise distribuir-los a dois produtos, M e N. São disponíveis as seguintes informações:

<table>
<thead>
<tr>
<th>Matéria-prima aplicada em cada produto</th>
<th>M</th>
<th>N</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.000</td>
<td>$7.000</td>
<td>$12.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mão-de-obra direta aplicada</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.000</td>
<td>$1.000</td>
<td>$2.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Custos Diretos totais</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$6.000</td>
<td>$8.000</td>
<td>$14.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Custos Indiretos a ratear</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?</td>
<td>$5.400</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?</td>
<td>$19.400</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horas-máquina utilizadas</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1400 hm</td>
<td>1000 hm</td>
<td>2400 hm</td>
<td></td>
</tr>
</tbody>
</table>

O valor a ser apropriado (custos fixos) é $5.400. Então:

a) Rateio com base em horas-máquina

$5.400÷2400 hm=$2,25/hm
M>1400 hm×$2,25/hm=$3.150
N>1000 hm×$2,25/hm=$2.250
Total=CIF=$5.400
Custo Total de M=$6.000+3.150=$9.150
Custo Total de N=$8.000+2.250=$10.250
Total=$19.400

b) Rateio com base em mão-de-obra direta

M> $5.400 ÷ 2=$2.700
N> $5.400 ÷ 2=$2.700
Total=CIF=$5.400
Custo Total de M=$6.000+2.700=$8.700
Custo Total de N=$8.000+2.700=$10.700
Total=$19.400

c) Rateio com base em matéria-prima aplicada

\[
\begin{align*}
M & \cdot \frac{5}{12} \times \$5.400 = \$2.250 \\
N & \cdot \frac{7}{12} \times \$5.400 = \$3.150
\end{align*}
\]

Custo Total de M = $6.000 + 2.250 = $8.250
Custo Total de N = $8.000 + 3.150 = $11.150
Total = $19.400

d) Rateio com base no custo direto total

\[
\begin{align*}
M & \cdot \frac{6}{14} \times \$5.400 = \$2.314 \\
N & \cdot \frac{8}{14} \times \$5.400 = \$3.086
\end{align*}
\]

Custo Total de M = $6.000 + 2.314 = $8.314
Custo Total de N = $8.000 + 3.086 = $11.086
Total = $19.400

Devem ser feitos alguns comentários a respeito desses métodos de rateio:

- no rateio com base na mão-de-obra direta podem ocorrer diferenças, caso o custo médio por hora seja desigual na manufatura de diferentes produtos;
- o mesmo se aplica para o rateio com base na matéria-prima aplicada;
- antes de efetuar a alocação dos CIF é necessário proceder a análise detalhada de seus componentes e verificar quais critérios podem ser melhor aplicados na relação destes custos com os produtos e
- o sistema de produção da fábrica deve ser minuciosamente conhecido pelo funcionário que decide sobre a forma de apropriar os custos; caso isso não aconteça, certamente ocorrerão erros.

De maneira geral, uma regra simples pode ser aplicada no rateio dos custos. Departamentos cujos custos sejam predominantemente fixos devem ser rateados com base em potencial de uso e departamentos cujos custos, em sua maioria, sejam variáveis devem ser rateados com base em serviço realmente prestado. Se não houver predominância de um ou outro e se o valor do custo total for grande, pode haver rateio misto.
A consistência na aplicação dos critérios de rateio é extremamente importante para avaliação homogênea dos estoques em períodos subseqüentes. Se houver consistência certamente não haverá artificialismo nos resultados.

2.7.4 Depreciação

A depreciação é outro elemento dos custos de produção cuja imputação aos produtos é extremamente complicada. Segundo Novaski (1991), depreciação é a perda de valor de um bem fixo (máquinas, equipamentos, instalações, prédios, etc.), ocorrida em consequência de certo serviço proporcionado. Este processo de desvalorização é periódico e deve ser recuperado através da venda dos produtos ou serviços finais, até o momento em que o bem deva ser substituído por outro. A depreciação pode ser considerada de três formas:

- física: quando a perda de valor pelo desgaste do equipamento, tanto pode ser causada por sua utilização normal, quanto pela ação do tempo;
- econômica: relativa à diminuição na capacidade do bem gerar receitas e
- contábil: correspondente à estimativa da perda de valor sofrida pelo bem, com finalidade de efetuar registros contábeis.

Existem alguns conceitos básicos para se entender a depreciação. São eles:

- valor de compra - preço de mercado do bem;
- vida útil - período de utilidade a que se destina o bem, em anos;
- período de depreciação - período de utilidade do bem, corrigido em relação aos seguintes fatores:
 - existência de risco de obsoletismo do processo ou do produto/serviço que o bem é capaz de gerar;
 - existência de condições de instabilidade econômica e
• existência, no empreendimento, de grande risco técnico ou de mercado,
• valor residual - valor que seria apurado na venda do bem, ao final do período de depreciação.

Os métodos existentes para calcular depreciação são: taxa constante de depreciação, soma dos dígitos e depreciação linear. Para decidir entre um e outro método, existem conceitos auxiliares que devem ser estudados:
• taxa mínima de atratividade - taxa mínima que uma nova proposta deve render para ser atrativa para uma empresa e
• fator de acumulação de capital - número tabelado, utilizado no cálculo do montante de capital acumulado ao final de um período de depreciação, devido às quotas de depreciação.

2.7.5 Tempos de fabricação

De acordo com Novaski (1991), o tempo de fabricação de uma peça inclui todos os tempos necessários para realização da fase de usinagem. Esse tempo pode ser dividido em dois grupos gerais:
• tempos manuais - que dependem diretamente da habilidade do operador e nos quais se incluem todos os movimentos para que o operador realize a operação de corte e a retirada da peça após a usinagem e
• tempos de máquina - que dependem do rendimento da máquina, da qualidade da ferramenta, da matéria-prima que está sendo utilizada, etc. e, que começam a partir do momento em que a ferramenta toca a peça e terminam quando ela é retirada da máquina.

Basicamente, podemos distinguir os seguintes tempos:
• tempo de corte - dado pelo intervalo de tempo em que as ferramentas efetivamente trabalham para remover cavacos da peça; pode ser dividido em duas partes:
 • atuação isolada de cada ferramenta e
• atuação simultânea de várias ferramentas; neste caso, existe uma ferramenta-padrão\(^1\) escolhida como referência;
• tempos secundários - são analisados através de tempos e métodos, visando economia e diminuição dos tempos envolvidos;
• tempos de setup\(^2\) - estão incluídos todos os tempos preliminares empregados na preparação da máquina para a usinagem;
• tempo de reposição - aquele efetivamente gasto por peça, para troca e colocação de todas as ferramentas envolvidas na operação, que não satisfaçam as condições de usinagem desejadas. O procedimento de troca das ferramentas pode ser dividido em dois casos:
 • trocas não pré-determinadas: as ferramentas são trocadas, individualmente, na ordem de ocorrência, quando não servem mais para as condições exigidas e
 • trocas pré-determinadas: existe um intervalo pré-determinado de troca. Como algumas ferramentas possuem vidas diferentes, pode-se proceder à troca de duas maneiras:
 ➢ todas as ferramentas são trocadas em um só grupo após a usinagem de uma quantidade determinada de peças ou
 ➢ as ferramentas são trocadas em grupos selecionados, de acordo com o tempo de vida que elas apresentam.

\(^1\) Preferencialmente, escolhe-se como ferramenta-padrão aquela que possui maior influência nos custos de operação, isto é, aquela cujo tempo de corte é maior (Novaski, 1991)
\(^2\) Setup (substantivo masculino) - Informática: Configuração. (DICIONÁRIO AURÉLIO ELETRÔNICO SÉCULO XXI, 1999, versão 3.0, nov).
3 CUSTOS PARA TOMADA DE DECISÃO

“Custeio significa Método de Apropriação de Custos” (Martins, 2000). Existem diversos métodos como, por exemplo, absorção, variável (direto), padrão, ABC, RKW, entre outros.

Os critérios de rateio de custos aos bens fabricados por uma empresa nem sempre são os desejáveis e necessários para algumas finalidades específicas.

O principal interesse na análise de custos deste trabalho é obter parâmetros para a tomada de decisão na produção e até mesmo na venda dos produtos. Na realidade, decidir o preço a ser fixado para um produto não é tarefa exclusiva de custos. É necessária a avaliação de uma série de informações sobre mercado consumidor em conjunto com informações internas da empresa para que decisões mais corretas possam ser tomadas.

Este capítulo trata de analisar, criticar e estudar adaptações necessárias aos critérios já verificados, para a aquisição de informações de custos que possam contribuir nessa tarefa. Como o foco principal deste trabalho está nos custos de produção, onde se considerar necessário poderemos utilizar os conceitos de custeio variável e de custeio por absorção.

3.1 Custeio baseado em atividades (Activity Based Costing)

O custeio baseado em atividades (ABC) é metodologia que procura reduzir distorções provocadas pelo rateio arbitrário dos custos indiretos (Martins, 2000). Uma das vantagens do ABC é sua aplicabilidade também aos custos diretos, especialmente mão-de-obra.

A principal diferença entre este método de custeio e os demais é o tratamento dado aos custos indiretos. Nos dias de hoje é extremamente importante um tratamento adequado na alocação dos CIF aos produtos porque os mesmos graus de arbitrariedade e subjetividade, tolerados no
passado, podem provocar enormes distorções. Isto ocorre sobretudo devido à grande diversidade de produtos e modelos fabricados na mesma planta de alguns setores industriais.

A utilidade do ABC, entretanto, não se limita ao simples custeio de produtos (primeira geração), ele é uma poderosa ferramenta de gestão de custos (segunda geração). O uso desta metodologia ajuda no processo de fixação do preço de venda, apenas quando a empresa mantém exclusividade sobre uma certa atividade. Caso contrário, se o mercado estiver em situação competitiva, pode acontecer falhas, tal como no custeio por absorção. Neste caso, é comum a procura de custos meta (target cost) a partir do preço de mercado. Entrementes, é inquestionável o uso do ABC na redução de custos e despesas.

A aplicação do ABC como técnica de custeio possui algumas etapas fundamentais, descritas a seguir (Martins, 2000).

3.1.1 Identificação das atividades relevantes

Atividade é a combinação de recursos (humano, material, tecnológico e financeiro) na produção de bens ou serviços. Ela é composta por um conjunto de operações necessárias ao seu desempenho e é imprescindível para a concretização de um processo.

Como em um departamento são realizadas atividades homogêneas, o primeiro passo para o custeio ABC é a identificação de atividades relevantes dentro de cada departamento. Este trabalho fica bastante fácil caso a empresa já possua estrutura contábil que faça apropriação dos custos por centros de custos, de trabalho, de atividades e, mais ainda, se em cada centro estiver sendo desenvolvida uma única atividade.

3.1.2 Atribuição de custos às atividades

O custo de uma atividade engloba todos os sacrifícios de recursos necessários à sua realização, incluídos salários com encargos sociais, materiais, depreciação, energia, uso de instalações e etc.
Dependendo do grau de precisão desejado, as atividades podem ser divididas em tarefas e subdivididas em operações. Um conjunto de atividades homogêneas, por sua vez, representa uma função normalmente desempenhada por um departamento.

A atribuição dos custos às atividades deve ser feita da maneira mais criteriosa possível, seguindo certa ordem de prioridade:

• alocação direta - feita quando ocorre clara, direta e objetivamente uma identificação entre um custo e alguma atividade;
• rastreamento - alocação baseada na identificação da relação de causa e efeito (expressa por direcionadores de custos de recursos) entre ocorrência de atividade e geração de custo e
• rateio - realizado apenas quando for impossível o uso de qualquer um dos dois critérios anteriores.

3.1.3 Identificação e seleção dos direcionadores de custos

Direcionador de custos é o fator que determina ocorrência de uma atividade; é o verdadeiro causador dos custos, já que a realização das atividades exige recursos. Dessa forma, o direcionador de custos deve refletir a causa básica da atividade e a existência de seus custos.

Pode existir dois tipos de direcionador, os de primeiro estágio, também chamados direcionadores de recursos e os de segundo estágio, chamados direcionadores de atividades. O primeiro tipo mostra a relação entre recursos gastos e atividades. Já o segundo indica a relação entre atividades e produtos.

Como, no custeio de produtos, o direcionador deve ser o fator que determina ou influencia a maneira como os produtos consomem as atividades, a base utilizada para atribuir custos de atividades aos produtos será o direcionador de custos.

O número de direcionadores utilizados no custeio depende do grau de precisão desejado na avaliação e da relação custo-benefício. Os direcionadores escolhidos para levar o custo das atividades aos produtos devem demonstrar a melhor relação atividade-produto.
3.1.4 Atribuição dos custos das atividades aos produtos

Após identificar atividades relevantes, direcionadores de recursos e custos em si, o custeio dos produtos finalmente pode ser efetuado.

O primeiro passo é organizar o levantamento da qualidade e da quantidade de ocorrência dos direcionadores de atividades por período e por produto. Com esses dados, o custo do produto pode ser calculado da seguinte maneira:

- custo unitário do direcionador = \(\frac{\text{Custo da atividade}}{\text{no. total de direcionadores}} \)
- custo da atividade atribuído ao produto = custo unitário do direcionador \(\times \) no. de direcionadores do produto
- custo da atividade por unidade de produto = \(\frac{\text{Custo da atividade atribuído ao produto}}{\text{Quantidade produzida}} \)

Se na produção houver alta proporção de custos indiretos nas atividades de apoio e diversidade de produtos, especialmente no que se refere à complexidade e diferentes volumes de produção, ocorrerá um fenômeno muito comum às empresas que “trocam” custeio tradicional pelo ABC: produtos que pareciam lucrativos revelam-se deficitários. Produtos mais complexos fabricados em baixo volume mostrar-se-ão menos lucrativos com o ABC e, inversamente, produtos mais simples fabricados em altos volumes apresentarão maiores margens de lucro.

Isso acontece porque, em sistemas tradicionais de custeio, as bases de rateio (geralmente medidas de volume) não refletem o verdadeiro consumo de recursos pelos produtos.

3.2 Custeio por absorção

Custeio por absorção é o método derivado da aplicação dos princípios de contabilidade geralmente aceitos. É baseado na apropriação de todos os custos de produção (somente os de produção) aos bens elaborados.
Somente é possível alocar corretamente os custos indiretos aos produtos após conhecidos os totais do mês produtivo e também a quantidade de produtos elaborados. Além disso, alguns custos indiretos não são homogêneos durante o período e, neste caso, existem procedimentos usuais para lidar com os mesmos.

3.3 Margem de contribuição, custos fixos identificados

3.3.1 Conceito de margem de contribuição

A apropriação dos custos fixos aos produtos provoca o surgimento de dois problemas:

- o valor por unidade de produto depende diretamente da quantidade elaborada pois os custos fixos são totalmente dependentes dos produtos e do volume de produção e
- o critério de rateio escolhido pode resultar na apropriação de um valor diferente para cada unidade de cada produto.

O uso da margem de contribuição por unidade procura minimizar esses problemas. Essa margem é calculada como a diferença entre a receita (preço de venda) e o custo variável total de cada produto, o que torna bem mais visível a potencialidade de cada produto.

A margem de contribuição é muito importante nas decisões de fixação de preço de venda. Das diversas opções de preço e quantidade, é mais interessante a que maximiza a margem de contribuição total desde que, para qualquer alternativa possível, o custo fixo se mantenha inalterado.

3.3.2 Custos fixos identificados

Os custos fixos devem ser devidamente analisados para que possam contribuir com aspectos decisoriais de uma empresa.
Uma forma correta de encaminhar essa análise é identificar os custos fixos comuns de cada produto ou grupo de produtos e então elaborar uma sequência de margens de contribuição.

Dessa maneira, os custos fixos podem ser deduzidos diretamente de um produto ou de um grupo de produtos, caso haja identificação entre os mesmos. Se os custos forem comuns, eles podem ser deduzidos da soma de todas as margens de contribuição.

3.4 Custeio variável (direto)

O custeio variável ou direto (baseado nos conceitos de custo variável e de margem de contribuição) é uma forma alternativa de custeamento que surgiu devido à dificuldade encontrada na apropriação dos custos fixos aos produtos.

Nas empresas em que os gastos com a produção acontecem mais expressivamente através de custos diretos e variáveis e onde o processo produtivo está suficientemente otimizado, as informações fornecidas por esse método de custeio (com a identificação das margens de contribuição dos produtos) possuem igual ou maior relevância em comparação aos dados obtidos do método de custeio ABC (Gonçalves et al., 1998).

No custeio por absorção todos os custos de produção (fixos, variáveis, diretos e indiretos) são alocados aos produtos elaborados. Sua principal característica é o fato de somente os custos de produção variáveis (diretos ou indiretos) entrarem na alocação.

O uso do custeio variável não significa abandono dos custos fixos. Quando os custos fixos são identificados especificamente com um produto ou com um grupo de produtos, eles são diretamente deduzidos sem que sejam alocados a cada unidade. Dessa forma, é possível criar diversas margens de contribuição em uma sequência lógica e agregativa.

A margem de contribuição, em conjunto com o custeio variável é, também, muito importante nas decisões do tipo comprar ou fabricar, pois a melhor opção será aquela que trouxer maior diferencial em margem de contribuição.
O principal objetivo do sistema de custeio variável é determinar os custos unitários característicos dos produtos, o que permite administração da margem de contribuição unitária de cada produto (Gonçalves et al, 1998).
4 TÉCNICAS EM REDES DE PETRI PARA ESTIMAÇÃO DE CUSTOS

As técnicas propostas no trabalho de Kiritsis et al. (1999) e Kiritsis et al. (1998) são baseadas na construção de modelos já conhecidos de PN’s e na análise de suas respectivas árvores de alcançabilidade. Antes de comentar técnicas, são apresentadas definições formais úteis a este capítulo:

- P é o conjunto de lugares da rede, os quais representam alternativas ou preferências;
- T é o conjunto de transições da rede, as quais representam operações da manufatura;
- F é o conjunto de arcos que ligam lugares e transições;
- N é uma rede de Petri segura (safe) que possui dois lugares especiais chamados p_{START} e p_{STOP} e duas transições especiais t_{START} e t_{STOP}. O lugar p_{START} é de origem, isto é, não possui transição de entrada e t_{START} é sua única transição de saída. O lugar p_{STOP} é absorvente, isto é, não possui qualquer transição de saída e t_{STOP} é sua única transição de entrada;
- $F \cap F^{-1} = \emptyset$, isto é, a rede é acíclica ou parcialmente ordenada;
- M_0 é a marcação inicial e tem uma só marca, em p_{START};
- M_F é a marcação final que tem uma só marca, em p_{STOP}; esta marcação é a única que não possui qualquer transição habilitada e
- não existem transições inoperantes em M_0.

A ênupla $S = [N,M,\{S^{(i)}\},\{T^{(i)}\},C,R]$ é um sistema PPC se e somente se (Kiritsis et al., 1999):
N é uma PP-net;

M = \[P_M, T_M, F_M\] forma um estado de máquina com o conjunto de m lugares \(P_M = \{M_1, \ldots, M_m\}\);

para cada lugar \(M_i\) de \(M\) é associado um par de estados de máquinas \((S^{(i)}, T^{(i)})\), onde \(S^{(i)} = \{P_S^{(i)}, T_S^{(i)}, F_S^{(i)}\}\) e \(T^{(i)} = \{P_T^{(i)}, T_T^{(i)}, F_T^{(i)}\}\);

C é uma função que associa um número real não negativo a qualquer transição de \(N, M, S^{(i)}\) e \(T^{(i)}\) (\(\forall i = 1,\ldots,m\)). Aqui, transições \(\text{start, stop, split e join}\) têm sempre o valor 0 (zero) associado a

R é uma função que associa, a cada transição operacional \(t\) de \(N\), uma tripla \((M_i, P_{S^{(i)}} j, P_{T^{(i)}} k)\) de lugares de \(M, S^{(i)}\) e \(T^{(i)}\), isto é, se \(R\) associa \(M_i \in M\) à \(t\), então, \(R\) também associa algum \(P_{S^{(i)}} j \in P_{S^{(i)}}\) e \(P_{T^{(i)}} k \in P_{T^{(i)}}\) à \(t\).

Uma vantagem das técnicas é que elas são baseadas em modelos genéricos de PN e apenas dados do planejamento de processos precisam ser informados como entrada. O que se observa na aplicação das mesmas é que, enquanto a primeira oferece um modelo de fácil entendimento que pode ser utilizado com as ferramentas de trabalho já existentes, a segunda é mais eficiente no tempo de resposta. Uma informação interessante é que não existe um único plano de processos ótimo; este vai depender do enfoque dado ao estudo do sistema.

4.1 Estimação de custos através do sistema PPC

Segundo Kiritsis et al. (1999), para fazer a estimação de custos com um modelo de sistema PPC é necessário analisar a árvore de alcançabilidade da PN associada e nela escolher o menor caminho para a solução desejada.

Nessa árvore, os arcos possuem uma classificação intimamente ligada às transições e o plano de processos é dado por um caminho, ou seja, por uma sequência de transições que deve começar na marcação.
inicial e terminar em um ponto (nô) final. Este ponto pode ser qualquer, desde que ele tenha uma marca em p_{stop}.

O custo das operações é dado por um número real associado a cada transição, que pode estar representando uma máquina, um tempo de setup ou uma troca de ferramenta. O custo total do plano de processos pode então ser calculado como a soma desses valores, no correspondente caminho escolhido. O custo ótimo finalmente é obtido escolhendo-se um caminho cujos pesos dos arcos sejam mínimos, o que pode ser encontrado através de alguma ferramenta de análise de PN’s. No trabalho de Kiritsis et al., a ferramenta utilizada foi a INA (Integrated Net Analyzer).

Para formar uma rede no sistema PPC, é necessário conectar cada transição operacional da PP-net a três lugares dados pelo mapeamento R, através de arcos bidirecionados. Esta é a forma de efetuar a modelagem das pré-condições da operação, relacionada à transição.

O único problema apontado na análise da árvore de alcançabilidade de um sistema PPC, é que todos os possíveis eventos do sistema estudado são modelados. Isto acarreta o aparecimento de um número muito grande de estados e arcos, o que dificulta a busca pelo melhor caminho.

4.2 Estimação de custos através da PP-Net generalizada

A PP-net se encaixa exatamente no escopo deste trabalho, já que leva em consideração apenas os custos de produção causados por máquinas, tempos de setup, troca de ferramenta e custos operacionais das máquinas propriamente ditos (Kiritsis et al., 1998.)

Uma série σ de uma PP-net é uma sequência de disparos de transições que transforma a marcação inicial M_0 em alguma marcação final M_f. As séries de uma PP-net representam, de maneira bijetora, todos os planos de processos, isto é, todas as prováveis sequências de operações para produção de uma peça. Tais sequências são apresentadas no grafo de cobertura da PP-net cujos nós representam todos os possíveis estados da
peça durante o processo de manufatura; as extremidades representam as transições da PP-net, isto é, as operações de usinagem.

O método proposto é baseado na construção de modelo especial em rede de Petri. Sua característica mais interessante é que a construção segue modelos correspondentes (Kiritsis & Porchet, 1996). Isso implica que existe a possibilidade de construção automática de modelos, a partir de dados de planejamento de processos fornecidos ao sistema através de interfaces amigáveis ao usuário.

Para conseguir modelar o custo total em um plano de processos, devem ser introduzidas no modelo informações importantes à PP-net. Podemos então distinguir quatro tipos de custo (Kiritsis & Porchet, 1996; Kiritsis et al., 1999):

- custo da usinagem, que depende principalmente do tempo que uma máquina é usada para operação particular na manufatura;
- custo do transporte de peças de uma máquina para outra;
- custo do tempo de setup de uma máquina e
- custo da troca de ferramenta em uma máquina.

Esses custos são incorporados dentro da PP-net generalizada através de informações ligadas às transições, as quais consistem em novas definições para estados do sistema estudado, à cada operação do sistema. Estas informações são dadas por uma expressão do tipo:

\[
\text{operationTransition := (operation, (machine, (setup, tool)))}
\]

Um estado da PP-net é caracterizado então, por:

\[
\text{currentState := (operationsState, (currentMachine, (setup[i], tool[i])))}
\]

O componente \text{operationState} é dado pela marcação da PP-net e indica quais operações já foram feitas e quais serão as possíveis próximas. O componente \text{currentMachine} representa o local de realização da última operação enquanto o par \text{(setup[i], tool[i])}, para cada máquina \text{i}, caracteriza qual o estado atual dos setup e ferramenta correspondentes.

A habilitação de uma operação é determinada pelo componente \text{operationState}, mas o custo daquela depende também do resto do componente \text{currentState}, mais precisamente dado pelo custo da operação somado a um custo para troca de máquina, somado a um custo para a
troca de setup, somado a um custo para a troca de ferramenta (caso essas mudanças ocorram).

Considerando as informações e propriedades anteriores, o método de trabalho da PP-net consiste das seguintes fases:

• fase 1 - entrada dos dados do planejamento de processos:
 • operações,
 • máquinas
 ➢ tempos de setup,
 ➢ ferramentas;

• fase 2 - entrada das pré-condições de cada operação:
 • operações
 ➢ tempos de setup,
 ➢ ferramentas,
 ➢ máquinas,
 • custos
 ➢ de operações,
 ➢ de troca de máquina,
 ➢ de troca de setup,
 ➢ de troca de ferramenta;

• fase 3 - construção da PP-net (Kiritsis & Porchet, 1996):

Para construir o modelo em rede de Petri de um problema de planejamento de processos, primeiro analisamos todas as operações necessárias para determinar as associações de recursos possíveis. Todas as regras de precedência entre operações de usinagem devem ser identificadas e estabelecidas, o que é muito importante, pois delimita o número de soluções possíveis. Pela mesma razão, se possível, são estabelecidos grupos de operações executáveis sob as mesmas condições.

A aplicação do método de modelagem para um planejamento de processos possui os seguintes passos:

(1) cada operação de usinagem ou grupo bem-estabelecido é representado por uma transição T_i ($i = 1,\ldots,n$),
(2) operações de usinagem alternativas (possíveis candidatas) para um determinado propósito são representadas por transições T_{ij}, as quais utilizam os mesmos lugares de entrada e saída,

(3) existe um lugar de entrada e saída comum (dinâmico), chamado ControlPlace, com uma marca inicial para todas as transições que representem:

(3.1) saídas para o estado da peça processada, isto é, o estado da peça após o disparo de cada transição (operação de usinagem),

(3.2) evolução do estado da ferramenta,

(4) para cada transição T_i, é criado um lugar de saída. Tal lugar não possui transições sucessoras. Esse lugar-final EP_i, após o recebimento de uma marca de sua transição de entrada, indica que tal transição já disparou e não pode disparar novamente,

(5) para cada transição sucessora T_m, de uma transição T_i, um lugar de saída CP_{im} é criado para T_i. Tal lugar é a entrada da transição sucessora T_m e representa informações dadas por relações de preferência, dentro do sistema,

(6) todos os arcos possuem peso igual a 1.

Um modelo em rede de Petri construído a partir das regras anteriores:
- representa com exatidão e dinamismo o planejamento de processos para uma determinada peça mecânica,
- provê uma ferramenta gráfica para a representação de informações do tipo relação de preferência, com a relação transição \leftrightarrow lugar de saída \leftrightarrow transição sucessora,
- fornece poderosa ferramenta de simulação no planejamento de processos, englobando seqüências de operações de usinagem e ferramental e
- apresenta todas as possíveis soluções (planos de processos), através da análise de alcance e cobertura da rede;

• fase 4 - obtenção do caminho cujos pesos dos arcos sejam mínimos, através da árvore de alcançabilidade da PP-net generalizada.
Fica evidente que nem todas as soluções encontradas são interessantes ou relevantes. Especialmente nos casos em que existem milhares de possibilidades, encontrar a solução ótima passa a ser um problema de combinação surgindo a necessidade de usar um método de otimização, com critérios heurísticos, baseado em regras relacionadas às ações de usinagem executadas pelas transições correspondentes.

Para tentar resolver este problema, é utilizada uma tabela de usinagem e, após esta etapa, um método heurístico é aplicado para obter planos de processos aceitáveis à solução do problema (Anexo A).

4.3 Rede de Petri Estocástica

Através da rede de Petri Estocástica é possível estimar também custos de manufatura de determinada peça, trocando os tempos de disparo das transições por objetos de custo. O disparo das transições, neste caso, poderá ser imediato ou não, dependendo da existência de conflitos entre transições. O custo final poderá ser obtido através de um somatório das parcelas referentes às transições que dispararem no caminho escolhido.

Podemos ainda, utilizando os conceitos já vistos da PP-net, incorporar os tempos e custos das transições de maneira estocástica, isto é, fazer a junção entre SPN e PP-net.

A análise dos resultados continuará facilitada pela árvore de alcançabilidade da rede, que fornecerá todos os caminhos possíveis a partir da marcação inicial. A partir da árvore podemos, por exemplo, escolher caminhos convenientes para cada tipo de peça.

Utilizar redes de Petri Estocásticas para estimação de custos permite não somente o uso de dados pré-definidos no sistema que se deseja estudar como também o uso de dados selecionados dentro de um intervalo de

1 Algumas ações de usinagem (troca de ferramenta de corte, troca de posição dos eixos da ferramenta, etc) são tarefas que não acarretam em consumo de tempo (e também de custo) mas, possuem papéis muito importantes no desempenho de um plano de processos logo, é preferível que tais ações aconteçam o mínimo de vezes possível (Kiritsis & Porchet, 1996).
confiança calculado através de uma distribuição qualquer. Assim, o modelo para o custo de uma operação qualquer pode receber como dado de entrada um valor custo pré-fixado, ou então, um valor obtido dentro de uma distribuição de média \(\mu \) e desvio-padrão \(\sigma \). A última atribuição pode ser muito útil no caso de projeto, quando não for possível conhecer com precisão um valor para determinada operação do sistema e existe um certo erro de cálculo.
5 MODELO PROPOSTO

Os métodos atuais de determinação de custos de manufatura foram desenvolvidos anos atrás, em situação e ambiente comerciais totalmente diferentes. Mesmo assim, têm sido amplamente usados, sem qualquer mudança significativa. Com a inovação manufatureira (integração de máquinas com controle programável e computadores), os dados de custos dos produtos tornaram-se menos precisos e confiáveis (Dhavale, 1990).

Os métodos de custeio têm sido desenvolvidos para tipos diferentes de sistemas convencionais de manufatura: grandes projetos, fluxo contínuo e oficinas especializadas (job shops), todos com o mesmo conceito de custo de manufatura, dividido em três componentes:

- custo de material direto;
- custo de mão-de-obra direta e
- custo de manufatura indireta (ou despesas gerais).

Os custos diretos são facilmente alocáveis aos produtos manufacturados enquanto, nas despesas gerais, a relação entre custo e produto é oculta ou, em alguns casos, inexistente. Tais métodos diferem apenas no procedimento usado para calcular a média dos custos sobre tempo e para alocar as despesas gerais aos produtos.

De acordo com Rehman & Guenov (1998), a estimação de custos é feita através de um exame no projeto dos produtos e, através da aplicação de conhecimento heurístico, adquirido com tempo de experiência em estimação de custos de manufatura e de montagem. A Figura 5.1 mostra os principais itens de contribuição de custos, cada um dos quais com dependências internas. O principal problema da estimação de custos, como é possível observar, é produzir um número grande de peças que interagem de maneira complexa onde exista uma integração de diversas informações de entrada.
Um simples sistema de mensuração de custos não possui amplitude suficiente para fornecer informações necessárias à tomada de decisão. Nos tópicos a seguir, será apresentado modelo de ferramenta que busca com uso de custeio e redes de Petri, prover dados relevantes sobre a manufatura da empresa, no que se refere a custos e processos de produção.

5.1 Considerações iniciais

Através da PP-net de Kiritsis & Porchet (1996) e Kiritsis et al. (1999) é possível associar o custo de operações de usinagem de uma determinada peça às transições da rede de Petri. Assim, para todo $i, j, k, j \neq k$:

$$
\text{Cost}[O_i] = \text{opCost}[O_i] + \text{mCost}[M_i, M_j] + s\text{Cost}[M_i, \left\{ S_j^{(k)}, S_k^{(j)} \right\}] + t\text{Cost}[M_i, \left\{ T_j^{(k)}, T_k^{(j)} \right\}]
$$

(5.1)

Neste caso,

- $\text{cost}[O_i] = \text{custo da operação } O_i$;
- $\text{opCost}[O_i] = \text{custo de usinagem da operação } O_i$;
- $\text{mCost}[M_i, M_j] = \text{custo correspondente ao transporte da peça, da máquina } M_i \text{ para a máquina } M_j$;
Podemos observar que, neste caso, não importa o número de máquinas que a rede comporta, nem a quantidade de configurações e/ou ferramentas que cada máquina possui.

A seguir, serão mostradas maneiras de calcular os itens de custo da Equação (5.1) que, por sua vez, será responsável pelo cálculo de custos de operações nas transições da rede de Petri associada ao sistema estudado. Tal modelo será passível de simulação e análise através das técnicas já mencionadas no trabalho e dessa análise surgirão alternativas de custos (além de outras informações relevantes).

5.2 Fórmulas para o cálculo dos itens de custo

O próximo passo é calcular cada item de custo necessário para aplicação da Equação (5.2). Na necessidade de trabalhar com custos indiretos de fabricação (CIF), será utilizado algum critério de rateio (sistema de custeio). No caso, será empregado o método de custeio por taxa e generalizaremos a situação para uma empresa que fabrique vários produtos.

5.2.1 Custo de operação da máquina (opCost)

Este custo engloba as parcelas energia elétrica, depreciação e manutenção da máquina. Então:
• custo da energia elétrica

O custo da energia elétrica pode ser obtido através da aplicação da taxa dos custos fixos, baseada em número de horas-máquina.

\[T_{CF} = \frac{C_F}{H_{MAQ}} \] (5.2)

onde \(H_{MAQ} \) é o número total de horas-máquina utilizadas.

Então:

\[C_e = T_{CF} \cdot n_{hm} \] (5.3)

onde \(n_{hm}(p_i) \) é o número de horas-máquina por peça ou produto \(p_i \).

• custo da depreciação da máquina

Existem muitos métodos matemáticos utilizados no cálculo da depreciação. A escolha de um método específico deve ser especialmente feita para cada caso.

Novaski (1991) considera que, em cada período, a depreciação é constante e igual a \(1/n \) da base deprecável, onde \(n \) é a vida útil do equipamento, em anos. Portanto, representando-se por \(N_1 \) a quota periódica de depreciação, temos:

\[N_1 = \frac{V_0 - V_R}{n} \] (5.4)

Como estamos interessados em obter um valor aproximado para a depreciação em uma máquina em um período produtivo (um mês), podemos modificar um pouco (5.4) e obter:

\[N_2 = \frac{V_R \cdot V_0}{p} \] (5.5)

onde \(p \) é o total de períodos produtivos em um ano. Se considerarmos um período produtivo igual a um mês, então, \(p \) será igual a doze.

• custo de manutenção das máquinas

O custo de manutenção das máquinas pode ser feito através de projeção baseada no tempo em que elas ficaram inoperantes logo, podemos considerar que essa parcela seja o custo devido aos tempos improdutivos das máquinas. Utilizando a mesma taxa em função do número de horas-máquina e supondo que a máquina \(M_j \) ficou parada
durante certo período de produção, por um tempo t_{M_j}, temos que para cada máquina M_j:

$$C_m(M_j) = C_{t_j} = T_{CP} \cdot t_{M_j}$$

(5.6)

O custo de operação da máquina M_i é dado, então, pela soma das parcelas calculadas acima, ou:

$$opCost[O_i] = C_{op}(t) = C_e + N_2 + C_m$$

(5.7)

5.2.2 Custo do transporte entre duas máquinas ($mCost$)

O custo do transporte entre máquinas é um caso um tanto especial, uma vez que tal ação pode ser realizada de várias maneiras: por um operador, por esteira, por veículo, etc.

Dessa forma, é necessário definir primeiro qual o tipo de transporte estará acontecendo na manufatura das peças para depois poder calcular seu custo.

Caso o transporte aconteça através de operador, o mais correto é utilizar a taxa dos custos fixos baseada em número de horas de mão-de-obra direta, e então:

$$C_t = S_O \cdot T_{CP} \cdot t_t$$

(5.8)

onde S_O é o salário do operador, por hora e,

$$T_{CP} = \frac{C_F}{H_{MDO}}$$

(5.9)

onde H_{MDO} é o número total de horas de mão-de-obra direta utilizada.

Caso o transporte ocorra por esteira, por veículo ou, por qualquer outro meio não-mensurável, pode-se, simplesmente, definir um custo por hora para o transporte ou usar um cálculo semelhante ao do custo da energia elétrica.

5.2.3 Custo de setup das máquinas ($sCost$)

O custo de setup das máquinas é dado por:
\[C_{tp} = (S_o + C_M) \cdot \frac{t_P}{Z} \] \hspace{1cm} (5.10)

onde

\[C_M = \frac{1}{H} [V_0 - kN_1] t + T_{CF} \] \hspace{1cm} (5.11)

Este custo representa o lote inteiro \((z)\) de peças fabricadas.

5.2.4 Custo de troca das ferramentas \((tCost)\)

A troca de ferramentas pode acontecer de três maneiras distintas. Para cada uma existe um custo diferente:

- as ferramentas são trocadas individualmente

\[C_t = (C_M + S_O) \cdot \sum_{i=1}^{m} \left(\frac{1}{Z} - \frac{1}{Z_{T_i}} \right) \cdot t_{f_i} \] \hspace{1cm} (5.12)

- as ferramentas são trocadas em um só grupo

\[C_t = (C_M + S_O) \cdot \left(\frac{1}{Z} - \frac{1}{Z_T} \right) \cdot t_f \] \hspace{1cm} (5.13)

- as ferramentas são trocadas em um grupo selecionado

\[C_t = (C_M + S_O) \cdot \sum_{g=1}^{G} \left(\frac{1}{Z} - \frac{1}{Z_{T,g}} \right) \cdot t_{f,g} \] \hspace{1cm} (5.14)

No capítulo a seguir veremos a aplicação dessas equações em um estudo de caso.
6 ESTUDO DE CASO

O exemplo utilizado neste estudo de caso foi retirado do trabalho de Kiritsis & Porchet (1996) e busca mostrar os princípios da PP-net aplicada à modelagem de planejamento de processos, conjuntamente à estimação de custos. Todas as figuras e tabelas deste capítulo estão baseadas nesta referência.

É utilizada uma peça académica 1 (Fig. 6.1), na qual figuram 12 entidades (ou características) projetadas, que serão usinadas em seis máquinas convencionais diferentes (três fresadoras e três furadeiras), com a utilização de oito ferramentas.

Para a fabricação da peça são requeridas operações de usinagem (com as correspondentes ferramentas, posições dos eixos e da superfície de trabalho) como está mostrado na Tab. 6.1. Podemos notar que é possível agrupar algumas operações, o que é muito útil uma vez que auxilia a diminuir o tamanho do modelo resultante em rede de Petri. Neste caso, por exemplo, os furos Hole 1, Hole 2 e Hole 3 foram agrupados (HOL1) porque podem ser feitos em conjunto. O mesmo ocorre para os outros furos da peça.

Para cada operação definida na Tab. 6.1 é necessário prover as seguintes informações (Tab. 6.2):

- um nome para a ferramenta de corte utilizada;
- um valor numérico para o ângulo, referente à posição do eixo da ferramenta e
- um valor numérico para o ângulo, referente à posição da mesa de trabalho da máquina em questão.

1 A peça recebe este nome por não se tratar de peça existente e fabricada no mercado. Ela foi criada idealmente para figurar no exemplo.
Figura 6.1 – Peça-exemplo do estudo de caso
Tabela 6.1 – Tabela de usinagem correspondente à Fig. 6.1

<table>
<thead>
<tr>
<th>Setup inicial</th>
<th>Usinagem</th>
<th>Acabamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face 1</td>
<td>FreFAC1 (O₁)</td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td>FreSTP1 (O₂)</td>
<td></td>
</tr>
<tr>
<td>Slot 1</td>
<td>FreSLT1 (O₃)</td>
<td>AFreSLT1 (O₄)</td>
</tr>
<tr>
<td>Pocket 1</td>
<td>FrePOC1 (O₅)</td>
<td>AFrePOC1 (O₆)</td>
</tr>
<tr>
<td>Pocket 2</td>
<td>FrePOC2 (O₇)</td>
<td>AFrePOC2 (O₈)</td>
</tr>
<tr>
<td>Hole 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole 2</td>
<td>SFurHOL1 (O₉)</td>
<td>FurHOL1 (O₁₀)</td>
</tr>
<tr>
<td>Hole 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole 4</td>
<td>SFurHOL2 (O₁₁)</td>
<td>FurHOL2 (O₁₂)</td>
</tr>
<tr>
<td>Hole 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole 6</td>
<td>SFurHOL3 (O₁₃)</td>
<td>FurHOL3 (O₁₄)</td>
</tr>
<tr>
<td>Hole 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 6.2 – Ferramentas, eixos, superfície da peça, transições

<table>
<thead>
<tr>
<th>Operação</th>
<th>Ferramenta</th>
<th>Eixo (°)</th>
<th>Superfície (°)</th>
<th>Transição</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreFAC1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>T₁</td>
</tr>
<tr>
<td>FreSTP1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>T₂</td>
</tr>
<tr>
<td>FreSLT1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>T₃</td>
</tr>
<tr>
<td>AFreSLT1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>T₄</td>
</tr>
<tr>
<td>FrePOC1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>T₅</td>
</tr>
<tr>
<td>AFrePOC1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>T₆</td>
</tr>
<tr>
<td>FrePOC2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>T₇</td>
</tr>
<tr>
<td>AFrePOC2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>T₈</td>
</tr>
<tr>
<td>SFurHOL1</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>T₉</td>
</tr>
<tr>
<td>FurHOL1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>T₁₀</td>
</tr>
<tr>
<td>SFurHOL2</td>
<td>-</td>
<td>90</td>
<td>90</td>
<td>T₁₁</td>
</tr>
<tr>
<td>FurHOL2</td>
<td>7</td>
<td>90</td>
<td>90</td>
<td>T₁₂</td>
</tr>
<tr>
<td>SFurHOL3</td>
<td>-</td>
<td>90</td>
<td>270</td>
<td>T₁₃</td>
</tr>
<tr>
<td>FurHOL3</td>
<td>8</td>
<td>90</td>
<td>270</td>
<td>T₁₄</td>
</tr>
</tbody>
</table>
Além dos elementos já citados, foi feita também a atribuição de uma transição específica para cada operação, que será utilizada na construção do modelo em PN.

Apesar de estarmos lidando com uma peça acadêmica, devemos observar algumas regras de precedência (Anexo B) que definem quais seqüências de operações podem ser executadas:

- FreSTP1, FreSLT1 e FrePOC1 após FreFAC1
- SFurHOL1, SFurHOL2 e SFurHOL3 após FreSTP1
- AFreSLT1 após FreSLT1
- FrePOC2 após FreSLT1
- AFrePOC1 após FrePOC1
- AFrePOC1 após FrePOC2
- FurHOL1 após SFurHOL1
- FurHOL2 após SFurHOL2
- FurHOL3 após AFurHOL3

Observadas as restrições, podemos construir uma rede de Petri, PP-net, que represente o processo de fabricação da peça (Fig. 6.2). A marcação inicial consiste de apenas uma marca no lugar comum (ControlPlace). Neste caso, é muito útil empregar uma rede de Petri Temporizada, já que alguns conflitos devem ser evitados no disparo das transições. Por exemplo, o disparo da transição T₅ habilita as transições T₆ e T₇ mas T₆ só pode disparar após T₇ ter disparado, o que pode ser resolvido com uso de tempos diferentes no disparo das duas transições conflitantes.
Como podemos notar, o modelo é representado por uma rede finita logo, a partir de então, passaremos a nos referir à árvore de alcançabilidade como árvore de cobertura.

Definido o modelo anterior, procedemos a uma análise de abrangência da rede com todas as soluções possíveis. Desenhar a árvore de cobertura do modelo (Fig. 6.3) foi um trabalho muito difícil, dada a quantidade de marcações possíveis entre a inicial (0) e a final (508). Ela mostra todas as possíveis sequências de disparo de transições, ou seja, todos os planos de processos possíveis para usinar a peça.

Neste estudo de caso não estamos interessados em conhecer todos os planos de processos mas, apenas os melhores. Para tanto, utilizaremos um método que visa encontrar esses planos. Podemos trabalhar com a seguinte ordem fixa de operações:

- fresa;
- furacão e
- acabamento.

Isto divide a Tab. 6.1 em três regiões distintas (Tab. 6.3) e, conseqüentemente, divide o modelo em rede de Petri em três redes menores, com as três árvores de cobertura mostradas nas Figuras 6.4, 6.5 e 6.6.
<table>
<thead>
<tr>
<th></th>
<th>Setup inicial</th>
<th>Usinagem</th>
<th>Acabamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face 1</td>
<td>FreFAC1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td>FreSTP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot 1</td>
<td>FreSLT1</td>
<td></td>
<td>AFreSLT1</td>
</tr>
<tr>
<td>Pocket 1</td>
<td>FrePOC1</td>
<td></td>
<td>AFrePOC1</td>
</tr>
<tr>
<td>Pocket 2</td>
<td>FrePOC2</td>
<td></td>
<td>AFrePOC2</td>
</tr>
<tr>
<td>Hole 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole 2</td>
<td>SFurHOL1</td>
<td>FurHOL1</td>
<td></td>
</tr>
<tr>
<td>Hole 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole 4</td>
<td>SFurHOL2</td>
<td>FurHOL2</td>
<td></td>
</tr>
<tr>
<td>Hole 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole 6</td>
<td>SFurHOL3</td>
<td>FurHOL3</td>
<td></td>
</tr>
<tr>
<td>Hole 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figura 6.3 - Árvore de cobertura do modelo
Figura 6.4 – Árvore de cobertura: operações de fresa

Figura 6.5 – Árvore de cobertura: operações de acabamento
Figura 6.6 – Árvore de cobertura: operações de furação

Mesmo fazendo esta divisão, o número de soluções continua grande (muitas delas estão longe de poderem ser a ótima); então, aplicando os conceitos abordados no Anexo A, que traz um método heurístico para encontrar planos aceitáveis dentre as soluções obtemos, finalmente, um plano considerado ótimo para a peça da Fig. 6.1, dado na tabela a seguir:
Suponhamos que, ao invés de utilizarmos um centro de usinagem, trabalhemos com uma pequena célula de manufatura composta por seis máquinas convencionais, M₁, M₂, M₃, M₄, M₅ e M₆, das quais três são fresadoras e três são furadeiras. As máquinas M₁ e M₂ necessitam de trocas de setup e ferramentas pois efetuam tanto operações de fresa como de acabamento. As operações O₉, O₁₁ e O₁₃ estão representando o setup inicial das três furadeiras. Devemos recordar também que as operações de furação foram agrupadas de forma a minimizar a quantidade de operações necessárias a sua realização. Desta forma, temos (Xirouchakis et al. 1997 e Kiritsis et al., 1999):

- máquina M₁, com setup S₁⁽¹⁾ e S₂⁽¹⁾ e, ferramentas T₁⁽¹⁾ e T₄⁽¹⁾
- máquina M₂, com setup S₁⁽²⁾ e S₂⁽²⁾ e, ferramentas T₂⁽²⁾ e T₅⁽²⁾

1 Como o artigo de referência não traz qualquer informação sobre tipo e quantidade de máquinas, esses dados foram retirados de um estudo feito no desenho da peça, à qual foram estipuladas medidas simbólicas.
• máquina M_3, com setup $S_{1}^{(3)}$, $S_{2}^{(3)}$ e $S_{3}^{(3)}$ e, ferramenta $T_{3}^{(3)}$
• máquina M_4, com setup $S_{1}^{(4)}$ e ferramenta $T_{6}^{(4)}$
• máquina M_5, com setup $S_{1}^{(5)}$ e ferramenta $T_{7}^{(5)}$
• máquina M_6, com setup $S_{1}^{(6)}$ e ferramenta $T_{8}^{(6)}$

O setup, as máquinas e as ferramentas correspondentes a cada operação são dados através da notação a seguir:

• $O_1(M_1(S_{1}^{(1)}, T_{1}^{(1)}))$
• $O_2(M_2(S_{2}^{(2)}, T_{2}^{(2)}))$
• $O_3(M_3(S_{3}^{(3)}, T_{3}^{(3)}))$
• $O_4(M_4(S_{2}^{(4)}, T_{4}^{(4)}))$
• $O_5(M_3(S_{3}^{(5)}, T_{3}^{(3)}))$
• $O_6(M_2(S_{2}^{(6)}, T_{5}^{(2)}))$
• $O_7(M_3(S_{3}^{(7)}, T_{3}^{(3)}))$
• $O_8(M_2(S_{2}^{(8)}, T_{5}^{(2)}))$
• $O_9(M_4(S_{1}^{(9)}, T_{6}^{(4)}))$
• $O_{10}(M_4(S_{1}^{(10)}, T_{6}^{(4)}))$
• $O_{11}(M_5(S_{1}^{(11)}, T_{7}^{(5)}))$
• $O_{12}(M_5(S_{1}^{(12)}, T_{7}^{(5)}))$
• $O_{13}(M_6(S_{1}^{(13)}, T_{8}^{(6)}))$
• $O_{14}(M_6(S_{1}^{(14)}, T_{8}^{(6)}))$

As tabelas a seguir resumem os dados necessários ao cálculo das parcelas de custo apresentadas no capítulo anterior:
Tabela 6.5 – Dados de custos

<table>
<thead>
<tr>
<th>Item</th>
<th>Abreviatura</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastos com:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>energia elétrica</td>
<td>V_e</td>
<td>600 R$</td>
</tr>
<tr>
<td>encargos sociais (mão-de-obra direta)</td>
<td>E_{SOC}</td>
<td>480 R$</td>
</tr>
<tr>
<td>Salário de operador</td>
<td>S_0</td>
<td>5 R$/h</td>
</tr>
<tr>
<td>Valor de mercado das máquinas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fresadora</td>
<td>V_0</td>
<td>40.000 R$</td>
</tr>
<tr>
<td>furadeira</td>
<td></td>
<td>6.000 R$</td>
</tr>
<tr>
<td>Valor residual das máquinas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fresadora</td>
<td>V_R</td>
<td>0,5% de V_0/ano</td>
</tr>
<tr>
<td>furadeira</td>
<td></td>
<td>1% / ano</td>
</tr>
</tbody>
</table>

Tabela 6.6 – Tempos de setup inicial, troca de setup, troca de ferramenta e usinagem (horas)

<table>
<thead>
<tr>
<th></th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>M_4</th>
<th>M_5</th>
<th>M_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de setup inicial</td>
<td></td>
<td></td>
<td></td>
<td>0,33 (O_9)</td>
<td>0,33 (O_{12})</td>
<td>0,33 (O_{14})</td>
</tr>
<tr>
<td>Tempo de troca de setup</td>
<td>0,13 ($O_1 \rightarrow O_4$)</td>
<td>0,13 ($O_4 \rightarrow O_9$)</td>
<td>0,13 ($O_3 \rightarrow O_5$)</td>
<td>0,03 ($O_6 \rightarrow O_8$)</td>
<td>0,03 ($O_5 \rightarrow O_7$)</td>
<td></td>
</tr>
<tr>
<td>Tempo de troca de ferramenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo de usinagem</td>
<td>0,2 (O_1)</td>
<td>0,33 (O_2)</td>
<td>0,17 (O_3)</td>
<td>0,25 (O_5)</td>
<td>0,25 (O_{10})</td>
<td>0,25 (O_{11})</td>
</tr>
<tr>
<td></td>
<td>0,13 (O_4)</td>
<td>0,08 (O_6)</td>
<td>0,13 (O_7)</td>
<td>0,13 (O_8)</td>
<td>0,25 (O_{10})</td>
<td>0,25 (O_{12})</td>
</tr>
</tbody>
</table>
Tabela 6.7 – Outros dados relevantes

<table>
<thead>
<tr>
<th></th>
<th>HMDO</th>
<th>160 h/mês</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de horas de mão-de-obra direta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de horas trabalhadas em um ano</td>
<td>H</td>
<td>1920 h</td>
</tr>
<tr>
<td>Número de horas-máquina</td>
<td>H_{MAQ}</td>
<td>160 h/mês</td>
</tr>
<tr>
<td>Número de horas-máquina utilizadas pela peça (do total):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{1}</td>
<td></td>
<td>26 hm</td>
</tr>
<tr>
<td>M_{2}</td>
<td></td>
<td>35 hm</td>
</tr>
<tr>
<td>M_{3}</td>
<td></td>
<td>42 hm</td>
</tr>
<tr>
<td>M_{4}</td>
<td></td>
<td>19 hm</td>
</tr>
<tr>
<td>M_{5}</td>
<td></td>
<td>19 hm</td>
</tr>
<tr>
<td>M_{6}</td>
<td></td>
<td>19 hm</td>
</tr>
<tr>
<td>Número de peças usinadas por vida da ferramenta:</td>
<td>Z_T</td>
<td></td>
</tr>
<tr>
<td>fresa/desbaste</td>
<td></td>
<td>100 pç</td>
</tr>
<tr>
<td>fresa/acabamento</td>
<td></td>
<td>300 pç</td>
</tr>
<tr>
<td>broca</td>
<td></td>
<td>50 pç</td>
</tr>
<tr>
<td>Número de períodos produtivos</td>
<td>k</td>
<td>1 mês</td>
</tr>
<tr>
<td>Tamanho do lote</td>
<td>z</td>
<td>80 peças</td>
</tr>
<tr>
<td>Taxa mínima de atratividade</td>
<td>t</td>
<td>1</td>
</tr>
<tr>
<td>Tempo de transporte entre máquinas</td>
<td>t_{t}</td>
<td>0,015 h</td>
</tr>
<tr>
<td>Vida útil das máquinas:</td>
<td>n_{2}</td>
<td></td>
</tr>
<tr>
<td>fresadora</td>
<td></td>
<td>8 anos</td>
</tr>
<tr>
<td>furadeira</td>
<td></td>
<td>4 anos</td>
</tr>
</tbody>
</table>

Alguns valores das tabelas anteriores foram encontrados a partir das medidas estabelecidas para a peça (Fig. 6.1). O material utilizado também foi estabelecido como aço SAE1045.

\[1 \text{ mês} = 1 \text{ período produtivo}\]
Com base nas Tabelas 6.5, 6.6 e 6.7, podemos calcular as parcelas. Os cálculos serão mostrados para uma operação apenas, as demais serão encontradas de maneira equivalente.

- custo de operação das máquinas ($opCost$)

Mostraremos os cálculos apenas para a operação 1, que é realizada na fresadora M_1. Como os valores são fictícios e, além disso, trabalhamos com somente um produto (peça), não usaremos as fórmulas do capítulo 5 para calcular esta etapa. Suponhamos então que, 75% do gasto total com energia elétrica pertença à fabricação da peça, isto é, às máquinas:

$$V_{eM} = 0,75 \cdot V_e = 0,75 \cdot 600 = 450$$

Como sabemos o número de horas de utilização de cada máquina durante o processo de fabricação, então:

$$C_e(M_1) = \frac{V_{eM}}{n_{hm}} = \frac{450}{26} = 17,3$$

A Equação (5.5) nos fornece, para 12 períodos produtivos em um ano:

$$N_2(M_1) = \frac{V_0^{(l)} \cdot V_R^{(l)}}{p} = \frac{40000 \cdot 0,5}{12} = 16,7$$

Pela Equação (5.6), e, supondo que máquina alguma ficou parada durante o período, isto é, que $t_{M_j} = 0, j = 1, \ldots, 6$:

\[C_m(M_j) = C_{t_j} = T_{CF} \cdot t_{M_j} = 0, \quad j = 1, \ldots, 6 \]

Finalmente, pela Eq. (5.7):

\[
opCost[O_1] = C_e(M_1) + N_2(M_1) + C_m(M_1) \\
= 17,3 + 16,7 + 0 \\
= 34
\]

Então temos os seguintes resultados para cada operação:

\[
\begin{align*}
\opCost[O_1] & = 34 \\
\opCost[O_2] & = 29,5 \\
\opCost[O_3] & = 27,4 \\
\opCost[O_4] & = 34 \\
\opCost[O_5] & = 27,4 \\
\opCost[O_6] & = 29,5 \\
\opCost[O_7] & = 27,4 \\
\opCost[O_8] & = 29,5 \\
\opCost[O_9] & = 0 \\
\opCost[O_{10}] & = 28,7 \\
\opCost[O_{11}] & = 0 \\
\opCost[O_{12}] & = 28,7 \\
\opCost[O_{13}] & = 0 \\
\opCost[O_{14}] & = 28,7
\end{align*}
\]

- custo de transporte de uma máquina para outra (\(mCost\))

Exemplificaremos os cálculos com a operação \(O_2\), que necessita de transporte de \(M_1\) para \(M_2\).

Vamos considerar que um operador (gerador de custo) execute a ação de levar a peça de uma máquina para outra. Supondo que as máquinas estejam dispostas de maneira que o tempo de movimentação entre uma máquina e as demais seja sempre igual, pela Eq. (5.9):

\[
T_{CF} = \frac{CF}{H_{MDO}} = \frac{480}{160} = 3
\]
Neste caso, como estamos tratando com a mão-de-obra direta (operador), para custo fixo tomamos os encargos sociais com os salários.

\[
mCost[M_1, M_2] = C_t(M_1 \rightarrow M_2) = S_O \cdot T_{CF} \cdot t_t \\
= 5 \cdot 3 \cdot 0,015 \\
= 0,23
\]

Logo, para qualquer par de máquinas M_i, M_j:

\[
mCost[M_i, M_j] = 0,23, \quad i = 1, \ldots, 8 \; e \; j = 1, \ldots, 8, \; i \neq j
\]

Quando \(i = j\), o custo de transporte é igual a zero.

- custo de mudança de setup (sCost)

Exemplificamos a seguir o cálculo com a mudança de setup em M_1, para a realização de O_4, após a realização de O_1. A seguir, mostraremos o cálculo do custo do setup inicial representado por O_9.

Pela Eq. (5.11):

\[
C_M(M_1) = \frac{1}{H} \left[V_0^{(l)} - k \frac{V_0^{(l)} - V_R^{(l)}}{R^{(l)}} \right] t + T_{CF} \\
= \frac{1}{1920} \left[40000 - 1 \frac{40000 - 0,5}{8} \right] 1 + \frac{600}{160} \\
= 22
\]

Utilizando a Eq. (5.12), temos:

\[
sCost[M_1, (S_1^{(l)}, S_2^{(l)})] = C_{t_p}(M_1) = (S_0 + C_M) \frac{t_p}{z} \\
= (5 + 22) \frac{0,13}{80} \\
= 0,04
\]

Então, para as mudanças de setup (não inicial), temos:
Vejamos agora os mesmos cálculos para o setup inicial de O₉, por exemplo:

\[
C_M(M₄) = \frac{1}{H} \left[V₀^{(4)} - k \cdot \frac{V₀^{(4)} - V_R^{(4)}}{n^{(4)}} \right] t + TC_F
\]

\[
= \frac{1}{1920} \left[6000 - 1 \cdot \frac{6000 - \frac{1}{100}}{8} \right] \cdot 1 + \frac{600}{160}
\]

\[
= 6,1
\]

\[
sCost[M₁, (S₁⁽¹⁾, S₂⁽¹⁾)] = Cₜₚ(M₁) = (S₀ + Cₘ) \frac{t_p}{z}
\]

\[
= (5 + 6,1) \cdot \frac{0,33}{80}
\]

\[
= 0,05
\]

Então, para as operações 9, 11 e 13:

\[
sCost[M₄, (S₁⁽⁴⁾, S₁⁽⁴⁾)] = 0,05
\]

\[
sCost[M₅, (S₁⁽⁵⁾, S₁⁽⁵⁾)] = 0,05
\]

\[
sCost[M₆, (S₁⁽⁶⁾, S₁⁽⁶⁾)] = 0,05
\]

• custo de troca de ferramenta (tCost)

Vejamos um exemplo de cálculo para a operação 6, feita na fresadora 2, com troca de ferramenta 2 para 5. Pela Eq. (5.11):
Utilizando a Eq. (5.10) pois a troca de ferramenta é feita uma a uma:

\[
\begin{align*}
C_M(M_2) &= \frac{1}{H} \left[V_0^{(2)} - k \frac{V_0^{(2)} - V_R^{(2)}}{n^{(2)}} \right] + T_{CF} \\
&= \frac{1}{1920} \left[40000 - 1 \frac{0,5}{100} \frac{40000}{8} \right] \cdot 1 + \frac{600}{160} \\
&= 22
\end{align*}
\]

Assim, para todas as ferramentas que devem ser trocadas:

\[
\begin{align*}
tCost[M_2,(T_2^{(2)},T_5^{(2)})] &= C_t(2 \to 5,M_2) \\
&= (C_M(M_2) + S_0) \cdot \left(\frac{1}{Z_{T_5}} - \frac{1}{z} \right) \cdot t_{f_5} \\
&= (22 + 5) \cdot \left(\frac{1}{80} - \frac{1}{300} \right) \cdot 0,13 \\
&= 0,03
\end{align*}
\]

Existem dados suficientes para calcular o custo do plano de processos dado na Tab. 6.4. Este plano consiste no disparo da seguinte sequência de transições, nesta ordem:

\[
T_1, T_2, T_3, T_5, T_7, T_9, T_{11}, T_{13}, T_{10}, T_{12}, T_{14}, T_4, T_6, T_8
\]

O custo total desse plano de fabricação da peça (p) é dado por:

\[
tCost[p] = \cos t[O_1] + \cos t[O_2] + \cos t[O_3] + \cos t[O_5] + \cos t[O_7] + \\
+ \cos t[O_9] + \cos t[O_{11}] + \cos t[O_{13}] + \cos t[O_{10}] + \cos t[O_{12}] + \\
+ \cos t[O_{14}] + \cos t[O_4] + \cos t[O_6] + \cos t[O_8]
\]
Onde cada parcela da soma é definida e calculada da seguinte maneira:

- **custo de O₁:**
 \[
 \cos t[O_1] = \text{opCost}[O_1] + mCost[M_1, M_1] + sCost[M_1, (S_1^{[1]}, S_1^{[1]})] + tCost[M_1, (T_1^{[1]}, T_1^{[1]})]
 \]
 \[= 34 + 0 + 0 + 0
 \]
 \[= 34
 \]

- **custo de O₂:**
 \[
 \cos t[O_2] = \text{opCost}[O_2] + mCost[M_1, M_2] + sCost[M_2, (S_1^{[2]}, S_1^{[2]})] + tCost[M_2, (T_2^{[2]}, T_2^{[2]})]
 \]
 \[= 29,5 + 0,23 + 0 + 0
 \]
 \[= 29,8
 \]

- **custo de O₃:**
 \[
 \cos t[O_3] = \text{opCost}[O_3] + mCost[M_2, M_3] + sCost[M_3, (S_1^{[3]}, S_1^{[3]})] + tCost[M_3, (T_3^{[3]}, T_3^{[3]})]
 \]
 \[= 27,4 + 0,23 + 0 + 0
 \]
 \[= 27,6
 \]

- **custo de O₄:**
 \[
 \cos t[O_4] = \text{opCost}[O_4] + mCost[M_3, M_4] + sCost[M_4, (S_1^{[4]}, S_1^{[4]})] + tCost[M_4, (T_4^{[4]}, T_4^{[4]})]
 \]
 \[= 34 + 0,23 + 0,04 + 0,03
 \]
 \[= 34,3
 \]

- **custo de O₅:**
 \[
 \cos t[O_5] = \text{opCost}[O_5] + mCost[M_4, M_3] + sCost[M_3, (S_1^{[3]}, S_1^{[3]})] + tCost[M_3, (T_3^{[3]}, T_3^{[3]})]
 \]
 \[= 27,4 + 0,23 + 0,04 + 0
 \]
 \[= 27,8
 \]

- **custo de O₆:**
 \[
 \cos t[O_6] = \text{opCost}[O_6] + mCost[M_3, M_5] + sCost[M_5, (S_1^{[5]}, S_1^{[5]})] + tCost[M_5, (T_5^{[5]}, T_5^{[5]})]
 \]
 \[= 29,5 + 0,23 + 0,02 + 0,03
 \]
 \[= 29,8
 \]

- **custo de O₇:**
 \[
 \cos t[O_7] = \text{opCost}[O_7] + mCost[M_5, M_3] + sCost[M_3, (S_1^{[3]}, S_1^{[3]})] + tCost[M_3, (T_3^{[3]}, T_3^{[3]})]
 \]
 \[= 27,4 + 0,23 + 0,02 + 0
 \]
 \[= 27,6
 \]

- **custo de O₈:**
 \[
 \cos t[O_8] = \text{opCost}[O_8] + mCost[M_3, M_5] + sCost[M_5, (S_1^{[5]}, S_1^{[5]})] + tCost[M_5, (T_5^{[5]}, T_5^{[5]})]
 \]
 \[= 29,5 + 0,23 + 0,01 + 0
 \]
 \[= 29,7
 \]
• custo de O₉:
\[
\cos t[O₉] = \text{opCost}[O₉] + \text{mCost}[M₅, M₆] + \text{sCost}[M₆, (S₁⁽⁶⁾, S₂⁽⁶⁾)] + \text{tCost}[M₆, (T₆⁽⁶⁾, T₆⁽⁶⁾)]
\]
\[
= 0 + 0,23 + 0,05 + 0
\]
\[
= 0,3
\]

• custo de O₁₀:
\[
\cos t[O₁₀] = \text{opCost}[O₁₀] + \text{mCost}[M₆, M₆] + \text{sCost}[M₆, (S₁⁽⁶⁾, S₂⁽⁶⁾)] + \text{tCost}[M₆, (T₆⁽⁶⁾, T₆⁽⁶⁾)]
\]
\[
= 28,7 + 0 + 0 + 0
\]
\[
= 28,7
\]

• custo de O₁₁:
\[
\cos t[O₁₁] = \text{opCost}[O₁₁] + \text{mCost}[M₆, M₇] + \text{sCost}[M₇, (S₁⁽⁷⁾, S₂⁽⁷⁾)] + \text{tCost}[M₆, (T₆⁽⁷⁾, T₆⁽⁷⁾)]
\]
\[
= 0 + 0,23 + 0,05 + 0
\]
\[
= 0,3
\]

• custo de O₁₂:
\[
\cos t[O₁₂] = \text{opCost}[O₁₂] + \text{mCost}[M₇, M₇] + \text{sCost}[M₇, (S₁⁽⁷⁾, S₂⁽⁷⁾)] + \text{tCost}[M₇, (T₆⁽⁷⁾, T₆⁽⁷⁾)]
\]
\[
= 28,7 + 0 + 0 + 0
\]
\[
= 28,7
\]

• custo de O₁₃:
\[
\cos t[O₁₃] = \text{opCost}[O₁₃] + \text{mCost}[M₇, M₈] + \text{sCost}[M₈, (S₁⁽⁸⁾, S₂⁽⁸⁾)] + \text{tCost}[M₈, (T₆⁽⁸⁾, T₆⁽⁸⁾)]
\]
\[
= 0 + 0,23 + 0,05 + 0
\]
\[
= 0,3
\]

• custo de O₁₄:
\[
\cos t[O₁₄] = \text{opCost}[O₁₄] + \text{mCost}[M₈, M₈] + \text{sCost}[M₈, (S₁⁽⁸⁾, S₂⁽⁸⁾)] + \text{tCost}[M₈, (T₆⁽⁸⁾, T₆⁽⁸⁾)]
\]
\[
= 28,7 + 0 + 0 + 0
\]
\[
= 28,7
\]

Se definirmos:
\[
\text{totCost}[pₗ]_{mp} = \sum_{i=1}^{14} \cos t[O_i]
\]

isto é, o custo total de produção de um lote z de peças, pelo melhor plano de processos encontrados, como sendo a soma dos custos das operações, chegaremos ao seguinte resultado:
\[
\text{totCost}[pₗ]_{mp} = R\$ 327,6
\]
ou, dividindo este total pelo tamanho do lote, chegaremos à conclusão que o custo de fabricação de cada peça é aproximadamente R\$ 4.
Não podemos nos esquecer que os valores utilizados nos cálculos são apenas estimações grosseiras dos reais e que a “fábrica” em questão foi dimensionada para pequeno porte.

Devemos observar também que, como cada valor \(\text{cost}_i \) está associado a uma transição \(T_i \) (\(i = 1, \ldots, 14 \)), a soma dos valores também vai estar associada ao disparo das transições, ou seja, um acumulador, ao disparo de \(T_k \), recebe o valor de \(\text{cost}_k \). Ao final do processo, o valor resultante no acumulador equivale ao custo total de produção da peça, por aquele plano de processos.

Apesar de haver um resultado numérico para o estudo de caso, este não é a principal contribuição do trabalho mas apenas a conseqüência de aplicar a metodologia desenvolvida a um exemplo.
7 RESULTADOS E DISCUSSÕES

O resultado mais significativo deste trabalho é a metodologia que, através da rede de Petri, possibilita relacionar custos ao planejamento de processos. Este resultado pode ser potencializado se implementado no editor de redes de Petri, Petri Net Tools 2000 pois o editor:

- possibilita o controle das operações através de regras de precedência, editadas como parte do modelo;
- fornece automaticamente, tanto a árvore de alcançabilidade como as marcações alcançáveis da rede;
- obtém o melhor plano de processos e estima seu custo associando cada transição da rede a uma operação do processo;
- minimiza situações de conflito pelo uso de temporização nas transições e
- permite outras análises (vivacidade, limitação, reversibilidade, etc.) nos modelos editados.

Com relação à temporização das transições, outra situação mais abrangente pode ser discutida neste trabalho. Estimar o erro cometido no cálculo de custos de produção de uma peça por um determinado plano de processos é mais interessante e importante do que simplesmente calculá-lo. Esse erro pode ser trabalhado com a rede de Petri Estocástica, informando ao sistema dados de valores médios de custos e variância dos mesmos.

Esta é uma ferramenta muito útil na fase de projeto da peça, uma vez que, justamente neste estágio, raramente é possível precisar dados sobre os geradores de custos que agem sobre o custo final de produção. O aumento na confiabilidade da tomada de decisão é notável neste caso.

As maiores dificuldades encontradas durante o trabalho foram:
- montar a árvore de alcançabilidade do modelo do estudo de caso que, apesar de ser relativamente simples, retornou muitas marcações
(estados da peça) possíveis, de acordo com a realização de cada operação e

- obter dados para utilizar nos cálculos do estudo de caso, já que a referência utilizada não faz menção clara sobre informações necessárias para sua obtenção.

Para resolver este problema, foram estipuladas medidas fictícias para a peça e, através de uma análise do desenho, chegamos à conclusão de quais e quantas máquinas seriam necessárias para sua produção.

Os números (tempos de usinagem e de setup, valor de mercado das máquinas, valor residual, etc.) foram obtidos da mesma forma, através de consulta a uma pessoa especializada em processos de usinagem.
8 CONCLUSÕES E SUGESTÕES

Uma metodologia de integração entre técnicas consagradas de custeio, estimação de custos no planejamento de processos e redes de Petri foi desenvolvida e aplicada ao estudo de caso mostrado no capítulo 6, alcançando os objetivos propostos para este trabalho.

A implementação da metodologia em plataforma computacional pode eliminar desvantagens apontadas no capítulo anterior com relação ao cálculo das marcações alcançáveis da rede e desenho da árvore de alcançabilidade. Esta implementação também potencializa os resultados obtidos no trabalho, especialmente porque o tempo de resposta diminui consideravelmente.

Existem outras ferramentas capazes de, através de uma base de dados pré-existente, retornar o melhor plano de processos para a fabricação de uma peça e os tempos envolvidos na ação (conseqüentemente, o custo de produção), como é o caso do CAPP (Rozenfeld, 1989). A vantagem do uso de redes de Petri no planejamento de processos aliado à estimação de custos é a possibilidade de ampliar o estudo para um sistema maior que incorpore o processo em questão e proporcione interação entre dois níveis diferentes da hierarquia do sistema.

Uma vez que redes de Petri possuem propriedades intrínsecas e muito úteis para descobrir situações de travamentos, conflitos, interrupções, assim como outros fatores que poderiam diminuir a confiabilidade de um sistema, utilizá-las na modelagem permite obter os dados desejados sobre custos de fabricação e, também, informações que minimizem as falhas durante a execução de um determinado processo dentro do sistema.

Para conseguir informações reais de um sistema (caso o modelo seja gerado a partir de uma situação real), existe a necessidade de construir uma base de dados que sustente as informações obtidas após a execução da rede. Além disso, essa base de dados exclui a desvantagem do
levantamento prévio dos geradores de custos de cada operação envolvida no processo.

Como sugestões para trabalhos futuros, apresentamos:

- implementação da modelagem no editor de rede de Petri desenvolvido pelo Grupo de rede de Petri do Laboratório de Simulação e Controle de Sistemas Discretos da EESC;
- elaboração de base de dados de custos que possa ser agregada ao editor de rede de Petri para aumentar a confiabilidade dos modelos editados;
- modelagem de custos em módulos menores e padronizados utilizando redes de Petri Orientado a Objeto e Virtual, que auxiliaria nos casos em que os sistemas modelados são muito grandes ou na montagem e integração de modelos organizacionais e
- extensão do estudo de custos para sistemas de planejamento organizacional ou em projetos de sistemas e ampliação da capacidade de análise da rede de Petri.
ANEXO A

Este anexo trata da construção e utilização de tabelas de usinagem para aplicação do método PP-net. A partir de um conjunto global de dados de usinagem são consideradas cinco categorias de operações, na seguinte ordem (Kiritsis & Porchet, 1996):

- preparação;
- usinagem;
- semi-acabamento;
- acabamento e
- pós-acabamento.

Os aspectos mais influentes no problema de planejamento de processos são:

- dados das ferramentas de corte e ações de troca de ferramentas;
- dados de posicionamento da peça e ações de mudança da face de usinagem e
- operação de corte em si.

Operações de troca de ferramenta e rotação da superfície de trabalho são as que mais consomem tempo e possuem considerável influência sobre a qualidade da peça usinada. Por isso, tais ações são tomadas como critério de otimização e:

- cada ferramenta é associada a uma única operação de usinagem;
- cada operação é associada a uma posição específica do eixo da ferramenta, definida por um valor angular e
- cada operação de usinagem é associada a uma posição específica de rotação da superfície de trabalho, definida também por um valor angular.

As seguintes limitações devem ser verificadas:
• respeito às regras de precedência entre entidades de design (consequentemente entre operações de usinagem) e
• execução de cada operação de usinagem apenas uma vez.

Assim podemos construir uma tabela, com colunas fixadas em toda e qualquer regra de precedência. As linhas k (k = 1,...,n) referem-se às características da peça (DEk) ou grupos de características e contêm operações possíveis (MOkl) para cada categoria de usinagem, relacionada com as colunas l (l = 1,...,5).

Tabela A.1 – Associação das entidades de design com operações de usinagem

<table>
<thead>
<tr>
<th>Preparação</th>
<th>Retificação</th>
<th>½</th>
<th>Acabamento</th>
<th>Pós-acabamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE1</td>
<td>MO1 2 -1</td>
<td>MO1 3</td>
<td>MO1 4 -1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MO1 2 -2</td>
<td></td>
<td>MO1 4 -2</td>
<td></td>
</tr>
<tr>
<td>DE2</td>
<td>MO2 1</td>
<td>MO2 2 -1</td>
<td>MO2 4</td>
<td>MO2 5</td>
</tr>
<tr>
<td></td>
<td>MO2 2 -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEn</td>
<td></td>
<td></td>
<td>MOn 4 -1</td>
<td>MOn 4 -2</td>
</tr>
</tbody>
</table>

Fonte: Kiritsis & Porchet, 1996.

A tabela de usinagem não define todas as regras de precedência possíveis. Outros tipos de limitações podem ser criados automaticamente ou interativamente e devem ser expressos através de conexões entre posições da tabela.

Uma operação de usinagem (correspondente a um pedaço da tabela) pode ser executada quando, ao mesmo tempo, todas as seguintes condições forem satisfeitas:
• a ferramenta associada à correspondente operação de usinagem está disponível;
• o eixo da ferramenta e a superfície de trabalho estão na exata posição requerida pela operação de usinagem e
• as regras de precedência da operação estão todas satisfeitas.

A ordem de execução das operações será decidida através da criação dinâmica de planos de processos através do uso da PP-net, explicada no capítulo 4 deste trabalho.

De acordo com cada situação, sistema estudado e complexidade dos conjuntos de setup, é possível trabalhar com grupos pré-fixados de operações. Isto possibilita a divisão da tabela de usinagem em regiões, independentemente da dinâmica do processo.

A conseqüência de ordenar fixamente as operações é a criação de uma sequência de redes de Petri menores (uma para cada região encontrada através da tabela de usinagem). Se, mesmo após a aplicação deste método, o número de soluções permanecer grande, pode-se utilizar uma técnica heurística elaborada para encontrar planos de processos aceitáveis dentre as soluções obtidas.

Para utilizar a técnica de divisão da tabela de usinagem, primeiramente devemos verificar:

• a lista de ferramentas de corte requeridas e
• as listas de operações de usinagem por ferramenta.

Cada lista de operações de usinagem por ferramenta é classificada de duas maneiras:

• caso 1: todas as transições correspondentes da rede de Petri são inicialmente disparáveis (estão habilitadas) e
• caso 2: Nem todas as transições correspondentes da rede de Petri são disparáveis.

A primeira transição a disparar pode ser determinada pelo uso da seguinte regra:

Regra 1 – caso exista uma ferramenta que corresponda ao Caso 1, a transição ligada àquela ferramenta vai disparar; caso contrário, a transição
que tiver o maior número de transições habilitadas, ligada a uma ferramenta listada no Caso 2, será disparada.

Selecionada a ferramenta, procuramos mantê-la pelo máximo de tempo possível. Isto significa que:

Regra 2 – caso exista apenas mais uma operação que utilize a mesma ferramenta, ela deve ser escolhida.

Regra 3 – caso existam mais operações que utilizem a mesma ferramenta, deve ser escolhida aquela que requeira o mínimo de trocas nas posições dos eixos e da tábua de rotação da ferramenta, respectivamente.

Regra 4 – caso não exista qualquer operação que utilize a mesma ferramenta, deve ser escolhida também uma operação que requeira o mínimo de trocas nas posições dos eixos e da tábua de rotação da ferramenta, respectivamente.

Seguindo a técnica, a solução final e ótima pode ser encontrada através de simulação com estimação real de tempos de produção.
ANEXO B

Este anexo trata das regras de precedência nas operações de fabricação de determinada peça.

Segundo Agostinho (2002), na atividade de planejamento de processos é estabelecido um caminho lógico para o encadeamento das operações do roteiro de fabricação. Existem algumas regras, chamadas regras de precedência, que devem ser seguidas para que exista esse encadeamento e ordenação na definição da lógica estruturada do roteiro. Essas regras são definidas a partir do conhecimento dos principais parâmetros que formam a tecnologia de manufatura como, por exemplo:

- tolerâncias especificadas;
- dispersões do sistema máquina-ferramenta-dispositivo-peça;
- capacidade dos processos e
- determinação de sobremetal entre operações do roteiro.

As principais regras de precedência são as seguintes:
- a última operação do roteiro deve gerar a peça, a qual equivale ao respectivo desenho (design);
- as especificações finais são obtidas de acordo com a capacidade dos processos;
- a evolução da precisão do roteiro segue conforme a precisão dos processos (dos processos menos precisos para os mais precisos);
- a colocação lógica e ordenada das operações do roteiro depende da limitação dos processos;
- as tolerâncias e especificações devem ser compatíveis com as dispersões do sistema máquina-ferramenta-dispositivo-peça;
- permitir a execução de operações posteriores é a condição necessária para que uma determinada operação do roteiro ocorra e
- a condição suficiente para que uma determinada operação do roteiro ocorra é que ela própria seja executada a partir das operações anteriores.
REFERÊNCIAS BIBLIOGRÁFICAS

UNIVERSIDADE DE SÃO PAULO. Escola de Engenharia de São Carlos.

Diretrizes para elaboração de dissertações e teses na EESC-USP. 2. ed.
São Carlos, 1996. 58p.

APÊNDICE – RELAÇÃO DE ALGUMAS FERRAMENTAS DE EDIÇÃO E SIMULAÇÃO EXISTENTES PARA REDES DE PETRI

Atualmente existem diversas ferramentas de edição e análise de redes de Petri no mercado, com diferentes características e funcionalidades. A página dinamarquesa intitulada Petri Net Tools Database (Petri, 2001) apresenta algumas dessas ferramentas, descritas abaixo:

• **ALPHA/Sim** (comercial): Esta ferramenta foi desenvolvida para trabalhar com redes de Petri de Alto Nível, Estocásticas e Temporizadas, nos ambientes Windows e Sun. Permite ao usuário construir graficamente modelos de rede de Petri, entrar com dados, executar a simulação e verificar os resultados obtidos. Não é necessário programar para construir modelos, mas estes podem ser ligados a códigos externos, escritos em qualquer linguagem que possa ser compilada na plataforma em que se estiver trabalhando. Tem sido utilizada em um grande número de aplicações como: operações militares, sistemas de manufatura, controle de filas, entre outros.

• **ANARCO** (gratuito acadêmico): Trabalha com redes de Petri lugar/transição e Alto Nível, em ambiente MS-DOS. É ferramenta de análise de vivacidade, pureza e segurança de redes de Petri Coloridas.

• **Artifex** (comercial): Modela e analisa sistemas de eventos discretos com base em redes de Petri de Alto Nível e Temporizadas, utilizando uma linguagem de modelação gráfica que adota conceitos de orientação a objetos. Códigos em C ou em C++ podem ser escritos como parte do modelo, na descrição de dados e operações, o que permite a integração virtual da ferramenta com qualquer outro software já existente. Funciona em diversos ambientes, permitindo reduções significantes no tempo de desenvolvimento de sistemas e aumento na qualidade do planejamento, uma vez que fornece
maneira fácil e confiável de validar comportamento e funcionalidades de sistemas.

- **DaNAMICS** (comercial): Desenvolvida em Java, suporta redes de Petri de Alto Nível e Estocásticas, e foi criada para auxiliar e facilitar criação de modelos GSPN ou CPN. Possui características importantes como modelar hierarquicamente sistemas através de sub-redes.

- **Design/CPN** (gratuito): Suporta redes de Petri de alto nível e temporais. Foi desenvolvida para os ambientes Linux, HP, Sun e Silicon Graphics. O editor da ferramenta possibilita construção e modificação de modelos CPN, além de fazer verificação da sintaxe dos mesmos, enquanto que o simulador permite simulação dos modelos, de maneira interativa e automática. Possui capacidade de construir e analisar as árvores de alcançabilidade (grafos) dos modelos CPN.

- **EDS Petri Net Tool** (comercial): Esta ferramenta trabalha com redes de Petri Lugar/Transição, Temporizadas, Estocásticas e Coloridas, em ambiente Windows e OS/2. Fornece facilidades usuais de edição gráfica e permite controle da complexidade da rede, através da inclusão de nós que representam sub-redes. O uso da linguagem é auxiliado por ambiente integrado de edição e compilação de subprogramas, e o exame do comportamento da rede é feito através dos modos de operação de Monte Carlo. A interface dessa ferramenta permite que dados sejam lidos ou gravados em arquivos, ou com auxílio de bases de dados comuns à PC’s.

- **ELSIR** (comercial): Disponível para os ambientes Sun, HP e Linux, serve para redes de Petri de Alto Nível, Lugar/Transição, Estocásticas e Temporizadas. A ELSIR permite análises estruturadas, descrição de
dados e de tempo, além de fornecer instâncias dos processos genéricos modelados. Pode ser usada para: análise de performance de um sistema, estudos de dimensionamento de recursos e de confiabilidade e pode gerar relatórios com texto e curvas (gráficos).

- **GDToolkit (gratuito acadêmico):** Serve para redes de Petri de Alto Nível e Lugar/Transição em ambientes Windows, Sun e Linux. É uma biblioteca para layout automático, capaz de desenhar vários tipos de diagramas além das redes de Petri.

- **Moses Tools Suite (gratuito):** Desenvolvida em Java, trabalha com redes de Petri de Alto Nível, Estocásticas e Temporizadas. Facilita especificação de notações visuais que são utilizadas para configurar o editor, o compilador e o animador gráfico. As redes de Petri são compiladas em classes de Java, e podem ser executadas em um animador gráfico ou combinadas com outro software também desenvolvido em Java.

- **PetriSim (gratuito):** Trabalha em ambiente MS-DOS, e suporta redes de Petri de Alto Nível, Temporizadas e Lugar/Transição. Esta ferramenta é capaz de trabalhar em mais de uma rede simultaneamente e possui algumas opções como cor, tamanho, estilos de linha, etc. O usuário pode criar procedimentos em Turbo Pascal 7, a fim de modificar o comportamento da rede e, gerar randomicamente a duração do disparo das transições.

- **PNtalk (gratuito):** Suporta redes de Petri de Alto Nível e Temporais, e trabalha em ambiente Windows e Sun. O sistema e a linguagem PNtalk são baseados em redes de Petri orientadas a objetos. Essa ferramenta é implementada em Smalltalk, e é possível juntar os dois tipos de objetos (da ferramenta e do Smalltalk) em um mesmo modelo. O usuário pode trabalhar separadamente com redes particulares de classes particulares, durante a criação e depuração de uma rede.

- **PN-tools (gratuito):** Esta ferramenta serve para redes de Petri Lugar/Transição e Estocásticas, além de também suportar redes que se modificam automaticamente, redes com arcos inibidores, redes de prioridade e redes relacionais. Está disponível para ambientes MS-
DOS e Windows. O PN-tools é um pacote computacional totalmente integrado que auxilia projetistas e analistas nas funções de editar, validar, analisar e executar redes de Petri padrão ou estocásticas generalizadas. As redes podem ser estruturadas hierarquicamente de maneira a facilitar sua leitura e entendimento.

- **TimeNET (gratuito acadêmico):** Funciona em plataforma Windows e Linux, e suporta redes de Petri de Alto Nível, Lugar/Transição, Estocásticas e Temporizadas. É um pacote computacional para modelagem e avaliação de SPN’s, nas quais os tempos de disparo das transições podem ser determinísticos ou distribuídos de maneira exponencial. É possível criar interface gráfica com usuário. Um componente especial de modelagem e análise de sistemas de manufatura está disponível para redes de Petri Coloridas. A análise estacionária é baseada na teoria Markoviana, mas também existe um componente de simulação para redes não-Markovianas. A ferramenta oferece técnicas diferentes para acelerar a simulação dos experimentos.

- **Visual Object Net ++ (gratuito):** Disponível para ambiente Windows, trabalha com redes de Petri Lugar/Transição e Temporizada. É uma ferramenta CAE que suporta redes que são uma mistura de redes de Petri continuas com redes de Petri de eventos discretos. O objetivo dessa ferramenta é estudar o comportamento e as características de uma classe de redes de Petri chamada híbrida.

- **Visual SimNet (gratuito):** Suporta redes de Petri de Alto Nível, Lugar/Transição, Estocásticas e Temporizadas. É uma ferramenta que funciona nas plataformas MS-DOS e Windows. Basicamente, é um sistema de análise de sistemas de eventos discretos baseado em redes de Petri Coloridas Estocásticas. Possui um editor gráfico com simulação animada e é capaz de apresentar graficamente resultados de distribuição e de alcance da rede. Pode exportar esses resultados para outros softwares como, por exemplo, o Latex e o PostScript.