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ABSTRACT 

 

SOUSA, A.M.D. One-way shear and punching strength of reinforced concrete slabs 

without transverse reinforcement under concentrated loads. Thesis (Ph.D), São Carlos 

School of Engineering, University of São Paulo, 2022. 

 

Most studies that address the shear behavior of reinforced concrete slabs without transverse 

reinforcement deal with slab strips loaded over the entire width or the punching capacity of flat 

slabs or slab-column connections. Therefore, these studies focus on slabs subjected to specific 

shear failure mechanisms. However, in the case of concentrated or partially distributed loads in 

small areas close to the support of one-way slabs, a frequent situation in bridge deck slabs, both 

one-way shear and punching shear failure mechanisms can occur. This study developed 

recommendations to assess the shear and punching shear strength of such slabs using different 

approaches. In this study, some recommendations were developed that are based on the use of 

only analytical expressions, others combining analytical expressions with results from linear 

elastic finite element analyses, others using non-linear finite element analyses, and, finally, 

using experimental investigations. Since both shear failure mechanisms can be critical for such 

slabs, the research was addressed in parts. Firstly, the one-way shear behavior of wide beams 

and slabs loaded over the entire width was addressed. After, different approaches used to define 

the effective shear width were investigated, combined with code expressions and also 

mechanical-based models of one-way shear strength. In the next step, the research addressed 

the combination of analytical expressions with linear elastic finite element analyses to predict 

the shear and punching shear strength of one-way slabs. In the context of punching, the research 

addressed the behavior and punching resistance of slabs designed with the rational use of ultra-

high-performance fiber-reinforced concrete. Non-linear finite element analyses were also 

proposed to assess the failure mechanism and ultimate capacity of different kinds of slabs. In 

the end, an experimental program was performed to investigate the failure mechanism of one-

way slabs under concentrated loads after local reinforcement yielding. In summary, this study 

addresses different approaches to design reinforced concrete slabs under concentrated loads 

based on a comprehensive review and analyses of different tests from literature and also 

performed herein. Besides, the experimental program confirmed important aspects of the shear 

redistribution at failure that resulted in a clear activation of different failure mechanisms. 

 

Key-words: One-way shear strength; shear force; punching capacity; reinforced concrete slabs 

without transverse reinforcement; concentrated loads. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

  

RESUMO 

 

SOUSA, A.M.D. Cisalhamento unidirecional e resistência à punção de lajes de concreto 

armado sem armadura transversal sob cargas concentradas. Tese (Doutorado), Escola de 

Engenharia de São Carlos, Universidade de São Paulo, 2022. 

 

A maioria dos estudos que abordam o comportamento ao cisalhamento de lajes de concreto 

armado sem armadura transversal trata de tiras de laje carregadas em toda a largura ou da 

capacidade de punção de lajes lisas ou ligações laje-pilar. Portanto, esses estudos focam em 

lajes submetidas a um mecanismo específico de ruptura por cisalhamento. No entanto, no caso 

de cargas concentradas ou parcialmente distribuídas em pequenas áreas próximas ao apoio de 

lajes unidirecionais, uma situação frequente em lajes de tabuleiro, podem ocorrer tanto 

mecanismos de ruptura por cisalhamento unidirecional quanto por punção. Este estudo 

desenvolveu recomendações para avaliar a resistência ao cisalhamento ou força cortante e 

resistência à punção dessas lajes usando diferentes abordagens. Neste estudo, foram 

desenvolvidas recomendações baseadas apenas em expressões analíticas, outras combinando 

expressões analíticas com resultados de análises de elementos finitos elásticos lineares, outras 

usando análises de elementos finitos não lineares e, finalmente, usando investigações 

experimentais. Uma vez que ambos os mecanismos de ruptura por cisalhamento podem ser 

críticos para tais lajes, o trabalho foi abordado em partes. Primeiramente, foi abordado o 

comportamento ao cisalhamento unidirecional de vigas largas e lajes carregadas em toda a 

largura. Após, diferentes abordagens utilizadas para definir a largura efetiva ou colaborante na 

resistência à força cortante foram investigadas, combinadas com expressões de diferentes 

códigos de projeto e também modelos baseados na mecânica da resistência ao cisalhamento 

unidirecional. Na etapa seguinte, a pesquisa abordou a combinação de expressões analíticas 

com análises em elementos finitos elástico-lineares para prever a resistência ao cisalhamento e 

punção dessas lajes. No contexto da punção, a pesquisa abordou o comportamento e a 

resistência à punção de lajes projetadas com o uso racional de concreto de ultra-alto 

desempenho reforçado com fibras. Análises não lineares de elementos finitos foram propostas 

para avaliar o mecanismo de ruptura e a capacidade última de diferentes tipos de lajes. Ao final, 

foi realizado um programa experimental para investigar o mecanismo de ruptura de lajes 

unidirecionais sob cargas concentradas após o escoamento local das armaduras. Em resumo, 

este estudo aborda diferentes metodologias e ferramentas para avaliação de lajes de concreto 

armado sob cargas concentradas com base em uma ampla revisão da literatura, análise de 

diferentes ensaios da literatura e também realizados neste estudo. Além disso, o programa 

experimental confirmou aspectos importantes da redistribuição da força cortante na ruptura que 

resultaram em uma clara ativação de diferentes mecanismos de resistência. 

 

Palavras-chave: Cisalhamento unidirecional; força cortante; resistência à punção; lajes de 

concreto armado sem armadura transversal; cargas concentradas. 
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LIST OF NOTATIONS 

αcc  factor that accounts for long term effects on the compressive strength and 

unfavorable effects from the way load is applied 

αs  40, 30 or 20 for interior, edge or corner columns, respectively (αs  = 40 was used) 

αe  modular ratio (Es/Ec) or 

αe  fiber engagement parameter according Variable Engagement Model (VEM) 

αf  fiber slenderness (lf/df) 

βrect   ratio of long side to short side of a concentrated load  

β, βarching    reduction factor for the contribution of loads close to the support to the shear 

force at the support 

βCC  factor that controls the post-peak branch of the compressive stress-strain model 

from Carreira and Chu (1985) 

β1  factor relating depth of equivalent rectangular compressive stress block to 

neutral axis depth 

γc  partial safety factor for concrete 

γconc   concrete specific weight (assumed = 24 kN/m³ in this study) 

εc  compressive strain 

εc
in

  inelastic compressive strain 

εc1  compressive strain corresponding to the peak compressive stress 

εc
pl

  plastic compressive strain 

εs  steel strain 

εt   tensile strain 

εt
in

  inelastic tensile strain 

εt,cr  tensile strain at peak tensile stress 

εt
pl

  tensile plastic strain 



 

 

 

 

εx  the longitudinal strain at mid-depth of the effective shear depth 

εct  strain of concrete by reaching the tensile strength (CWSB) 

εy  flexural reinforcement yield strain 

ε0c
el

  elastic compressive strain 

ε0t
el

  elastic tensile strain 

λ  modification factor reflecting the reduced mechanical properties of lightweight 

concrete in the ACI 318:2019 or shear slenderness 

λs  Size effect modification factor on ACI 318:2019 

μ  Poisson’s coeficiente or viscosity parameter (CDP) 

ϕ  rebar diameter 

ϕeq  equivalent rebar diameter 

ζ  combined size effect and slenderness factor on SFSMM and CCCM 

μ,CSDT  friction coefficient for contact area between aggregate particles and matrix, with 

a proposed value 0.4 =  according to Walraven (1980) 

μ,Sfsmm  dimensionless bending moment ( )( )/ ctM f b d   

ξ  dimensionless neutral axis depth 

ρ  average flexural reinforcement ratio 

ρl  longitudinal reinforcement ratio 

ρt  transverse reinforcement ratio 

ρs  longitudinal reinforcement ratio 

ρρ,eff  reinforcement ratio in the effective area of concrete surrounding the 

reinforcement 

ρf  fiber volume content 

σ  normal stress 

σc  compressive stress 



 

 

 

  

σcf0  peak tensile strength of the UHPFRC 

σcp  average normal concrete stress over the cross-section, positive in compression 

(Brazilian code) 

σpu  crushing (yielding) strength of matrix, or contact stress at cracked surface 

σxm  average normal stress of concrete within the critical width of the shear band 

(CWSB)  

σb0/σc0  ratio of initial equibiaxial compressive yield stress to initial uniaxial compressive 

yield stress (CDP) 

σt  tensile stress 

σtf  fiber bridging stress 

τ  shear stress 

τai  shear stress transferred by aggregate interlock 

τRd  design shear capacity of the concrete 

τRc  relative shear capacity, ( )/Rc RcV bd =   (CWSB) 

τc  concrete shear capacity 

τf  average fiber-matrix interfacial bond stress 

τmax  maximum shear stress at the neutral axis (CWSB) 

τu  allowable shear stress in the critical width of the shear band (CWSB) 

ψ  rotations around the loaded area 

ψij  rotations in each side of the control perimeter 

ψCSCT  rotation of slab outside the column region in the CSCT 

Δ  shear displacement at crack 

Δcr  critical shear displacement 

Δe  distance between neutral axis and center of internal lever arm z 

Ψ  Dilation angle for the concrete damaged plasticity model (CDP) 



 

 

 

 

a  distance between the center of support and center of the load 

av  clear shear span: distance between the edge of support and edge of the load 

at    dimensionless coefficients from damage evolution models defined in Alfarah, 

López-Almansa and Oller (2017) 

b  width of the structural member 

bc  dimensionless coefficients from damage evolution models defined in Birtel and 

Mark (2006) 

beff  effective shear width for one-way shear analyses 

beff,french  effective shear width according to the French guidelines(FD P 18-717, 2013) 

beff,prop  effective shear width with the proposed approach 

bn  the clear width of the structural member 

bload  size of the concentrated load in the slab width direction 

bslab  slab width 

bs  strip width used to calculate m for punching capacity analyses 

bt  dimensionless coefficients from damage evolution models defined in Alfarah, 

López-Almansa and Oller (2017) 

b0  length of the critical perimeter at a distance davg/2 from the loaded area 

b0,red  reduced control perimeter 

b0,ij  side of the control perimeter 

b0,x1  lengths of segments of control perimeter corresponding to side x1 

b0,x2  lengths of segments of control perimeter corresponding to side x2 

b0,y  lengths of segments of control perimeter corresponding to side y1 

cflex   height of the compression zone 

cload  size of square plate load 

cUHPFRC strip width of the UHPFRC region in the plan 

c1 ; c2  constants in the tension behavior model from Hordijk (1992) 



 

 

 

  

lload  Size of the concentrated load in the span direction 

davg  average effective depth of reinforcement 

dag  maximum size of the aggregate 

df  fiber diameter 

dv  average effective depth of reinforcement 

d or dl  effective depth toward longitudinal steel 

dt  effective depth toward transverse steel 

dmax  maximum aggregate size 

dg  maximum aggregate size 

dg0  reference aggregate size (= 16 mm) 

ddg  parameter that considerers the crack roughness 

db,crit  critical width of the shear band (CWSB) 

e  flow potential eccentricity (CDP) 

fc  concrete compressive strength 

fc
’  average compressive strength of concrete measured on cylinder specimens 

fck  characteristic concrete compressive strength 

fcm  mean value of the cylinder concrete compressive 

fctm or fct mean value of the concrete tensile strength 

fctd  the design value of the concrete tensile strength 

fctk,inf  tensile strength of the concrete in the lower quantile 

fct2,f  tensile stress in steel fiber-reinforced concrete for w = 3 mm 

fc,UHPFRC compressive strength of UHPFRC 

fc,NSC  compressive strength of NSC 

fFtu  residual tensile strength at an ultimate crack opening wu 



 

 

 

 

fy  yield strength of reinforcement 

fyi  steel yielding stress in the evaluated direction 

hslab  slab thickness 

hUHPFRC thickness of the UHPFRC layer 

kb  bond factor 

k1  coefficient considering the effects of axial forces on the stress distribution (0.15 

in the European code to one-way shear) 

kEC  factor taking into account the size effect according to NEN -EN 1992-1-1:2005 

kNBR  factor taking into account the size effect according to ABNT NBR 6118:2014 

kc  slope of stress line, kc = 1.28 according to (KRIPS, 1985) 

kd  factor determining the shear capacity in the Swiss Code SIA 262:2013 

kdg  factor determining the shear capacity in the Swiss Code SIA 262:2013 

kg  factor for accounting for the aggregate size dg in the Swiss code SIA 262:2013 

kv  factor accounting for strain effect and member size in the fib Model Code 2010 

leq  characteristics length related to the mesh size 

lload  size of the concentrated load in the span direction 

lspan  span length 

ls  length of the sides with one-way shear behavior 

lf  fiber length 

lcr,m  spacing of two neighboring major cracks 

mEd  design (factored) moment per unit length in critical section 

mR  nominal moment capacity per unit width 

mRd  plastic design (factored) moment per unit length in critical section 

mRR  unitary radial moment 

mR,i  yielding moment per unit length in the evaluated direction 



 

 

 

  

mR,NSC  nominal moment capacity per unit width of a RC strip using only NSC 

mmax  maximum bending moment at the control section for a given applied load 

ms,ij  averaged acting bending moment at the loading plate edge ij within the width bs 

mR1  equivalent unitary moment capacity accounting for the distribution of UHPFRC 

in the slab thickness 

mR2  equivalent unitary moment capacity accounting for the distribution of UHPFRC 

in the slab plan 

ne or n  ratio between elastic modulus of steel and concrete 

rs  distance from the column axis to the line of contra-flexure of the bending 

moments 

rs,ij  distance between the center of the concentrated load and the point of 

contraflexure 

scr,CSDT  height of fully developed crack 

scr,Sfsmm  location of the section where the critical shear crack starts 

su  location of the critical shear section 

srm  crack spacing of primary cracks 

v  shear force per unit length (nominal shear force) 

vavg   averaged shear force (shear force per unit length) 

vc,shear  unitary/nominal one-way shear strength 

vc,min  minimum shear resistance per unit length in (SETIAWAN et al., 2020) 

vc  dimensionless contribution to the shear strength of the un-cracked concrete 

chord (for SFSMM or MASM) 

vperp  unitary shear force (shear force per unit length) 

vperp,max  maximum nominal shear force (shear force per unit length) 

vR,shear  unitary one-way shear resistance 

vc,punch  unitary/nominal punching strength  

vc,punch,eff effective nominal punching strength available in the shear resisting control 

perimeter 



 

 

 

 

vsw  nominal shear stress due to the self-weight and line loads (if available) on the 

sides considered of the control perimeter. 

vl  dimensionless contribution to the shear strength of the longitudinal 

reinforcement (SFSMM or MASM) 

vs  dimensionless contribution to the shear strength of the transverse reinforcement 

(SFSMM or MASM) 

w  crack width 

wb  crack width at the bottom of the crack 

wc  critical crack opening or fracture crack opening in Hordijk (1992) 

wk  Crack opening of the primary cracks (CWSB) 

wu  ultimate crack opening, assumed equal to lf/4 (MOREILLON, 2013) for 

UHPFRC-flat slabs according to (MOREILLON, 2013) and  ψ
CSCT

∙ d/6 for NSC-UHPFRC flat 

slabs 

w1  Crack opening to zero tensile stress of the concrete (CWSB) 

x  neutral axis depth 

x’  distance from the peak of the concrete tensile stress to the neutral axis (CWSB) 

x’’  height of the region with softening of concrete in the tension zone (CWSB) 

0x   distance from the critical shear crack to the support or loaded area CWSB) 

1x   distance from the control section to the support or loaded area (CWSB) 

z  length of the internal level arm or effective shear depth according to fib MC 

2010, can be taken as 0.9d 

zc  depth of concrete compression zone 

Ax, Ay  projected areas of a cracked surface for a unit crack length in two directions 

As  longitudinal reinforcement area 

Asw  area per unit length of the transverse reinforcement 



 

 

 

  

Ag  gross area of concrete section 

Ap  horizontally projected area of the punching shear failure surface 

B  slab span length 

CRd,c  calibrated semi-empirical coefficient in Eurocode shear strength formula 

Ec  modulus of elasticity of concrete 

Es  elastic modulus of steel 

F  applied concentrated load 

FEd  design concentrated load 

Ff  Fiber factor 

Fpredicted predicted load that causes a one-way shear failure or two-way shear failure 

Fhyp  arbitrary concentrated load 

 Gc  modulus of shear deformation for the un-cracked concrete chord 

Gc  crushing energy 

Gf  concrete fracture energy 

Fpredicted,shear applied concentrated load that causes a one-way shear failure (Vpredicted) 

Fpredicted,punching applied concentrated load that causes a punching failure (Ppredicted) 

Kc  ratio of second stress invariants on tensile and compressive meridians (CDP) 

Kf  global orientation factor for the Variable Engagement Model 

Kf0  fiber orientation coefficient according to Model Code 2010 

M  sectional moment 

Mcr  cracking moment 

MEd  design sectional moment 

Mmax  maximum bending moment of the shear span (CWSB) 

NEd  design sectional axial load 

P  applied punching load 



 

 

 

 

Pc  predicted punching capacity using the ACI 318-19 code expressions 

Pc,proposed  predicted punching capacity using the proposed approach 

Pcalc  Predicted punching capacity by an analytical method 

Pexp  experimental punching capacity  

Pflex  concentrated load associated with the slab flexural capacity 

Ppredicted  predicted punching capacity 

Ptest  measured concentrated load F at failure (regardless of the governing failure 

mechanism) 

PEN18  Predicted punching capacity by prEN 1992-1-1:2018 

PEd  design concentrated loads 

PFEM  punching capacity predicted by the FE model or NLFEA 

PRd  design punching capacities 

PR,shear  total shear force resisted by one-way shear mechanisms for punching resistance 

analyses 

PR,punc  total shear force resisted by punching shear mechanisms 

PR,CSCT  punching capacity according with the CSCT 

PR,c,CSCT   mean value of the concrete contribution to the punching capacity according to 

CSCT 

PR,f,CSCT  mean value of the fiber contribution to the punching capacity according to CSCT 

PHarri  punching capacity predicted by the expressions from Harris (2004) 

V  sectional shear force for a concentrated load F 

Vai  shear force transferred by aggregate interlock 

Vc  shear force transferred in concrete compression zone 

Vcontrol  total shear force going through the evaluated direction along the slab width 

Vcalc  Calculated shear force strength 



 

 

 

  

Vd  shear force transferred by dowel action 

Vexp  Experimental shear force strength from the database tests 

Vexp,red  Experimental shear force reduced by the parameter β 

Vf  fiber volume content in percentage 

Vpredicted  predicted shear resistance 

Vtest  maximum sectional shear achieved in the tests 

VAASHTO one-way shear capacity calculated according to AASHTO 

VCEN  one-way shear capacity calculated according to NEN 1992-1-1:2005 

VEd  design shear force 

VNB  shear capacity calculated according to ABNT NBR 6118:2014 

VEC  shear capacity calculated according to EN 1992-1-1:2005 (EC) 

VACI-14  shear capacity calculated according to ACI 318-14 

VACI-19  shear capacity calculated according to ACI 318-19 

VMC   shear capacity calculated according to Model Code 2010 

VSIA  shear capacity calculated according to SIA 262:2013 

VSFSMM  shear capacity calculated according to SFSMM 

VCCCM  shear capacity calculated according to CCCM 

VCSDT  shear capacity calculated according to CSDT 

VCWSB  Shear capacity calculated according to CWSB 

VFu  sectional shear force for the maximum applied load Fu (at failure) 

VRd  design shear capacities 

VR,CSCT  predicted one-way shear resistance with the CSCT expressions 

VR,ij  punching shear strength corresponding to b0,ij 

Vtest  sectional shear force at failure (regardless of the governing failure mechanism) 

Vpredicted predicted sectional shear capacity 



 

 

 

 

Vc,proposed predicted sectional shear capacity using the proposed recommendations 

AVG  Average value 

ACI   American Concrete Institute 

COV  coefficient of variation 

CDP   Concrete Damaged Plasticity 

CSCT  Critical Shear Crack Theory 

CSDT  Critical Shear Displacement Theory 

CWSB  Critical Width of the Shear Band 

CCCM  Compression Chord Capacity Model 

SFSMM  Shear Flexure Strength Mechanical Model 

MCFT  Modified Compression Field Theory 

SMCFT  Simplified Modified Compression Field Theory 

MIN  Minimum value 

NSC  Normal strength concrete 

SS  Experiment carried out close to simple support of the slab 

CS  Eperiment carried out close to continuous support of slab 

CT  Experiment carried out on cantilever slab 

WB  Observed failure mode is wide beam shear failure 

P  Observed failure mode is punching failure 

WB+P  Observed failure mode combines characteristics of WB and P 

UHPFRC Ultra-high performance fiber-reinforced concrete 
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1 INTRODUCTION 

In this chapter, the following aspects of the research are described: (i) context, (ii) 

motivation of the research, (iii) aim of the research and (iv) research strategy and thesis outline. 

1.1 Context 

The shear and punching capacities can govern the design of reinforced concrete (RC) 

slabs subject to high concentrated loads or loads partially distributed in small areas. For 

economic or constructive reasons, design solutions that do not require the use of shear 

reinforcement are commonly prioritized. An example is the design of bridge deck slabs or 

foundation structures, in which shear reinforcement can lead to rebar congestion and hamper 

the reinforcement assembly in the formwork. Unlike other failure mechanisms, such as those 

associated with flexure, shear and punching failures are brittle and may develop without any 

signals of risk or warning to the users. For this reason, failures due to shear forces have 

historically been marked by significant losses of financial and human resources, as in the failure 

of the La Concorde viaduct (Canada) in 2006 (CALVI; BENTZ; COLLINS, 2018) and in the 

failure of the American air force hangar in 1955 (YANG, 2014). 

A solution widely used to minimize the risk of this failure mechanism is to increase the 

thicknesses of slabs and beams. However, this solution increases the cost related to the concrete 

consumption and actions from self-weight on the whole structure. Solutions related to 

increasing the reinforcement ratios or from the specified concrete strengths are also used. 

Nevertheless, these solutions also considerably increase the costs of the new structures. In this 

context, a less-discussed solution is the use of enhanced expressions and approaches to estimate 

the shear and punching capacity. At this point, for instance, using more accurate expressions to 

calculate the load-carrying capacity of the members can allow using slabs with lower thickness 

previously rated as critical in shear by more conservative expressions. 

Nowadays, another problem draws attention in assessing older structures, such as 

bridges-built decades ago, using current design codes. In other words, these structures were 

frequently designed to serve a less heavy design truck (action side). Besides, these designs used 

resistance expressions less conservative than the current ones (the predicted nominal shear 

capacity frequently decreases when using new design expressions calibrated by reliability 

analyses). Therefore, slabs designed decades ago can be rated as critical in shear using the 

current design codes of actions and resistance (LANTSOGHT; VAN DER VEEN; 



46 

 

 

 

WALRAVEN, 2013; REIßEN, 2016). In these structures, the shear and punching resistances 

can limit the increase of live loads, for example, or indicate the need for strengthening to fulfill 

updated codes of practice. (LANTSOGHT et al., 2016). Therefore, for economic and safety 

reasons, many researchers have been trying to develop enhanced models to estimate slabs' shear 

and punching capacities, combining satisfactory levels of accuracy, precision and reliability in 

relation to the real resistance of the elements. 

In this context, older structures may also benefit from the compressive strength increase 

with time due to the delayed hydration of cementum. At this point, the resistance increase after 

some decades may be significant. In the same way, some structures may also show deficient 

resistances due to pathological processes. Therefore, in the evaluation of existing structures, it 

is important to evaluate not only the current design codes and loads but also the real materials' 

resistance after some decades.  

Besides, another aspect shall be pointed with relation to the loads used for the 

assessment of existing structures. In practice, the service loads from real vehicles are lower than 

that used in the design (on average). Moreover, the tire area of loading may be significantly 

greater than that considered in the design truck because of the combination of several wheels 

to distribute the loading in the heavier axes. Therefore, the evaluation of bridge deck slabs from 

the design to the service conditions may require the consideration of several aspects. In this 

study, the scope remained mainly in the evaluation and interpretation of laboratory tests, which 

represents the first step to improving the understanding of some parts of the real problems, 

mainly that related to the shear and punching resistance. 

One of the types of slabs most frequently rated as critical in shear (despite no signal of 

distress) are the one-way slabs from solid slab bridges (for instance, Figure 1-1). The main 

actions on these structures are the concentrated loads from design vehicles (Figure 1-1b). In 

practice, testing full-scale slab bridges is not frequent for several reasons (economical, 

technical, etc.). Because of this, this problem is most commonly studied in small-scale 

experiments, in which the full-design truck can be represented as only one concentrated load 

over the slab (Figure 1-1c). However, it is also frequently assumed that the concentrated loads 

from the tests represent only one of the wheel loads from the design truck. In this way, the effect 

of the superposition of concentrated loads close to the supports is not considered (in practice, 

the superposition of concentrated loads makes the loading less concentrated in small areas and 

increases the shear capacity of the slabs for both shear and punching). Therefore, there are two 
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possible interpretations for such scaling of the tests: (i) one assumes that the concentrated load 

represents the whole design vehicle and (ii) the other assumes that the concentrated load from 

the test represents only one of the wheels from the design truck.  

Figure 1-1 – Example of one-way slab bridge; b) layout of the design truck according to the 

Brazilian codes over the slab; c) example of reduced scale tests found in the literature (dimensions 

in m). 

 
  

a) b) c) 
Source: Author. 

1.2 Motivation 

One-way slabs under concentrated loads develop a flow of forces that, in some aspects, 

resembles the one-way shear of slabs loaded over the entire width (Figure 1-2a) and also the 

two-way shear behavior of slab-column connections or flat slabs (Figure 1-2b). For instance, in 

Figure 1-2c, the flow of forces close to the support tends to be linear, with flow lines almost 

parallel between each other, reaching the support. Conversely, around the load, the flow lines 

tend to present a most radial pattern, which is characteristic of punching failures (NATÁRIO; 

FERNÁNDEZ RUIZ; MUTTONI, 2014). Therefore, both kinds of shear failure mechanisms 

can be critical for such slabs. 

In the literature, the problem of one-way slabs under concentrated loads is frequently 

evaluated by looking only at the one-way shear failure mechanism (HALVONIK; 

VIDAKOVIĆ; VIDA, 2020; HENZE; ROMBACH; HARTER, 2020; REIßEN; CLASSEN; 

HEGGER, 2018). Consequently, the interpretation of test results and proposed 

recommendations are devised from a narrower perspective. For instance, the proposed models 

of effective shear width may not work well for the tests failing by punching. In the same way, 

the existing approaches to evaluate the punching capacity may not work well for one-way slabs 

that are critical in one-way shear. Since the most critical failure mechanism of a slab may not 

be easily determined without a test or advanced non-linear finite element models, both one-way 
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shear and punching shear approaches should provide close predictions of ultimate capacity 

regardless of whether the most critical failure mechanism is one or other. Therefore, there is a 

need for more studies addressing both failure mechanisms and including recommendations for 

both shear and punching capacity predictions. 

Figure 1-2 – Sketches of imaginary tests with the expected cracking pattern and shear flow for: a) 

beams and slabs loaded over the entire width; b) slab-column connections under concentric loads; 

and c) one-way slabs under concentrated loads close to the line support (the shear flow to the far 

support was omitted in the sketch for simplicity). 

 
Source: Author. 

In the context of existing approaches for predicting the shear and punching capacity of 

one-way slabs under concentrated loads, some aspects need to be considered. When evaluating 

the one-way shear capacity of slabs under concentrated loads, it is frequently assumed that only 

a slab strip, called effective shear width beff (see example in Figure 1-3a), contributes to the one-

way shear capacity VR (LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013). In general, 

this approach leads to good levels of accuracy when evaluating one-way slabs under 

concentrated loads close to the support. Herein, it is assumed that the load is close to the support 

when the load is placed at distances av < 2dl ⁓ 3dl, where av is the clear distance between the 

front sides of the load and support, and dl is the effective depth of the slab towards the 

longitudinal reinforcement. However, when the loads are placed at higher distances from the 

support, most approaches to calculating the effective shear width overestimate the length of the 

contributing width, and the predictions of sectional shear capacity frequently stay on the unsafe 

side (SOUSA et al., 2021c). In such cases, the punching failure mechanism commonly governs 

(as it will be shown in the next sections, Figure 4-11). At this point, it would not be critical if 

the predicted load causing the punching failure is lower than the one predicted to cause a one-

way shear failure. Nevertheless, even the predictions of punching capacity can stay on the 
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unsafe side for slabs with a relation slab width to load size bslab/lload between 3.5 and 10 

(depending on the code expressions). In practice, this occurs mainly when the contribution of 

the sides of the control perimeter that are parallel to the free edges are overestimated and does 

not consider that an impaired contribution may occur in such regions depending on the ratio 

between the slab width and the load size (Figure 1-3b). Therefore, enhanced approaches to 

defining the effective shear width should be devised to avoid unsafe predictions of one-way 

shear capacity.  

Figure 1-3 – a) Example of calculation of the effective shear width for one-way shear capacity 

analyses; and b) Detail of the regions that may present an impaired contribution or enhanced 

contribution to the punching capacity. 

 

Source: Author. 

In the same context, fewer discussions have been given to the predictions of punching 

capacity for one-way slabs under concentrated loads (NATÁRIO, 2015; VAZ RODRIGUES; 

FERNÁNDEZ RUIZ; MUTTONI, 2008). In general, for instance, the effect of enhanced load 

capacity for loads close to the support (av <2dl) is commonly neglected in punching capacity 

predictions with codes of practice. Consequently, these approaches may lead to overly 

conservative predictions of punching capacity for loads close to the support. Besides, the 

predictions of punching capacity for slabs with a reduced slab width may stay on the unsafe 

side (LANTSOGHT et al., 2015d) by not considering the influence of the free edges disturbing 

the contribution of some sides of the control perimeter (Figure 1-3b). Therefore, enhanced 

approaches to predict the punching capacity of one-way slabs under concentrated loads are also 

necessary. 
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In the literature, there are many approaches based on different tools to assess the shear 

and punching capacity of one-way slabs. For instance, someone could make use of only 

analytical expressions for preliminary evaluations (LANTSOGHT, 2013). In the same way, 

there are most refined approaches on which analytical expressions can be powered by 

parameters from simplified finite element models (using shell elements to simulate the slab and 

assuming a linear elastic behavior to the materials)(NATÁRIO, 2015). Lastly, someone could 

use an advanced three-dimensional non-linear finite element model to evaluate the failure 

mechanism of a most complex case (HENZE, 2019; REIßEN, 2016). In practice, each of these 

approaches will have its advantages and disadvantages. While most publications focused on the 

use of only analytical expressions, the use of numerical tools (simplified or advanced) stands 

out as an interesting method to allow a broader insight into the problem. Moreover, approaches 

based on the use of linear elastic finite element analyses are becoming more spread in design 

offices and deserve to be better investigated. 

Lastly, most publications until now focused on the investigation of slabs with a flexure 

capacity considerably higher than the shear and punching capacities (in the absence of shear 

reinforcement). In practice, this allows for reaching the desired shear failure mechanism at 

laboratory tests and improving the understanding of pure shear and punching failure 

mechanisms. In practice, however, slabs are frequently designed in such a way that the shear 

and punching capacities be higher than the flexure capacity to avoid brittle failure mechanisms 

at failure. Consequently, failures by shear or punching would be achieved only after local 

reinforcement yielding, for which there are limited tests in the literature. Therefore, tests on 

which shear and punching failure mechanism develops together with local reinforcement 

yielding could help to understand if expressions devised to deal with pure shear and punching 

failures perform well for other circumstances. 

1.3 Aim of the research 

The research aims to determine/develop enhanced approaches to predict the shear and 

punching capacity of one-way slabs under concentrated loads using different sets of expressions 

and tools and considering key parameters in the transition between one-way and two-way shear 

failures. 

This research question is tackled by the following specific aims: 
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• Review the main characteristics that influence the ultimate loads and the failure 

mechanism of the tests from the literature, identifying key parameters in the transition 

from one-way shear to two-way shear failure mechanisms. 

• To evaluate different approaches to predict the one-way shear resistance per unit length 

combined with different approaches of effective shear width, identifying the precision 

and accuracy of each combination. 

• Develop enhanced approaches to predict the effective shear width based on the governing 

failure mechanism of the tests and tested loads at failure. 

• To evaluate different approaches to predict the punching capacity of one-way slabs under 

concentrated loads using analytical code expressions and mechanical-based models. 

• Develop enhanced approaches to predict the shear and punching capacity of one-way 

slabs combining analytical expressions with outcomes from linear elastic finite 

element analyses. 

• Evaluate experimentally the effect of the clear shear span to effective depth ratio (av/dl) 

on the ultimate capacity and failure mechanism of reinforced concrete slabs without 

transversal reinforcement with thicknesses of 150 mm subject to concentrated loads 

close to the support. 

• Developing a non-linear numerical model capable of predicting the governing failure 

mechanism of one-way slabs under concentrated loads using three-dimensional 

numerical models, and highlighting possible challenges on this matter. 

• Adjust as necessary one-way shear models, punching shear models and effective shear 

width models based on analytical, numerical and experimental investigations. 

1.4 The research question of the thesis 

In the end, this thesis intends to answer the following research question: How the 

predictions of one-way shear capacity and punching capacity for one-way slabs under 

concentrated loads could be enhanced using different sets of expressions and tools (analytical 

and numerical)? 

In practice, this study intends to present a series of recommendations that can be 

employed to improve the level of accuracy of the tested-to-predicted resistances ratio of 

laboratory tests from the literature using different approaches. In this way, an enhanced look 

can be employed to evaluate existing structures. 
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1.5 Research strategy and thesis outline 

The research methodology proposed comprises a total of 4 approaches: (i) analytical 

investigations; (ii) investigations with simplified numerical analyses (linear elastic finite 

element analyses); (iii) investigations with advanced numerical investigations (non-linear finite 

element analyses); and (iv) experimental investigations. In practice, the study developed in such 

a way that the level of refinement of the methods increases along the thesis, from fully-

analytical based methods to experimentally-based investigations (Figure 1-4).  

Figure 1-4 - Overview of chapters. 

 

Source: Author. 

Since the problem of one-way slabs under concentrated loads comprises an intermediate 

case between the one-way shear of slabs loaded over the entire width (Figure 1-2a) and the 

punching shear of slabs under concentric loads (Figure 1-2b), the research was tackled in parts. 

In practice, this division allowed for developing a solid understanding of different fields before 

addressing the most complex problem (Figure 1-2c).  

Firstly, Chapter 2 shows a literature review on the problem of one-way slabs under 

concentrated loads. In this chapter, the main shear transfer mechanism and cracking pattern 

from different experimental programs are reviewed. The distinctions and similarities between 

one-way shear and two-way shear failure are highlighted. A database of 160 test results from 

literature is evaluated, highlighting how the tested loads at failure (shear and punching) and the 

corresponding failure mechanism vary according to parameters such as the shear slenderness 

(av/dl) and slab width to load size (bslab/lload). The main parameters influencing the transition 

from one-way shear failures to punching failures and vice versa are discussed. 

Nest, Chapter 3 discusses the one-way shear behavior of wide beams and slabs loaded 

over the entire width in detail (test with predominant one-way shear behavior) (Figure 1-2a). In 

this chapter, a comprehensive literature review was performed on the behavior of such members 

according to parameters such as: (i) the structural system or effect of support conditions; (ii) 
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the degree of rotational restraint at the support and shear slenderness; (iii) the load arrangement 

(concentrated or distributed in the span direction) and (iv) the shear failure modes in one-way 

shear. In the same chapter, it is presented an overview of available models or expressions to 

predict the one-way shear capacity; and a database of wide beams and slabs loaded over the 

entire width. A parameter analysis was performed to identify the most influencing parameters 

in the one-way shear capacity of such members and, in the end, a comparative analysis was 

conducted to evaluate the precision and accuracy of several expressions based on different 

theories and codes of practice.  

Chapter 4 shows in detail the first analytical developments related to the slabs subject 

to concentrated loads in the span and width directions (Figure 1-2c). In this chapter, the 

effective shear width expressions are revised and a new one is proposed. The proposed effective 

shear width expression considers the different failure mechanisms that can take place and 

enables reaching safe and precise predictions of one-way shear capacity regardless of the 

governing failure mechanism being shear or punching.  Besides, the Critical Shear 

Displacement Theory (YANG; DEN UIJL; WALRAVEN, 2016) is used as a reference 

approach to predict the unitary one-way shear capacity of the members. A database of one-way 

slabs under concentrated loads, including 214 test results, was addressed with the respective 

classification of the governing failure mechanisms. In the end, the proposed approach to predict 

the sectional shear capacity is validated against several approaches proposed in the literature. 

Chapter 5 describes an enhanced approach to evaluate the shear and punching capacity 

of one-way slabs under concentrated loads using linear elastic finite element analyses, inspired 

by the work of Natário (2015). In this approach, outputs from simplified numerical models are 

used as input in the Critical Shear Crack Theory (CSCT) expressions (MUTTONI, 2008; 

MUTTONI; FERNANDEZ RUIZ, 2008). In the end, a simplified approach using only 

analytical expressions and based on the CSCT expressions is proposed and validated against a 

dataset of one-way slabs. This chapter shows how the predictions can be improved on simplified 

analytical calculations considering the parameters that influence the transition between one-

way shear and two-way shear. 

During the development of this research, it was found necessary to improve the 

understanding related to the punching capacity expressions and to validate the non-linear finite 

element model proposed to describe the behavior of slabs under concentric punching loads. 

These developments are related to Chapter 6. In the meantime, the author proposed 

investigating the behavior and punching capacity of such slabs, including the rational use of 
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ultra-high-performance fiber-reinforced concrete (UHPFRC). The work was devised using the 

CSCT expressions and the Concrete Damaged Plasticity model as the constitutive material for 

the concrete. Despite such kinds of slabs being not one-way, the tools and knowledge of this 

content improved the understanding of several aspects of the modeling to the problem of pure 

punching and flexure punching failures. 

Chapter 7 describes a non-linear finite element analysis capable of representing both 

one-way and two-way shear failures of one-way slabs. The Concrete Damaged Plasticity model 

is used as a material model. Besides that, a parameter study is described to highlight the main 

influencing parameters on the numerical results. In this context, several aspects of modeling are 

highlighted to improve future investigations in this field. 

Chapter 8 bring contributions to the research based on an experimental program. In this 

chapter, it was investigated the failure mechanism and ultimate capacity of slabs designed and 

tested with a close capacity between shear and flexure failure mechanisms. Therefore, this study 

brings a look at the ultimate capacity of slabs failing by shear after local reinforcement yielding. 

Chapter 9 deliver the main conclusions from this thesis based on the literature review, 

analytical calculations, refined calculations aided by linear elastic finite element analyses, 

refined calculations based on non-linear finite element analyses, and based on the experimental 

program.
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2 LITERATURE REVIEW 

In this chapter, a literature review is presented regarding the problem of one-way slabs 

under concentrated loads. The main shear-transfer mechanisms and failure mechanisms of such 

slabs are investigated. The parameters that influence the transition between shear failure 

mechanisms are also highlighted. 

2.1 Initial considerations 

One-way slabs under concentrated loads can develop a transitional failure mode 

between one-way shear, two-way shear, and flexure (LANTSOGHT et al., 2015c). This loading 

is typical in solid slab bridges (LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013) and 

garage floors (TENÓRIO et al., 2014) but may also occur in floor slabs with heavily 

concentrated loads arising from constructive or industrial equipment (BUI et al., 2017b, 2017a). 

Without shear reinforcement, these slabs may develop a brittle failure mode, which is the most 

dangerous failure mode for these structures since it provides limited warning signs and does not 

allow safe user evacuation. Since most design codes do not provide specific recommendations 

to evaluate the shear and punching capacity of one-way slabs under concentrated loads, research 

in this field is necessary to guide designers. 

Traditionally, most publications deal with the one-way shear capacity of beams or slabs 

loaded over the entire width (SOUSA; LANTSOGHT; EL DEBS, 2020; REINECK et al., 2013) 

(Figure 1-2a) or with the punching capacity of the slab-column connections of two-way slabs 

(Figure 1-2b)(MUTTONI, 2008). However, the shear flow tends to be radial close to the load 

and linear close to the support (NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014) when a 

concentrated load is placed close to line supports (Figure 1-2c - this figure uses the cracking 

pattern of different test results from Reiβen (2016)). This behavior results in the possibility of 

varying shear failure mechanisms taking place. Figure 1-2c shows that a simply supported slab 

may develop a one-way shear failure or wide beam shear failure close to the line support, as 

well as a punching failure around the concentrated load due to the characteristics of the shear 

flow in both regions.  

Traditional approaches to evaluate the shear capacity in these cases are depicted in 

Figure 2-1 (LANTSOGHT et al., 2015c, 2015d). Basically, the punching capacity is verified 

around the concentrated load, assuming a uniform shear force distribution around the critical 

perimeter (Figure 2-1a). In the critical perimeter with two sides, it is assumed that the shear 
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stresses develop only in the spanning direction on both sides of the load (Figure 2-1b.1). For 

eccentric loads over the slab width, the free edges will limit the contribution of the sides of the 

critical perimeter near the border. Consequently, the decisive critical perimeter is usually one 

assuming three sides around the load contributing to the punching capacity (Figure 2-1b.2). In 

the design and assessment of existing structures (REGAN, 1982), as a rule of thumb, the 

smallest possible critical perimeter is used as it leads to the lowest capacity (LANTSOGHT, 

2013). 

Figure 2-1 - a) Most traditional critical perimeter definition for punching shear analyses; b) 

possible critical perimeter for slabs with a small width (b.1) and eccentric load over the slab width 

(b.2); c) effective shear width beff defined to assess the one-way shear capacity using the French 

load spreading (FD P 18-717, 2013). 

 
Source: Author. 

The one-way shear capacity of slabs is commonly verified by assuming that only a slab 

strip beff contributes effectively to the shear capacity (Figure 2-1c) with a uniform shear demand 

along this length, usually called the effective shear width. The most conventional approach to 

define the slab strip width contributing to the one-way shear capacity is based on an assumed 

horizontal load spreading from the far edge of the concentrated load to the support under a 45º 

angle (BUI et al., 2017a; LANTSOGHT et al., 2015d; LANTSOGHT; VAN DER VEEN; 

WALRAVEN, 2013), commonly named the French effective shear width(FD P 18-717, 2013), 

as it originates from France (Figure 2-1c). 

Previous studies addressed the accuracy level of analytical shear provisions to predict 

the shear (LANTSOGHT et al., 2015d; REIßEN; HEGGER, 2015; SOUSA; EL DEBS, 2019) 

and punching shear capacities (LANTSOGHT et al., 2015d; SOUSA; EL DEBS, 2019) of one-
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way slabs under concentrated loads. Lantsoght et al. (2015d), for instance, evaluated 118 one-

way slabs and wide beams (after filtering) with the European shear and punching shear code 

provisions (CEN, 2005). The comparison between experimental and predicted shear capacities 

showed a large scatter between tests and theoretical predictions with many unsafe predictions. 

These results mainly occurred because the code expressions and rules of practice were applied 

without considering that, for example, the punching mechanism could be critical for the tests 

being evaluated by one-way shear expressions. In the same way, the predictions of punching 

capacity did not fit well for the tests that failed as wide beams. Therefore, adjustments in the 

one-way shear and punching shear expressions should be made to account for these cases when 

using design code expressions devised for members loaded over the entire width or for slabs 

under concentric loads. 

This chapter starts by reviewing the one-way and two-way shear mechanisms involved 

in the problem of one-way slabs under concentrated loads. Subsequently, the cracking pattern 

of slabs from different experimental programs is discussed in detail to highlight the most 

important influencing parameters in the transition from one-way shear failure to two-way shear 

failures. A database with 160 test results from the literature was organized. Compared to 

previous works (HALVONIK; VIDAKOVIĆ; VIDA, 2020), different support conditions and 

failure mechanisms were addressed. In the end, a sensibility analysis with test results was 

conducted to show how some parameters influence the measured loads at failure and the 

governing failure mechanism of the tests.  

2.2 Background of one-way shear and two-way shear failure mechanisms 

There are similarities and distinctions between one-way shear and two-way shear of 

slabs without stirrups (LANTSOGHT et al., 2015c). The main similarities include the shear 

transfer mechanisms involved: (i) compression chord capacity (MÖRSCH, 1909), (ii) aggregate 

interlock (WALRAVEN, 1981), (iii) dowel action (TAYLOR, 1969), (iv) the residual tensile 

strength of concrete (HORDIJK, 1992), and (v) arching action or strut action (KANI, 1964). 

According to the Critical Shear Crack Theory (MUTTONI, 2008; MUTTONI; FERNANDEZ 

RUIZ, 2008), the failure criteria for both one-way shear and two-way shear are governed by 

strain localization (flexure action), size effect (member thickness), and aggregate interlock 

effects (MUTTONI; FERNANDEZ RUIZ, 2010a) (roughness of the cracked surface). In the 

multi-action shear model from Marí et al.(2018), on the other hand, both one-way shear and 

two-way shear are governed by the compression chord capacity. In addition, these authors 
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consider that both one-way and two-way shear failures occur when the inclined crack from 

flexure crosses the compression chord.  

The main distinctions between one-way and two-way shear failures relate to the 

mechanisms that trigger the shear failures and the governing parameters of the crack 

kinematics: (i) opening and (ii) sliding of the critical shear crack(MUTTONI; FERNANDEZ 

RUIZ, 2010a). For instance, the opening of the critical shear crack is related to strains at the 

control section in one-way shear (MUTTONI; FERNANDEZ RUIZ, 2008) and is related to 

slab rotations for two-way shear (MUTTONI, 2008). Moreover, the relation between the 

applied load and the opening of the critical shear crack is almost linear for one-way shear but 

strongly non-linear for two-way shear (MUTTONI; FERNANDEZ RUIZ, 2010a).  

Figure 2-2a shows that the distribution of unitary shear forces along the shear span is 

almost constant for beams and slabs loaded over the entire width (neglecting the influence of 

the self-weight) (MUTTONI; FERNANDEZ RUIZ, 2010a). However, a different behavior 

occurs in slabs under concentric loads (Figure 2-2b). Since slabs transfer shear radially, a strong 

gradient of shear stresses (shear force per unit length, with b0 being the critical perimeter length 

around the loaded area) and bending moments takes place around the concentrated loads. 

Consequently, higher values of shear stresses arise near the concentrated load with significant 

strain localization in this region, which governs the punching capacity (MUTTONI; 

FERNANDEZ RUIZ, 2010a) (Figure 2-2b). 

Lantsoght et al. (2015c) also point out other differences: (i) for punching, the inclined 

crack locations always arise immediately adjacent to the concentrated load, while for one-way 

shear in beams, the inclined crack is free to develop at the weakest section in the shear span a, 

closer to the support or to the load (CRISWELL; HAWKINS, 1974); (ii) although the inclined 

cracks may develop at similar shear stresses for beams and slabs, the opening of the critical 

shear crack for punching occurs only after a marked decrease of the tangential stiffness 

(HAWKINS; MITCHELL, 1979). Marí et al. (2018) also remarked that, due to the higher 

confining stresses generated around the column of flat slabs (compression ring), the critical 

punching crack follows an almost straight path. The inclination of the punching cracks is 

commonly related to the ratio between the failure load and the slab flexural capacity 

(MENÉTREY, 2002). Conversely, in one-way shear, the development of two main branches 

can be observed(YANG; DEN UIJL; WALRAVEN, 2016): an initial flexural crack and an 

inclined crack crossing the compression chord (Figure 2-2c.1). 
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Figure 2-2 - Distribution of unitary shear forces and bending moments in the shear span for a) 

beams and slabs loaded over the entire width; b) slabs under concentric concentrated loads; c.1) 

beam-shear carrying mechanisms of slender beams; c.2) direct struts and beam-shear carrying 

mechanisms of slabs under concentric loads.  

 
Source: Adapted from Muttoni and Fernandez Ruiz (2010a) and Cavagnis, Fernández Ruiz and 

Muttoni  (2018a). 

 

Another link between one-way shear and punching shear occurs on slab-column 

connections (MUTTONI; FERNANDEZ RUIZ, 2010a). At large distances from the columns, 

the shear forces are moderate due to the larger shear transfer surface. Hence, the beam-shear 

carrying mechanisms from slender beams (shear transfer mechanisms i-iv) may provide the 

required punching capacity (Figure 2-2c.1). However, close to the concentrated load, the shear 

forces are carried by a small perimeter, and arching action develops, increasing the unitary shear 

strength in this region (Figure 2-2c.2). As a result, the unitary shear strength for punching shear 

(when the critical perimeter is consistently placed closer to the concentrated load) is higher than 

that for one-way shear (MUTTONI; FERNANDEZ RUIZ, 2010a). 

2.2.1 Effect of the slab width to load size ratio bslab/lload 

A limited number of studies focus on explaining the transition from one-way to two-

way shear failures (DOORGEEST, 2012; LANTSOGHT et al., 2015c), even though some 

experimental programs reported different shear failure mechanisms in the tests of slabs under 

asymmetrical concentrated loads (HENZE; ROMBACH; HARTER, 2020; LANTSOGHT; 

VAN DER VEEN; WALRAVEN, 2013; REIßEN; CLASSEN; HEGGER, 2018).  
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Reiβen et al. (2018)  and Lantsoght et al. (2014) identified experimentally that the one-

way shear capacity Vexp of slabs under concentrated loads does not increase linearly by 

increasing the slab width bslab or the ratio bslab/lload, where lload is the width of the loading plate 

in the transverse direction.  Therefore, these results are consistent with the concept of using an 

effective shear width for wide members under one-way shear (Figure 2-1c). In addition, it was 

also demonstrated experimentally that the failure load (Ptest) decreases by decreasing the slab 

width bslab or the ratio bslab/lload (REIßEN; CLASSEN; HEGGER, 2018). This occurs because 

slabs with a smaller width develop a more unidirectional shear flow to the support, which 

decreases the load distribution in the transverse direction. The previous studies (SOUSA et al., 

2021a) also showed through linear elastic finite element analyses that as bslab increases, the 

gradient of bending moments around the concentrated load increases, which favors the 

occurrence of punching failures over one-way shear failures for wider slabs. 

Figure 2-3 - Transition of shear failure mechanisms as a function of a) slab width; b) shear 

slenderness av/dl for simply supported slabs from Reiβen, Classen and Hegger (2018); c) shear 

slenderness av/dl for cantilever slabs for the tests from Henze (2019). Note: (WB) = wide beam 

shear failure; (P) = punching failure. Dimensions in SI units. 

 
Source: Adapted from Reiβen, Classen and Hegger (2018) and Henze (2019). 

Saw cuts of failed specimens can be used to identify the transition of shear failure 

mechanisms. Figure 2-3a shows the cracking pattern of a set of slabs tested by Reiβen et al. 

(2018) where the only parameter varied was the slab width (bslab): 1.5 m, 2.5 m, and 3.5 m. The 

loading arrangement was similar to that shown in Figure 2-1a. The concentrated load was 

applied on a square area with a size of 0.40 m × 0.40 m with a = 1 m, with a the center-to-center 

distance between the load and the support. Figure 2-3a shows that the governing shear failure 

mechanism changed from wide beam shear (WB) to punching shear (P) as bslab increased. Test 

S15B-2 developed a critical shear crack typical for one-way shear, based on the visible flexure 

cracks and the horizontal branch of the critical shear crack crossing the compression chord. At 

the same time, S35B-2 developed a critical shear crack without the horizontal branch at the 
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compression chord and with the inclined branch of the critical shear crack reaching the edges 

of the loaded area, as common for punching failures. In S25B-2 and S35B-2, the critical shear 

crack was more pronounced in the region with the largest shear demand, i.e., in the shear span, 

and the full punching cone did not develop. 

2.2.2 Effect of the shear slenderness av/dl 

One of the consequences of using an effective width, as sketched in Figure 2-1c, is that 

the predicted one-way shear capacity increases with the shear slenderness av/dl (dl is the 

effective depth toward longitudinal steel and av is the clear shear span: distance between the 

edge of support and edge of the load). However, some studies (HENZE; ROMBACH; 

HARTER, 2020; REIßEN; CLASSEN; HEGGER, 2018) showed that increasing av/dl from 1 

to 6 in Henze et al. (2020) and from 1.9 to 4.4 in Reiβen et al. (2018), keeping all other 

parameters constant, the tested one-way shear capacity of the slabs decreased markedly or 

remained almost the same after a certain value of av/dl. At the same time, Lantsoght et al. (2013) 

showed that decreasing the ratio av/dl from 1.70 to 0.75 increased the failure loads substantially, 

even though the calculated effective shear width decreased, which they explained by the 

formation of a fan of compressive struts between the load and the support. However, the 

resistance increase due to the arching action was less pronounced in the slab members than in 

beams (LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013) due to the fan of struts and 

their resulting load path with varying relations av/dl. Therefore, the increase of arching action 

was also a function of the slab width(LANTSOGHT et al., 2014).  

Figure 2-3b shows the same change in the governing shear failure mechanism as the 

shear slenderness av/dl increases. Note that S35A (av/dl = 1.9) indicates a shear-compression 

failure as typical in non-slender beams (inclined critical shear crack between the load and the 

support without major flexure cracks in the shear span). Figure 2-3c shows the cracking pattern 

of cantilever slabs with bslab = 4.5 m and cantilever length 1.9 m tested by Henze (2019) as a 

function of av/dl. Figure 2-3c shows the same transition from one-way to punching shear failures 

as the shear slenderness av/dl increased for cantilever slabs. 

2.2.3 Effect of the transverse reinforcement ratio ρt 

The reinforcement ratio in the transverse direction of slabs (perpendicular to the shear 

span) also influences the governing shear failure mechanism of slabs under concentrated loads. 

Lantsoght, van der Veen and Walraven (2013) observed that higher transversal reinforcement 

ratios led to a better force distribution in the width direction since the cracking pattern in the 
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shear span was more similar to that of one-way slabs loaded over the entire width. Instead, slabs 

with lower transverse reinforcement ratios developed a cracking pattern that was more localized 

(radial and tangential cracks) around the concentrated load, similar to that of a punching failure 

(Figure 2-4a). When the transverse and longitudinal reinforcement ratios are different, the 

unitary shear capacities around the concentrated load are different (SAGASETA et al., 2014; 

SAGASETA; VOLLUM, 2011). Since the distribution of shear forces around the load is also 

uneven (NATÁRIO, 2015) and depends on the load position and boundary conditions, failure 

can be triggered in the region of higher demand or lower resistance. 

Figure 2-4 - Effect of the transverse reinforcement ratio ρt on the shear/punching capacity and 

governing failure mechanism for slabs with a) load applied close to simple supports (figures 

adapted from Lantsoght, van der Veen and Walraven (2013)); b) load applied close to a continuous 

support and c) load applied on cantilever slabs (figures adapted from Reiβen (2016)). 

   
Source: Adapted from Lantsoght, van der Veen and Walraven (2013) and Reiβen (2016). 

A similar change in the shear failure mechanism was observed in the continuous slabs 

tested by Reiβen, Classen and Hegger (2018), where the cracking pattern in cut views of the 

tests MS35C (ρt = 0.45%) and MS35C-ρq (ρt =0.15%) indicated that the slab with a lower 

transverse reinforcement ratio failed in punching shear (Figure 2-4b) while the other one failed 

by one-way shear. The change in the externally applied load at failure was only 13% between 

these two tests. 

On the other hand, decreasing ρt had a more limited effect on the cracking pattern and 

governing shear failure mechanisms for cantilever slabs. Figure 2-4c shows that decreasing ρt 

from 0.45% to 0.15% for cantilever slabs decreased the failure load (Ptest) by 18%, and resulted 

in almost no change in the cracking pattern in the cut views.  
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2.3 Database 

The references gathered in the database and the range/distribution of parameters are 

presented in  Sousa, Lantsoght and El Debs (2022). This study (i) reviews the test results from 

the literature in a comprehensive way (including failure mechanisms, cracking pattern and 

ultimate loads); and (ii) presents an enhanced approach to predict the ultimate capacity of slabs 

under concentrated loads that failed by one-way shear as wide beams (WB), by punching shear 

(P) and a mixed failure mode between one-way shear and punching shear (WB+P). Only tests 

with bslab/dl > 5 were considered. The criteria of using only tests with ratio (bslab - lload) > 4davg 

was also included as a filter to remove tests with predominant one-way shear behavior. This 

filter increases the proportion of tests that could present both shear failure modes. In practice, 

all tests that do not satisfy this criterion failed as wide beams in one-way shear and could 

introduce a slight bias in the statistical analyses. 

In total, Database A includes the results from 160 tests under different support 

conditions: (i) 77 tests with a load closer to a simple support (SS); (ii) 20 tests with the load 

closer to a continuous support (CS) and (iii) 46 tests with the load applied on a cantilever slab 

(CT). Database A is available in the public domain(SOUSA; LANTSOGHT; EL DEBS, 2022) 

and is based on previous databases of slabs under concentrated loads failing in shear and 

punching shear (LANTSOGHT et al., 2015d; REIßEN, 2016). This database was used mainly 

to perform parametric/sensibility analyses of selected parameters in the tested one-way shear 

loads Vtest and concentrated loads measured at failure Ptest. To evaluate the effect of selected 

parameters, such as the clear shear slenderness av/dl, groups of test results where only av/dl was 

varied were taken from the Database A(SOUSA; LANTSOGHT; EL DEBS, 2022) to analyze 

this effect further. In this way, different subsets were organized to evaluate each parameter 

selected.  

• Database A1 brings together test results for which the main parameter varied was the shear 

slenderness av/dl  (75 test results from the following references: Natário (2015), Reiβen 

(REIßEN, 2016), Rombach and Henze (2017), Lantsoght (2013), Cullington et al. (1996), 

Ferreira (2006) and Regan (1982). 

• Database A2 brings together test results for which the main parameter varied was the slab width 

to load size ratio bslab/lload (26 tests from the following references: Reiβen (2016), Lantsoght  

(2013) and Regan and Rezai-Jarobi (1988). 
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• Database A3 brings together test results for which the main parameter varied was the transverse 

reinforcement ratio ρt (36 tests from the following references: Damasceno (2007), Ferreira 

(2006), Reiβen (2016) and Lantsoght (2013). 

Database B is also a subgroup of Database A but received a different classification since 

this database was used to evaluate the performance of shear and punching capacity predictions 

with the ACI code expressions. In Database B, tests that developed flexure-induced punching 

(F+P) at failure were removed. This database contains 143 test results of one-way slabs under 

concentrated loads: (i) 40 tests failed by punching (P); (ii) 91 tests failed as wide beams by one-

way shear mechanisms (WB) and (iii) 12 tests failed by a mixed-mode between one-way shear 

and two-way shear (WB+P).  

2.4 Parameter analyses on governing shear failure mode 

This section evaluates the influence of parameters such as the load position av (or shear 

slenderness av/dl), slab width to load size ratio bslab/lload and transverse reinforcement ratio ρt on 

the sectional shear and concentrated loads applied at failure for one-way slabs under 

concentrated loads, as well as on the transition between these shear failure modes. For this 

purpose, different subgroups of Database A were used. 

In this study, it is assumed that the full one-way shear capacity may not have been 

reached in the tests that failed by punching (Vtest < Vexp) and, in the same way, the full punching 

capacity may not have been reached in the tests that failed as wide beams in one-way shear 

(Ptest < Pexp). In other words, Vexp should refer only to the one-way shear force measured on the 

tests that fail in one-way shear, and Pexp should refer to the punching capacity of the tests that 

failed by punching. If the test failed in one-way shear as a wide beam, the concentrated load 

applied in the test should be interpreted as the reached concentrated load Ptest, and not as the 

punching capacity of the test Pexp. 

Because of this, in the following analyses, the shear (VFu) and punching capacities (Ptest) 

refer respectively to (i) the corresponding sectional shear forces measured at failure due to the 

concentrated load and (ii) to the maximum concentrated loads measured on the tests. In this 

text, Vtest is the total sectional shear measured at failure, including the self-weight influence 

along the entire slab width: 

 test Fu g slabV V v b= +   (2.1) 

With vg being the shear force per unit length due to the self-weight at the section a/2. 

VFu is the sectional shear considering only the applied load Fu at failure. As suggested by Reiβen 
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(2016), this uses VFu instead of Vtest to not include the influence of the effective shear width 

assumed in the calculation of Vtest. 

Some analyses were inspired by the research from Reiβen (2016), who investigated the 

influence of similar parameters on the one-way shear capacity of slabs under concentrated loads 

(sectional shear reached in the tests, VFu). However, to allow a broader insight into different 

shear failure mechanisms, both sectional shear and concentrated loads applied at failure are 

addressed in this study. Moreover, the governing failure mechanism is highlighted on all graphs 

in order to identify the transition between the failure mechanisms according to the parameters 

investigated. Therefore, these analyses provide a new look at the problem. 

The influence of the concrete compressive strength was reduced by normalizing the 

sectional shear and externally applied load at failure (VFu and Ptest) to the square root of the 

concrete compressive strength √f
c
, such as recommended in Sousa et al. (2020) and in line with 

the one-way and two-way shear expressions from ACI 318-19(ACI COMMITTEE 318, 2019) 

(fc is the average compressive strength of concrete measured on cylinder specimens). 

Additionally, the sectional shear and externally applied load at failure (VFu and Ptest) were also 

normalized to the effective depth dl. Therefore, the ratio 𝑉𝐹𝑢/𝑑𝑙 ∙ √𝑓𝑐  is a measure of the shear 

capacity on which the effect from the concrete compressive strength and the effective depth 

was reduced to compare different experimental programs better. 

2.4.1 Shear slenderness av/dl 

The shear slenderness av/dl is a well-known parameter influencing the shear capacity of 

beams and wide members loaded over the entire width (SOUSA; LANTSOGHT; EL DEBS, 

2020). For ratios av/dl < 2, the shear capacity of RC beams without stirrups is enhanced as a 

result of arching action between the load and the support. Figure 2-5 shows the relation between 

the normalized shear VFu and concentrated load at failure Ptest as a function of av/dl to the 

Database A1. Lines connect tests in which only the ratio av/dl was varied. The symbols identify 

the governing failure mechanism based on the cracking pattern and reported information from 

the original references.  

Figure 2-5a shows that both shear (WB) and punching failures (P) were observed for 

tests with av/dl < 4.5 (Figure 2-5a). On the other hand, all tests with av/dl > 5 failed by punching 

(P) or a mixed-mode between shear and punching (P or WB+P). The tests on which a punching 

failure occurred with av/dl < 3 are mainly slabs with thickness h < 125 mm. Therefore, the 
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governing failure mechanism also seems to be influenced by the absolute slab thickness, in 

addition to the ratio av/dl.  

Figure 2-5 - Influence of shear slenderness av/dl on the normalized a) sectional shear and b) failure 

loads for one-way slabs under concentrated loads using Database A1 with 75 test results. Note: 

WB = wide beam shear failure (42 results); P = punching shear (22 results); WB+P = mixed mode 

or not clear which failure mechanism governs (11 results). 

    
a) b) 

Source: Author. 

As already pointed out by Reiβen (2016), an increase in the effective shear width with 

the shear slenderness cannot be confirmed based on Figure 2-5a. Contrarily, the normalized 

sectional shear at failure (regardless of governing failure mechanism identified) seems to 

decrease for most tests as av/dl increases. 

In this study, the normalized failure load Ptest was also evaluated in detail (Figure 2-5b). 

The highlights in green indicate sets of tests on which an increase of av/dl resulted in an increase 

of Ptest. In other words, it was identified that, although the measured sectional shear VFu 

decreased for most tests (Figure 2-5a), the failure load Ptest increased for some tests. Notably, 

for the cases where the failure load Ptest increased for an increasing ratio of av/dl, the test with a 

higher ratio of av/d failed in punching (Figure 2-5b - data points in blue). Therefore, tests critical 

for punching may benefit from the less uneven distribution of shear forces around the load when 

the shear slenderness increases. Tests critical in one-way shear commonly fail at a lower 

concentrated load when the shear slenderness increases. 

In this study, the increase of the failure loads Ptest by increasing the ratio av/dl may be 

better explained by looking at the ratio a/lspan. Loads applied at the slab center have an a/lspan = 

0.5 and no shear stress difference between the front and back faces of the critical perimeter. 
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Tests with lower av/dl have a 0 < a/lspan < 0.5 and a higher difference between the shear stress 

at the front and back faces of the critical perimeter, also called non-proportional loading of the 

punching perimeter. In other words, the tests with higher av/dl and, hence, higher a/lspan, benefit 

from the most balanced shear stress around the critical perimeter. Tests with lower av/dl fail 

when the most heavily loaded sides of the critical perimeter (between the front and back faces 

of the load) reach their full capacity. In the tests S35B-2 from Reiβen (2016) (Figure 2-3), for 

instance, the critical shear crack is visibly more clear at the front face of the load, indicating 

that failure started at the front face. 

2.4.2 Slab width to load size ratio bslab/lload  

Figure 2-6 shows how the ratio of bslab/lload influences the sectional shear (Figure 2-6a) 

and failure load (Figure 2-6b) of one-way slabs under concentrated loads from Database A2. 

Figure 2-6 shows that the sectional shear at failure increases until a certain threshold when the 

ratio bslab/lload is increased (by increasing the width of the tested specimen). In the tests from 

Regan and Rezai-Jorabi (1988) and from Lantsoght (2013), the threshold value occurred when 

the slabs started to fail by punching instead of one-way shear. In the tests from Reiβen (2016), 

a change in the rate of increase of sectional shear (change in slope of lines) was observed when 

the failure mode changed from one-way shear to punching shear or a mixed failure mode. 

Figure 2-6 - Influence of the slab width to load size ratio bslab/lload on (a) the sectional shear and (b) 

the failure load of slabs under concentrated loads from Database A2. Note: WB = wide beam shear 

failure (20 results); P = punching shear (1 result); WB+P = mixed failure mode (5 results).  

  
a) b) 

Source: Author. 
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upper limit. It can also be noted that the sectional shear at failure increased almost linearly with 

bslab/lload for the three experimental programs until a certain point. Notably, the threshold value 

for the tests from Regan and Rezai-Jarobi (1988) was reached for a smaller value of bslab/lload 

compared to the tests from Lantsoght (2013) and Reiβen (2016). This occurs because the slabs 

tested by Regan and Rezai-Jarobi (1988) had a considerably lower thickness than those tested 

by the other authors (dl = 83 mm compared to dl = 265 mm on average). Therefore, it can be 

concluded that the transition from one-way shear failures to punching failures does not depend 

exclusively on bslab/lload, but also on the slab thickness. Besides that, based on the test results, it 

can be stated that punching is the governing failure mechanism for one-way slabs with bslab/lload 

> 10. 

2.4.3 Transverse reinforcement ratio 

Figure 2-7 shows the influence of the transverse reinforcement ratio ρt on the sectional 

shear VFu and failure load Ptest for Database A3. Figure 2-7 shows that, despite the better 

distribution in the transverse direction (LANTSOGHT; VAN DER VEEN; WALRAVEN, 

2013), the increase in the transverse reinforcement ratio ρt did not result in higher sectional 

shear forces VFu or failure loads Ptest for the tests from Lantsoght (2013) (which failed as wide 

beams).  

Figure 2-7 - Influence of the transverse reinforcement ratio on a) the normalized sectional shear 

and b) failure loads for one-way slabs under concentrated loads from Database A3.  Note: WB = 

wide beam shear failure; P = punching shear; F+P = flexure-induced punching; WB+P = mixed 

failure mode.  

  
a) b) 

Source: Author. 
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In the tests from Reiβen (2016), no clear relation between the sectional shear VFu or 

failure loads Ptest and ρt was identified when the load was applied close to the continuous 

support (MS-series). In the pair of tests MS35C and MS35C-ρq, the normalized sectional shear 

VFu increased by increasing ρt from 0.15% to 0.45%. In the pair of tests MS35B-ρq and MS35-

B, conversely, the normalized VFu decreased slightly by increasing ρt. In the cantilever slabs 

tested by Reiβen (2016) (CT – series), in general, the normalized shear and punching loads at 

failure increased by increasing ρt. However, these increases were less than 20% even though ρt 

increased threefold in the two-test series. Most of these tests developed a cracking pattern based 

on cut views, with the critical shear crack having two main branches (typical of slender beams 

(SOUSA; LANTSOGHT; EL DEBS, 2020). Yet, at the same time, the critical shear crack 

developed closer to the load, as typical of punching failures. 

In the one-way slabs from Damasceno (2007), the sectional shear at failure VFu 

increased slightly with the increase of ρt for most tests. In fact, all these tests failed by punching 

(P) or flexure-induced punching (F+P). In this experimental campaign, the load was always 

applied in the slab center and, hence, there was no difference in the shear demand on the front 

and back faces of the punching perimeter (a/lspan = 0.5). Consequently, the shear flow for such 

slabs favored the expected punching behavior (higher shear and related applied loads by 

increasing ρt due to the higher flexural stiffness (MUTTONI, 2008)). Conversely, the tests from 

Ferreira (2006), in which the load was applied eccentrically along the span length (varying the 

ratio av/dl from 2.32 to 7.44 and the ratio a/lspan from 0.20 to 0.50), developed a more complex 

behavior. Some experiments with an increase in ρt resulted in an increase in the sectional shear 

and failure load, while in other experiments, a decrease resulted. These tests failed by punching 

(P) or flexure-induced punching (F+P). Therefore, no solid conclusion can be drawn about the 

influence of the transverse reinforcement ratio over the sectional shear capacity when the load 

is placed asymmetrically in the span direction. 

2.5 Discussions from Chapter 2 

Many publications related to one-way slabs under concentrated loads focus on the 

evaluation of only one of the possible shear failure mechanisms: the one-way shear failure as 

wide beams (HALVONIK; VIDAKOVIĆ; VIDA, 2020; HENZE; ROMBACH; HARTER, 

2020; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; REIßEN; CLASSEN; HEGGER, 

2018). Despite most of the tests being rated as failing in this way, looking at only one failure 

mechanism can induce some bias in the interpretations and limit the understanding of the 

problem. Punching failures are frequently most critical when the shear slenderness av/dl > 5 
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(Figure 2-5a) and the ratio bslab/lload > 12 (Figure 2-5b). Therefore, this study tries to provide a 

comprehensive look at the problem and warning that both one-way shear and punching shear 

failure mechanisms shall be discussed for such kinds of slabs. At this point, it is not critical to 

know from which value of av/dl, for instance, which failure mechanism governs, since both 

failure mechanisms shall be evaluated in design. Nevertheless, it is important that design 

approaches consider that the governing failure mechanism and ultimate capacity can vary 

according to these parameters. 

The detailed evaluation of the cracking pattern of one-way slabs under concentrated 

loads allowed us to identify the parameters that influence the transition between one-way shear 

and two-way shear. These parameters were mainly the shear slenderness av/dl and the slab width 

to load size ratio bslab/lload. The effective depth (dl), the load eccentricity a/lspan, as well as the 

transverse reinforcement ratio ρt, also lead to changes in the tested loads (Vtest and Ptest) and 

failure mode. However, the results did not follow a homogeneous behavior by varying the last 

parameter (ρt), so further research is necessary. In practice, the parameter a/lspan modifies the 

stress distribution around the control perimeter, which can be understood from the statics of the 

problem. For punching capacity analyses, the ratio a/lspan gives a better insight into the non-

proportional stress distribution around the control perimeter. In this study, it is assumed that the 

uneven shear demand around the control perimeter could induce early failures due to local 

failure of the most heavily loaded side of the control perimeter, typically between the load and 

the support. The transverse reinforcement ratio, instead, is more related to the uneven resistance 

around the critical perimeter but may also influence the load distribution due to the different 

flexural stiffnesses of the slab in the longitudinal and transverse directions. In summary, the 

parameters av/dl and bslab/lload seem the most important to be considered in the proposed 

approaches to calculate the one-way shear resistance and the punching shear resistance. 

Previously, other studies demonstrated by testing that, for the case of slabs subjected to 

concentrated loads, there is a limiting width after which no further increase in maximum load 

occurs for increasing width (LANTSOGHT, 2013; REGAN; REZAI-JORABI, 1988; REIßEN, 

2016). However, the cause for the transition of the failure mode from one-way shear to 

punching shear was not clear. In this study, it was demonstrated by identifying the failure 

mechanisms of such slabs that punching failures tend to become more critical by increasing the 

ratio bslab/lload. As a consequence, an eventual higher one-way shear capacity cannot be achieved 

if the test fails prematurely by punching. Moreover, it was shown that the ratio bslab/lload for 

which the punching shear capacity becomes the governing failure mode depends on the slab 
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thickness. In this way, it is reasonable that most approaches for defining the effective shear 

width (SOUSA et al., 2021c; FD P 18-717, 2013; FÉDÉRATION INTERNATIONALE DU 

BÉTON (FIB), 2012) do not predict a higher contributing width by increasing the slab width 

after a certain value. 

Most approaches in the literature predict that the effective shear width increases as the 

shear slenderness av/dl increases(FD P 18-717, 2013; FÉDÉRATION INTERNATIONALE DU 

BÉTON (FIB), 2012). If the shear slenderness is not considered in the unitary shear capacity 

expressions vc, the one-way shear strength Vc would increase for increasing values of the shear 

slenderness av/dl. As first demonstrated by Reiβen (2016), this study also found that there is a 

predominant tendency to decrease the shear capacity VFu by increasing the shear slenderness 

(Figure 2-5a). However, if someone consider a decrease in the unitary shear resistance for 

increasing values of the shear slenderness av/dl (SOUSA; LANTSOGHT; EL DEBS, 2020; 

MUTTONI; FERNANDEZ RUIZ, 2008), such as performed by Natário, Fernandez Ruiz and 

Muttoni (2014) using the Critical Shear Crack Theory expressions (MUTTONI; FERNANDEZ 

RUIZ, 2008), then it can be demonstrated that the effective shear width increases with the shear 

slenderness until certain limits.  

In the literature review, the influence of the transverse reinforcement ratio ρt on the 

governing shear failure mechanism was investigated through the cracking pattern from different 

experimental programs (LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013; REIßEN; 

CLASSEN; HEGGER, 2018). However, there are limited tests in the literature that study this 

effect in detail and conflicting results were found in the review of the sectional shear and failure 

load (VFu and Ptest). For instance, in the evaluation of the sectional shear and failure load of 

slabs as a function of ρt, tests were identified where the increase in transverse reinforcement led 

to increases in the sectional shear and failure loads for loads far away from the support 

(DAMASCENO, 2007) (av/dl > 7). However, for tests with the load closer to the support, 

typically with ratios av/dl <4, the increase of ρt led to a reduction of the sectional shear and 

failure loads in many tests (Figure 2-7b). Since the increase of ρt allows a better distribution of 

shear forces in the width direction (LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013) 

and an increase of the punching capacity (MUTTONI, 2008), these reductions of the shear 

capacity were not expected. Therefore, more experiments on the influence of the transverse 

reinforcement are necessary. 
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2.6 Conclusions from Chapter 2 

One-way slabs under concentrated loads may fail by one-way shear (as wide beams), 

punching shear, or a mixed failure mode between them. In the literature, the test results were 

frequently addressed by evaluating only the one-way shear failure mechanism (HALVONIK; 

VIDAKOVIĆ; VIDA, 2020; HENZE; ROMBACH; HARTER, 2020; NATÁRIO; 

FERNÁNDEZ RUIZ; MUTTONI, 2014; REIßEN; CLASSEN; HEGGER, 2018) or the 

punching shear mechanism(VAZ RODRIGUES; FERNÁNDEZ RUIZ; MUTTONI, 2008). 

Therefore, the understanding of the problem was commonly discussed using a narrower 

background. In this study, the main characteristics of the one-way and two-way shear failure 

mechanisms were reviewed and discussed to allow a broader insight into the mechanics of the 

problem. From this study, the following conclusions can be drawn: 

• Different shear failure mechanisms may occur according to parameters such as the shear 

slenderness av/dl, slab width to load size ratio bslab/lload, and transverse reinforcement ratio 

ρt. It was identified that the first two are the most important parameters influencing the 

transition from one-way to two-way shear failure. 

• From the literature review and by bringing together test results from several references, 

it was identified that: (i) both shear and punching failure modes may occur for av/dl < 4.5, 

but punching failures are most frequently the governing failure mechanism for av/dl > 5; 

(ii) the tested shear capacity Vtest of slabs under concentrated loads usually does not 

increase by increasing the shear slenderness av/dl; (iii) punching is the governing failure 

mechanism for one-way slabs with bslab/lload > 10. 

• The ultimate capacity of one-way slabs under concentrated loads increases only until a 

certain limit by increasing the ratio bslab/lload. This behavior occurs because there is an 

upper limit for the effective shear width, as verified by other authors(LANTSOGHT et 

al., 2014; REIßEN; CLASSEN; HEGGER, 2018), and also because punching failure 

becomes the governing failure mechanism for slabs after a specific value of bslab/lload.   

• While the transverse reinforcement ratio plays a marked influence on the cracking pattern 

and transverse distribution of shear forces on the slab width, uniform conclusions on the 

effect of this parameter could not be formulated. Therefore, further experiments are 

required to study the influence of the transverse reinforcement ratio on the transition 

between shear and punching failures. 
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3 ONE-WAY SHEAR STRENGTH OF WIDE 

REINFORCED CONCRETE MEMBERS 

WITHOUT STIRRUPS 

In this chapter, the focus was on addressing the behavior and ultimate capacity of wide 

beams and slabs loaded over the entire width before dealing with the problem of one-way slabs 

under concentrated loads. Therefore, this chapter tries to contribute to a better understanding of 

one of the shear failure mechanisms that one-way slabs under concentrated loads may develop: 

shear failure as wide beams. In this chapter, the influence of parameters such as shear 

slenderness, static system, and slab width-to-effective depth are discussed. In the end, a 

comparison between tested and predicted resistances according to 10 one-way shear models is 

presented, including code expressions and also mechanical-based models. 

3.1 Introduction of Chapter 3 

Reinforced concrete (RC) one-way slabs and wide beams are structural members 

extensively used in residential buildings, for bridge deck slabs and as transfer elements 

(CALVI; BENTZ; COLLINS, 2018; LUBELL et al., 2004). Since these members generally do 

not contain shear reinforcement, the assessment of shear capacity may be critical due to the 

brittle nature of shear failures. By not taking into account the size effect in thicker members 

(BAZANT; KIM, 1984) and the reduced aggregate interlock capacity in cracks of high strength 

concrete (YANG; DEN UIJL; WALRAVEN, 2016), some older design codes could provide 

higher shear capacities than the real ones in the assessment of existing structures. Besides, the 

shear reinforcement may be undesirable since it is not cost-effective for large members and can 

result in reinforcement congestion. Therefore, efforts have been devoted towards the 

development of reliable and accurate models of shear strength for members without shear 

reinforcement.  

Another matter of concern regarding the shear capacity of RC members is the suitability 

of current code provisions for assessment of wide members. The current code provisions and 

main design models for shear (ACI COMMITTEE 318, 2019; CEN, 2005; FÉDÉRATION 

INTERNATIONALE DU BÉTON (FIB), 2012) have been calibrated by shear tests on narrow 

beams, with width to effective depth b/d < 1. Such beams may not be representative for wide 

members, whose b/d ratio is higher than 1. A database analysis conducted by Gurutzeaga et al. 

(2015) revealed the member width b does not appear to influence the shear strength of wide 
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members significantly. On the other hand, Conforti, Minelli and Plizzari (2017) observed shear 

strength increases by approximately 25% when the b/d ratio increases from 1 to 3.  

Such different results have led us to identify the need for a more comprehensive study 

that includes tests of wide members under different load arrangements and support conditions. 

Term line loads are used here to describe members loaded at the full width (Figure 3-1a) on the 

top view (observe the member in Figure 3-1a is subjected to a concentrated load in the span 

direction that is distributed over the entire width, while in Figure 3-1b, the load is not applied 

along with the full width). On slabs whose load is concentrated in small areas, e.g. wheel loads 

on bridge decks, not all of the width of the slab width contributes to the shear strength 

(LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013). Therefore, an effective width 

combined with a one-way shear model is used for the calculation of the shear capacity. This 

study focuses on slabs and wide beams loaded over the full width as the first step for a better 

understanding of the problem of wide members under shear loads with no influence of an 

effective width model. Figure 3-1c shows a wide member under line load in the width direction 

and a uniformly distributed load in the span direction, such as in a cut-in-cover tunnel slab, 

whose distributed loads can be the main loads (SIGRIST et al., 2013). 

Figure 3-1 – Main types of loads on wide members: a) concentrated in the shear span and 

distributed along the width; b) concentrated in the span and width directions (not included in the 

scope of this study) and c) distributed load in both span and width direction. 

 
Source: Author. 

Apart from geometric differences between narrow beams and wide members (e.g., slabs 

and wide beams), several design codes (ABNT NBR 6118, 2014; ACI COMMITTEE 318, 

2019; CEN, 2005) have established semi-empirical formulas for analyses of shear strength. 

Although these formulations are useful for hand calculations, most of them show the following 

limitations: (i) safety is not guaranteed beyond the boundaries of calibration, (ii) very 

conservative results can be achieved under usual loads (KUCHMA et al., 2019), specifically in 
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the case of higher axial tensile loads (JØRGENSEN et al., 2013), (iii) aggregate size dg, which 

plays a fundamental role in the aggregate interlock is not considered, and (iv) current provisions 

for the size effect can yield unsafe predictions of shear strength for members of higher effective 

depths. Several mechanical models have been proposed towards overcoming such limitations. 

They have taken into account the contributions of one or more shear-carrying mechanisms, i.e. 

capacity of the uncracked compression zone (REINECK, 1991b; TAYLOR, 1974), aggregate 

interlock (WALRAVEN, 1981), dowel action (CHANA, 1987) and residual tensile strength of 

concrete across the crack (GASTEBLED; MAY, 2001; REINECK, 1991a, 1991b). Since 

Conforti, Minelli and Plizzari (2017) verified the cracking pattern of wide members with b/d>1 

ratio significantly differs from that of beams with b/d<1, some shear-carrying mechanisms are 

expected to change according to the b/d ratio, which has not been appropriately investigated. 

Figure 3-2 - Differences in the cracking pattern of members with different b/d ratios  identified by 

Conforti, Minelli and Plizzari (2017). 

 
Source: Author. 

Figure 3-2 shows some differences in the cracking pattern of members with different 

b/d ratios, identified by Conforti, Minelli and Plizzari (2017). Although the same material and 

reinforcement layouts are used, the cracking pattern along width direction b is more irregular 

in case 2 for the wider member. It is attributed this behavior to any irregularity in the load 

application or support condition and more pronounced randomness of cracking formation in the 

absence of shear reinforcement for large widths. Such an irregularity leads to larger cracked 

surfaces, which improves the aggregate interlock and can increase the shear capacity 

(CONFORTI; MINELLI; PLIZZARI, 2017). Another clear distinction is a higher number of 

flexural cracks develop with minor spacing in members with a higher b/d ratio (Sr1>Sr2 in Figure 

3-2). Furthermore, flexural cracks that develop in members with higher b/d ratios may not 
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propagate from one face to another due to the more irregular crack profile. Improvements in 

the aggregate interlock promote higher shear displacements in the critical shear crack 

accompanied by a larger number of flexural cracks. However, these observations apply for tests 

under the same load and support conditions. 

Most models place the critical section close to the higher moment-to-shear M/Vd ratio 

(FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 2012; MUTTONI; FERNANDEZ 

RUIZ, 2008). However, according to other authors (MARÍ et al., 2014, 2015; TUNG; TUE, 

2016a, 2016b), the critical section is placed closer to the position where the bending moment 

reaches the cracking moment. Since these models are based on different failure criteria, a 

comparison of the accuracy provided by these models could point which one better represents 

the shear failure. Here, moment-to-shear ratio M/Vd or shear slenderness λ represents a 

normalized parameter of solicitation in the shear span. According to Eq. (3.1), in simply 

supported members under concentrated loads, the M/Vd ratio can be approximated by the shear 

span to depth ratio a/d:  

 
M V a a

V d V d d



= = =

 
  (3.1) 

In simply supported members under distributed loads, since the shear force in the section 

of the maximum internal moment is zero, their shear slenderness is defined by the maximum 

sectional forces in the span, regardless of the sections (ADAM et al., 2019): 
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where aeq can be interpreted as an equivalent shear span defined for simply supported 

members under uniformly distributed loads.  

This study proposes joining the available test results of wide members with shear 

failures and discussing their behavior under different load arrangements and support 

conditions/structural systems. In comparison to the databases developed by Gurutzeaga et al. 

(2015) and Conforti, Minelli and Plizzari (2017), this database includes a more significant 

number of test results (170) and different structural systems, which were used for the 

identification of the main parameters that influence the shear strength of wide members. 

Furthermore, these results were used in an assessment of semi-empirical and mechanical-based 
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models of shear strength according to (i) the structural system (ii) b/d ratio, and (iii) shear 

slenderness λ. This chapter investigates whether geometric differences, load arrangements and 

support conditions significantly influence the shear strength of wide members.  

3.2 Literature review of Chapter 3 

In this section, the following aspects are addressed: (i) structural system or effect of 

support conditions, (ii) degree of rotational restraint and shear slenderness, (iii) load 

arrangement, (iv) shear failure modes and (v) overview of available models to predict the one-

way shear capacity. 

3.2.1 Structural system or effect of support conditions 

Recent measurements of the contribution of each shear transfer action to members of 

different structural systems and load arrangements have shown no unique shear-transfer action 

governs the shear strength (CAVAGNIS; FERNÁNDEZ RUIZ; MUTTONI, 2015, 2018a). The 

contribution of different shear transfer mechanisms can vary according to the location, shape, 

and kinematics of the critical shear crack. Tung and Tue (2016b) observed some members, such 

as cantilevers under uniformly distributed loads, can be favored regarding shear strength by 

higher bending moments close to the support. Therefore, questions on a possible influence of 

the structural system and load arrangement on the main shear-carrying mechanisms may be 

raised. 

Figure 3-3 – a) Arching action produced by a combination of the elbow-shaped strut and direct 

compression strut in the simply supported beam and b) direct compression strut in a cantilever 

member. 

 
Source: Author. 

As highlighted by Muttoni and Fernandez Ruiz (2008), simply supported beams can 

develop an arching action through a combination of an elbow-shaped strut, enabled by the 

tensile strength of concrete, and direct compressive struts disturbed or not by flexural cracks. 

Figure 3-3 shows the only difference between the cantilever and simply supported members 

failing by shear is the self-weight action in the same direction of the main shear load for 
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cantilever members and in the opposite direction for simply supported members. Therefore, 

higher differences in the shear behavior according to the structural system may appear if the 

self-weight is the main action. 

One-way shear models consider the structural system or support conditions indirectly 

by calculations of internal forces M and V (M is the bending moment and V is the shear force. 

The critical section in models based on the Modified Compression Field Theory 

(MCFT)(VECCHIO; COLLINS, 1986) and Critical Shear Crack Theory (CSCT)(MUTTONI; 

FERNANDEZ RUIZ, 2008) is usually close to the section of higher M/Vd, where d is the 

effective depth. These models predict the shear strength has an inverse relation with 

longitudinal concrete strain ε in the critical section, which is directly associated with bending 

moment M. However, according to some experimental results (CALDENTEY et al., 2012; 

TUNG; TUE, 2016b) the shear strength of members such as cantilever under uniformly 

distributed loads may benefit from higher bending moment in the section of larger M/Vd ratio. 

Therefore, for such cases, the shear behavior may not be well described without considering 

the structural system and load arrangement, which can influence the contributions of the main 

shear-carrying mechanisms.  

In models such as MCFT and CSCT, the aggregate interlock is assumed as the main 

shear transfer action when a critical shear crack arises. However, in cantilever members under 

distributed loads, the higher bending moment close to the support can improve the compression 

chord capacity in such a way that the total shear strength can be improved instead of reduced 

(TUNG; TUE, 2016b). 

3.2.2 Degree of rotational restraint and shear slenderness 

Previous studies (ISLAM; PAM; KWAN, 1998; REIßEN, 2016; REIßEN; CLASSEN; 

HEGGER, 2018) investigated the effect of continuous systems by measuring the degree of 

rotational restraint of slabs on supports, dr, of continuous members. However, such studies were 

limited to members subjected to concentrated loads in the span. Parameter dr can be estimated 

by Eq. (3) as follows: 

 
sup

(%) 100r

est

M
d

M
=    (3.3) 

where Msup represents the bending moment produced by a cantilever load f near the 

continuous support and Mest represents the static moment for a fully clamped support (Figure 

3-4). Another way to evaluate the degree of rotation restraint over the internal support in 
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continuous members is to calculate the ratio a1/a2 (distances a1 and a2 are illustrated in Figure 

3-4a separated by the location of the point of inflection (P.I.)). Such distances can be evaluated 

from bending moment diagrams, or using the theorem of intersecting lines for single loads 

(ISLAM; PAM; KWAN, 1998; REIßEN, 2016). The higher a1/a2 ratio indicates a higher degree 

of rotational restraint at on continuous support. 

Figure 3-4 –Bending moments in structures with a) fully clamped support and b) partially 

clamped support. 

 
Source: Author. 

On the other hand, the shear slenderness is a useful parameter for describing the shear 

failure modes of members without shear reinforcement, which will be discussed in the next 

sections. The literature provides the following shear slenderness definitions (λ): (i) a/d ratio, 

which is geometric relations between the shear span and the effective depth of members, mostly 

used in codes of practice (ABNT NBR 6118, 2014; SIA, 2013); (ii) M/Vd ratio, which directly 

expresses the ratio between the acting internal forces in a section and is equivalent to the a/d 

ratio for simply supported members (ACI COMMITTEE 318, 2014), and (iii) max(a1;a2)/d 

ratio, which accounts for geometric information on the bending moment diagram and covers 

both simply supported and continuous members (REIβEN, 2016). 

Tung and Tue (2016b) observed when Mspan > Msup in continuous members subjected to 

uniformly distributed loads (Figure 3-5a), the shear strength is approximately equal to that of 

simply supported members under uniformly distributed loads (Figure 3-5b). The authors 

highlighted if Mspan < Msup, the shear strength of continuous beams under distributed loads can 

be well approximated by the sum of two equivalent cantilevers, i.e., one loaded by the shear 

force at the point of inflection and another loaded by a distributed load (Figure 3-5c).
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Figure 3-5 – a) continuous specimen under distributed load; b) equivalent simply supported 

member when Msup < Mspan and c) equivalent problem when Msup > Mspan, based on the CWSB 

model from Tung and Tue (2016b). 

 
Source: Author. 

 

This study proposes taking into account the observations from Tung and Tue (2016b) 

for improving the shear slenderness definition of continuous members under distributed loads. 

It is defined that the ratio max{a1;a2}/d for such members, when Msup<Mspan, is equal to that of 

simply supported members under uniformly distributed loads of reduced span length (Figure 

3-5b). Table 3-1 shows a summary of calculations for the shear slenderness parameter: 

Table 3-1 – Proposed shear slenderness definition according to the static system and internal 

forces distribution. 

Structural system Load arrangement 
Bending 

moments 
Shear slenderness   

Simply supported 
Concentrated load - max{a1;a2}/d 

Unif. Distributed load - Mmax/Vmax.d = lspan/4d 

Cantilever 
Concentrated load - max{a1;a2}/d 

Unif. Distributed load - max{a1;a2}/d 

Continuous 

member 

Concentrated load - max{a1;a2}/d 

Unif. Distributed load Msup < Mspan lspan,red/4d 

Unif. Distributed load Msup > Mspan max{a1;a2}/d 
Source: Author. 

3.2.3 Load arrangement 

Figure 3-6 shows parameters a1 and a2 of continuous members under different load 

arrangements in the shear span, i.e., concentrated loads and uniformly distributed ones. Such 

definitions were used for the evaluation of tests with different load arrangements through a 

unique parameter as the max(a1;a2)/d ratio.  
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Figure 3-6 – Geometric parameters of the shear span under a) concentrated loads and b) 

uniformly distributed loads. 

 
Source: Author. 

Figure 3-7 illustrates three cases of load arrangement modifications, in which cantilever 

members under larger bending moments at the support show higher shear capacities in the span: 

(i) cantilever span under uniformly distributed loads compared to the same members under 

concentrated loads (CALDENTEY et al., 2012), (ii) longer cantilever members compared to 

short ones and (TUNG; TUE, 2016b) (iii) cantilever slabs under concentrated loads, in the span 

and width directions, combined or not with line loads along the full width (REIßEN; HEGGER, 

2013b).   

Figure 3-7 – Cases of load arrangement changes that can result in improved shear capacities for 

cantilever members: (i) under distributed loads instead of concentrated loads; (ii) distributed 

loads on longer shear spans and (iii) members pre-loaded by line loads. 

 
Source: Author. 

Caldentey et al. (2012) observed cantilever beams of constant thickness under uniformly 

distributed loads show a 27% higher capacity than those with concentrated loads in the shear 

span, which is against some mechanical-based models e.g. fib Model Code 2010 and CSCT 

(MUTTONI; FERNANDEZ RUIZ, 2008). An explanation is a critical shear crack can arise 

closer to the inner support with reduced shear displacements for some combinations of load 

arrangement and support conditions. The contribution of the aggregate interlock, i.e., the basis 

of the above-mentioned models, becomes of minor importance (CAVAGNIS; FERNÁNDEZ 
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RUIZ; MUTTONI, 2018a). From this study, it can be concluded that the compression chord 

capacity improvement for cantilever spans under distributed loads can be more pronounced than 

the negative effect on the aggregate interlock at the critical shear crack. 

3.2.4 Shear failure modes 

The ratio between the clear shear span-to-effective depth ratio av/d and the shear 

slenderness M/Vd or max(a1;a2)/d can be used for distinguishing members subjected to 

compression-shear failures from those more susceptible to flexural-shear failure (YANG; 

WALRAVEN; DEN UIJL, 2017). As most models aim to describe second type failures, the 

accuracy level of models for members subjected to compression-shear failures is unknown. 

When the critical shear crack arises too close to the support, e.g., when concentrated loads are 

placed at av <2.5d distances, the aggregate interlock has a minor contribution for the shear 

strength and the load is carried mainly by direct compression struts, which characterizes the 

compression-shear failure. For loads far from the support, the critical shear crack can usually 

arise from flexural shear cracks, and the arching action is composed of a combination of direct 

compression struts (enabled by the aggregate interlock) and elbow-shaped struts (enabled by 

the tensile strength of concrete) (MUTTONI; FERNANDEZ RUIZ, 2010a).  

The clear shear span-to-effective depth ratio av/d has been widely used to reduce design 

shear force Vexp to take into account the beneficial effect from direct compression struts when 

a concentrated load is placed close to the support by a factor β. Therefore, models that do not 

considered this shear transfer mechanism tends to be more conservative for reduced values of 

av/d. Such a ratio, from which compressive struts begin to play an important role, depends on 

the longitudinal reinforcement ratio, the bond between concrete and reinforcement, but usually 

varies between 2 and 3 (KANI, 1967; MUTTONI; FERNANDEZ RUIZ, 2010a). 

3.2.5 Overview of available models 

Shear strength models may be divided into semi-empirical, mechanical and purely 

empirical models (i.e., ANN-based, curve-fitting-based methods and genetic algorithm-based 

methods (CLADERA; MARÍ, 2004; CLADERA; PÉREZ-ORDÓÑEZ; MARTÍNEZ-

ABELLA, 2014). Among codes that still use semi-empirical approaches are ABNT NBR 

6118:2014 and NEN-EN 1992-1-1:2005 (CEN, 2005). ACI 318:2019 (ACI COMMITTEE 318, 

2019) has incorporated mechanical parameters in comparison to ACI 318:2014 (ACI 

COMMITTEE 318, 2014), mainly related to the size effect. However, in the present study, both 

formulations are classified as semi-empirical, since they do not deal directly with the main 
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shear-carrying mechanisms. Owing to improvements in experimental analyses and a better 

knowledge of the shear strength problem, mechanical models based on different assumptions 

about what drives shear failure have been proposed.  

fib Model Code 2010 (FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 2012) 

has adopted SMCFT (BENTZ; VECCHIO; COLLINS, 2006) as the basis of its formulation and 

SIA 262:2013 (Swiss Code) (SIA, 2013) has adopted the CSCT model (MUTTONI; 

FERNANDEZ RUIZ, 2008) with some simplifications (MUTTONI; FERNANDEZ RUIZ, 

2008). Such models consider the shear capacity as a function of concrete longitudinal strain ε 

in a critical section. The MCFT and the CSCT address the shear-transfer mechanisms as a 

function of a unique parameter and consider both aggregate size and concrete compressive 

strength play an important role in the roughness of the crack, hence, in the aggregate interlock 

of members subjected to shear. 

Other researchers have developed multi-action models that estimate the shear strength 

by summing the contribution of the main shear transfer mechanisms (LANTSOGHT et al., 

2015c) calculated separately (MARÍ et al., 2015, 2016; YANG; DEN UIJL; WALRAVEN, 

2016). According to the Shear-Flexural Strength Mechanical Model (SFSMM) (MARÍ et al., 

2015, 2016), after the development of the first branch of the critical shear crack, failure takes 

place when the stresses at any point of the concrete compression chord reach the assumed 

biaxial stress failure envelope described by Kupfer and Gerstle (1973). In other words, the 

authors considered failure takes place when the first branch of the critical crack reaches the 

neutral axis depth, as proposed by Yu et al. (2015). The Compression Chord Capacity Model 

(CCCM) (CLADERA et al., 2016) appears as a simplification of the SFSMM to make it easier 

to use in daily engineering practice. In CCCM, the authors highlighted that for wide members 

with a low amount of longitudinal reinforcement and without stirrups, such as one-way slabs, 

the depth in the uncracked compression zone could be reduced as compared to beams. 

Therefore, the contribution of the residual tensile stresses for such members can be comparable 

to the compression chord capacity. In these cases, the CCCM incorporated a minimum shear 

strength parameter that considerer explicitly the residual tensile stress action to avoid very 

conservative results.  

In the Critical Shear Displacement Theory (CSDT) (YANG; DEN UIJL; WALRAVEN, 

2016; YANG; WALRAVEN; DEN UIJL, 2017) assumes the critical inclined crack starts from 

a major flexural crack, which will lead to an overall collapse when the shear displacement Δ of 
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the crack reaches a critical value and causes a secondary crack (dowel crack) along the 

reinforcement. According to Yang, Walraven and den Uijl (2017), a dowel crack causes the 

detachment of the tensile reinforcement from the concrete along with the shear span that 

significantly reduces the lateral confinement on the crack and the member flexural stiffness. 

Due to the crack opening in the major crack, an additional vertical shear displacement is 

required for the recovery of the previous shear stress level in the crack, which feeds the growth 

of flexural-shear cracks and leads to the brittle collapse of the member.  

The Critical Width of a Shear Band model (CWSB) (TUNG; TUE, 2016a, 2016b) 

focuses on the stress relations just before the critical shear crack formation. According to Tung 

and Tue (2016a), if the component of normal stress is considered in the tension zone, a shear 

failure occurs in a shear band when it reaches a critical width value and an inclined crack tends 

to connect the tips of existing flexural cracks. From this model, the bending moment may have 

a positive influence on the shear capacity of members such as cantilevers under uniformly 

distributed loads due to the higher contribution of the compression chord capacity. 

Table 3-2, Table 3-3, Table 3-4 and Table 3-5 shows an overview of the aforementioned 

shear strength models. All symbols used can be found in the list of notations, and a detailed 

explanation of some parameters can be consulted in the referred papers. 

Table 3-2 – Semi-empirical models to calculate the shear strength of members without shear 

reinforcement. 

Code Expression 

ABNT NBR 

6118:2014 

(ABNT, 2014) 
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NEd is the axial force in the evaluated section due to prestressing or other axial 

action. Ac is the cross-sectional area of concrete; As is the cross-sectional area of 

reinforcement. 

 

In the Brazilian code, the enhanced shear capacity for loads close to the support 

is considered only for beams. For slabs, no mention of arching action is provided. 

NEN 1992-1-

1:2005 

(CEN, 2005) 
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1/3

, 1 , 1
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 + = 
= 

+ =
  (3.12) 

CRd,c is an empirical factor used for characteristic shear strength calculations and 

it was derived from comparison with experimental results (REGAN, 1987) and 

calibrated through reliability analysis on 176 beam tests (KONIG; FISCHER, 

1995). In this study, as suggested in the code, CRd,c = 0.18.  

 

σcp is the axial stress in the evaluated section due to prestressing or other axial 

action. k1 is the factor related to the influence of normal stress in the one-way 

shear capacity ( k1 = 0.15 is the recommended value in the code). 

 3/2 1/2

min 0.035 ckv k f=   (3.13) 
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The NEN 1992-1-1:2005 provides that, for loads applied within a distance 0.5d 

≤ av ≤ 2d from the edge of the support (or center of bearing where flexible 

bearings are used), the contribution of this load (VFu) to the shear force VEd may 

be multiplied by β = av/2d. This reduction may be applied for checking VRd,c in 

the Expression (3.12). This is only valid provided that the longitudinal 

reinforcement is fully anchored at the support. For av < 0.5d the value av = 0,5d 

should be used. Therefore: 
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ACI 318:2019 

(ACI 

COMMITTEE 

318, 2019) 
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Continuation of Table 3-2 

Source: Author. 
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Table 3-3 – Mechanical models of shear strength – Part I. 

Code Expression 

Model Code 2010 

(fib, 2012) 
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Source: Author. 
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Table 3-4 – Mechanical models of shear strength – Part II. 

Model Expression 

SFSMM 

(MARÍ et al., 2015) 
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Source: Author. 
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Table 3-5 – Mechanical models of shear strength – Part III. 

Model Expression 

CSDT 

(YANG; DEN UIJL; 

WALRAVEN, 2016) 
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Continuation of Table 3-5 

Source: Author. 

 

3.3 Database of experiments 

This section presents an overview of the databases studied and parameter analyses to 

highlight the distribution of the tests according to specific parameters.  

3.3.1 Overview 

The database of wide members under line loads in the member width and under different 

load arrangements in the span direction contains 170 test results of specimens of b/d >1 ratio, 

which is the criterion for the definition of experiments on wide beams and slabs. The tests were 

conducted by: Adam, Herbrand and Classen (2018), Adam et al. (2019), Adam, Reiβen and 

Hegger (2018), Aster and Koch (1974), Bui et al. (2017b), Conforti et al. (2015), Conforti, 

Minelli and Plizzari (2013, 2017), Furuuchi et al. (1998), Ghannoum (1998), Gurutzeaga et al. 

(2015), Hegger and McGrath (1980), Jäger (2002), Jäger and Marti (2005), Jäger (2007), Kani 

et al. (1979), Lantsoght (2013), Leonhardt and Walther (1962), Lubell (2006), Olonisakin and 
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Alexander (1999), Rajagopalan and Ferguson (1968), Reiβen (2016) and Serna-Ros et al. 

(2002).  

The database is available in the public domain (SOUSA; LANTSOGHT; EL DEBS, 

2019). The number of tests available on different support conditions is noteworthy: (i) 61 on 

continuous members of different degrees of rotational restraint dr, (ii) 92 on simply-supported 

specimens and (iii) 17 on cantilever members. Several references have missing information, 

such as the support overhang (GHANNOUM, 1998; HEGER; MCGRATH, 1980), maximum 

diameter of the aggregate (LANTSOGHT, 2012; OLONISAKIN; ALEXANDER, 1999; 

RAJAGOPALAN; FERGUSON, 1968), rebar diameter and rebar spacing (ASTER, H.; KOCH, 

1974; HEGER; MCGRATH, 1980; KANI; HUGGINS; WITTKOPP, 1979; LANTSOGHT, 

2012; LEONHARDT; WALTHER, 1962; RAJAGOPALAN; FERGUSON, 1968), and size of 

the loading and support plates (ASTER, H.; KOCH, 1974). For tests supported by rollers, the 

size of support plates was considered 10 mm (CONFORTI; MINELLI; PLIZZARI, 2017). 

Whenever possible, information was taken from the original references. In cases whose 

geometrical information was not provided in the text, measures were estimated from technical 

drawings and figures when available.  

Concerning concrete compressive strength, fc refers to the average concrete compressive 

strength measured in cylinders. A 0.85 reduction factor was used for converting the 

measurements from cubes to cylinders (LANTSOGHT; VAN DER VEEN; WALRAVEN, 

2013). The sectional shear strength of all tests was calculated towards the elimination of some 

inconsistencies related or not to the self-weight consideration based on the applied loads and 

specimen’s geometry. As in many cases, the cracking pattern was not reported and the critical 

shear crack location was not known in these tests. Therefore, and towards a uniform analysis, 

the shear capacity at failure was calculated at a/2 (with a being the shear span) for members 

under concentrated loads. For those under distributed loads, the shear force at failure was 

calculated as the shear force at the inner support. 

3.3.2 Parameter ranges in database 

Table 3-6 shows the parameters ranges in the database. According to Table 3-6, the 

limitation of thicknesses tested (<1.01 m) hampers the investigations on the size effect for the 

collected experiments (ACI COMMITTEE 446, 1991; BAZANT; KIM, 1984; YU et al., 2016). 

The database includes some experiments with concrete compressive strengths higher than 65 

MPa, for which the aggregate interlock may make a minor contribution to the shear strength 
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due to the smoother crack surfaces (FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 

2012). Regarding parameter av/d, as the database includes experiments under concentrated 

loads with av/d < 2.5 ratios, the influence of direct shear force transfer by compressive struts on 

the shear strength could be investigated. 

Table 3-6 - Ranges of parameters in database. 

Parameter Min Max 

b (m)  0.21 2.40 

 h (m) 0.10 1.01 

 ℓspan (m) 0.60 7.00 

 b/d [-] 1.00 9.90 

 ρℓ (%) 0.42 2.75 

 dℓ (m) 0.085 0.916 

 Øℓ (mm) 10 30 

 s/d [-] 0.11 1.48 

 fc (MPa) 13.40 74.62 

 dag (mm) 10 30 

 a/d [-] 1.25 6.07 

 av/d [-] 0.94 5.61 

M/Vd [-] or λ [-] 1.25 11.70 
Source: Author. 

Figure 3-8 shows the frequency distribution of the database parameters. According to 

Figure 3-8a, most tests were performed in the range of concrete compressive strengths between 

25 MPa and 50 MPa. Only four tests were performed with fc > 65 MPa. As it is typical in shear 

databases, the longitudinal reinforcement ratio is concentrated in ranges larger than 0.75% for 

the avoidance of flexural failure modes (Figure 3-8b). The small number of tests with effective 

depths d higher than 600 mm, of major interest for bridge deck slabs, hampers investigations 

of the size effect on wide members (Figure 3-8c). Figure 3-8d shows approximately half of the 

tests were performed with loads at av/d ratios lower than 3, and therefore are influenced by 

direct shear loads transfer towards the support through compressive struts. Such members may 

have failed due to concrete crushing in the compression zone, denoted here as shear 

compression failure (YANG; WALRAVEN; DEN UIJL, 2017). Since most mechanical models 

have been formulated for members that show flexural shear failure (av/d > 2.5-3), a higher 

scattering can be expected between experimental and predicted shear capacities. The parameter 

of rebar spacing-to-effective depth ratio (s/d) in the database shows a concentration of values 

smaller than 0.8 (Figure 3-8e). 
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Figure 3-8 - Distribution of parameters in database: (a) concrete compressive strength fc; (b) 

reinforcement ratio ρ; (c) effective depth dl; (d) clear shear span to effective depth ratio av/d; e) 

rebar spacing to effective depth ratio s/d; f) member width to effective depth ratio b/d. 

   

a) b) 

 

  
c) d) 

  
e) f) 

Source: Author. 

Figure 3-8f shows a reduced number of members with b/d ratios higher than 5 (< 20%), 

which can be related to difficulties in performing tests on large members, whose loads required 

to reach shear failures can be higher than the actuator capacities. According to the available test 

results, the effect of member width b on the shear behavior will be evaluated mainly in the 
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range of wide beams, typical of transition members. More test results are required for 

investigation on the shear behavior of wide members such as one-way slabs. An interesting 

aspect of this database is the absence of tests under axial loads, for which is supposed the same 

behavior of beams. 

3.4 Results 

This section presents the results of the study related to (i) the parameter analyses, (ii) 

the shear slenderness, and (iii) the comparison between tested and predicted resistances. 

3.4.1 Parameter analyses on the shear strength of RC wide members  

The tensile strength of concrete plays an important role in the shear behavior of RC 

members since it controls the crack widths and the ability of transfer shear forces (ASCE–ACI 

COMMITTEE 445, 1998). However, in design, it is more usual to specify the concrete 

compressive strength and correlate it with the concrete tensile strength. The Eurocode (CEN, 

2005) correlates the tensile strength of concrete with fc
1/3, whereas Model Code 2010 (fib, 2012) 

and SIA code (SIA, 2013) adopt relations with fc
1/2. In the Brazilian code [36], the concrete 

tensile strength is estimated by a relation with fc
2/3. Toward an evaluation of which of the 

relations best fits the tensile strength of concrete and a comparison between different groups of 

tests, the shear capacity Vexp was normalized with b and d for finding the shear stress and further 

normalized with fc
1/3 and fc

1/2 for determining the normalization for the compressive strength 

that leads to the most uniform results.  

Figure 3-9 - Normalized shear strength by section geometry and: (a) square root of the concrete 

compressive strength; (b) cube root of the concrete compressive strength. 

  
a) b) 

Source: Author. 

Figure 3-9 shows the shear strength of wide members normalized by the geometry of 

the section (b and d) and fc
1/2 seems the most appropriate, since it provided the smallest 

inclination of the trendline (Figure 3-9a). Therefore, it is used the normalized shear strength by 
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fc
1/2 in the parameter analysis (Figure 3-10). On the other hand, differences of tendency caused 

by the use of fc
1/2, fc

1/3 and fc
2/3 can be negligible. 

Figure 3-10. Studies on parameters based on normalized shear strength for all entries in the 

database, influence of (a) longitudinal reinforcement ratio ρℓ; (b) effective depth d; (c) clear shear 

span to depth ratio av/d; (d) shear slenderness M/Vd; (e) flexural rebar spacing to effective depth 

ratio s/d; f) member width to effective depth ratio b/d. 

  
a) b) 

  
c) d) 

  
e) f) 

Source: Author. 
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Table 3-7 - Shear behavior of wide RC members according to the parameters studies showed in 

Figure 3-10. 

Par. Observation 

ρℓ Some models consider the positive effect of longitudinal reinforcement by controlling the shear crack 

opening (FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 2012; FERNÁNDEZ RUIZ et al., 

2015; SIA, 2013). On the other hand, others also take into account the higher dowel action due to higher 

longitudinal reinforcement ratios (YANG; DEN UIJL; WALRAVEN, 2016). Figure 3-10a shows an 

increase in the shear strength of wide members for higher reinforcement ratios, which confirms the 

importance of this parameter. 

d Figure 3-10b shows the significant effect of the size effect (BAZANT; KIM, 1984; WALRAVEN; 

LEHWALTER, 1994), which reduces the normalized shear stress for higher member thickness. 

However, the small number of members with thicknesses d > 0.5 m hamper the development of well-

accepted formulations. 

av/d Regarding concentrated loads at av/d < 2.5, the formation of compressive struts helps the shear force 

transfer directly towards to the support (LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013; 

VOLLUM; FANG, 2015). Therefore, many design codes enable reductions in the shear design load or 

increase in the shear capacity (CEN, 2005; FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 

2012). Figure 3-10c shows compressive struts play a key role in increasing the shear strength of wide 

members for concentrated loads close to the support. 

M/Vd The M/Vd ratio can be combined with longitudinal reinforcement ratio ρs for accounting the section 

strains in shear strength analyses (ZSUTTY, 1968); (ACI-ASCE COMMITTEE 326, 1962a, 1962b, 

1962c). In models based on MCFT and CSCT, reinforcement strains εs are directly considered. Figure 

3-10d shows an increase in M/Vd reduces the shear strength of wide members. Higher M/Vd values 

result in larger crack openings of the critical shear crack, which reduces the contribution of the 

aggregate interlock to the shear strength. However, the compression chord can benefit from larger 

compressive stresses in the uncracked compression zone in cantilever members under distributed loads 

(TUNG; TUE, 2016b). Therefore, not always will members under larger M/Vd ratios show lower shear 

capacities, as the main shear transfer mechanism may vary according to the structural system and load 

arrangement. 

s/d The rebar spacing-to-effective depth ratio s/d is commonly discussed in design codes with upper limits 

for guaranteeing the monolithic behavior of RC members. Figure 3-10e shows the limited influence of 

s/d ratio over the shear strength, which is similar to the results of Gurutzeaga et al. (GURUTZEAGA 

et al., 2015) and Conforti, Minelli and Plizzari (2017). The results indicate in such a range of s/d ratios, 

the behavior of wide members can be governed by a plane stress state, mainly if s/d ratio is smaller than 

1. Only some tests reported by Gurutzeaga et al. (2015) revealed cracked surfaces with a more irregular 

profile (undulations along the member width) for members with s/d ratio close to 1.5 (I/S/316/t.r and 

I/S/316/0 tests). Gurutzeaga et al. (2015) attribute possible tridimensional shear carrying mechanisms, 

formed by inclined struts that extend from the uncracked compression zone to the reinforcement, to 

higher s/d ratios. Such inclined struts result in a three-dimensional state of stress that justifies a more 

irregular profile of the shear crack along the width direction. Furthermore, due to the larger surface of 

contact created by the undulations in the shear crack, the aggregate interlock may be improved. 

b/d Models of shear strength used for RC wide members without shear reinforcement are usually based on 

beam tests. Figure 3-10f shows the b/d ratio of the tests in the investigated range presented a lower 

influence than other parameters, which contradicts some results from Conforti, Minelli and Plizzari 

(2017). These authors found higher shear capacities for members with a b/d ratio between 2 and 3. In 

tests with b/d > 2, Conforti, Minelli and Plizzari (2017)  and Adam, Herbrand and Classen (2018) 

observed the cracked faces can be more irregular, with some undulations and bumps along the member 

width. Such larger cracked surfaces con offer some benefits in aggregate interlock that explain the 

higher shear capacities measured by Conforti, Minelli and Plizzari (2017) for simply supported 

members. On the other hand, when a critical shear crack arises closer to the inner support of continuous 

members, the aggregate interlock assumes minor importance and no significant improvement in their 

shear strength is expected. 

Source: Author. 
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Figure 3-10 shows the influence of the parameters evaluated on normalized shear 

strength. The inclination of the trendlines indicates a higher or lower influence of the parameter 

evaluated on the normalized shear strength. Table 3-7 shows the main observations displayed 

in Figure 3-10 regarding the influence of parameters related to material, geometry, 

reinforcement, and load layout in the shear strength. 

3.4.2 Shear slenderness 

Some studies have indicated a good correlation between the shear slenderness and the 

shear strength of beams and wide members subjected to concentrated loads (CL) (ADAM; 

HERBRAND; CLASSEN, 2018; YANG; WALRAVEN; DEN UIJL, 2017). It is performed an 

evaluation of the shear slenderness definition, which includes continuous members under 

uniformly distributed loads (DL). The shear slenderness definition used by Adam et al. (2019), 

which considers only the location of the point of inflection, was compared with the one shown 

in Table 3-1, which accounts for moments Msup and Mspan. The normalized shear strength of the 

database (170 tests), including more 19 tests almost loaded in the full width from Lantsoght 

(2013) and Reiβen (2016), was evaluated and only tests with an exclusive variation of the 

analyzed parameter remained. In the end, 80 test results were considered in the analyses after 

filtering in Figure 3-11. This dataset includes 32 tests from Lantsoght (2013), 3 tests from 

Reiβen (2016), 17 tests from Adam, Reiβen and Hegger (2018), 20 tests from Adam, Herbrand 

and Classen (2018) and 8 tests from Adam et al. (2019). 

Figure 3-11a shows that the normalized shear strength follows a tendency by increasing 

the ratio max(a1;a2)/d for wide members under concentrated loads (CL). However, the behavior 

under uniformly distributed loads (DL) does not show the same clear tendency. In Figure 3-11a, 

the shear strength of members under DL increases in the initial range of max(a1;a2)/d, however, 

it decreases in the last range.  

Some of the data points  DL were related to continuous members with Msup < Mspan, for 

which this study proposes calculating the shear slenderness assuming they are simply supported 

ones of reduced span length (Figure 3-5 and Table 3-1). This study observes a better correlation 

of the shear strength with max{a1;a2}/d ratio (Figure 3-11b), and similar behavior in comparison 

to members under CL. This result agrees with most studies on beams, in which a higher 

max{a1;a2}/d leads to wider flexural cracks under the same loads, hence, a lower shear 

resistance (YANG; WALRAVEN; DEN UIJL, 2017). This relation is more evident and was 

validated by experimental measurements for structural members and load arrangements whose 
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aggregate interlock is the main shear-carrying mechanism in the cracked section (CAMPANA 

et al., 2013). 

Figure 3-11 – Relation between experimental shear capacities and different definitions of shear 

slenderness λ: a) shear slenderness based on the ratio max{a1;a2}/d regardless of the bending 

moments Msup and Mspan; b) definition of max{a1;a2}/d modified for continuous members under 

uniformly distributed loads according to Msup and Mspan. Note: CL = concentrated loads, and DL 

= distributed loads. 

  
a) b) 

Source: Author. 

Figure 3-12 – Effect of the degree of rotational restraint dr on the normalized shear strength of 

wide members according to the load arrangement. (CL) members subjected to concentrated loads 

and (DL) members subjected to uniformly distributed loads. 

 

Source: Author. 
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some results limited to members under concentrated loads (CL). Figure 3-12 shows the behavior 

of continuous members according to the degree of rotational restraint is more heterogeneous in 

comparison with the shear slenderness (Figure 3-11b). However, this study identified some 

tendencies in the relation between shear capacity and dr according to the shear slenderness 

parameter, shown in Table 3-8. In Figure 3-12, the same dataset of Figure 3-11 was used. 

Table 3-8 - Behavior of RC members according to the degree of rotational restraint at the support 

and the load arrangement: (CL) members subjected to concentrated loads and (DL) members 

subjected to uniformly distributed loads. 

Load 

arrangement 

λ 

[-] 
dr (%) Behavior 

CL <2.5 0 – 50% 

The normalized shear strength of wide members increases 

between 25% and 69% when dr increases from 0% (simply-

supported members) to almost 50% for tests under concentrated 

loads (CL), thus indicating greater benefits from direct 

compressive struts. 

DL <4 0 – 75% 

In members under distributed loads (DL), the shear capacities 

increase from 39% to 62% when dr increases from 0 to 75%. For 

dr < 75%, the continuous specimens show higher bending 

moments in the span (Msup < Mspan) and the critical shear crack 

develops far from the internal support, thus resulting in better 

activation of aggregate interlock (CAVAGNIS; FERNÁNDEZ 

RUIZ; MUTTONI, 2018a) and higher shear capacities. In such 

cases, the continuous member’s behavior is similar to that of 

simply supported members with a reduced shear span (TUNG; 

TUE, 2016b). 

CL 2-3 
50 – 

100% 

An increase in dr from 50% to 100% reduces approximately 23% 

of the normalized shear strength of continuous members under 

concentrated loads (CL). Since at the initial range, an increase in 

the dr reduces the shear slenderness up to a limit. Beyond this 

limit, an increase in dr increases the shear slenderness. However, 

the shear strength of fully clamped members (dr =100%) is, in 

general, higher than that of simply-supported members (dr =0), 

which may indicate benefits in the shear strength provided by 

different structural systems and load arrangements.  

DL 2-4 
75 – 

100% 

For members under DL, the shear capacities are reduced by 

approximately 46% when dr increases from 75% to 100%, since 

at dr closer to 100% the critical shear crack develops closer to the 

internal support, thus reducing the contribution from the aggregate 

interlock (CAVAGNIS; FERNÁNDEZ RUIZ; MUTTONI, 

2018a). For dr closer to 100%, the critical shear cracks closer to 

the internal support limits the formation of direct compressive 

struts (YANG; WALRAVEN; DEN UIJL, 2017). For such cases, 

a behavior similar to that of cantilever members loaded at the point 

of inflection is assumed (TUNG; TUE, 2016b). 

CL > 2.7 0-100% 

For members under CL and more susceptible to flexural shear 

failures, λ> 2.7, no significant differences in the shear strength are 

observed when dr increases from 0 to 100%, which agrees with the 

results presented in Figure 3-11 and others studies (REIßEN, 

2016). 

Source: Author. 
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3.4.3 Comparison to semi-empirical and mechanical model predictions 

The experimental shear strength of 170 tests was compared with the one provided by the 

following semi-empirical and mechanical models: (i) ABNT NBR 6118:2014 ([36], (ii) NEN 

1992-1-1:2005 (CEN, 2005), (iii) ACI 318:2014 (ACI COMMITTEE 318, 2014), (iv) ACI 

318:2019 (ACI COMMITTEE 318, 2019), (v) fib Model Code 2010 [11], (vi) SIA 262:2013 

(SIA, 2013), (vii) Shear Flexural Strength Mechanical Model (SFSSM) (MARÍ et al., 2015), 

(viii) Compression Chord Capacity Model (CCCM) (CLADERA et al., 2016),  (ix) the Critical 

Shear Displacement Theory CSDT (YANG; DEN UIJL; WALRAVEN, 2016) and (x) Critical 

Width of the Shear Band Theory (CWSB) (TUNG; TUE, 2016a). The next sections address 

evaluations of the ratio between experimental and theoretical shear strengths according to the 

structural system, b/d ratio and shear slenderness. 

For small values of av/d, an arching action leads to larger shear capacities, consequently, 

models that do not take this aspect into account tend to produce more conservative results for 

members whose concentrated loads are close to the support. However, in most studies, such 

conservatism is not quantified for wide RC members. Some mechanical-based models, such as 

SIA 262 (SIA, 2013) and fib Model Code 2010 ((FÉDÉRATION INTERNATIONALE DU 

BÉTON (FIB), 2012) provide guidance on how to consider the effects of direct compression 

struts carrying the shear force to the supports. Other models, (e.g., SFSMM (MARÍ et al., 2015), 

CCCM (CLADERA et al., 2016), CSDT (YANG; DEN UIJL; WALRAVEN, 2016) and CWSB 

(TUNG; TUE, 2016a), do not include such guidance. In such cases, the factor βEC from NEN 

1991-1-1:2005 (CEN, 2005) is considered for reducing Vexp for evaluations of the fit of the 

mechanical models. Items 3.4.5 and 3.4.6, show only the results from mechanical-based 

models, since they provided better accuracy and precision in the shear strength predictions. 

3.4.4 Accuracy according to the structural system 

The effect of the structural system on the shear behavior is usually neglected. Towards 

investigating it, this study compared experimental and predicted shear capacities according to 

the different structural systems of the tests by different models. Statistical trends can influence 

the results, since the number of tests in the databases for simply supported specimens (67%) is 

significantly higher than those for continuous members (23%) and cantilever ones (10%). 

Therefore, the results of this section should be considered as indicative and more tests are 

necessary for reliable conclusions. 

The ratio between experimental and calculated shear strengths Vexp/Vcal by semi-

empirical models showed a coefficient of variation (COV) higher than 25% for all models 
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(Table 3-9). The structural system provided the lowest average ratio Vexp/Vcal for cantilever 

members (CT) by the semi-empirical approaches. Table 3-9 also shows that semi-empirical 

approaches sub estimated the shear capacity of the tests between 28% and 102% for continuous 

members. Physically, most of such results can be explained by the absence of parameters that 

consider the shear slenderness effect (arching action for small λ), proven by the smallest 

difference in results between simply supported and continuous members in the detailed model 

of ACI 318:2014, which considers the ratio M/Vd in the expressions. However, the Vexp/Vcal 

ratio is in ACI 318:2014 approximately 25% higher for simply supported members than for 

cantilever ones. 

Table 3-9 - Statistical evaluation of the Vexp/Vcal ratio with semi-empirical models according to the 

structural system. AVG = average value; MIN = minimum value; COV = coefficient of variation. 

Structural  

System 
 Nº  exp,red

ABNT

V

V
 

exp,red

EC

V

V
 

exp

,14,detACI

V

V
 

exp

,19( )ACI C

V

V
 

 

CT 
 

17 

AVG 0.968 0.970 1.015 1.350  

MIN 0.654 0.828 0.770 1.059  

COV 20.3% 14.0% 14.1% 11.7%  

CS 
 

39 

AVG 1.289 1.469 1.333 2.024  

MIN 0.887 0.972 0.717 1.262  

COV 25.3% 26.3% 25.0% 30.1%  

SS 
 

114 

AVG 1.049 1.130 1.253 1.587  

MIN 0.558 0.673 0.464 0.891  

COV 29.6% 22.8% 40.1% 42.6%  

All - 170 

AVG 1.096 1.192 1.248 1.664  

MIN 0.558 0.673 0.464 0.891  

COV 29.4% 27.2% 36.1% 39.6%  
Source: Author. 

Most mechanical models of shear strength consider the structural system indirectly by 

parameters related to the sectional forces M and V, which are correlated to the shear slenderness. 

Nevertheless, the Vexp/Vcal ratio for continuous members was higher than that for simply 

supported members by all mechanical models (Table 3-10). This difference is limited (10%) 

with SIA 262 and the CSDT formulations. Table 3-10 shows the Vexp/Vcal ratio for cantilever 

members is lower than for simply supported ones by all models, except for CSDT, whose 

difference can be neglected. Such results suggest if the structural system is considered only by 

the sectional forces M and V, possible changes in the main shear-carrying mechanisms may be 

neglected due to alterations in the shear failure mode and cracking pattern according to the 

moments Msup and Mspan. 



102 

 

 

 

Table 3-10 - Statistical evaluation of the Vexp/Vcal ratio with mechanical models according to the 

structural system. AVG = average value; MIN = minimum value; COV = coefficient of variation. 

Structural 

System 

 
N°  

exp,red

MC

V

V
 

exp,red

SIA

V

V
 

exp,red

SFSMM

V

V
 

exp,red

CCCM

V

V
 

exp,red

CSDT

V

V
 

exp,red

CWSB

V

V
 

CT 
 

17 

AVG 1.169 1.069 0.927 1.142 1.227 1.001 

MIN 0.959 0.821 0.726 0.846 0.894 0.824 

COV 15.0% 13.8% 14.3% 13.6% 13.8% 11.2% 

CS 
 

39 

AVG 1.404 1.225 1.326 1.455 1.235 1.063 

MIN 0.885 0.876 0.906 1.000 0.884 0.765 

COV 20.3% 17.6% 24.9% 22.1% 18.9% 20.2% 

SS 
 

114 

AVG 1.213 1.103 1.060 1.202 1.102 1.170 

MIN 0.791 0.737 0.697 0.776 0.827 0.761 

COV 17.5% 18.4% 20.3% 19.5% 13.6% 26.3% 

All - 170 

AVG 1.252 1.127 1.108 1.254 1.145 1.129 

MIN 0.791 0.737 0.697 0.776 0.827 0.761 

COV 19.3% 18.4% 24.4% 21.8% 16.0% 24.8% 
Source: Author. 

In most validations of mechanical-based models with beam tests, a comparison between 

the proposed models with semi-empirical approaches highlighted better accuracy and precision 

with mechanical based models (MARÍ et al., 2015; TUNG; TUE, 2016a; YANG; DEN UIJL; 

WALRAVEN, 2016). In a joint assessment of average value and coefficient of variation of all 

models, SIA 262:2013 (SIA, 2013) and CSDT models (YANG; DEN UIJL; WALRAVEN, 

2016; YANG; WALRAVEN; DEN UIJL, 2017) stand out with the average ratio Vexp/Vcalc 

ranging between 1.13 and 1.15 and COVs lower than 20%. Equations based on the SFSMM 

(MARÍ et al., 2015), CCCM (CLADERA et al., 2016) and CWSB (TUNG; TUE, 2016a), 

provided larger scatter between experimental and predicted capacities (COV > 20%). These 

results are caused by including members in the database that may have failed by shear 

compression modes, for which these models were not derived. The same models (CCCM, 

SFSMM and CWSB) showed an average ratio Vexp/Vcal between 0.99 and 1.16 with maximum 

COV of 15.8% for wide RC members that showed flexural shear failure modes, identified as 

those of M/Vd > 3 (76 test results in the databases).  

3.4.5 Accuracy according to the b/d ratio 

The experimental shear capacities were compared with predicted ones according to 

different ranges of b/d ratios for investigating whether the available shear models show the 

same level of accuracy regardless of the ratio b/d. According to Table 3-11, the mechanical 

models show no significant differences in the mean value and COV for Vexp/Vcal in the different 

b/d ratio ranges. Although the coefficient of variation showed higher values in the range 
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1<b/d<2.5, this result may have been influenced by the higher number of experiments in this 

range (63% of the tests). Such results agree with the experimental analysis conducted by Adam, 

Herbrand and Classen (2018), who observed slabs with b/d > 5 and beams with b/d = 1 exhibited 

similar shear capacities under identical test conditions.  The results are also coherent with the 

observation that the influence of b/d on the normalized shear strength is limited (Figure 3-10f). 

On the other hand, they do not validate the observations of Conforti, Minelli and Plizzari (2017), 

who found higher shear strengths for increasing b/d ratios between 1 and 3. Therefore, the effect 

of the b/d ratio on the shear strength is still unclear and closely related to the randomness in the 

cracking pattern of the model, concrete mixture’s homogeneity and loading conditions. 

Table 3-11 - Statistical evaluation of the Vexp/Vcal ratio with mechanical models according to the 

b/d ratio. AVG = average value; MIN = minimum value; COV = coefficient of variation. 

b/d N°  
exp,red

MC

V

V
 

exp,red

SIA

V

V
 

exp,red

Sfsmm

V

V
 

exp,red

CCCM

V

V
 

exp,red

CSDT

V

V
 

exp,red

CWSB

V

V
 

1 / 2.5b d   
108 

 

AVG 1.259 1.139 1.150 1.295 1.184 1.090 

MIN 0.791 0.794 0.802 0.776 0.827 0.765 

COV 21.2% 18.2% 25.8% 22.3% 15.5% 21.5% 

2.5 / 5b d   
42 

 

AVG 1.239 1.120 1.030 1.178 1.058 1.239 

MIN 0.911 0.737 0.697 0.810 0.835 0.824 

COV 14.9% 20.0% 19.5% 20.6% 15.2% 27.6% 

/ 5b d   20 

AVG 1.243 1.079 1.043 1.193 1.116 1.107 

MIN 0.993 0.891 0.760 0.874 0.924 0.761 

COV 16.3% 15.5% 18.2% 16.4% 14.3% 28.7% 

All 170 

AVG 1.252 1.127 1.108 1.254 1.145 1.129 

MIN 0.791 0.737 0.697 0.776 0.827 0.761 

COV 19.3% 18.4% 24.4% 21.8% 16.0% 24.8% 
Source: Author. 

 

3.4.6 Accuracy according to the shear slenderness λ 

Most mechanical models have been formulated to deal with flexural shear failures. 

Table 3-12 shows the similarity among the results provided by mechanical models for tests with 

flexural shear failure (λ >3). The average ratio between experimental and predicted shear 

capacities ranged from 0.99 to 1.16, whereas the coefficient of variation remained below 20%. 

For members with possible shear compression failure, the coefficient of variation for Vexp,red/Vcal 

ratio is higher than 20% for models based on the CCCM and in the CWSB. However, such 

models provide more conservative results for most of these tests since the average Vexp,red/Vcal 

ratio is higher than 1.24 for them. 
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Table 3-12 - Statistical evaluation of the Vexp/Vcal ratio with mechanical models according to the 

shear slenderness λ. AVG = average value; MIN = minimum value; COV = coefficient of variation. 

Range N°  
exp,red

MC

V

V
 

exp,red

SIA

V

V
 

exp,red

Sfsmm

V

V
 

exp,red

CCCM

V

V
 

exp,red

CSDT

V

V
 

exp,red

CWSB

V

V
 

λ < 3 94 

AVG 1.323 1.170 1.205 1.330 1.162 1.201 

MIN 0.791 0.794 0.802 0.776 0.827 0.761 

COV 20.0% 19.2% 25.4% 23.3% 17.5% 27.8% 

λ ≥ 3 76 

AVG 1.165 1.074 0.988 1.161 1.124 1.039 

MIN 0.882 0.737 0.70 0.810 0.835 0.771 

COV 12.8% 15.0% 14.9% 15.8% 13.8% 15.1% 

All 170 

AVG 1.252 1.127 1.108 1.254 1.145 1.129 

MIN 0.791 0.737 0.697 0.776 0.827 0.761 

COV 19.3% 18.4% 24.4% 21.8% 16.0% 24.8% 
Source: Author. 

3.5 Discussions of Chapter 3 

Most semi-empirical approaches used in codes of practice do not consider the shear 

slenderness influence and are calibrated according to simply supported beams tests. 

Consequently, these formulations could provide very conservative capacities for small shear 

slenderness and unsafe predictions for higher member thicknesses. This is the case, for instance, 

of ACI 381-14 code expressions, which were updated in ACI 318-19. In the case of the ABNT 

NBR 6118:2014, however, the Brazilian guidelines explain that the national code expressions 

should be used only on members with a thickness lower than 0.6 m. Besides that, the 

expressions for wide members are also recommended only to members with b/d ≥ 5 because it 

is supposed the shear redistribution capacity of wider members is significantly larger than 

beams. In other words, it is supposed that due to the lower width of beams compared to their 

depth, the failure can be triggered in localized regions of the beam, while in slabs a shear 

redistribution could occur and avoid a brittle collapse. 

The mechanical models studied, on the other hand, usually assume shear transfer 

mechanisms are functions of parameters such as (i) tensile strains in the critical section, (ii) 

shear displacement, and (iii) compression chord capacity. These considerations demonstrate to 

be valid since the scatter of Vexp/Vpred for mechanical models is lower than for semi-empirical 

ones. Such results indicate that the dowel effect does not have a negligible contribution to the 

shear strength of some members, as observed by Cavagnis, Fernández Ruiz and Muttoni 

(2018b). Moreover, CSCT and CSDT seem to cover many cases of structural system, load 

arrangement and shear slenderness at a satisfactory level of accuracy.  
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A closer look at the database shows most of the tests available were performed on simply 

supported members of small thicknesses under concentrated loads. The investigation of the size 

effect, structural system and load arrangement influence on the shear strength require more 

tests. Due to the size effect, test full-scale wide members is important. Since these members are 

complex and costly, 3D non-linear numerical simulations can be useful (BELLETTI et al., 

2014; GENIKOMSOU; POLAK, 2015). The small number of tests on wide members under 

distributed loads hampers the drawing of conclusions on the influence of parameters like the 

degree of rotational restraint. More tests and a combination of experimental results with 

numerical simulations are required for more comprehensive analyses. A limited number of tests 

on wide members of concrete compressive strengths higher than 65 MPa is available and the 

results have significantly varied, which requires more tests. Such tests will enable evaluations 

of the accuracy and precision levels of formulations that take into account the lower roughness 

for crack surfaces when the critical shear crack goes through the aggregate particles. 

Since the behavior of wide members with b/d > 1 is very similar to that of beams, models 

calibrated for beams can be extrapolated to slabs and wide beams. Regarding possible benefits 

of the shear strength of wide beams with b/d between 1 and 3, it is conservative for design to 

neglect this aspect. 

 In countries such as Brazil, where the construction of residential slabs supported by 

beams instead of columns is more usual, the thickness of such slabs usually does not exceed 

150 mm, and the dowel effect can be influenced by the absence of minimum shear 

reinforcement and small thicknesses. Therefore, this study recommends testing members with 

small thicknesses to investigate if models derived from beam tests that account for the dowel 

action (CSDT) present the same level of accuracy for such wide members. 

The shear slenderness based on the max(a1;a2)/d ratio shows a clear correlation with the 

shear strength of wide members under concentrated loads. This study identified a similar 

correlation for members under uniformly distributed loads by modifying the span length of 

continuous members according to the relation between the moment over the support (Msup) and 

the maximum moment in the span (Mspan).  

Aspects such as direct load transfer by compressive struts, improvement in the 

compression chord by continuity at the supports, and load arrangement effect are usually 

neglected in design. However, they can be important for the assessment of existing structures, 
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since they can attribute additional strength to the structure, such a way that repair or replacement 

of these structures may be avoided. 

3.6 Conclusions of Chapter 3 

This chapter brings together 170 test results of wide RC members without shear 

reinforcement and analyzes some of the main semi-empirical and mechanical models available 

in design codes. It also addresses a discussion on the effect of parameters such as structural 

system and shear slenderness and a comparison between experimental and predicted shear 

capacities according to different models. The following conclusions can be drawn: 

• An increase in the ratio max(a1;a2)/d results in a clear exponential decay of the shear 

strength to members under concentrated loads (CL) in the shear span. For members 

under uniformly distributed loads (DL), the shear strength also decreased by considering 

that continuous members under distributed loads with Msup<Mspan behave similarly to 

simply supported ones. 

• The shear strength establishes a better correlation with the shear slenderness than with 

the degree of rotational restraint dr. While the shear strength mostly reduces with 

increasing the shear slenderness, the relation between the shear strength and the degree 

of rotational restraint is more complex. 

• Most models provide fewer conservative results for cantilevers members than simple 

supported ones. Although this result might indicate some influence of the structural 

system, the database shows a higher number of tests with simply-supported members, 

which may add some bias to the results. Furthermore, most results are related to 

members of reduced thickness (<0.5 m), for which the self-weight load is reduced; 

therefore, differences according to the structural system should be limited. 

• Critical Shear Crack Theory and Critical Shear Displacement Theory provide the best 

predictions of shear strength for wide members under different structural systems, load 

arrangements and shear slenderness. According the provided analyses, these models 

show a small COV (<20%) and an average ratio Vexp/Vpred  between 1.13 and 1.15. 

• Despite some differences in the cracking pattern between beams and wide members, the 

same approaches used to assess the shear strength of beams can be extended to wide 

members in the investigated range of parameters.  

• The load arrangement and support conditions play an important role in the shear behavior 

of wide members since they can change the key parameters of the shear carrying 

mechanisms: (i) shape, (ii) location and (iii) kinematics of the critical shear crack. 
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4 EXTENDED CSDT MODEL FOR SHEAR CAPACITY 

ASSESSMENTS OF BRIDGE DECK SLABS 

In this chapter, the study increased the scope of the problem addressed. After a better 

understanding of the one-way shear behavior of wide members loaded over the entire width, this 

chapter investigates the problem of one-way slabs under concentrated loads more closely. In this 

context, this chapter investigates different approaches to define the effective shear width contributing 

to the sectional shear capacity of the slabs. Despite this chapter focusing on the evaluation of the one-

way shear capacity, the different governing failure mechanisms are also discussed for such slabs 

(shear and punching). In accordance, the proposed effective shear width expressions in this chapter 

account that the evaluated slabs can be critical in punching instead of one-way shear. 

4.1 Introduction of Chapter 4 

The shear capacity of bridge deck slabs attracted attention from several researchers and bridge 

owners in Europe in the last decade since a large number of these structures built between 1960 and 

1980 have reached the end of their originally devised service life (HENZE; HARTER; ROMBACH, 

2019; LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013; NATÁRIO; FERNÁNDEZ RUIZ; 

MUTTONI, 2014; REIßEN; CLASSEN; HEGGER, 2018). A number of these bridges do not rate 

sufficiently for shear according to the currently governing codes, despite no signal of distress. This 

result indicated that widely accepted semi-empirical approaches of design could be overly 

conservative. Since conservative predictions of shear strength could indicate the need for replacement 

or retrofit of these structures, identifying more accurate approaches for predicting the shear capacity 

of bridge deck slabs involves an economic and environmental issue beyond the user's safety. Apart 

from that, the design of wide reinforced concrete members prioritizes solutions without shear 

reinforcement, since installing shear reinforcement is not cost-effective and may result in 

reinforcement congestion. Therefore, also in design, the use of precise one-way shear models can be 

essential to ensure adequate safety levels for members without stirrups. 

In a previous study on wide beams and one-way slabs loaded over the entire width (SOUSA; 

LANTSOGHT; EL DEBS, 2020) (Figure 4-1a), it was identified that the Critical Shear Displacement 

Theory model (CSDT (YANG; DEN UIJL; WALRAVEN, 2016; YANG; WALRAVEN; DEN UIJL, 

2017)) showed the best levels of accuracy and precision compared to many semi-empirical and 

mechanical models of shear strength, with the mean ratio between experimental and predicted shear 

capacities of 1.15 and COV of 16%. Different from previous publications (CONFORTI; MINELLI; 

PLIZZARI, 2017; GURUTZEAGA et al., 2015), Sousa, Lantsoght and El Debs (2020) applied the 

analyses for both slender and non-slender members, in addition to different support and loading 
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conditions. Therefore, it was decided to further assess the CSDT model for slabs under concentrated 

loads in non-symmetrical conditions (Figure 4-1b), with emphasis on the one-way shear capacity. 

 
Figure 4-1 - Slabs loaded (a) over the entire width analyses by Sousa, Lantsoght and El Debs (2020) and 

b) under concentrated loads in non-symmetrical conditions subjected to one-way shear failures. 

 

Source: Author. 

Although the number of studies on shear in reinforced concrete members increased 

significantly in the last decade, most of them were focused on the level of precision by semi-empirical 

code models of shear strength (HENZE; ROMBACH; HARTER, 2020; LANTSOGHT et al., 2015d; 

REIßEN; HEGGER, 2013a, 2013b). In publications that include mechanical-based models (BUI et 

al., 2017a; HALVONIK; VIDAKOVIĆ; VIDA, 2020; LANTSOGHT et al., 2015e; NATÁRIO; 

FERNÁNDEZ RUIZ; MUTTONI, 2014), the analyses focused on one kind of support condition and 

hence, covered a reduced number of tests. At the same time, only a limited number of studies 

addressed the fact the slabs under concentrated loads may show a transitional failure mode between 

one-way and two-way shear (LANTSOGHT et al., 2015c). As a consequence, if the governing failure 

mode is unknown, the use of a one-way shear model to assess members whose governing failure 

mode is punching shear may lead to unsafe predictions of shear strength. Therefore, the need for a 

more comprehensive study was identified, covering slabs under different support conditions, assessed 

by a mechanical-based model such as the CSDT and accounting for different failure modes that may 

take place.  

In this study, the application of the Critical Shear Displacement Theory Model (CSDT) 

(YANG; DEN UIJL; WALRAVEN, 2016; YANG; WALRAVEN; DEN UIJL, 2017) is extended to 

the assessment of the one-way shear capacity of wide reinforced concrete members under 

concentrated loads in non-symmetrical conditions (Figure 4-1b). Compared to previous studies 

(HALVONIK; VIDAKOVIĆ; VIDA, 2020; LANTSOGHT; VAN DER VEEN; WALRAVEN, 

2013; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; VAZ RODRIGUES; FERNÁNDEZ 
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RUIZ; MUTTONI, 2008), this chapter covers a wider variety of support conditions (cantilevers, 

simply supported and continuous members); members under different loading conditions such as 

single loads and double loads close to the support; and it provides recommendations when the 

governing failure mode is known or unknown.  

The literature is reviewed in order to discuss the influence of the shear slenderness over the 

governing failure mode of slabs. Furthermore, models for accounting for the slab behavior under 

concentrated loads (LANTSOGHT et al., 2015c) and approaches for account improved shear 

capacities for loads close to the support are described and assessed in this chapter. Different databases 

are used to derive and validate each recommendation proposed. These recommendations differ if the 

governing failure mechanism of the slabs is known or unknown and, they consider the higher shear 

strength for slabs under concentrated loads close to the support (LANTSOGHT; VAN DER VEEN; 

WALRAVEN, 2013; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014). The application limits 

and benefits of each recommendation are highlighted in the chapter, which also compares the results 

with well-established models from the literature.  

4.2 Literature review 

This section presents a specific literature review that focuses on the following aspects: (i) 

shear failure modes of one-way slabs under concentrated loads, (ii) available approaches to 

calculating the effective shear width, (iii) failure modes and shear transfer mechanisms in one-way 

shear and (iv) the fundamentals of the critical Shear Displacement Theory Model (CSDT). 

4.2.1 Shear failure modes 

One-way shear failure and two-way shear failure or punching shear can be critical in bridge 

deck slabs without shear reinforcement (LANTSOGHT et al., 2015c; NATÁRIO; FERNÁNDEZ 

RUIZ; MUTTONI, 2014). The critical failure mode can vary according to the gradient of shear forces 

close to concentrated loads (MUTTONI; FERNANDEZ RUIZ, 2010a). For slabs loaded over the 

entire width, the shear force per unit length is almost constant over the shear span if the self-weight 

is neglected. On the other hand, for flat slabs under concentric loads, the gradient of unitary shear 

forces (shear force per unit length of the critical perimeter) becomes higher near the loaded region, 

since the perimeter of the shear transfer is reduced (MUTTONI; FERNANDEZ RUIZ, 2010a). Some 

studies suggest the combination of shear field analyses with one-way and two-way shear models for 

the determination of the critical failure mode (NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; 

VAZ RODRIGUES; FERNÁNDEZ RUIZ; MUTTONI, 2008), whereas others already highlight that 

some tests can show the same capacity for one-way and two-way shear (NATÁRIO, 2015). This 

means that the ratio between the one-way shear effects (Vexp) from the acting punching load (Pexp) 
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with the calculated one-way shear capacity (Vcalc) is very similar to the ratio between the acting 

punching load (Pexp) with the calculated punching capacity (Pcalc). Since the most critical failure mode 

may change according to the geometry of the load, slab, and support conditions (LANTSOGHT et 

al., 2015e), the check of both failure modes is essential for the assessment of existing structures, 

where a precise estimation of the shear capacity is required (NATÁRIO, 2015). 

Figure 4-2 shows the complex transition between these two failure modes. For cantilever slabs 

under concentrated loads, for instance, regions of critical one-way and two-way shear can be better 

differentiated for large shear spans (Figure 4-2a), whereas for simply supported slabs, such regions 

intercept each other (Figure 4-2b). Different studies have agreed on the existence of a trend for the 

punching failure mode to become critical for higher shear slenderness (DOORGEEST, 2012; 

HENZE, 2019; LANTSOGHT et al., 2015c; NATÁRIO, 2015; REIßEN, 2016).  

Attention should be drawn to the fact that both one-way shear expressions and punching shear 

expressions were derived and calibrated using lab tests designed with idealized boundary conditions. 

For instance, one-way shear expressions were derived based on simply supported beam tests with 

point loads (REGAN, 1987); and punching shear expressions were based on punching tests on 

idealized slab-column connections. One-way slabs typically have boundary conditions and failure 

modes between the two types of failure modes, therefore, none of these two types of expressions were 

developed for such structures. 

Figure 4-2 - Critical regions of one-way and two-way shear for a) cantilever (adapted from Reiβen 

(2016)) and b) simply supported members; c) effective width definition for one-way shear analyses 

(adapted from Reiβen (2016)).  

 
Source: a) adapted from Reiβen (2016), b) Author; c) Adapted from Reiβen (2016).  
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4.2.2 Effective shear width 

When slabs are subjected to concentrated loads, an effective shear width needs to be defined 

together with a one-way shear model, since not the full slab width carries the same shear stress 

(LANTSOGHT et al., 2015b; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014). Figure 4-2c 

shows the profile of shear stresses over the support as well as the distribution of shear stresses around 

the load (HENZE, 2019; LANTSOGHT et al., 2015b; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 

2014; REIßEN; CLASSEN; HEGGER, 2018). Integrating the shear stress vperp over the width results 

in the sectional shear at failure. However, for design, deriving the shear stress distribution over the 

support is not practical, and therefore a uniform shear stress is commonly considered over a reduced 

width, which is the effective shear width (Figure 4-2c). The integral of the maximum shear stress 

vperp,max over the effective width should theoretically approach the integral of the shear stress vperp 

over the full width. The values of vperp,max can be determined by linear elastic finite element (LEFE) 

analysis with shell elements adjusting the shear modulus G and the Poisson ratio v to account for 

cracking and load redistribution (HENZE; ROMBACH; HARTER, 2020; LANTSOGHT; DE 

BOER; VAN DER VEEN, 2017a; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; 

SAGASETA et al., 2014; VAZ RODRIGUES; FERNÁNDEZ RUIZ; MUTTONI, 2008). However, 

the relevant section may vary according to the shear model (between d and d/2 away from 

discontinuities or at the support) and according to the support and loading conditions (NATÁRIO, 

2015). 

In practice, the effective width is usually defined based on a method of horizontal load 

spreading from the concentrated load to the support or a section parallel to the support (Figure 4-3). 

However, some publications already highlighted that the French method (as shown in Figure 4-3) 

could overestimate the effective width in more than 30% for tests with shear slenderness higher than 

5 (REIΒEN; HEGGER, 2016). Physically, this horizontal load spreading can be influenced by factors 

such as the reinforcement ratio in the transverse direction (LANTSOGHT; VAN DER VEEN; 

WALRAVEN, 2013; REIßEN; CLASSEN; HEGGER, 2018), available member width 

(LANTSOGHT et al., 2015a; REIßEN; CLASSEN; HEGGER, 2018), and size of the concentrated 

load (REIßEN, 2016). 
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Figure 4-3 – Models of effective shear width used in design guides with respective reference lines. 

 

Source: Author. 

Table 4-1 shows an overview of expressions for the effective width beff in the one-way shear 

strength of reinforced concrete members under concentrated loads at the slab mid-width. However, 

for loads close to the edge, the effective shear width beff,edge is equal to br + beff/2, where br is the 

distance from the load axis to the free edge of one-way slabs (Figure 4-4).  

Figure 4-4 - Sketch of the calculation of the effective shear width for loads close to the free edge 

(eccentrics in the slab width). 

 

Source: Author. 

Table 4-1 displays some replaced design code models, e.g. the Brazilian code from 1980 

(ABNT NBR 6118, 1980), since the current codes do not provide recommendations related to the 

effective shear width. According to the table, most code provisions (ABNT NBR 6118, 1980; FD P 

18-717, 2013; FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 2012; GRASSER; 

THIELEN, 1991; NORMCOMISSIE 351001, 1995) and some proposed in the literature (BAUER; 

MÜLLER, 2003; HENZE, 2019; VIDAKOVI; HALVONIK, 2019) assume the effective width 

increases for larger shear spans. This idea relies on the yield line theory (JOHANSEN, 1972) and 

experimental investigations (GOLDBECK, 1917), which account for shear forces spreading on 
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elastic plates under concentrated loads, also confirmed partially by LEFE analyses (NATÁRIO; 

FERNÁNDEZ RUIZ; MUTTONI, 2014). In summary, most analytical models of effective shear 

width do not take into account the change in the governing failure mode according to the position of 

the load (FD P 18-717, 2013; FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 2012) or 

were calibrated for specific supporting conditions (HALVONIK; VIDAKOVIĆ; VIDA, 2020). On 

the other hand, more detailed models of effective shear width that account for the slabs stiffness in 

both directions and the different support conditions usually require linear (LEFEA) or non-linear 

finite element analyses (NLFEA) (NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; SHU et al., 

2019). 

Table 4-1 - Overview of analytical models that predict the effective width in analyses of one-way shear 

strength of wide RC members under concentrated loads close to the support. 

 Old Dutch 

approach 

(NORMCOMI

SSIE 351001, 

1995) 

(replaced) 

 1 2eff load vb b a= +    (4.1) 

French (FD P 

18-717, 2013) 
 ( )2 2eff load load vb l b a= +  +   (4.2) 

Brazilian code 

(ABNT NBR 

6118, 1980) 

(replaced) 

 0 loadb b h= +   (4.3) 

For cantilever members: 

 ( )0
0 0.5 1 max ; 0.5NBR slab NBR

b
b b a b a b

 
= +   -  +  

 
  (4.4) 

For other static systems: 

 ( )0
0 1 max ; 0.5NBR slab NBR

b
b b a b a b

l

 
= +  -  +  

 
  (4.5) 

   

German 

guideline  

(DAFSTB, 

1991) 

(replaced) 

 12loadt b h h= +  +   (4.6) 

For cantilever members: 

 240

0.2 0.3     for: 0.2 ;  t 0.2 ;  t 0,2

0.3    for: 0.2 ;  0.2 0.4 ;   0.2

k k k y k x k

H

y k k k y k x k

a a
b

t a a t t

+    
= 

+     
 

 (4.7) 

For simply supported members: 

 240 0.5       for: 0 ,   0.8 ,   H y y xb t a a t t= +       (4.8) 

For loads close to simple support of continuous members: 

 240 0.4      for: 0.2 ,  0.4 ,   0.2H y y xb t a a t t= +        (4.9) 

For loads close to continuous supports 

 240 0.3      for: 0.2 ,  0.4 ,  0.2H y y xb t a a t t= +       (4.10) 

Swedish Code 

(BBK 

(STATENS 

 
( )

7
max

0.65 10.65

load l

BBK

load load l

b d
b

b l d

+ 
= 

 + + 
  (4.11) 
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BETONG 

KOMMITTE), 

1979) 

(replaced) 

fib Model 

Code 2010 

(FIB, 2012) 

 ( )( )2 min ; / 2 taneffMC load load v l vb l b a d a = +  + -    (4.12) 

45º ,  cantilever of continuous members

60º, if load is close to simple support



= 


   

Zheng et al. 

(2010) 
 ( )1 tanZh load span cpb l l r= +  -     (4.13) 

 0.4load
cp

span

b
r

l
=    (4.14) 

 ( )º 23.3 35.1cpr =  +   (4.15) 

Bauer and 

Müller (2003) 
 , 1eff Bauer load effb l b= +   (4.16) 

Vidaković and 

Halvonik 

(2019) 

For cantilever members:  

( )( ), 2 min 2 ;eff VH load load l vb l b d a= +  +    (4.17) 

Reiβen and 

Hegger (2012, 

2013c) 

For simply supported members: 

 /eff b q l a db b r   =       (4.18) 

 

0.4

/ ,    2.91 / 5.41

1.2 0.12 1,  for 5.5 

0.74 2.2 ,  for 0 0.7%

0.81 0.045 1.04 , for 2 

1.8 0.19 / for

b

q q q

l

a d a d

b b m

l l m

a d

r



 r r



  

= -   

= +   

= +   

= - 

  (4.19) 

Reiβen (2016)  Reiβen ,7 l load bf loadb d k l=  +    (4.20) 

With: dl,load ≤ 0.40 m 

 ( )1 2

15 9
max ; / ,

0.58 4
bfk a a d


= -  + 


  (4.21) 

   

Rombach and 

Velasco (2005) 

For LEFE analyses: 

 0.6 0.95 1.15RVb h a= +  +    (4.22) 

Natário et al. 

(NATÁRIO; 

FERNÁNDEZ 

RUIZ; 

MUTTONI, 

2014) 

For LEFE analyses on cantilever slabs: 

 ,4/eff aplied avg db F v=   (4.23) 

Shu et al. 

(2019) 

For NLFE analyses on cantilever slabs: 

 
,

, 1

,

E avg

eff Shu w w w

R code

v
b b b

v
=  =    (4.24) 

Source: Author. 
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4.2.3 Failure modes and shear transfer mechanisms in one-way shear  

Since Kani (1964) and Leonhardt and Walther (1962), it has been known that different shear 

failure modes can occur as a function of the shear slenderness M/Vd and that shear strength increases 

considerably for short members. Figure 4-5 shows the way the nominal shear strength of wide 

reinforced concrete members (width-to-effective depth b/d>1) increases as the shear slenderness 

decreases for tests under concentrated loads (CL) (SOUSA; LANTSOGHT; EL DEBS, 2020). The 

figure also shows how the critical shear crack shape changes according to the shear slenderness 

(CAVAGNIS; FERNÁNDEZ RUIZ; MUTTONI, 2018a). For concentrated loads close to the 

support, or shear slenderness M/Vd < 2.5, direct load transfer may occur by compressive struts 

improving the shear capacity. Such members are usually called non-slender members or deep beams 

for beam-shaped members. The higher concentration of compressive stresses between load and 

support usually leads to the crushing of concrete at failure (BAIRÁN et al., 2020). This failure mode 

is called shear-compression failure (YANG; WALRAVEN; DEN UIJL, 2017). 

Figure 4-5 - Shear slenderness effect on the one-way shear behavior of wide reinforced concrete 

members without stirrups.  

 

Source: Adapted from Sousa, Lantsoght and El Debs (2020). 

Commonly, the same shear strength model derived for flexure-shear failures is used for the 

design and verification of shear strength of non-slender members through the application of a factor 

that reduces the acting shear force VEd or improves the shear capacity VR in a critical section, as 

suggested in NEN 1992-1-1:2005 (CEN, 2005) and fib Model Code 2010 (FÉDÉRATION 

INTERNATIONALE DU BÉTON (FIB), 2012). The shear reduction factor β from NEN-EN 1992-

1-1:2005 (CEN, 2005) first considered only the bending moment effect on the compression chord or 

cantilever action (FERNÁNDEZ RUIZ; MUTTONI; SAGASETA, 2015). This means that only the 

effect of lower crack openings and large compression chord depth were taken into account. In fact, 

the shear strength enhancement for non-slender members is caused by a combination of the following 
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mechanisms: (i) higher compression chord capacity (cantilever action (FERNÁNDEZ RUIZ; 

MUTTONI; SAGASETA, 2015; MUTTONI; FERNANDEZ RUIZ, 2010a)) due to the large 

compression zone depth (BAIRÁN et al., 2020) and (ii) direct load transfer that occurs by 

compression arch beyond the inclined cracking load (or strut if it has a straight shape), also named 

arching action (KIM; KIM; WHITE, 1999; LANTSOGHT et al., 2015c). In the literature, both 

mechanisms are cited as the source of improved arching action (NATÁRIO; FERNÁNDEZ RUIZ; 

MUTTONI, 2014).  

Table 4-2 - Expressions for reducing the acting shear load VE for non-slender members according to 

different references. 

Reference Model 

ABNT NBR 6118:2014 (ABNT NBR 6118, 

2014) – Brazilian code (expression described for 

beams) 

DIN 1045:1988 (DIN 1045, 1988) – German 

code 

 
2

a

d
 =


  (4.25) 

DIN 1045-1:2001 (DIN 1045-1, 2001)– German 

code 

 
2

x

d
 =


  (4.26) 

x measured from load axis to support 

edge 

NEN-EN 1992-1-1:2005 (CEN, 2005) – 

European code 
 

1.00

0.252
v

EC

a

d







=


  (4.27) 

fib Model Code 2010 (FÉDÉRATION 

INTERNATIONALE DU BÉTON (FIB), 2012)  
 

1.00

0.502
v

MC

a

d







=


  (4.28) 

SIA 262:2013 (SIA, 2013) – Swiss code  
2

v
SIA

a

d
 =


  (4.29) 

Reiβen (2016) 
 1 2

R16

1.0max{ ; }

0.42.8

a a

d







=


 

 (4.30) 

Natário, Fernández Ruiz and Muttoni (2014) 
 Nat14

1.00

0.502.75
va

d







=


 

 (4.31) 

Yang et al. (2013) 
 [ / ] 1

2

M
M Vd

Vd
 = 



 (4.32) 
Source: Author. 

Table 4-2 shows a summary of the main expressions suggested by different references to 

account for the increase in shear capacity for loads close to supports – past codes used the shear span 

to depth ratio a/d as the main parameter. The model proposed by Reiβen (2016) was calibrated for 

the European code shear model and took into account the ratio max{a1;a2}/d (a1 and a2 refer to the 
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distances from the section of zero bending moment to the support and load axes, respectively) in such 

a way that it provides precise estimations of strength for both simply supported and continuous 

members. In this text, the ratio max{a1;a2}/d has the same meaning as the shear slenderness M/Vd. 

Since the influence of the shear slenderness is already taken into account in the shear models from 

fib Model Code 2010 and SIA 262:2013 by the calculations of the internal forces, the β factor takes 

into account the improved arching action only by the clear shear span-to-effective depth ratio av/d as 

a more conservative approach. 

4.2.4 Critical Shear Displacement Theory Model 

The Critical Shear Displacement Theory (CSDT) (YANG; DEN UIJL; WALRAVEN, 2016; 

YANG; WALRAVEN; DEN UIJL, 2017) assumes that a critical inclined crack starts from a major 

flexural crack, which will lead to collapse when the shear displacement Δ of the crack reaches a 

critical value and causes a secondary crack (dowel crack) along the reinforcement. A dowel crack 

causes the detachment of the tensile reinforcement from the concrete along the shear span, which 

significantly reduces the lateral confinement on the crack and the member flexural stiffness (YANG; 

WALRAVEN; DEN UIJL, 2017). Due to the opening of the main crack, an additional vertical shear 

displacement is required for the recovery of the previous shear stress level in the crack, which feeds 

the growth of flexure-shear cracks and leads to a brittle collapse of the member (YANG; 

WALRAVEN; DEN UIJL, 2017).  

Figure 4-6 - Flowchart of the calculations using the CSDT model. 

 

Source: Adapted from Yang; den Uijl and Walraven (2016). 
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(iii) aggregate interlock (WALRAVEN, 1981). The contribution of the residual tensile strength of 

concrete is neglected at failure (YANG; WALRAVEN; DEN UIJL, 2017), and the aggregate 

interlock contribution is a function of the crack width wb at the level of the tensile reinforcement and 

derived from the shear displacement Δ (CHANA, 1987). Figure 4-6 and Table 4-3 show, respectively, 

a flowchart of the calculations for the prediction of shear capacity and the base equations used. 

Table 4-3 – Expressions used in the CSDT (YANG; DEN UIJL; WALRAVEN, 2016). 

Model Expression 

General (YANG; DEN 

UIJL; WALRAVEN, 2016) 
 u c ai dV V V V= + +   (4.33) 

Compression chord 

(MÖRSCH, 1909)  
2

3 0.5

c cr
c

cr

z d s
V V V

z d s

-
= =

+
  (4.34) 

Aggregate interlock 

(YANG; DEN UIJL; 

WALRAVEN, 2016) 

 ( )0.56 0.03
978 ² 85 0.27

0.01
ai ai c cr

b

V R f s b
w

= -  +  -
-

  (4.35) 

 

Dowel action (BAUMANN; 

RUSCH, 1970) 
 31.64 ,    in [MPa]d n c cV b f f=   (4.36) 

bn is the clear width of the structural member; 

ϕ is the flexural rebar diameter 

 

Factors Expression 

Height of fully developed 

crack 
 ( )( )2

1 2cr l e l e l es n n n dr r r= + - +   (4.37) 

 /e s cn E E=  (4.38) 

 

Critical shear displacement 
 

25
0.0022 0.025 mm

30610
cr

d


 = +    (4.39) 

ϕ is the flexural rebar diameter 

Crack width at the bottom 

of the crack (wb) 
 , 0.04 b cr m

s s

M
w l mm

zA E
=    (4.40) 

 
, ,  with 1.28m

c

cr
cr c

s
l k

k
= =  (4.41) 

Reduction factor for 

aggregate interlock for high-

strength concrete (YANG; 

DEN UIJL; WALRAVEN, 

2016) 

 

2

7.2
0.85 1 1 0.34

40
ai

c

R
f

 
=  + - + 

- 
 (4.42) 

with fc in MPa and fc > 65 MPa 

Source: Adapted from Yang; den Uijl and Walraven (2016). 

 

4.3 Databases 

This study assumes that checking both shear-critical failure modes, one-way and two-way 

shear, is essential to identify the governing failure modes of existing bridge deck slabs. Therefore, a 

careful classification of the failure modes of tests from the literature is of paramount importance to 



119 

 

 

 

understand the limits of application of the available one-way and two-way shear models. Moreover, 

this classification allows a fairer assessment of the precision of one-way and two-way shear models, 

as well as models of effective shear width for slabs under concentrated loads.  

This study will discuss the results of three database subsets which are published in the public 

domain (SOUSA; LANTSOGHT; EL DEBS, 2020): (i) wide beams and one-way slabs loaded over 

the entire width failing in one-way shear (Database A); (ii) slabs under a single concentrated load 

failing in one-way shear, two-way shear or a combination of both (Database B0) and; (iii) slabs 

subjected to double loads close to the line support (Database C).  

4.3.1 Database filtering and organization  

The Database B0 includes 214 test results of slabs under single concentrated loads that were 

classified according to the main failure mode in (i) wide beam shear or one-way shear (WB), (ii) 

punching shear (P) and (iii) transition mode between wide beam shear and punching shear (WB/P: 

beam shear cracks at the slab sides combined with punching cracks around the load). More details 

about the criteria of classification of the governing failure mechanism for the evaluated tests can be 

consulted in Lantsoght (2013). Since this study focuses on the one-way shear model, tests with signs 

of punching failure were initially removed from the database B0, which resulted in the database B1 

(141 tests). This filtering was based on (i) the cracking pattern of the members, when available in the 

original references and (ii) the classification reported by other authors (LANTSOGHT, 2013; 

LANTSOGHT et al., 2015d), which was also based on the cracking pattern and (iii) in the 

classification of Natário (NATÁRIO, 2015), who combined shear fields from LEFE analyses with 

one-way shear and punching shear models according to the Critical Shear Crack Theory (CSCT) 

(NATÁRIO, 2015; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; VAZ RODRIGUES; 

FERNÁNDEZ RUIZ; MUTTONI, 2008). The main criteria used for the removal of members because 

of a punching failure in this study were (i) absence of a critical shear crack visible on the edge of the 

members and (ii) position at which the critical shear crack intercepted the middle depth of the member 

when the cut view was available. When the internal cracking pattern was not shown in the references, 

it was considered a punching failure if the cracking pattern was predominantly formed by radial and 

tangential cracks or if a conical crack could be seen.  

The database B1 of slabs under concentrated loads after removing punching tests 

comprehends 141 test results from the following references: Cullington et al. (1996), Lantsoght 

(2013), Reiβen (2016), Lubell (2006), Bui et al. (2017b), Regan (1982),  Regan and Rezai-Jarobi 

(1988), Vaz Rodriguez et al. (2006), Rombach and Latte (2008, 2009), Natário et al. 2014, 2015), 

Rombach and Henze (2017), and Vida et al. (2018). The database entries include the effect of self-
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weight on the calculated shear capacities and on the shear slenderness parameters for continuous 

members.  

The database B1, whose organization was inspired by those of Lantsoght et al. (2015d), 

Reiβen (2016) and Henze et al. (2020), has been published in the public domain (SOUSA; 

LANTSOGHT; EL DEBS, 2020) and includes 46 tests on cantilever members (CT), 33 tests with 

concentrated loads close to the internal support of continuous members (CS), and 62 tests with 

concentrated loads close to the simple supports (SS). It also includes two modes of one-way shear 

failures, namely shear-compression failures for non-slender members, or shear slenderness M/Vd < 

2.5 (55 tests ≡ 39 %), and flexure-shear failures for slender members, or shear slenderness M/Vd ≥ 

2.5 (86 tests ≡ 61%).  

Figure 4-7 displays the main geometrical loading parameters in the database for members with 

continuity over line supports and subjected to a combination of concentrated loads and line loads. 

The same definitions have been used for other structural systems. 

 
Figure 4-7 - Geometrical parameters of wide members with continuity over the support. 

 

Source: Author. 

Figure 4-8 shows the distributions of the parameters related to the tests included in the 

database B1. Similar to beam-databases (COLLINS; BENTZ; SHERWOOD, 2008; REINECK et al., 

2013), most experiments were performed for members of thicknesses less than 600 mm (Figure 4-8a) 

and on wide members whose ratio between the slab width and load dimensions in the width direction 

was higher than 5 (Figure 4-8b). The predicted effective shear widths beff with the french approach 
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(FD P 18-717, 2013) indicated that the full width of members with bslab/lload < 5 was activated in most 

of these tests, depending on the distance from the load to the support. However, as some models of 

effective width are overly conservative, some predictions may indicate that the full width was not 

mobilized. Figure 4-8c shows that the bslab/h aspect ratio (Figure 4-7) was higher than 5 in more than 

75% of the tests, and Figure 4-8d highlights the number of tests in the database performed with a 

shear slenderness M/Vd between 2 and 3. This range indicates that a considerable number of tests 

were subjected to a transitional failure mode between shear-compression and flexure-shear. Figure 

4-8e show that 16 tests from the database have a concrete compressive strength larger than 60 MPa 

and, hence, the level of accuracy for members with reduced aggregate interlock may be assessed. 

Figure 4-8f shows that the longitudinal reinforcement ratio ranges between 0.6 and 1.8%, where the 

larger ratios may not be representative of those used in bridge deck slabs. 

Figure 4-8 – Distribution of parameters in the database B1 for the following parameters: a) thickness of 

the slab at the support edge, b) ratio of slab width-to-load dimension in the width direction, c) ratio of 

slab width-to-effective depth, d) shear slenderness; e) concrete compressive strength and f) longitudinal 

reinforcement ratio. 

   
a) b) c) 

   
d) e) f) 

Source: Author. 

4.4 Proposed recommendations 

This section details the proposed recommendations related to (i) the control section to be 

evaluated, (ii) how to consider the arching action for loads close to the support and (iii) how to 

calculate the effective shear width. 
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4.4.1 Section for internal forces calculations 

Since most mechanical based models of shear strength were derived for shear slenderness 

M/Vd higher than 2.5, the assumption of the section far from d or d/2 from the highest bending 

moment axes (MUTTONI; FERNANDEZ RUIZ, 2008; YANG; DEN UIJL; WALRAVEN, 2016) or 

from geometrical discontinuity (FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 2012) 

does not play an important influence. However, when using these models for lower slenderness (M/Vd 

< 2.5), the location of this section assumes a major influence. Because of this, a previous investigation 

was made in order to identify the section that could balance precision and safety for the ratio Vexp/Vcal 

in both ranges of shear slenderness and for different support conditions (Figure 4-9b,c,d). Assuming 

that the shear capacity is reduced due to an increase in the opening of the critical shear crack (BENTZ; 

VECCHIO; COLLINS, 2006; MUTTONI; FERNANDEZ RUIZ, 2008; YANG; DEN UIJL; 

WALRAVEN, 2016), the control section for the calculations of the internal forces MEd and VEd remain 

at sections close to the higher bending moment for all models. The control section for cantilever 

members was assumed at the support edges instead of at distances of d or d/2 from the support edge 

in order to reach better predictions for these support conditions (SOUSA; LANTSOGHT; EL DEBS, 

2020). Since the critical shear crack develops from the major flexural crack, which occurs at the 

position of higher bending moment (YANG; DEN UIJL; WALRAVEN, 2016), the assumption 

adopted for cantilever slabs is still valid. 

Figure 4-9 – a) reference lines to calculate the effective shear width in French model (FD P 18-717, 2013) 

and proposed approach (note that in the proposed approach the equivalent spreading angle is not fixed 

and varies as a function of the load position – explanation in section 4.4.3); critical sections used for b) 

cantilever members, c) simply supported members, and d) continuous members.  

 
Source: Author. 
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4.4.2 Arching action 

This study proposes to combine the CSDT result with a semi-empirical coefficient β based on 

the ratio av/d (Equation (4.43)) to extend the CSDT model to predict the shear capacity of non-slender 

members without additional iterative calculations:  

 Prop

1.00

0.402.5
va

d







=


 (4.43) 

The combination of the CSDT with reduction factor β for non-slender members should be 

understood as an engineering approach comparable to empirical simplifications used by most design 

codes (CEN, 2005; FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 2012) and strain-based 

models (NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014). Theoretically, this approach is not 

exact because the shear failure mechanism for non-slender members is different from that for slender 

ones: the shape and relative contribution of the main shear-transfer mechanisms vary significantly 

when the shear slenderness decreases since the vertical branch of the assumed crack profile of the 

critical shear crack becomes not representative anymore (Figure 4-10).  

Figure 4-10 - a) and b) Crack profile simplification for specimens with M/Vd  > 3, c) main parameters 

of CSDT, and d) crack profile for non-slender members (M/Vd < 2). 

 
Source: Author. 

For lower shear slenderness, the inclination of the major flexural crack increases in such a 

way that the contribution of the aggregate interlock decreases significantly, while the contribution of 

the compression chord Vc increases according to internal equilibrium (CAVAGNIS; FERNÁNDEZ 

RUIZ; MUTTONI, 2015). The use of strut-and-tie models for continuous members with maximum 

shear slenderness M/Vd < 2 may better represent the problem (YANG, 2014): plane sections do not 

remain plane, and shear strains become dominant for those members (MIHAYLOV; BENTZ; 

COLLINS, 2013). However, this approach may not be practical for the slabs studied since the 

problem is strongly three-dimensional. As such, for practical purposes, this study considers the choice 

of including β as adequate. 
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4.4.3 Effective shear width 

In design and assessment of existing structures, two kinds of analyses may occur (i) the 

governing failure mode is unknown, and a conservative prediction of the shear capacity may be 

adequate for preliminary design, and (ii) a more precise estimation of the shear capacity is required, 

usually in the assessment of existing structures preliminarily rated as critical in shear (LANTSOGHT; 

DE BOER; VAN DER VEEN, 2017b). In the latter case, a detailed analysis of the governing failure 

mode would be essential to determine the shear capacity, which requires LEFE analyses combined 

with a mechanical-based model, such as conducted by Natário (2015) or using one-way and two-way 

shear models adjusted to slabs under concentrated loads in non-symmetrical conditions.  

Since the governing failure mode of the tests in the database B1 is known, this study proposed 

two kinds of analyses. The first group of analyses investigates the accuracy of different effective 

shear width models combined with the CSDT model using a database with the governing failure mode 

known (one-way shear – Database B1). From these analyses, recommendations were derived for the 

assessment of existing structures when the governing failure mode is known (one-way shear), and 

precise estimation of the shear capacity is the main purpose.  

The second group of analyses aims to assess the shear capacity of slabs when the governing 

failure mode is unknown (Database B0). This means that one-way or two-way shear failures were 

included in the analyses. In order to provide consistent predictions of shear capacity regardless of the 

critical failure mode and covering different support conditions, the General Effective Shear width 

model (GESW) was developed. This model proposes that, if the punching capacity is the governing 

failure criteria of the slab, the predicted one-way shear capacity should be decreased by predicting a 

smaller effective shear width. 

The idea of the GESW model is to provide a simple alternative to assess the shear capacity of 

slabs using only a one-way shear model combined with an effective shear width. The proposed model 

is based on the French effective shear width model (FD P 18-717, 2013) adjusted by a correction 

factor α. This factor considers that increasing the shear slenderness (λ=M/Vd) or decreasing the 

effective depth of the reinforcement, the punching shear failure becomes governing. Therefore, a 

reduced effective shear width should be predicted for slabs on which punching shear may be critical. 

The values of α were derived based on regression analyses to improve the average and coefficient of 

variation of the ratio Vexp/Vcalc with the CSDT model combined with the French model of effective 

shear width. These regression analyses were organized according to the support conditions of the tests 

(Figure 4-11). The shear slenderness M/Vd was chosen as the main parameter in the GESW model 
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for all support conditions for two reasons: (i) based on the literature review discussed in Section 2 

and (ii) based on the behavior of Vexp/Vcal according to shear slenderness M/Vd (Figure 4-11). 

Figure 4-11 - Ratio of Vexp / Vcal of the CSDT combined with the original French effective shear width 

model and βproposed for account improved arching action for loads close to the support. 

 
Source: Author. 

Table 4-4 shows the equations for the proposed model of effective shear width. The parameter 

α was determined based on the statistical regression analyses observing the relationship between the 

predictions Vexp/VCSDT,beff  with the parameter x = M/Vd. In Table 4-4, this study considered the 

effective depth d only for simply supported members by two reasons: (i) the thickness variation is 

small in the database for other support conditions and (ii) to improve the predictions of tests with 

punching failure and effective depth lower than 0.1 m (Figure 4-11). At this point, this study 

highlighted that this approach seeks to provide a model for the design or preliminary assessment of 

existing structures. When higher levels of approximation are required, the use of one-way and two-

way shear models is essential to determine the governing failure mode, as this study will discuss in 

the next sections. Figure 4-9a illustrates physically how the predicted effective shear width decreases 

by increasing the shear slenderness M/Vd with the GESW model, while Figure 4-12 shows the 

calculated factors alfa according with the shear slenderness for simply supported slabs of small 

thickness. 

Table 4-4 - General effective shear width model proposed (GESW) according to the support conditions, 

shear slenderness λ=M/Vd, and effective depth d of the longitudinal reinforcement. 

General model  ,GESWM eff Frenchb b =                                                   (4.44) 

Cantilever slabs            ( ), 0.05 1.05GESWM eff Frenchb b =  -  +                             (4.45) 

Simple support  ( ), 0.31 0.103 1.08GESWM eff Frenchb b d =   -  +    (4.46) 

Continuous support  ( ), 0.072 1.08GESWM eff Frenchb b =  -  +                (4.47) 

Source: Author. 
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Figure 4-12 – Variation of the factor α according to the shear slenderness and effective depth of 

reinforcement for the simply supported slabs. 

  
Source: Author. 

4.5 Results of Chapter 4 

This section addresses a comparison between the experimental shear strengths from the 

databases A, B0, B1 and C (SOUSA; LANTSOGHT; EL DEBS, 2020), and those predicted by the 

CSDT model. Firstly, the level of accuracy (average value - AVG) and precision (coefficient of 

variation - COV) of the Vexp/Vcal ratio for a database of wide members loaded over the entire width 

was assessed according to the shear slenderness, with no influence of the effective shear width model 

(Database A - Section 4.5.1). In a second step, the analyses involved the database of slabs under single 

concentrated loads failing in one-way shear (Database B1 - Sections 4.5.2, 4.5.3 and 4.5.4). Then this 

study compared the predicted one-way shear capacities with the experimental ones for 8 tests of slabs 

subjected to double concentrated loads parallel to the support (Database C - Section 4.5.5). Finally, 

this study discusses the results of analyses conducted for the overall database of slabs under single 

loads (Database B0- Sections 4.5.6) using one-way and two-way shear models.  

4.5.1 Members loaded over the full width – Proposal for βarching 

This analysis aims to assess only the proposed factor regarding the improved arching action 

for non-slender members, without the influence of the effective shear width models. For this study, a 

database of wide beams and one-way slabs loaded over the entire width was used (Database A). This 

database is published in the public domain (SOUSA; LANTSOGHT; EL DEBS, 2020) and covers 

different support conditions and a comprehensive range of shear slendernesses. The database includes 

36 tests with M/Vd ≤ 2.5 and 146 tests with M/Vd > 2.5.  

Figure 4-13 shows a β factor derived based on a regression analysis with exponential 

adjustment according to the shear slenderness λ=M/Vd. This graph highlighted that the scatter 

between predicted and calculated shear strengths in the range of shear slenderness lower than 3 is 
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considerably higher compared to the other range. This occurs because the arching action is highly 

influenced by the cracking pattern, which shows a higher variability for short slenderness (YANG; 

DEN UIJL; WALRAVEN, 2013). Since the CSDT model already takes into account the shear 

slenderness by the calculations of M and V in the estimation of crack width at the bottom of the crack 

wb, the β factor based on the ratio M/Vd could lead to overly optimistic predictions of resistance, 

mainly when arching action does not play an influence as a result of the occurring cracking pattern 

(see test without arching action in Figure 4-13). Because of this, some authors proposed to adopt the 

inclined cracking load instead of the ultimate shear load as the failure criterion since this parameter 

shows a considerably lower scatter (YANG; DEN UIJL; WALRAVEN, 2013). However, as most 

references do not report the inclined cracking load for slab tests as this cracking is harder to observe 

in slabs under concentrated loads than in beam members, the ultimate shear load was considered in 

the regression analyses. 

Figure 4-13 – Alternative β factor derived based on exponential fitting between experimental and 

predicted shear strengths. Note: λ = M/Vd. 

 
Source: Author. 

Figure 4-14 shows the Vexp/Vcalc ratio according to the shear slenderness M/Vd with and 

without taking into account improved arching action for non-slender members by a β factor. The gray 

ranges represent ±1 standard deviation from the mean value.
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Figure 4-14 - Effect of factor β on the statistics of Vexp/Vcal for tests loaded over the entire width (line 

loads). (CS = continuous support; CT = cantilever support and SS = simple support). 

 
Source: Author. 

According to Figure 4-14, applying an improved arching action factor with the CSDT reduces 

the coefficient of variation from 24.7% to 18.6% when using β[M/Vd] (Figure 4-13), and to 16.0% 

when using βproposed (Equation (4.43)).  Any approach shows a wider scatter between experimental 

and predicted shear capacities for continuous members (CS), due to the higher variability in the 

position of the critical shear crack. Although the theoretical critical section was at d/2 from the 

position with the maximum bending moment, this procedure is still conservative for most tests.  Table 

4-5 shows that the average (AVG) Vexp/Vcal ratio ranged from 1.197 to 1.093 with the proposed factor 

βprop. In Table 4-5, Vexp,red refers to the experimental shear capacity reduced by the different 

parameters β (note that in this analysis, the members are loaded over the entire width and hence, the 

effective shear width does not play influence). The lower scatter between experimental and predicted 

shear capacities occurred with the βproposed and βEC.  

Table 4-5 - Statistical results of the predicted to calculated shear strengths according to different 

approaches to account the arching action for non-slender members.  

 
exp

CSDT

V

V
 

exp,red

CSDT

V

V
 

exp,red

CSDT

V

V
 

exp,red

CSDT

V

V
 

Approach Without 

β 

With 

βEC 

With 

βFigure 4-13 

With 

βproposed 

AVG 1.197 1.134 1.003 1.093 

MIN 0.828 0.828 0.626 0.770 

COV 0.270 0.172 0.186 0.160 
Source: Author. 

Considering only the tests with M/Vd < 2 from Table 4-5, the ratio Vexp,red/VCSDT with βproposed 

presented an average value equal to 1.18 with a coefficient of variation equal to 16.8%. Using βEC, 
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the ratio Vexp,red/VCSDT presented an average value equal to 1.35 with a with a coefficient of variation 

equal to 14.8%. 

4.5.2 Effective shear width models 

The database B1 gathered according to the descriptions in Section 3 (SOUSA; LANTSOGHT; 

EL DEBS, 2020) was used in the next analyses of the level of accuracy of the CSDT combined with 

different approaches for the effective shear width. Table 4-6 and Table 4-7 show statistical results 

from the Vexp/Vcalc ratio for different ranges of shear slenderness λ=M/Vd. The results are shown as a 

function of the ratio M/Vd instead of the ratio av/d since the former is a more useful parameter to 

distinguish members subjected to shear-compression failure from those subjected to flexure-shear 

failures, mainly for continuous slabs. βproposed, which accounts for improved arching action for non-

slender members, was adopted in most analyses. Since some tests did not fulfill conditions related to 

loading conditions for using the effective width model from the German guidelines (DAFSTB, 1991), 

Equations (4.6) to (4.10) in Table 4-1, this model was not evaluated. In the same way, the model 

provided by Halvonik et al. (2020) was not evaluated since this was purposed only for cantilever 

specimens. 

Table 4-6 - Statistics of Vexp/Vcalc according to the range of shear slenderness λ = M/Vd and effective width 

model provided in design codes. 

   exp,red

CSDT

V

V
 

exp,red

CSDT

V

V
 

exp,red

CSDT

V

V
 

exp,red

CSDT

V

V
 

  beff ABNT Swedish French fib 

λ Nº of tests βarching Prop Prop Prop Prop 

<2.5 55 

AVG 1.401 0.706 1.044 1.092 

MIN 0.869 0.481 0.773 0.758 

COV 21.9% 23.5% 11.4% 20.8% 

≥2.5 86 

AVG 2.009 0.981 1.070 1.192 

MIN 0.818 0.438 0.723 0.513 

COV 40.8% 18.7% 15.8% 23.7% 

All 141 

AVG 1.772 0.873 1.060 1.153 

MIN 0.818 0.438 0.723 0.513 

COV 41.2% 25.4% 14.3% 23.0% 

Source: Author. 

According to Table 4-6, older design code models of effective shear width, such as the 

Brazilian model (ABNT NBR 6118, 1980), lead to overly conservative predictions in most cases 

(mean Vexp,red/VCSDT = 1.772). The Swedish provisions (BBK (STATENS BETONG KOMMITTE), 

1979), on the other hand, lead to unsafe predictions, with average ratios of Vexp/Vcal of 0.706 and 0.981 

in the different ranges of shear slenderness evaluated. The fib model of effective shear width leads to 

average values of Vexp/Vcal of 1.092 and 1.192 for non-slender and slender members, respectively. The 
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best accuracy and precision over the different slenderness ranges assessed were achieved by the 

French model of effective shear width (FD P 18-717, 2013), thus indicating, on average, that the 

French approach provides reasonable predictions of effective shear width for slabs failing in one-way 

shear. 

Table 4-7 shows that the average value of Vexp/Vcal ranged from 1.089 to 1.772 with the 

approaches studied for the definition of an effective shear width. The effective width from Zheng et 

al. (ZHENG et al., 2010) provided a wider scatter between experimental and predicted shear 

capacities (COV > 30% on average) and a Vexp/Vcal mean value much lower than 1 for non-slender 

members. Since the approach of Reiβen (2016) includes the effect of the improved arching action on 

non-slender members in the effective width model by using the factor kbf (Equation (4.21) in Table 

4-1), the experimental shear capacities were not reduced for these calculations. The model provided 

conservative predictions of shear strength for all tests assessed and a 25.7% coefficient of variation. 

Bauer and Muller's approach (BAUER; MÜLLER; BLASE, 2005) resulted in the most conservative 

predictions for slender members (Vexp/Vcal = 2.009), but with a wider scatter (COV = 40.8%). The 

proposed GESW model provided good AVG (1.197) and COV (20.3%) values compared to the other 

models. Comparing Table 4-6 and Table 4-7, both GESW model and French model provide an 

accurate estimation of the test results. However, the GESW turns out to be slightly more conservative 

for Database B1 as it was derived to assess slabs under both failure modes (one-way shear and two-

way shear). 

Table 4-7 - Statistics of Vexp/Vcalc according to the range of shear slenderness λ =  M/Vd and effective 

width models suggested in the literature. 

   exp,red

CSDT

V

V
 

exp

CSDT

V

V
 

exp,red

CSDT

V

V
 

exp,red

CSDT

V

V
 

  beff Zheng Reißen Bauer Prop (GESW) 

λ Nº of tests βarching Prop - Prop Prop 

< 2.5 55 

AVG 0.755 1.601 1.401 1.043 

MIN 0.512 1.113 0.869 0.748 

COV 22.7% 17.7% 21.9% 12.2% 

≥ 2.5 86 

AVG 1.302 1.638 2.009 1.295 

MIN 0.459 0.983 0.818 0.830 

COV 34.0% 29.6% 40.8% 19.2% 

All 141 

AVG 1.089 1.624 1.772 1.197 

MIN 0.459 0.983 0.818 0.748 

COV 41.3% 25.7% 41.2% 20.3% 
Source: Author. 
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4.5.3 Sensitivity of parameters 

Since the first purpose is to derive recommendations for precise predictions of shear 

strength when the one-way shear failure mode is governing (Database B1), the CSDT combined 

with the French effective shear width model and βprop was further assessed with parameter 

studies (Figure 4-15).  

Figure 4-15 - Vexp/Vcal ratio as a function of: a) aggregate size dg, b) longitudinal reinforcement 

ratio ρl, c) concrete compressive strength fc, d) effective depth d, e) width-to-effective depth ratio 

b/d, and (e) shear slenderness M/Vd. (CS = continuous support; CT = cantilever support and SS = 

simple support). 

 
Source: Author. 

Figure 4-15 shows the ratio of Vexp,red/Vcal as a function of different parameters. The 

results indicate no significant influence of the aggregate size (Figure 4-15a) and reinforcement 

ratio (Figure 4-15b) on the predictions of shear strength with the studied approach. Wider 

scatter in some regions (see Figure 4-15a) for 16 mm aggregate size can be assigned to a higher 

number of tests. Figure 4-15c shows that the CSDT provides accurate and precise predictions 

of shear strength for members of high strength concrete (fc > 65 MPa), for which a lower 

contribution of the aggregate interlock is accounted for by the parameter Rai from the CSDT 

(however, it shall be mentioned that the number of tests in this range is significantly lower than 

for fc < 60 MPa). This approach also handled well the range of thicknesses studied (Figure 
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4-15d) and is did not shows be influenced by the slab width-to-effective depth ratio bslab/d 

(Figure 4-15e). Although the range of thickness studied is not representative of solid slab 

bridges (LANTSOGHT et al., 2015d), the available results are of interest for slab-between-

girders bridges. Moreover, the studied approach enabled accurate predictions, regardless of the 

shear slenderness parameter M/Vd (Figure 4-15f). 

4.5.4 Comparison with design code provisions 

Table 4-8 shows a comparison of different code-based approaches for the one-way shear 

capacity of the experiments gathered in database B1 described in Section 3. The French model 

is used for determining the effective width in combination with code provisions from Europe 

(CEN, 2005; SIA, 2013) and North America (AASHTO, 2017). The fib Model Code 2010 

(FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 2012) is the only code which 

includes guidance for improved arching action and effective width for concentrated loads close 

to the support. The same factor βprop for use with the CSDT was adopted in combination with 

the Swiss code SIA 262:2013 model (SIA, 2013) and with the AASHTO code provisions for 

bridges (AASHTO, 2017). 

Table 4-8 - Statistics of Vexp/Vcalc according to the range of shear slenderness λ= M/Vd for different 

design code approaches. 

   exp,red

CSDT

V

V
 

exp,red

CSDT

V

V
 

exp,red

AASHTO

V

V
 

exp,

04

red

CEN

V

V
 

exp,

MC

redV

V
 

exp,

262

red

SIA

V

V
 

  beff French GESW French French fib MC French 

λ Nº of tests βarching Prop Prop Prop CEN (2005) fib MC Prop 

<2.5 55 

AVG 1.044 1.043 1.421 1.704 1.762 1.096 

MIN 0.773 0.748 0.986 1.095 1.176 0.819 

COV 11.4% 12.2% 16.5% 18.0% 22.6% 14.8% 

>2.5 86 

AVG 1.070 1.295 1.476 1.122 1.479 1.037 

MIN 0.723 0.830 0.918 0.606 0.749 0.733 

COV 15.8% 19.2% 33.3% 24.0% 29.0% 16.4% 

All 141 

AVG 1.060 1.197 1.454 1.349 1.589 1.060 

MIN 0.723 0.748 0.918 0.606 0.749 0.733 

COV 14.3% 20.3% 28.2% 29.8% 27.6% 15.9% 

Source: Author. 

Table 4-8 shows that the code provisions studied provided a mean ratio of Vexp/ Vcal 

between 1.043 and 1.704 for λ < 2.5. The most precise results were achieved by the French 

effective shear width model combined with the one-way shear model based on the CSDT, as 

proposed in this study when the governing failure mode is known and is one-way shear. The 

predictions with the AASHTO code provisions were more conservative, with a mean ratio 
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between experimental and calculated shear strengths higher than 1.4 on both ranges of shear 

slenderness studied.  

Table 4-8 also shows that the average ratio of Vexp/Vcal ranged from 1.060 to 1.589 for a 

shear slenderness higher than 2.5. Remarkably, the Swiss code provisions reached the same 

level of accuracy and precision of CSDT when combined with the French model of effective 

shear width and use of βprop. Although these models (CSDT and SIA 262:2013) were derived 

in different ways, this result occurs because both models rely on some similar ideas, such as the 

higher influence of aggregate interlock in the shear strength and the decrease of the shear 

strength  for increasing shear slenderness. Since both AASHTO models and fib Model Code 

Models were derived based on the Simplified Modified Compression Field Theory (SMCFT 

(BENTZ; VECCHIO; COLLINS, 2006)), the statistical differences can be attributed to the 

models to account for improved arching action and the effective shear width used. 

4.5.5 Test with double loads 

The number of tests with double loads parallel to line supports is very limited. There are 

only 8 tests in the literature conducted by Rombach and Henze (2017), Vaz Rodrigues et al. 

(2008) and Reiβen et al. (2018). Most of these tests were conducted on cantilever slabs (7/8). 

The test with 4 loads close to the line support conducted by Vaz Rodrigues et al. (2008) showed 

a punching failure and was not analyzed in this study because it showed a transitional failure 

between the one-way and two-way shear. Table 4-9 shows the statics of the ratio between 

experimental and predicted one-way shear resistances for these tests. In summary, the level of 

accuracy of the CSDT model combined with the French effective shear width was close to that 

of slabs subjected to a single load. However, additional tests are needed to confirm these 

findings. The most unsafe prediction in Table 4-9 (Vexp/Vpred = 0.89) occurred for the only test 

with a ratio av/d < 2.5. Therefore, the proposed factor to consider arching action (βprop) may 

have been too optimistic for this type of loading.  
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Table 4-9 - Statistical of the experimental to calculated shear strengths for tests with double loads 

close to a line support. 

Authors Test 
exp,

,  French

red

CSDT beff

V

V
 

Vaz Rodrigues, Fernández 

Ruiz and Muttoni (2008) 

DR1b 1.26 

DR2a 1.03 

DR2b 1.07 

Rombach & Henze (2017) 

2d x 2 0.89 

3d x 2 0.99 

4d x 2 1.06 

5d x 2 1.01 

Reißen, Classen and 

Hegger (2018) 
MS35BB-22 1.04 

AVG 1.04 

COV (%) 9.78 

Source: Author. 

4.5.6 General approach for one-way and two-way shear 

An alternative approach to assessing the one-way shear models applicable to members 

with possible punching failure is to decrease the effective shear width accordingly with the 

shear slenderness, as discussed in the proposed GESW model (Section 4). In this study, it is 

assumed that the French effective shear width should be multiplied by the parameter α 

(Equation (4.44)).  

Table 4-10 shows the statistics of the ratio between experimental and predicted shear 

capacities with one-way and two-way shear models according to the failure mode for the 

database with 214 test results of slabs under single concentrated loads (Database B0). For the 

punching shear provisions, the proposed model from prEN 1992-1-1:2018 (MUTTONI et al., 

2018) was used (based on the CSCT), while for the one-way shear models it is combined the 

CSDT models with the French and GESW models. Table 4-10 shows that the level of precision 

reached with the CSDT combined with the GESW model is very similar for both failure modes, 

while the other approaches provide precise estimations only for their respective failure modes. 
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Table 4-10 - Comparison of predictions with the CSDT and the punching shear provisions from 

prEN 1992-1-1:2018 (MUTTONI et al., 2018) according to the failure mode. 

Failure mode Nº of tests  
exp

18EN

P

P
 

exp,red

CSDT

V

V
 

exp,red

CSDT

V

V
 

  beff - French GESW 

P 51 

AVG 1.092 0.808 1.044 

MIN 0.724 0.331 0.712 

COV 20.0% 31.6% 21.2% 

WB 141 

AVG 1.219 1.060 1.197 

MIN 0.466 0.723 0.748 

COV 31.9% 14.3% 20.3% 

WB/P 22 

AVG 1.220 1.007 1.121 

MIN 0.942 0.712 0.833 

COV 21.5% 13.4% 15.6% 

All 214 

AVG 1.189 0.994 1.153 

MIN 0.466 0.331 0.712 

COV 29.2% 21.0% 20.8% 
Source: Author. 

4.6 Discussions of Chapter 4 

Previous publications on the field of one-way slabs under concentrated loads usually 

concentrate on the accuracy of semi-empirical models applied to reduced databases (HENZE; 

ROMBACH; HARTER, 2020; LANTSOGHT et al., 2015d). When mechanical-based models 

are investigated, usually the analyses concentrate on one kind of support condition 

(HALVONIK; VIDAKOVIĆ; VIDA, 2020). Most of them neglect the governing failure mode 

of the tests (HENZE; ROMBACH; HARTER, 2020; REIßEN; HEGGER, 2015). Therefore, a 

gap of more comprehensive studies is realized related to the shear capacity of slabs under 

concentrated loads failing in different modes. 

Tests with a presumed punching failure were initially removed from the database B1. 

Only members with predominant one-way shear failure were used in the first statistical 

analyses. Therefore, part of the higher level of accuracy in Section 5.2 with the French effective 

shear width can be attributed to the improved database selection. However, it was highlighted 

that the classification of the failure modes for some members may not be an easy task. For such 

cases, the experiments must be classified as governed by a mixed failure between one-way 

shear and two-way shear, as made in previous publications (LANTSOGHT et al., 2015d). In 

these tests, both conical cracks at the top/bottom face and flexure-shear cracks at the edges of 

the slab arise at failure. Some studies have claimed that one-way and two-way shear capacities 

can be very similar is terms of strength ratio (Vexp/Vcalc similar to Pexp/Pcalc) (NATÁRIO, 2015), 
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which was also verified in this study for some tests during the classification of the failure 

modes. Particularly, this is also in line with the ACI 318-19 punching provisions (ACI 

COMMITTEE 318, 2019), where the punching capacity is assumed to be governed by one-way 

shear when the load becomes very rectangular. 

Since most mechanical models, such as the CSDT (YANG; DEN UIJL; WALRAVEN, 

2016), CSCT (MUTTONI; FERNANDEZ RUIZ, 2008), and SMCFT (BENTZ; VECCHIO; 

COLLINS, 2006) were derived from flexure-shear failures, one could question their possible 

extension to non-slender members, whose predominant failure mode is a shear-compression 

failure. In fact, some studies, as well as the current ACI 318-19 (ACI COMMITTEE 318, 2019), 

have highlighted those members should be assessed by strut-and-tie models, instead of sectional 

strain-based models (SAGASETA; VOLLUM, 2010; VOLLUM; FANG, 2015). However, 

most engineers have raised the possibility of covering a more extensive range of cases with the 

same model. In particular, for the shear assessment of existing RC slab bridges, there is a need 

for uniform approaches that allow checking all cross-sections and load positions in a 

preprogrammed way. Such an approach requires the checking of models for non-slender 

members in an approach similar to the one suggested in design guides, e.g., NEN 1992-1-1:2005 

(CEN, 2005) and fib Model Code 2010 (FÉDÉRATION INTERNATIONALE DU BÉTON 

(FIB), 2012), i.e. based on the reduction of the acting shear load close to the support. It has been 

highlighted that such analyses should be used only as a first assessment of structures without 

stirrups. As such, they are in line with the need for a preprogrammed method for the assessment 

of a large number of existing RC slab bridges. 

The level of accuracy reached by the CSDT with the presented method for arching action 

and the French model of effective width is similar to that obtained by the CSCT (NATÁRIO; 

FERNÁNDEZ RUIZ; MUTTONI, 2014), but removes the need for finite element calculations. 

The proposed CSDT extension excels due to its easy application. The overall Vexp/Vcal average 

ratio with the CSDT is 1.06, with a 14.3% coefficient of variation for a set with 141 test results. 

Comparatively, Natário (2015) achieved a 1.12 Vexp/Vcalc average ratio with 11% COV for 

simply supported members (62 tests) and 1.07 AVG and 16% COV for cantilever members (27 

tests). However, Natário's study did not include continuous members or members with 

combinations of loads (concentrated loads combined with line loads). The database B0 has 33 

tests with loads close to continuous supports. The mean ratio between experimental and 

predicted shear capacities by the CSDT model with the French effective shear width and βprop 

is 1.01 with a COV of 11.3%. Therefore, this study comprehends a larger variety of support and 
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loading conditions. The narrow scatter between experimental and predicted shear capacities 

with the CSDT demonstrates its accuracy and precision in assessing the one-way shear capacity 

of wide RC members under concentrated loads, such as slab bridges. 

Different from other studies (HALVONIK; VIDAKOVIĆ; VIDA, 2020; REIΒEN; 

HEGGER, 2016), it has been identified that the use of the French approach for determining the 

effective shear width provides reasonable levels of accuracy combined with the one-way shear 

strength model based on the CSDT. Regarding studies on simply supported members in which 

the French model leads to unsafe predictions of the shear strength (HALVONIK; 

VIDAKOVIĆ; VIDA, 2020; REIΒEN; HEGGER, 2016), the presented analysis indicates that 

these experiments presented signals of punching failures and, therefore, should also be 

evaluated by two-way shear strength models to reach more precise predictions.  

Notably, the CSDT combined with the GESW model provides homogeneous levels of 

precision in predicting the shear capacity for specimens with one-way and two-way shear 

failures in the database B0, capturing well the complex transition between these two failure 

modes. The reason for this observation is that the precision and accuracy of the predictions with 

the GESW model were similar between different failure modes, shear slenderness, and support 

conditions. In addition, the level of precision was considerably better than that obtained with 

current semi-empirical code models (LANTSOGHT et al., 2015d; REIßEN; HEGGER, 2015), 

for which COVs are usually larger than 35%. Therefore, in a programmed approach of 

assessment, the CSDT combined with the GESW model may be used as the only model to check 

shear failures when the governing failure mode is unknown.  

4.7 Conclusions of Chapter 4 

This study presents an extension of the Critical Shear Displacement Theory model for 

wide members under concentrated loads. Different databases were used to assess (i) the 

proposed arching action factor, (ii) the accuracy and precision of the CSDT combined with 

different models of effective shear width for slabs under single concentrated loads; (iii) the 

accuracy of the CSDT model to assess members with double concentrated loads parallel to the 

support and (iv) to assess slabs that showed different failures modes in shear. The following 

can be concluded: 

• The model for improved arching action for non-slender members can be combined with 

the CSDT as a first step for the determination of their shear strength. This approach was 
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validated against databases of wide members loaded over the entire width, as well as 

for slabs under concentrated loads failing in one-way shear. 

• The CSDT, combined with the effective width model from the French design guides 

(FD P 18-717, 2013), provides accurate shear strength results for wide members with 

predominant one-way shear failure, regardless of the shear slenderness and support 

conditions. The same level of precision was reached for slabs under double concentrated 

loads parallel to the support. 

• The level of accuracy of the proposed approach based on the CSDT combined with the 

French effective shear width was higher than that of most design code models, 

regardless of the parameters analyzed. Since the proposed approach requires only 

analytical calculations (without finite element analysis), it can easily be implemented in 

the daily engineering practice for first levels of approximation.  

• Despite the simplicity of the French effective width model, it seems to represent well 

most one-way slabs under concentrated loads that failed in one-way shear (Database 

B1). However, for members with punching failure, the approach may lead to unsafe 

predictions of shear strength, as verified in this study. Since the governing failure mode 

may not be known in preliminary analyses, both failure modes must be checked in the 

daily engineering practice for higher levels of approximation. 

• The most general effective shear width model (GESW) leads to good levels of accuracy 

for slabs under concentrated loads (Database B0) since it deals with both one-way and 

two-way shear failures. Moreover, the proposed approach addresses in a novel manner 

the transition between one-way shear and two-way shear failures of slabs under 

concentrated loads. However, it should be highlighted that this approach should be used 

only for preliminary designs and global assessment of a large number of assets, since it 

does not determine the governing failure mode physically.  Apart from that, further 

studies are required in order to include the effects of other parameters, such as the slab 

width b in the transition between one-way and two-way shear failures.  

• This study shows that traditional models of effective shear width and punching shear do 

not provide precise predictions of shear strength when the critical failure mode is other 

than that assumed by the model (Section 5.6). Because of this, adjustments are required 

on each model to extend the applications of them for both failure modes. In this study, 

different approaches are shown to assess the shear capacity when the governing failure 

mode is known or unknown. The proposed approaches apply to wide beams and slabs 



139 

 

 

 

under different support conditions (simple, continuous, and cantilever support), 

different loading conditions (loaded over the entire width or concentrated on the width 

direction). 
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5 SHEAR AND PUNCHING CAPACITY 

PREDICTIONS FOR SLABS UNDER 

CONCENTRATED LOADS AIDED AND NOT 

AIDED BY LEFEA 

In this chapter, the one-way shear capacity and punching capacity of one-way slabs 

under concentrated loads are addressed with the same importance. In this context, two 

approaches are investigated herein to describe the ultimate capacity of such slabs: (i) one based 

on the combination of analytical expressions with the results from linear elastic finite element 

analyses, and (ii) one based only on the use of analytical expressions.  

5.1 Introduction of Chapter 5 

One-way slabs under large concentrated loads are commonly found in practice in bridge 

deck slabs but may also occur during the building or use of residential and industrial floor slabs. 

Typically, the one-way shear capacity for such members is checked by assuming that only a 

slab strip of a width called the effective shear width, contributes to the sectional shear capacity 

(LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013) (Figure 5-1a). In this approach, the 

shear forces are assumed as uniformly distributed on the effective shear width. Conversely, the 

punching capacity predictions are usually performed with the same expressions derived from 

slab-to-column connections under concentric loads and assuming a uniform distribution of 

punching shear stresses around the shear-resisting control perimeter (LANTSOGHT et al., 

2015d) (Figure 5-1b). In reality, the shear forces are not evenly distributed on the critical 

sections for one-way shear and punching shear and depend on parameters such as the load 

position (NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014) and slab width (SOUSA et al., 

2021a). Consequently, if the assumed distribution of shear stresses on the critical sections for 

shear and punching deviates a lot from the assumed ones in the analytical expressions, 

inconsistent shear and punching capacity predictions may be found.  
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Figure 5-1 - General approaches to evaluate the a) one-way shear and b) punching capacity of 

one-way slabs under concentrated loads. 

 
Source: Author. 

When evaluating the one-way shear capacity of slabs under concentrated loads, the 

effective shear width used has a marked influence on the predictions (HALVONIK; 

VIDAKOVIĆ; VIDA, 2020; LANTSOGHT et al., 2015d). A common approach to predict the 

effective shear width at failure is based on a horizontal spreading of the load under a 45º angle 

from the back sides of the load, also called the French effective shear width as it is used in the 

French guidelines (BUI et al., 2017a; FD P 18-717, 2013) (Figure 5-1a). However, a number of 

studies have already pointed out some shortcomings related to this approach, which should be 

considered in the assessment of existing structures (HALVONIK; VIDAKOVIĆ; VIDA, 2020; 

REIßEN, 2016). While this approach provides good accuracy to predict the sectional shear 

capacity of slabs under concentrated loads close to the support (av < 2dl) (SOUSA et al., 2021c; 

LANTSOGHT et al., 2015d; LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013), 

unconservative results may be found for loads further away from the support (HALVONIK; 

VIDAKOVIĆ; VIDA, 2020; REIßEN, 2016). For instance, the predicted sectional shear 

capacity may overestimate the sectional shear significantly at failure (HALVONIK; 

VIDAKOVIĆ; VIDA, 2020; LANTSOGHT et al., 2015d), mainly when the tests fail by 

punching instead of one-way shear. As a consequence, changes are required in the predicted 

effective shear width to assure conservative predictions of sectional shear capacity for tests that 

may be at the transition point to punching shear failure modes, a topic which is seldomly 

discussed in the literature. 

In turn, the punching capacity of one-way slabs under concentrated loads is considerably 

less discussed than the one-way shear capacity. Until now, most evaluations of the punching 
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capacity of one-way slabs were performed using only semi-empirical code expressions 

(LANTSOGHT et al., 2015d; SOUSA; EL DEBS, 2019). These investigations found a large 

scatter between theoretical and tested resistances, mainly when the tests fail by one-way shear 

or a transitional shear failure mode instead of punching (LANTSOGHT et al., 2015d).  

Natário (2015) presented an interesting approach to assess the shear and punching 

capacity of one-way slabs under concentrated load. This approach was based on using the 

Critical Shear Crack Theory (CSCT) expressions for shear and punching and estimating 

parameters such as the shear force and bending moment distribution based on Linear Elastic 

Finite Element Analysis (LEFEA). Figure 5-2 shows the results of predictions by Natário 

(2015) for 48 simply supported slabs using the proposed approach for one-way shear (Figure 

5-2a) and for two-way shear (Figure 5-2b) as a function of the clear shear span to effective 

depth ratio (av/dl). av is the clear shear span: distance between edge of support and edge of load. 

In Figure 5-2, all result values were taken directly from the tables of Natário’s dissertation 

(2015) and presented herein in figure format. Vtest and Vpredicted are the maximum sectional shear 

achieved in the tests and the predicted shear resistance by Natário (2015), respectively; Ptest and 

Ppredicted are the maximum applied concentrated load at failure and the punching capacity 

predicted by Natário (2015), respectively. In the proposed approach by Natário (2015), the 

effective shear width beff for one-way shear and the control perimeter for two-way shear 

calculations account for the uneven distribution of shear forces in the evaluated sections and 

regions. The effective shear width, for instance, was calculated by the relation between the total 

shear force Vcontrol (force unit) and an averaged shear force vavg (unit of force per unit length) 

determined on a specific control section of the slab. Consequently, this approach allows 

considering the spatial load transfer towards the support and distribution of inner forces in the 

slab in a more realistic way. These parameters were calculated aided by LEFEA, such as will 

be described in more detail in the next sections. Figure 5-2a shows that the predictions of one-

way shear capacity with the presented approach were precise and conservative (on average) 

regardless of the failure mode of the tests being wide beam shear (WB), punching (P) or a 

mixed-mode between wide beam shear and punching shear (WB+P). However, the presented 

approach presented a small shortcoming in the punching predictions (Figure 5-2b). Figure 5-2b 

shows that the predictions of punching capacity for the tests that failed as wide beams in shear 

(WB) are on the unsafe side. At this point, this does not represent a serious problem since, in 

practice, the one-way shear predictions are governing (more conservative) in the calculations. 

In other words, the proposed approach by Natário (2015) captures that the concentrated load to 
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cause a wide beam shear failure is lower than that to cause a punching failure since Vtest/Vpredicted 

is higher than Ptest/Ppredicted for such tests. Figure 5-2c shows, for instance, that combining the 

predictions of one-way shear and punching to identify the most critical strength ratio (SR = 

max{Vtest/Vpredicted; Ptest/Ppredicted}), the proposed approach by Natário (2015) provides safe and 

precise predictions of the shear capacity. However, it is clear that improvements may be 

included in the proposed approach for punching calculations to reach a similar performance as 

for the one-way shear predictions. 

Figure 5-2 - Relation between tested and predicted resistances for a) one-way shear; b) punching 

shear and c) considering the most critical relation (conservative prediction) between the one-way 

shear and punching shear predictions reported by Natário (2015). 

   
a) b) c) 

Source: Author. 

For a preliminary assessment of slabs, the use of LEFEA is frequently not common. In 

practice, simplified and conservative calculation models are applied in preliminary evaluations, 

and LEFEA is used when more precise estimations are required. According to the design 

philosophy included in the current fib Model Code 2010 (FÉDÉRATION INTERNATIONALE 

DU BÉTON (FIB), 2012), detailed methods could be simplified in a conservative way to allow 

reaching quick and conservative predictions of resistance. This approach of using simplified 

and detailed expressions keeping the same theoretical background is also called the “Levels of 

Approximations Approach,” and it was implemented in the shear and punching expressions of 

the fib Model Code 2010 (FÉDÉRATION INTERNATIONALE DU BÉTON (FIB), 2012). In 

this way, someone could question how to perform simplified estimations of shear and punching 

capacity for the tests evaluated by Natário (2015) with the CSCT expressions without the use 

of numerical models, which was not addressed by Natário (2015). In the literature, it was 

identified that simplified approaches to evaluate the shear capacity of one-way slabs under 

concentrated loads without accounting for both possible shear failure modes might lead to 
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unsafe predictions of resistance (HALVONIK; VIDAKOVIĆ; VIDA, 2020; LANTSOGHT et 

al., 2015d; SOUSA; EL DEBS, 2019). Moreover, most studies focus on evaluating cantilever 

slabs (HALVONIK; VIDAKOVIĆ; VIDA, 2020; NATÁRIO; FERNÁNDEZ RUIZ; 

MUTTONI, 2014; ROMBACH; HENZE, 2017; VIDA; HALVONIK, 2018). Therefore, further 

investigations are required to provide guidelines to assess both shear and punching capacities 

of simply supported slabs under concentrated loads using only analytical expressions. 

In this study, a fully analytical approach is proposed to evaluate the shear and punching capacity 

of one-way slabs under concentrated loads based on the CSCT expressions. Parameters such as 

the load position, slab width and load size were considered in the proposed approach. Herein, 

one of the main novelties in this study compared to other publications is that the relation 

between the slab width and the load size (bslab/lload) was considered to determine the effective 

contribution of some sides of the control perimeter to the punching capacity. First, an approach 

of a higher Level of Approximation (LoA) to predict the shear and punching capacities of such 

slabs inspired by the work of Natário (2015) is described using LEFEA. This approach uses 

LEFEA to estimate parameters of the CSCT expressions, such as the bending moment and 

unitary shear force on the critical sections. In this study, the punching capacity approach of 

Natário (2015) was enhanced by including parameters related to the slab width and load size. 

In a next step, it is described how parameters and expressions from the refined approach using 

LEFEA can be estimated or considered in a simplified approach to predict the shear and 

punching capacity of the slabs also using the CSCT expressions. In the end, both approaches 

are compared. 

5.2 Research significance of Chapter 5 

Nowadays, the use of Linear Elastic Finite Element Analyses (LEFEA) in the design of 

new structures and assessment of existing structures has become common practice. However, 

a limited number of studies provide detailed guidelines on how to use this tool together with 

one-way shear and punching shear expressions. Therefore, this chapter provides detailed 

guidance on how to use LEFEA to predict the shear and punching capacity of one-way slabs 

under concentrated loads. In addition, a simplified approach using only analytical expressions 

is proposed for the preliminary design or assessment of existing structures. Both approaches 

are based on the Critical Shear Crack Theory expressions, which is based on the mechanics of 

the shear problem.
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5.3 Background 

In this section, the following aspects are addressed: (i) the shear flow in one-way slabs 

under concentrated loads, (ii) the analytical approaches to evaluate the shear and punching 

capacity and (iii) the calculations related to effective shear width and reduced control perimeter 

based on LEFEA.  

5.3.1 Shear flow  

The shear flow of one-way slabs under concentrated loads combines characteristics from 

the one-way shear in beams and the two-way shear around slab-to-column connections 

(LANTSOGHT et al., 2015c; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014). Beams 

and slabs loaded over the entire width develop a shear flow predominantly unidirectional, with 

the flow lines parallel to each other along the slab width. Flat slabs under concentric loads create 

a shear flow with lines radially distributed around the load. In Figure 5-3a, for the case of one-

way slabs under concentrated loads, the shear flow lines are almost parallel in the vicinity of 

the support, such as for beam shear, while its distributions assume a radial pattern around the 

load typical from punching (NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014). Considering 

the shear flow characteristics, both shear failure modes may take place for such slabs. 

5.3.2 Analytical approaches to evaluate the shear and punching capacity 

Current approaches to predict the one-way shear capacity of slabs subjected to large 

concentrated loads are based on the assumption of a horizontal load spreading with a 45º angle 

to the support for defining the contributing width, commonly called the effective shear width 

(see Figure 5-3b). Over this length, the unitary shear stresses are assumed as constant. This 

approach is well spread in the literature since it provided fair approximations of the maximum 

bending moments at the support of cantilever slabs (FERNÁNDEZ RUIZ; VAZ RODRIGUES; 

MUTTONI, 2009). However, several works demonstrated that the maximum unitary shear 

forces at the support could be underestimated with these approaches (FERNÁNDEZ RUIZ; 

VAZ RODRIGUES; MUTTONI, 2009; HENZE; ROMBACH; HARTER, 2020; NATÁRIO, 

2015). Because of this, LEFEA became an interesting tool to estimate a more realistic 

distribution of shear stresses and bending moments on slabs. The punching capacity 

calculations using analytical methods are also based on the assumption of even distribution of 

shear stresses on the control perimeter for punching regardless of the load position in the span 

(Figure 5-3c.1), where statics lead to nonproportional shear loading on the front and back faces 

of the loading plate unless the load is placed at midspan. The use of LEFEA allows considering 

the uneven distribution of shear stresses around the control perimeter (Figure 5-3c.2) and, in 
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this way, determining a reduced (effective) control perimeter accounting for the load layout and 

boundary conditions (VAZ RODRIGUES; FERNÁNDEZ RUIZ; MUTTONI, 2008). 

Figure 5-3 - Shear flow in a.1) cantilever slabs and a.2) simply supported slabs under symmetrical 

concentrated loads (adapted from Natário et al. (2014)); b) assumed distribution of shear stresses 

at the support by analytical models of effective shear width (b.1) and captured by LEFEA (b.2), 

and c) distribution of shear stresses on the control perimeter for punching assumed in simplified 

calculations (c.1) and captured by LEFEA (c.2). 

 

 
Source: a) adapted from Natário et al. (2014); b) and c) Author. 

5.3.3 Effective shear width and reduced control perimeter based on LEFEA 

Two groups of approaches can be distinguished when using the LEFEA to evaluate the 

one-way shear capacity of slabs under concentrated loads: (i) one is based on the definition of 

an effective shear width as proposed by Goldbeck (1917) to be multiplied by the unitary shear 

strength; the comparison between load effects and sectional resistances is made in terms of 

force (NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014); (ii) others are based on the 

definition of a distribution width on which the peak shear stress from LEFEA are averaged 

(rounded/distributed) to be compared to the code-based unitary shear strength (LANTSOGHT; 

DE BOER; VAN DER VEEN, 2017a); the comparison between load effect and resistances is 

made in terms of unitary forces or shear stresses. 
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The effective width is determined based on the stress or force distribution over the 

member's width vperp (GOLDBECK, 1917; GOLDBECK; SMITH, 1916). The classical 

definition is that the shear force V due to the maximum shear force vperp,max distributed over the 

effective width beff equals the shear force due to the variable stresses vperp over the entire width 

bslab (LANTSOGHT et al., 2014) (see Figure 5-4a). In other words: 
,max

0

slabb

perp eff perpv b v ds =  . 

Here, vperp,max is the maximum value of the unitary or nominal shear force (i.e., shear 

force per unit length along the control section). Some studies proposed distributing the peak 

shear force over a certain length (calculating vavg) and calculating the effective shear width 

based on the averaged shear force vavg instead of peak values vperp,max. This approach aims to 

consider possible redistribution of shear force due to concrete cracking (NATÁRIO; 

FERNÁNDEZ RUIZ; MUTTONI, 2014; REIßEN; CLASSEN; HEGGER, 2018). As beff 

increases by decreasing v, the predicted effective shear widths increase with these modified 

approaches. 

Figure 5-4 – a) Definition of the effective shear width based on Goldbeck’s studies (GOLDBECK, 

1917); b) definition of an effective (reduced) control perimeter based on the uneven distribution 

of shear stresses around the load (adapted from Fernandez Ruiz, Vaz Rodrigues and Muttoni 

(2009)). 

 
Source: a) Author; b) adapted from Fernandez Ruiz, Vaz Rodrigues and Muttoni (2009). 

Lantsoght et al. (2013; 2017b) investigated over which distribution width (slab strip) the 

peak shear stress from LEFEA should be averaged to represent the test results. In other words, 

it was investigated over which length the peak shear stress should be averaged to provide the 

shear stress that could be compared to the code-based shear capacity (LANTSOGHT; DE 

BOER; VAN DER VEEN, 2017a). In their analyses, the loads corresponding to a certain degree 

of that reached in the tests (40% and 90%) were applied in the numerical models, and the shear 

stress distribution was evaluated at the supports. Tests instrumented with load cells at the 

support were used to assess the distribution of experimental reaction forces. The reaction forces 
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were converted into shear stresses assuming that the reaction force was uniformly distributed 

over the influence length of each bearing point. It was concluded that the peak shear stress from 

LEFEA could be distributed over a length of 4dl to provide precise and still safe predictions of 

shear capacity for the test results. Posteriorly, Natário (2015) suggested using 4dl as the 

distribution length to calculate the effective shear width for cantilever slabs and 4dl + lload for 

simply supported slabs. 

For punching, Vaz Rodrigues, Fernandez Ruiz  and Muttoni (2008) suggested using a 

similar approach, based on the effective shear width; to define an effective control perimeter, 

commonly named reduced control perimeter b0,red (see Figure 5-4b) rounded corners were 

assumed as suggested by Muttoni (2008) in the CSCT expressions. In practice, using the 

reduced control perimeter based only on the peak shear demand does not allow considering 

shear redistribution at failure. This limitation is contoured by evaluating each portion of the 

control perimeter separately and considering the unequal distribution of shear resistance around 

the load (SAGASETA et al., 2011). This method is referred to as CSCT (ψx –ψy) (SAGASETA 

et al., 2011). 

While the LEFEA allows a better insight into the distribution of internal forces on the 

slab (action side), the shear and punching resistances can be predicted based on the CSCT 

expressions. The CSCT for beam shear and punching shear have some similarities (MUTTONI; 

FERNANDEZ RUIZ, 2010a). For shear and punching mechanisms, it is assumed that that the 

unitary shear strength of members without transverse reinforcement is related to the width w 

and roughness of the critical shear crack, which develops through the inclined compression strut 

carrying shear (MUTTONI, 2008; MUTTONI; FERNANDEZ RUIZ, 2008). For one-way 

shear, the opening of the critical shear crack is related to the strains at the control section ε and, 

hence, of the sectional bending moments m (MUTTONI; FERNANDEZ RUIZ, 2008). For 

punching, the opening of the critical shear crack w is related to the slab rotation ψ around the 

load, which is also dependent on the internal moments m around the load (MUTTONI, 2008). 

In the following sections, more details are given regarding the calculations using the CSCT 

expressions for shear and punching.
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5.4 Proposed refined approach: coupling LEFEA and CSCT expressions 

In this section, the calculations of the refined approach are detailed for (i) one-way shear 

capacity predictions and (ii) punching shear capacity predictions. 

5.4.1 Refined approach for one-way shear analyses 

The one-way shear capacity of the slabs was calculated according to the Critical Shear 

Crack Theory developed by Muttoni and Schwartz (1991) and modified by Muttoni and 

Fernandez Ruiz (2008). The principle of this theory is that the flexural shear strength is 

governed by a flexural crack which develops diagonally (the critical shear crack) and disturbs 

the shear transfer actions. The main shear transfer mechanisms of slender beams according to 

the CSCT are (MUTTONI; FERNANDEZ RUIZ, 2008): (i) compression chord capacity or 

cantilever action (KANI, 1964), (ii) aggregate interlock (WALRAVEN, 1981) and (iii) dowel 

action (DULACSKA, 1972; TAYLOR, 1969). According to this model, the one-way shear 

capacity VR,CSCT depends on the sectional geometry, the concrete compressive strength, the 

critical shear crack width wcr and the crack’s roughness. The roughness is assumed as related 

to the aggregate size dg (VECCHIO; COLLINS, 1986), while the crack width wcr is supposed 

to be proportional to the reference longitudinal strain ε times the effective depth of the member 

dl. The reference longitudinal strain ε is evaluated in the control section at a depth of 0.6dl from 

the compression face, assuming that plane sections remain plane and neglecting the tensile 

strength of the concrete (which is assumed to behave linear elastically in compression). The 

depth of 0.6dl is defined as the position on which the width of the critical shear crack is 

adequately represented. In the absence of external normal forces, the reference strain ε at the 

control depth and height of the compression zone cflex are given by (MUTTONI; FERNANDEZ 

RUIZ, 2008) (SI units; dl in m; mmax in kN/m): 

 
2

1 1s c
flex l l

c l s

E E
c d

E E
r

r

 
=    + -   

 (5.1) 

 
( )

0.6

/ 3

l flexmax

l flexw l l s l flex

d cm

d cb d E d c


r

 -
= 

-    -
 (5.2) 

where mmax is the maximum bending moment at the control section for a given applied 

load, ρl is the flexural reinforcement ratio, Ec is the elastic modulus of concrete, Es is the elastic 

modulus of steel and cflex is the height of the compression zone in the cross-section. In this way, 

the unitary shear capacity vR,shear or failure criterion is calculated as (SI units: fc in MPa; dg in 

mm): 
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where dg is the measured maximum aggregate size if fc < 60 MPa and 0 if higher. The 

one-way shear capacity is calculated by combining the predicted unitary shear strength vR,shear 

with an effective shear width beff (derived from LEFEA with shell elements) and accounting for 

some influence of arching action in the one-way shear resistance for concentrated loads close 

to the support by βshear:  

 ,

,

R shear eff

R CSCT

shear

v b
V




=  (5.4) 

In this approach, the parameters that need to be evaluated in the numerical models are 

the distribution of unitary shear forces v (to calculate vavg and beff), unitary bending moments m 

(to calculate mmax) and the total shear force going through the control section Vcontrol (Figure 5-5 

– to calculate beff) for a given applied load. Alternatively, Vcontrol can be directly determined 

from beam statics. Further details on the numerical models will be given in the next sections.  

The effective shear width beff is calculated by dividing the total shear force going through 

the evaluated direction along the slab width (Vcontrol) by an averaged unitary shear force over 

the control sections vavg (BELLETTI et al., 2015; NATÁRIO; FERNÁNDEZ RUIZ; 

MUTTONI, 2014) determined with the finite element model (Eq. (5.5)). To be consistent with 

the CSCT principles, the control section to calculate the averaged unitary shear forces and the 

maximum bending moments is placed at 0.5dl from the edge of the support on cantilever slabs 

and at 0.5dl from the face of the load for simply supported slabs (Figure 5-5a). The length of 

the control section (distribution width) over which v is averaged to calculate vavg is assumed 4dl 

for cantilever slabs and 4dl + lload for simply supported slabs (Figure 5-5).  In other words, it is 

used a distribution width to calculate an averaged shear force vavg and the effective shear width 

beff is calculated based on vavg:   

 control
eff

avg

V
b

v
=  (5.5) 

The arching action that takes place for loads close to the support, which increases the 

one-way shear resistance for such conditions, is accounted for by βshear (NATÁRIO, 2015) 

(Equation (6)). At this point, however, it shall be remembered that the CSCT was derived 
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assuming flexural-shear failures and that the βshear is only a simplification to allow estimating 

the enhanced resistance in the case of possible shear-compression failures. 

 ,  with 2.75  
2.75

v
shear l v l

l

a
d a d

d
 =  


 (5.6) 

The shear and moment-related redistribution due to cracking is accounted for in the 

numerical models by assuming a Poisson ratio μ = 0 and a reduced shear modulus (Gc = 

Ec/16)(NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; SAGASETA et al., 2014). For 

slabs influenced by arching action (loads close to the support), using beff allows to include the 

effect of the arching action in the load portion from F that is transferred directly to the support. 

Conversely, for slabs subjected to a load further away from the support, the use of beff could be 

suppressed. For such cases, someone could simply compare the design load FEd with the 

calculated load that causes a one-way shear failure Fpredicted. 

Figure 5-5 - Control section location and averaged shear force vavg definition for a) simply 

supported slabs and b) cantilever slabs. Adapted from Natário (2015). 

 
Source: Adapted from Natário (2015). 

 

Figure 5-6a shows the flowchart of calculations performed combining LEFEA outputs 

with the CSCT shear expressions. Firstly, a unitary force Fhyp = 1 kN is applied to the numerical 

model to compute the averaged shear force vavg,1kN and the maximum bending moments mmax,1kN 

over the control section. Then, the effective shear width beff is calculated according to Eq. (5.5) 

and Figure 5-5. In the end, a subroutine is used to find the applied concentrated load Fhyp,i 

iteratively that equals the unitary shear resistance vR,i with the average shear demand vavg,i over 

the control section (see Figure 5-6b). When the iterative process ends, the one-way shear 



153 

 

 

 

capacity (in force units) VR is calculated, accounting for the effective shear width beff and the 

arching action for loads close to the support (av < 2.75 dl). With this procedure, the externally 

applied load (Fpredicted) that causes the sectional shear failure and one-way shear resistance 

(VR,CSCT) are predicted. Fpredicted is the last value of Fhyp,i in the iterative process that makes vR,i 

is equal to vavg,i. At this point, it shall be noted that the value of beff is calculated only once with 

the numerical model and that the unitary shear resistance can be calculated iteratively by any 

other software. 

Figure 5-6 – a) Flowchart of the main steps for evaluating the one-way shear resistance following 

CSCT; b) Sketch of the iterative process combining the shear demand vavg and shear resistance vR. 

 

 

a) b) 
Source: a) Adapted from Belletti et al. (2015); b) Author. 

Since the relation between the applied load and the sectional shear force depends only 

on the load position and support layout, the comparison between tested and predicted 

resistances could be performed directly in terms of the applied concentrated loads in the tests 

Ftest and the predicted value Fpredicted. In other words, for loads that are not influenced by arching 

action, the comparison between the tested and predicted failure loads (Ftest/Fpredicted) equals the 

ratio between tested and predicted shear resistances (Vtest/Vpredicted). Therefore, for such cases, 

the calculation of the effective shear width would not be necessary. In this study, however, the 

effective shear width was calculated for all tests as a way to include the influence of arching 

action when applicable, as recommended by Natário (2015). 
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5.4.2 Refined approach for two-way shear analyses 

The punching shear capacity is assessed by the CSCT (ψx − ψy) method (SAGASETA 

et al., 2011, 2014) inspired by the work of Natário (2015) with some small changes. In this 

method, the control perimeter is placed at dv/2 from the load edges, where dv is the mean depth 

of the flexural reinforcement in both directions. The CSCT expressions for punching shear 

assume that increasing the width of the critical shear crack wcr reduces the strength of the 

compression strut carrying shear around the loaded area (MUTTONI; SCHWARTZ, 1991). 

The width of the critical shear crack wcr is assumed proportional to the product between the slab 

rotation ψ and the effective depth of the reinforcement dv (MUTTONI, 2008; MUTTONI; 

SCHWARTZ, 1991). 

The CSCT considers the shear redistribution around the loaded area in a simplified way. 

In this method, the slab rotations depend on the considered direction and are uneven along the 

control perimeter, meaning that some parts of the slab reach their ultimate strength while others 

still have a potential strength capacity (NATÁRIO, 2015; SAGASETA et al., 2011, 2014). The 

control perimeter is usually divided into four segments assuming constant rotations ψx-ψy and 

unitary strengths vR,x-vR,y for each segment. The control perimeter without round corners was 

adopted in the refined approach to simplify the post-processing of the numerical results. The 

punching shear strength is given by: 

 
, 1 0, 1 , 2 0, 2 , 1 0, 1 , 2 0, 2R R x x R x x R y y R y yV v b v b v b v b=  +  +  +   (5.7) 

where b0,ij are defined in Figure 5-7 (i refer to the directions evaluated, direction x or y, 

and j refer to the side of the control perimeter in the evaluated direction, sides 1 or 2); the 

unitary/nominal shear strength in each segment vR,ij is calculated as (FÉDÉRATION 

INTERNATIONALE DU BÉTON (FIB), 2012) (SI units: fc in MPa; dg in mm): 
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The rotations ψij in each side of the control perimeter were calculated according to Level 

of Approximation III from the fib Model Code provisions (FÉDÉRATION 
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INTERNATIONALE DU BÉTON (FIB), 2012), which are based on the CSCT (MUTTONI, 

2008). In each segment of the control perimeter, the rotation was calculated as: 
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 (5.11) 

Natário (2015) explains that rs,ij is the distance between the center of the concentrated 

load and the point where the acting unitary bending moment in the direction of the relevant 

reinforcement is zero (Figure 5-7a), di is the effective flexural depth in the appropriate direction, 

fyi is the steel yielding stress, Es is Young’s modulus of steel, ms,ij is the averaged acting bending 

moment at the loading plate edge ij within the width bs (Figure 5-7c) and mR,i is the yielding 

moment per unit length in the evaluated direction. The support strip width bs is calculated as: 

  , ,min 1.5     s s ij s jib r r i j=   ⊥  (5.12) 

Figure 5-7 - Definition of (a) rsi distances; b) reduced control perimeters for square loads; and c) 

averaged acting bending moments at the edges of the concentrated load and support strip widths. 

Adapted from Natário (2015). 

 
Source: Adapted from Natário (2015). 
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The length of each segment of the control perimeter (b0,x1, b0,x2, b0,y1 and b0,y2), calculated 

without rounded corners as in Natário (2015), was given by the ratio between the maximum 

applied unitary shear force perpendicular to the control perimeter (vx1,max, vx2,max, vy1,max and 

vy2,max,) and the total shear force going through that perimeter (Vx1,Vx2,Vy1,Vy2) (Figure 5-7b). 

Figure 5-8 – a) Flowchart of the main steps for the evaluation of the punching capacity with the 

CSCT (ψx − ψy) method; b) Sketch of how the punching capacity is determined in the iterative 

process.     

  

 

a) b) 
Source: Author. 

Figure 5-8 shows the main steps to predict the punching shear capacity of slabs coupling 

LEFEA with the CSCT model for non-axis-symmetrical punching (SAGASETA et al., 2014). 

First, a LEFEA is carried out to compute the distribution of shear forces (vij,max = vx1,max, vx2,max, 

vy1,max, vy2,max) and averaged bending moments (ms,ij = mx1, mx2, my1, my2) over the control 

sections for an applied load equals 1 kN. At this step, the total shear force on each portion of 

the control perimeter (Vx1 , Vx2 , Vy1 and Vy2) and the slab strip width bs shall also be calculated. 

Afterwards, the reduced control perimeter segments b0,ij are calculated for each side of the 

control perimeter. These values are entered as input in a subroutine that calculates iteratively 

the punching load PE(i) that is equal to the punching resistance PR(i). Notably, the number of 

outputs of the LEFEA is higher than that required for one-way shear since control perimeter 

segments are applied. 
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A factor was derived by linear regression analyses to avoid overly unsafe predictions of 

punching capacity for the tests that failed as wide beams in shear (WB) highlighted in Figure 

5-2b. Due to the shear flow characteristics of one-way slabs, a smaller portion of the load is 

transferred by the lateral sides of the control perimeter when the slab width is small (see Figure 

5-9). As a consequence, these sides of the control perimeter may have a small contribution to 

the punching capacity for small values of bslab/lload. The influence of the ratio slab width-to-load 

size into the effective contribution of the sides of the control perimeter to the punching capacity 

(see Figure 5-9) was not considered by Natário (2015) and is considered herein by multiplying 

the punching resistance VR,y1 and VR,y2 by a factor CFwidth. This factor was derived assuming 

that the factor should vary between 0 and 1 and that the contribution of the lateral sides of the 

control perimeter increase by a square polynomial function. The constants of the polynomial 

function were adjusted to improve the predictions of punching capacity for a larger dataset of 

one-way slabs under concentrated loads presented by Sousa et al. (2021c). 

( ) ( )
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1,  if / 12.5
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b l
CF

b l b l b l


= 

 +  -  

 (5.13) 

  
Figure 5-9 - Influence of the ratio bslab/lload on the shear flow crossing the sides of the control 

perimeter parallel to the free edges. 

 

  
Source: Author. 

Therefore, the following calculations are used to compute the contribution of each side 

of the control perimeter into the punching capacity (SI units: fc in MPa; dg in mm): 
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The punching capacity for square loads or not elongated (rectangular) loads (lload < 3dv 

and bload < 3dv) is then given by the sum of the capacities of the perimeter segments: 

 
, , 1 , 2 , 1 , 2R punch R x R x R y R yP V V V V= + + +  (5.18) 

Slabs subjected to elongated loads develop some particular characteristics that need to 

be considered. The shear flow assumes a radial pattern in the corners, with a high concentration 

of shear flow in these regions. Conversely, the shear flow in the elongated sides has lines almost 

parallel to each other with lower demand in this region (Figure 5-10a). Following the approach 

proposed by Natário (2015) and inspired by the works from Sagaseta et al. (2014), the 

contribution of the control perimeter in the corners is calculated by the two-way shear 

expressions (PR,puch). In Natário's approach, the same expressions to calculate the one-way shear 

capacity of such slabs were used in the region with one-way shear behavior, which increased 

the post-processing effort of the numerical models. In this study, a simplification was performed 

on this part of the calculations based on the work from Setiawan et al. (2020).  

When the loaded area is elongated on one of the sides (lload > 3dv or bload > 3dv), the 

contribution of the elongated sides not included in the computation of b0,x1, b0,x2, b0,y1 and b0,y2 

shall be considered assuming a one-way shear behavior for such lengths (blue lines in Figure 

5-10b). These limits to define the regions considered with two-way shear behavior or one-way 

shear behavior are based on the current fib Model Code 2010 (FÉDÉRATION 

INTERNATIONALE DU BÉTON (FIB), 2012). However, the control perimeter herein was 

defined without rounded corners to simplify the post-processing of the numerical models. In 

practice, four sides of the load can be higher than 3dv and the shape of the load be square, but 

the idea remains similar to that applied for elongated loads. 
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Figure 5-10 – a) Sketch of distribution of nominal shear forces along the control perimeter of 

elongated loads (assuming only two sides > 3dv) with the concentration of shear forces at the 

corners; b) lengths of the sides of the control perimeter with two-way shear and one-way shear 

(control perimeter without rounded corners used in the calculations); c) sketch of the areas that 

shall be integrated to determine the shear force distribution around the control perimeter. 

 
Source: Author. 

In this study, the contribution of the sides ls (Figure 5-10b) is computed according to 

Setiawan et al. (SETIAWAN et al., 2020) and  Cavagnis, Fernández Ruiz and Muttoni (2018a) 

(assuming only two sides of the load larger than 3dv):  
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 (5.19) 

Herein, vc,min is the minimum shear resistance per unit length (assuming reinforcement 

yielding), k = 0.019, εy = is the flexural reinforcement yield strain (= 0.0025), ls is the length of 

the sides assumed with one-way shear behavior (Figure 5-10), and ddg is the parameter that 

considerers the crack roughness, which is calculated as follows (SI units: fc in MPa; dg in mm): 
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 (5.20) 

The total punching capacity for elongated loads is given by: 
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5.5 Proposed approach for simplified calculations 

In this section, the calculations of the simplified approach are detailed for (i) one-way 

shear capacity predictions and (ii) punching shear capacity predictions. 

5.5.1 Proposed analytical approach for one-way shear predictions  

The one-way shear resistance vR was calculated with the same expressions described 

previously in the refined approach, assuming a beam behavior to determine the relation between 

Fhyp, mi and vi. In practice, this means using a static system of a beam with a unitary width to 

compute the unitary bending moments and shear forces assumed constant along this length. 

After defining the unitary shear resistance in the iterative process (Figure 5-6), the predicted 

sectional shear resistance is found multiplying the calculated unitary resistance by the predicted 

effective shear width. 

As identified in previous studies (SOUSA et al., 2021c; LANTSOGHT; VAN DER 

VEEN; WALRAVEN, 2013), the French effective shear width (beff,french) works reasonably well 

when the governing failure mechanism is one-way shear. This occurs mainly when the load is 

placed at positions with av/dl lower lower than 2.75 (the region that may benefit from arching 

action). Herein, av/dl is the clear shear span to effective depth ratios. However, for thin slabs 

and slabs under a concentrated load far away from the support (av/dl > 2.75), the predicted 

effective shear width with this approach may overestimate the one-way shear capacity (SOUSA 

et al., 2021c; HALVONIK; VIDAKOVIĆ; VIDA, 2020). This commonly occurs when the 

governing shear failure mode is punching instead of one-way shear. To solve this issue, this 

study proposes to use a modified effective shear width according to the clear shear span to depth 

ratio (av/dl):   
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 (5.22) 

In this approach, the predicted effective shear width beff,proposed decreases for large 

distances of the load to the support. Herein, it is assumed that when the shear transfer is not 

benefited from arching action (av/dl > 2.75), the predicted effective shear width should be 

adjusted. 
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Figure 5-11a shows a sketch of the practical effect of CFshear according to the load 

position. Moreover, Figure 5-11b shows the cracking pattern of tests performed by Reiβen 

(2016), which clearly indicates a change of governing failure mechanism by varying the load 

position and, hence, the clear shear span to effective depth ratio av/dl. 

Figure 5-11 - Modified effective shear width according to the ratio av/dl and b) cracking pattern 

of tests from Reißen, Classen and Hegger (2018) varying the load position and that developed 

different failure shear mechanisms. 

 
Source: Author. 

5.5.2 Proposed analytical approach for two-way shear predictions 

To allow a simplified estimation of the rotations without the use of LEFEA, it is 

proposed in this study to use expressions based on the ratio between the applied concentrated 

load P and the flexural resistance Pflex estimated by yield line analyses. The expressions used 

to compute the rotations around the loaded area of simply supported slabs are: 
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 (5.23) 

For a conservative prediction, the maximum rotation computed shall be used (ψmax). In 

the proposed approach, the punching-resisting control perimeter is calculated without rounded 

corners (to allow a fair comparison with the approach based on LEFEA) and without any 
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reduction due to the distribution of shear stresses on the perimeter (Figure 5-7b). Therefore, the 

sides of the control perimeter are calculated as: 
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Three yield line mechanisms, suggested by Belletti et al. (2014), were evaluated to 

predict the flexural capacity of slabs under concentrated loads Pflex (Figure 5-12). A comparison 

between tested and predicted flexural capacities of slabs under concentrated loads using these 

yield lines was performed previously. Mechanism 1 (with the yield line extending across the 

whole slab width) provided the best fit with the experimental results. Therefore, the flexural 

capacity of the slabs was predicted by the following expression: 

Figure 5-12 - Yield line mechanisms for simply supported slabs under CL based on Belletti et al. 

(2014). 

 
Source: Adapted from Belletti et al. (2014). 
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The same factors and approaches used to compute the effect of the free edges on the 

contribution of the lateral sides of the control perimeter are applied in this simplified approach. 

The same calculations were also performed to compute the contribution of the elongated sides 

with predominant one-way shear when applicable. 

5.6 Predicting the governing shear failure mode 

In a design or assessment task, the most critical failure mechanism would be defined by 

the lower ratio between the design loads and load effects (VRd/VEd and PRd/PEd). Here, VRd and 

VEd are the design shear capacities and design shear actions, respectively. PEd and PRd are the 
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respective design concentrated loads and design punching capacities. Knowing the tested 

concentrated loads and shear forces at failure (Ptest and Vtest) from the laboratory tests, Natário 

(2015) suggests that the governing failure mode would be related to the maximum ratio between 

Ptest/Ppredicted and Vtest/Vpredicted, where Ptest and Ppredicted are the tested and predicted punching 

capacities, respectively; Vtest and Vpredicted are tested and predicted one-way shear capacities. 

Since using the term one-way shear capacity for tests that failed by punching or punching 

capacity for the tests that failed by shear could be inconsistent, a different definition was used 

along with this study. The tested one-way shear capacity means the maximum sectional one-

way shear occuring in the test. In the same way, the tested punching capacity means the 

externally applied load at failure.  Vtest and Ptest include the influence of the self-weight. The 

tested one-way shear capacity considers the control section for computing the self-weight 

influence halfway between the load and the support. 

Therefore, if the ratio Vtest/Vpredicted is larger than Ptest/Ppredicted, one-way shear is 

theoretically more critical than punching shear, and the predicted governing failure mode is 

one-way shear. Another way to see how this makes sense is to look for the lower predicted 

resistance compared to the tested load (for shear and punching predictions), which also gives 

the larger ratio between tested and predicted resistances.  In this study, the strength ratio SR = 

max {Vtest/Vpredicted; Ptest/Ppredicted} is defined to predict the most critical failure mechanism 

without knowing the observed failure mode on the tests. Besides, this parameter is also used to 

investigate the level of conservatism of the investigated approaches combining the shear and 

punching predictions.  

5.7 Finite element models for the refined approach 

In this study, the finite element software ABAQUS (version 6.14) (DASSAULT 

SYSTEMS SIMULIA CORP., 2014) is used to evaluate the distribution of bending moments 

and shear forces at the control sections for one-way and two-way shear analyses (Figure 5-13). 

A 4-node shell element with reduced integration (S4R), hourglass control and finite membrane 

strains is used to simulate the slab. An 8-node linear brick element with reduced integration and 

hourglass control is used to simulate the plate supports (C3D8R). Interface properties of (i) hard 

contact (free to uplift) and (ii) frictionless are assumed at the contact between the plate supports 

and the slab surface. Alternatively, compression-only supports could be used along the support 

axis from the slab instead of including solid elements with interaction properties between the 

shell and solid elements, such as made by Natário (2015). The reinforcement was not modeled 
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in the finite element models since its influence on the results was accounted for in the analytical 

shear and punching shear expressions. 

Figure 5-13 - Overview of the numerical models developed highlighting the evaluated regions for 

one-way shear and punching shear analyses. 

 
Source: Author. 

The mesh size chosen varied according to the numerical models between 10 mm and 20 

mm. In practice, the mesh size was chosen to assure a minimum amount of 8 elements 

distributed along the load edges. Based on mesh studies, the results seem to be mesh 

independent when at least 8 finite elements are distributed along the load edges. The vertical 

displacements are constrained at the support axis on the bottom face of the solid elements, 

simulating simple supports. The load is simulated by applying a uniform pressure with a 

resulting load equal to 1 kN on the loading plate.  Further details about the control sections and 

calculations of internal forces can be consulted elsewhere (SOUSA et al., 2021a; NATÁRIO, 

2015). The concrete shear modulus used Gc,used is taken as 1/8 of Gc based on Natário (2015) 

(this value was calibrated based on comparisons between the test results and calculated ones 

and represents the cracked concrete at failure), with Gc calculated as::   

 
( )2 1

c
c

E
G


=

 +
 (5.26) 

The Poisson’s coefficient μ is assumed as equal zero to account for the concrete cracking 

(NATÁRIO, 2015; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; SAGASETA et al., 

2014; VAZ RODRIGUES; FERNÁNDEZ RUIZ; MUTTONI, 2008). For simply supported 

slabs, a line of vertical displacement was constrained at the middle width of the support plates 

with free rotation (example in Figure 5-14).  
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Figure 5-14 - Example of boundary conditions applied in the numerical models. 

 
Source: Author. 

5.8 Dataset from literature 

In this study, the same dataset used by Natário (2015) (here named Dataset A) was 

investigated in order to allow a fair comparison between results. This dataset includes 48 tests 

from the following references: Damasceno (2007), Ferreira (2006), Regan and Rezai-Jarobi 

(1988), and Reiβen et al. (2018). Only simply supported slabs were evaluated. 

In this dataset, 30 tests were classified as failing by a clear punching (P, with none or 

some reinforcement yielding at failure). Two tests were classified as failing by a mixed-mode 

between one-way shear and two-way shear (WB+P) and 16 tests were classified as failing by 

one-way shear as wide beams (WB).  

The majority of the tests were designed to achieve shear or punching failure modes. As 

a consequence, more than 95% of the tests have reinforcement ratios larger than 0.98%. All 

tests have a shear span to effective depth ratio a/d higher than 3. However, five tests were 

identified with ratio av/dl < 3 and, hence, may have been influenced by the formation of direct 

compressive struts between the load and the support, such as identified in Figure 5-11b by the 

cracking pattern. The thickness of the tests varied between 100 mm and 280 mm. Due to the 

limited thickness in the tests with 100 mm [3.93 in] of thickness, some of these developed a 

punching failure with reinforcement yielding. 

5.9 Results of Chapter 5 

Predicting the most critical failure mode is one of the main tasks in the assessment of 

existing structures but is seldomly treated in the literature. Figure 5-15 compares the tested and 

predicted resistances for dataset A in terms of shear and punching capacities. The maximum 

strength ratio SR was calculated as the maximum of Vtest/Vpredicted and Ptest/Ppredicted, and used to 

identify the most critical failure mechanism (theoretically). The most critical failure mechanism 

is the one providing the higher values between Vtest/Vpredicted and Ptest/Ppredicted. Figure 5-15a,b,c 

uses only analytical expressions to define the effective shear width (one-way shear) and the 
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punching capacity (using the ratio P/Pflex in calculating the slab rotations ψ). Figure 5-15d,e,f 

combines the outputs from LEFEA with the expressions based on the CSCT for shear and 

punching, such as proposed by Natário (2015). In this way, the benefits of using LEFEA can 

be investigated.  

In Figure 5-15a, the average (AVG) ratio Vtest/Vpredicted was 1.06, with a coefficient of 

variation (COV) equal to 15.4%. Using the punching expressions, the average ratio between 

tested and predicted resistances Ptest/Ppredicted was 1.14 with a 13.1% of COV (Figure 5-15b). 

The lower scatter observed for the punching expressions is reasonable since most of the tests in 

the dataset developed a punching failure mode. In practice, the most unsafe predictions of one-

way shear capacity occurred for the tests that failed by punching, and the most unsafe 

predictions of punching occurred for the tests that failed as wide beams in shear. In general, 

however, both approaches provided a good precision if considering the complexity of the 

problem.  

Compared to the approach presented by Natário (2015) (Figure 5-1), the results of the 

proposed analytical approach were slightly more accurate, which is expected since this study 

calibrated the correction factors for shear and punching predictions to achieve a better 

performance of the proposed approach. Besides, the predictions of the punching capacity using 

the proposed analytical recommendations were more precise and conservative because the 

influence of the slab width and load size was considered by CFwidth (see Figure 5-2b). The ratio 

SR achieved an AVG equal to 1.18 with a COV equal to 12.6% (Figure 5-15c), which is a level 

of accuracy and precision comparable to the models of one-way shear or two-way shear 

expressions used to evaluate datasets of beams (MUTTONI; FERNANDEZ RUIZ, 2008) and 

flat slabs (MUTTONI, 2008). The correct failure mechanism was determined in 69% of the 

tests, which is also interesting since only analytical expressions were used. 

Similar results were observed combining the outputs from LEFEA into the CSCT 

expressions (Figure 5-15d,e,f). First, the one-way shear expressions provided an AVG ratio 

equal to 1.16 with a COV equal to 13.3% (Figure 5-15d). Therefore, the level of precision of 

the one-way shear expressions was excellent, even though most tests in Dataset A failed by 

punching. This occurs because the most critical section for one-way shear and punching are 

close to the load edge and, when the one-way shear resistance at the face of the load is achieved, 

the punching capacity of the slab will also be critical in this region. Proof of this explanation is 

that an asymmetrical punching cone, with the critical shear crack visible at only the face of the 
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load, was identified in the tests of Reiβen et al. (2018) that failed by punching (Figure 5-11b). 

Herein, it should be noted that the factor CFshear was not applied in the approach including 

LEFEA for one-way shear predictions. 

Figure 5-15 - Comparison between tested and predicted resistances for shear and punching and 

statistics of tested to predicted values. Notes: P = punching; WB = wide beam shear failure (one-

way shear); WB+P = mixed failure mode or not clear between WB and P. 

   
a) Vtest/Vpred using only 

analytical expressions 

(beff,proposed as suggested in 

equation (23)) – proposed 

approach 

b) Ptest/Ppred using only 

analytical expressions (YLM 

for ψ) 

- proposed approach 

c) SR based on a) and b) 

results -  

proposed approach 

   
d) Vtest/Vpred combining 

LEFEA with the CSCT 

expressions for shear 

(MUTTONI; FERNANDEZ 

RUIZ, 2008) 

e) Ptest/Ppred combining 

LEFEA with the CSCT 

expressions for punching 

(MUTTONI, 2008) 

f) SR calculated based on the 

results of d) and e) 

Source: Author. 

The punching expression combined with LEFEA reached an average ratio equal to 1.20 

with a coefficient of variation of 19.5% (Figure 5-15e). Therefore, the predictions in the 

proposed approach using LEFEA were slightly better than those presented by Natário (2015) 

(see Figure 5-2b). In practice, the predictions of punching capacity improved for the tests that 

failed as wide beams in shear using LEFEA and including the semi-empirical factor CFwidth 
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related to the ratio bslab/lload. The average strength ratio SR was 1.26 with COV equal to 15.5% 

(Figure 5-15e). The correct failure mechanism was predicted in 88% of the cases. Therefore, 

using LEFEA allowed improving the predictions of the governing failure mechanism and 

decreasing the conservatism of the predictions slightly. Comparatively, Natário (2015) 

correctly predicted the governing failure mechanism in 69% of the cases (Figure 5-2) using a 

similar approach and including LEFEA. 

5.10 Discussions of Chapter 5 

Most studies related to one-way slabs under concentrated loads close to the support 

focused on the assessment by the combination of one-way shear models with an effective shear 

width  (HALVONIK; VIDAKOVIĆ; VIDA, 2020; HENZE; ROMBACH; HARTER, 2020; 

NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; REIßEN; CLASSEN; HEGGER, 2018). 

Besides, most models of effective shear width (SOUSA et al., 2021c; LANTSOGHT et al., 

2015a) based on the horizontal spreading of the load to the support predict an increasing 

effective shear width by increasing the clear shear span av or the ratio av/dl. Based on this, a 

larger shear capacity Vpredicted could be expected for slabs under loads at large distances from 

the support if the shear slenderness effect is not accounted for in the one-way shear resistance 

expressions, such as and ACI 318-19 (ACI COMMITTEE 318, 2019), for instance. If the shear 

slenderness is accounted for, as for the CSCT expressions (MUTTONI, 2008; MUTTONI; 

FERNANDEZ RUIZ, 2008) which include the influence of the bending moment, an increase 

of the effective shear width could be counterbalanced by the decrease of the unitary shear 

resistance by increasing av/dl. Consequently, the sectional shear at failure Vtest would not be as 

much influenced by av/dl.  

For larger ratios av/dl (for instance, > 4), slabs commonly fail by punching or in a 

transitional failure mode between one-way shear and two-way shear (SOUSA et al., 2021a; 

LANTSOGHT et al., 2015c) or in flexure. Because of this, the available one-way shear capacity 

may eventually not be reached. In this case, the predictions of one-way shear capacity using 

only analytical expressions may become unsafe, such as observed in other publications 

(HALVONIK; VIDAKOVIĆ; VIDA, 2020; LANTSOGHT et al., 2015d) when using the 

French effective shear width. In this study, this problem was countered in the fully analytical 

approach by including a semi-empirical factor to decrease the effective shear width predicted 

with the French approach when the shear slenderness increases. In the approach using LEFEA, 

the predicted effective shear width (Figure 5-6) provides a conservative measurement even for 

the tests that failed by punching (Figure 5-15a). When evaluating the punching capacity of one-
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way slabs, conversely, the effect of the slab width and load size play a marked influence on the 

predictions. Lantsoght et al. (2015d) and Natário (2015) found unsafe predictions of punching 

capacity for many tests that failed as wide beams using different approaches (fully analytical or 

combined with LEFEA). Until now, no specific publication addressed this problem, which was 

simplistically accounted for in this study by a semi-empirical factor CFwidth that considers a 

lower contribution for some edges of the control perimeter depending on the relation between 

the slab width and the load size in the width direction. 

In this study, it was used a comparison between the ratios Vtest/Vpredicted and Ptest/Ppredicted 

to determine the most critical failure mechanism. In practice, one could also perform a 

comparison between the predicted load F that causes a one-way shear failure and F that causes 

a punching failure to determine the most critical value of the concentrated load. However, in 

this study, this approach was not used because it would require further adjustments on how to 

include the effect of arching action on the predicted failure load F. 

One of the main ideas of using Levels of Approximations is that improved predictions 

of shear and punching capacity could be achieved by devoting more time and computational 

effort to estimating parameters required in the expressions (FÉDÉRATION 

INTERNATIONALE DU BÉTON (FIB), 2012). In this study, the statistical properties of the 

analytical approach were slightly more accurate than the refined one due to the way in which 

the correction factors were derived in the fully analytical approach. The predictions using the 

simpler approach (only analytical expressions) can become more conservative, as would be 

expected in a Level of Approximation I, by multiplying the factors CFwidth and CFshear by 

reduction factors not included herein. It draws attention that both simplified and refined 

approaches led to a small coefficient of variation in the predictions (COV < 20%). In addition 

to allowing a broad insight into the distribution of shear and internal moments of the slabs, the 

data from LEFEA allowed improving predicting the governing failure mechanism, which 

increased from 69% at LoA I to 88% at LoA II. In practice, it can be stated that the refined 

approach is a more powerful tool since it may be extended directly to most complex cases not 

covered in laboratory tests. 

5.11 Conclusions of Chapter 5 

In this study, the one-way and two-way shear expressions based on the CSCT were 

investigated from different viewpoints: (i) how accurate these expressions can be to predict the 

most critical shear failure mode of slabs that failed in different modes using only analytical 
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expressions or combined to LEFEA and (ii) how the predictions are improved using LEFEA to 

predict the correct failure mechanism. From this study, the following conclusions can be drawn: 

• The proposed approach using only analytical expressions combined with the CSCT 

allows predicting precisely the shear and punching capacity of simply supported slabs 

in a conservative way, regardless of the governing failure mechanism of the tests. The 

predictions of the shear and punching capacity were improved by including two semi-

empirical factors (CFwidth and CFshear) related to the transition from one-way shear to 

punching failures according to parameters such as the ratio av/dl or bslab/lload (expression 

5.13 for punching shear and expressions 5.22 for one-way shear). 

• The coupling of the CSCT expressions with LEFEA allows improving the predictions 

of the governing failure mechanism. In practice, this approach is more suitable for the 

assessment of existing structures when higher levels of approximation are required. 

• The transition of the governing failure mechanisms according to parameters such as the 

shear slenderness and the slab width to load size can be reasonably captured with the 

proposed semi-empirical factors. In this study, CFshear was applied in the simplified 

approach and CFwidth was applied in the simplified and refined approaches.  

• One of the main advantages of using LEFEA to assess the shear and punching capacity 

of slabs under concentrated loads is that a more precise prediction of the governing 

failure mechanism is achieved. Besides that, the distribution of shear forces and 

moments around the interest according to the boundary conditions are captured more 

realistically.  

In summary, LEFEA is an interesting tool for assessing existing structures or reaching 

a more rational design of new structures since it allows to predict more accurately the governing 

failure mechanism of slabs. At the same time, the proposed analytical expressions have been 

shown to lead to good results for the shear and punching capacity in the absence of finite 

element software. 
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6 BEHAVIOR AND PUNCHING CAPACITY OF 

FLAT SLABS WITH THE RATIONAL USE OF 

UHPFRC: NLFEA AND ANALYTICAL 

PREDICTIONS 

One-way slabs under concentrated loads may fail either by one-way shear as wide beams 

or by two-way shear (punching). Because of this, it would be important to develop studies that 

address one-way shear and two-way shear in depth before exploring the problem of one-way 

slabs under concentrated loads. As we also developed a specific study emphasizing the one-

way shear behavior of wide members (Chapter 3), we also tried to develop a specific study 

focused on the two-way shear behavior of slabs under concentrated loads. In this way, a solid 

understanding of both one-way shear and punching shear failures could be supported. 

In this chapter, the focus was addressing the punching capacity of slab-column 

connections designed with the rational use of ultra-high-performance fiber-reinforced concrete. 

In practice, this chapter allowed addressing one of the possible failure mechanisms of one-way 

slabs under concentrated loads more closely: punching. In this context, the punching capacity 

of flat slabs with different reinforcement ratios was investigated. Herein, the predictions of 

punching capacity were developed in the framework of the Critical Shear Crack Theory 

expressions after several non-linear finite element analyses (NLFEA). Therefore, this chapter 

has also introduced another tool that can be used to assess reinforced concrete slabs under 

concentrated loads: the NLFEA. At this point, it's important to note that this chapter allowed 

calibration and validate the proposed modeling approach to deal first with the concentric 

punching failures before applying the same approach to one-way slabs under concentrated loads 

in asymmetrical positions. 

Besides, the use of UHPFRC in line with this study in another context. Sometimes, slabs 

preliminary rated as critical in shear or punching need to be strengthened. Nowadays, one of 

the alternatives is to add a thin layer of UHPFRC over the existing slab after adequate surface 

preparation. In practice, this thin layer is most frequently added on the tensiled side of the slabs. 

However, some studies indicated that adding this layer on the compressed side would be more 

efficient. Therefore, some aspects of the strengthening and design of slabs with the rational use 

of UHPFRC need further investigation. 
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6.1 Introduction of Chapter 6 

Ultra-high-performance fiber-reinforced concrete (UHPFRC) is a cementitious material 

produced with Portland cement, pozzolans, small-size aggregates, inert fillers, 

superplasticizers, and surface-treated steel fibers (FEHLING et al., 2014; KRAHL; 

CARRAZEDO; EL DEBS, 2018). The outstanding properties of (i) high compressive strength 

(GRAYBEAL, 2007; KRAHL; GIDRÃO; CARRAZEDO, 2018; KRAHL; GIDRÃO; 

CARRAZEDO, 2019), (ii) low permeability of the hardened composite, and (iii) high residual 

tensile strength compared to normal strength concrete (NSC) and steel fiber-reinforced concrete 

(SFRC) (GRAYBEAL et al., 2020) make this material a promising solution to improve the 

punching capacity, durability, and deformation capacity of reinforced concrete (RC) flat slabs, 

and in particular slab-column connections (AL-QURAISHI, 2014; HARRIS, 2004; JOH; 

HWANG; KIM, 2008; MOREILLON, 2013; NAAMAN; LIKHITRUANGSILP; PARRA-

MONTESINOS, 2007; NGUYEN; NGUYEN; PANSUK, 2017; SHOUKRY; TARABIA; 

YASSIN, 2020; SPASOJEVIC; REDAELLI; MUTTONI, 2009; ZOHREVAND et al., 2014). 

For instance, in the case of RC beams failing in shear, experimental studies already showed that 

a total replacement of NSC by UHPFRC allowed increasing the normalized shear capacity by 

more than 70% and improved the deformation capacity at failure (POURBABA; JOGHATAIE; 

MIRMIRAN, 2018). 

 Although UHPFRC is more costly than NSC, its improved structural properties usually 

decrease the material consumption, reinforcement ratios, maintenance costs and increase the 

service life (AZMEE; SHAFIQ, 2018; ZHU et al., 2018), which balance the overall cost of 

using UHPFRC for structural applications (GRAYBEAL et al., 2020). Traditionally, the main 

hurdle for spreading the use of UHPFRC as a building material for structural elements has been 

the lack of structural design guidance for this class of material (GRAYBEAL et al., 2020). Since 

the number of tests on slab-column connections built with UHPFRC is limited (MOREILLON, 

2013; NGUYEN; NGUYEN; PANSUK, 2017; SUTER; MOREILLON, 2010; ZOHREVAND 

et al., 2014), the use of non-linear finite element analyses (NLFEA) could be a valuable tool to 

extend the knowledge about the behavior of such connections.  

Several studies investigated numerical modeling approaches to predict the punching 

shear behavior of slab-column connections made entirely with NSC (NSC flat slabs) with and 

without shear reinforcement (BALOMENOS; GENIKOMSOU; POLAK, 2018; 

GENIKOMSOU; POLAK, 2015, 2016, 2017a, 2017b; MILLIGAN; POLAK; ZURELL, 2020, 

2021; NAVARRO; IVORRA; VARONA, 2018, 2020). In these, the NLFEA aided 
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understanding and evaluating the effect of parameters such as openings close to the column on 

the structural response of flat slabs (GENIKOMSOU; POLAK, 2017a; MARQUES et al., 2020) 

and the compressive membrane action effect (GENIKOMSOU; POLAK, 2017b). On the other 

hand, only a few studies described modeling approaches for using UHPFRC in slab-column 

connections (MENNA; GENIKOMSOU, 2021; WU et al., 2019). In these studies (MENNA; 

GENIKOMSOU, 2021; WU et al., 2019), the UHPFRC was used only as an extra layer at the 

slab tensile side (strengthening material). The main acting forces were tangential stresses at the 

interface between the NSC and the UHPFRC and tensile forces induced by flexure at the 

UHPFRC layer. Therefore, these applications do not take advantage of the higher compressive 

strength of the UHPFRC compared to NSC. Moreover, there is a low number of numerical 

studies on using UHPFRC as the main material in the shear-critical regions (KADHIM et al., 

2021; KADHIM; JAWDHARI; PEIRIS, 2021). 

 At the same time, a reasonable amount of experimental studies investigated the 

punching capacity of slab-column connections designed with the rational use of advanced 

composites on the slab-column connection, such as SFRC (CHENG; PARRA-MONTESINOS, 

2010; GOUVEIA; FARIA; RAMOS, 2019a, 2019b; THEODORAKOPOULOS; SWAMY, 

1993) and ultra-high-performance concrete (UHPC – without fibers) (INÁCIO et al., 2020; 

INÁCIO; LAPI; PINHO RAMOS, 2020). Although UHPFRC combines the higher 

compressive strength of the UHPC and the higher residual tensile strength compared to the 

SFRC, only a few studies investigated the performance of slab-column connections with the 

rational use of UHPFRC at the shear-critical regions (QI et al., 2021; ZOHREVAND et al., 

2014). 

 Therefore, the present study examines the behavior of flat slabs designed with the 

rational use of UHPFRC in shear-critical regions (Figure 6-1) aided by three-dimensional 

NLFEA. Moreover, parametric analyses investigate the influence of the (i) reinforcement ratio 

and (ii) geometry of the UHPFRC layer on the punching capacity of NSC-UHPFRC flat slabs. 

Since analytical methods are preferable in daily engineering for preliminary designs, this 

chapter also proposes an analytical approach based on the critical shear crack theory (CSCT) 

(MUTTONI, 2008) to assess the punching capacity of flat slabs designed with the rational use 

of UHPFRC. 
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Figure 6-1 – Detail of the slab-column connection with the rational use of UHPFRC. 

 
Source: Adapted from Moreillon (2013). 

Firstly, control slabs were used to validate the non-linear finite element models (FEM) 

developed. After that, a parametric study was conducted to investigate the influence of (i) the 

reinforcement ratio and (ii) different configurations of the UHPFRC layer on the punching 

capacity of NSC-UHPFRC flat slabs. In the end, the experimental control results, as well as the 

numerical results from the parametric analyses, were evaluated by the proposed analytical 

approach. 

6.2 Control specimens from literature 

In this section, the following aspects are addressed: (i) the choice of the control tests 

from the literature, (ii) the geometry and (iii) the material properties of the control tests. 

6.2.1 Choice of control specimens 

All ten slab-column connections used in this study as control experiments were tested 

by Zohrevand et al. (2014). These specimens were chosen because they include three groups of 

specimens: (i) NSC flat slabs, (ii) UHPFRC flat slabs and (iii) flat slabs combining NSC and 

UHPFRC, with the last rationally used at the slab-column connection (NSC-UHPFRC flat 

slabs). Therefore, these tests allow validating separately the material models used to simulate 

the NSC and the UHPFRC. Moreover, the experimental program from Zohrevand et al. (2014) 

also stood out by including specimens with high and lower reinforcement ratios (1.8% and 

0.6%, respectively). Since flat slabs under punching loads may show different failure modes 

according to the reinforcement ratio, such as brittle punching failure or flexure-induced 

punching with reinforcement yielding (GUANDALINI; BURDET; MUTTONI, 2009), the 

selected control specimens allowed to validate the NLFEA under different failure mechanisms.  

6.2.2 Geometry of control experiments 

Figure 6-2  shows the geometry of the control experiments tested by Zohrevand et al. 

(2014). The experimental program considered three groups of slabs: (i) fully made with NSC 

(C1.8 and C0.6, where 1.8 and 0.6 refer to the reinforcement ratio of the slab); (ii) fully made 

with UHPFRC (U1.8 and U0.6) and (iii) hybrid slabs with the rational use of UHPFRC, which 
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means that UHPFRC was used only on the slab-column connection area, while NSC was used 

for the remaining slab (Figure 6-2). Table 6-1 describes the geometry of the strengthened area 

with UHPFRC and the reinforcement ratio for the ten tests investigated in this study. Note that 

the specimens CU-A-F and CU-C-F used the UHPFRC layer over the entire thickness, while 

the specimens CU-B-H used UHPFRC only for half of the thickness. 

All slabs were square with 1219 mm × 1219 mm in plan and with 114 mm of thickness. 

These slabs were loaded at the center on an area of 76 mm × 76 mm. Each specimen was 

supported on rigid frames over a length of 152.5 mm on all four sides free to lift. At the interface 

between the slabs and the rigid frame, the authors (ZOHREVAND et al., 2014) described using 

a gypsum cement layer to level the slabs over the support. Moreover, some figures also 

indicated the use of a thin, flexible plastic sheet between the slabs and the supports. No 

information was reported about the stiffness and thickness of these materials and where they 

were applied, which required additional attention in this numerical study. 

 

Figure 6-2 – a) Geometry of the slabs tested by Zohrevand et al. (2014): a) specimens fully made 

of NSC or UHPFRC; b) specimens with the rational use of UHPFRC over the full depth of the 

slabs and c) specimens with UHPFRC limited to only half of the slab thickness. (All dimensions 

are in mm).  

 
Source: Adapted from Zohrevand et al. (2014). 
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Table 6-1 - Geometry of the control slabs. 

Model  

Identification 

Geometry of the UHPFRC 

layer (mm) 

ρl (%) ρt (%) ρ (%) 

C1.8 - 1.70 1.97 1.8 

C0.6 - 0.56 0.65 0.6 

U1.8 - 1.70 1.97 1.8 

U0.6 - 0.56 0.65 0.6 

CU-A-F-1.8 533 × 533 × 114 1.70 1.97 1.8 

CU-A-F-0.6 533 × 533 × 114 0.56 0.65 0.6 

CU-C-F-1.8 305 × 305 × 114 1.70 1.97 1.8 

CU-C-F-0.6 305 × 305 × 114 0.56 0.65 0.6 

CU-B-H-1.8 419 × 419 × 57 1.70 1.97 1.8 

CU-B-H-0.6 419 × 419 × 57 0.56 0.65 0.6 
Note: ρl and ρt denote the reinforcement ratios of the slabs in the longitudinal and transversal 

directions. The longitudinal reinforcement is associated with the higher effective depth. ρ is the 

mean reinforcement ratio calculated as ρ = (ρl . ρt)1/2. Source: Zohrevand et al. (2014). 

 

6.2.3 Material properties of control slabs 

Table 6-2 describes the material properties of the concretes used in the tests. The main 

properties of the UHPFRC reported are the measured tensile and compressive strengths on 

cylindrical specimens (102 mm × 203 mm) with traditional compressive and splitting tensile 

tests, respectively. Therefore, no information is available about the hardening and softening 

behavior of UHPFRC under tension and compression. Several batches were used to cast the 

UHPFRC-slabs and hybrid slabs, with their 28-day compressive strength ranging from 129 MPa 

to 151 MPa. The tensile strength of the UHPFRC varied between 6 MPa and 10 MPa for the 

different batches, with an average value of 8 MPa (ZOHREVAND et al., 2014). A single batch 

of NSC was used for the control slabs, with an average compressive strength of 45 MPa and 

coarse aggregate with a maximum size of 9.5 mm. The tensile strength of the NSC-batch was 

not reported. 

Straight steel fibers were used in the UHPFRC mix. These copper-coated micro steel 

fibers were 13-mm long with a diameter of 0.2 mm and tensile strength of 2800 MPa. The 

reinforcement of the slabs consisted of Nº 13M steel bars spaced at 76 mm (ρ = 1.8%) and 229 

mm (ρ = 0.6%) on center. The reinforcement was placed in two orthogonal directions on the 

tension side of the slab, with a clear cover of 13 mm. The yield strength of the reinforcement 

was 414 MPa (ZOHREVAND et al., 2014).  
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Table 6-2 – Material properties described in Zohrevand et al. (2014). 

Concrete NSC UHPFRC 

Model  

Identification 

fcm 

(MPa) 

dag (mm) fcm 

(MPa) 

fct (MPa) ρf 

(%) 

lf fy,fiber 

(MPa) 

df 

(mm) 

C1.8 
45 9.5 - - - - - - 

C0.6 

U1.8 
- - 

128.6 

AVG = 8 

MAX = 

10 

MIN = 6 

2 13 2800 0.2 

U0.6 136.8 

CU-A-F-1.8 

45 9.5 

150.3 

CU-A-F-0.6 151.4 

CU-C-F-1.8 147.4 

CU-C-F-0.6 139.7 

CU-B-H-1.8 139.7 

CU-B-H-0.6 139.7 
Source: Zohrevand et al. (2014). 

6.3 Finite element simulations 

This section describes the details of the modeling in relation to (i) boundary conditions, 

(ii) interfaces (iii) mesh discretization and finite element type, and (iv) material models. 

6.3.1 Overview 

The finite element software ABAQUS/CAE (DASSAULT SYSTEMS SIMULIA 

CORP., 2014) was used to model the control slabs. By considering specimens' symmetry, a 

quarter of the slabs was modeled to reduce the computational effort (Figure 6-3a).  

In all analyses, the load was applied in displacement-controlled conditions in order to 

evaluate the governing punching failure mode. To make a fair comparison between 

experimental and numerical results in terms of force-displacement graphs, due to the 

uncertainties in slab-support interactions and loading protocol, a spring was coupled to the 

loading plate of the numerical models (Figure 6-3b) and its stiffness was calibrated to reproduce 

the initial stiffness of the experimental results. In this study, it is assumed that the graphs 

reported in reference (ZOHREVAND et al., 2014) were influenced by the calibration of the 

actuator and by soft materials between the frame support and the slab surface based on the test 

pictures (ZOHREVAND et al., 2014). 
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Figure 6-3 – Details of the boundary conditions used: a) overview of the model and b) detail of the 

displacement-controlled loading. 

  
a) b) 

Source: Author. 

 

6.3.2 Boundary Conditions  

Zohrevand et al. (2014) described that the specimens were leveled between the bottom 

slab surface and the rigid support frame using gypsum cement layers. The same material was 

also used between the loading plate and the slab surface to ensure a vertical concentric load. 

However, pictures of the specimens also show a thin, flexible plastic sheet between the slab and 

the rigid support frame. Based on this information, a soft material layer between the slabs and 

the rigid frame was assumed. In this study, instead of modeling the full support frame, only a 

support layer of 25 mm in thickness was modeled, and a small value of Young’s modulus (4 

MPa) was assigned to this material to simulate the soft material between the slab and the support 

in the tests. 

6.3.3 Interfaces 

Since the NSC and UHPFRC interface did not show any signal of damage or crack 

opening in the tests, a rigid interaction (perfect bond) between NSC and UHPFRC (no sliding) 

was assumed. Other experimental studies also support the outstanding bonding properties 

between UHPFRC and NSC (MOMAYEZ et al., 2005; SAHMARAN et al., 2014; WEI et al., 

2020; ZHU; LEUNG; CAO, 2011). The interface between the support frame and loading block 

surface with the slab was modeled assuming (i) hard contact (allowing separation of the 

surfaces) and (ii) frictionless. As no anchorage failure was reported in the experiments and the 

main aim of the numerical model was to predict the punching capacity, bond-slip was not 

considered in the simulations and a perfect bond between reinforcement and concrete was 

assumed.  
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6.3.4 Mesh and Procedure of solution 

Concrete, supporting pad and loading plates were simulated with 8-node hexahedral 

solid elements with reduced integration (C3D8R). Reduced integration was used to avoid the 

shear locking of the brick elements based on the Reissner-Mindlin theory (DASSAULT 

SYSTEMS SIMULIA CORP., 2014; NANA et al., 2017). For solid elements, hourglass control 

has also been activated to avoid distortion associated with mesh discretization and linear 

approximation for the element displacement field. The reinforcement was modeled with 2-node 

truss elements (T3D2).  

Figure 6-4 – Behavior in terms of the applied load versus mid-span displacement according to the 

finite element size for: a) slab C1.8, and b) slab U1.8; comparison of the cracking patterns 

predicted by the FEM (herein evaluated through the qualitative distribution of the maximum 

principal plastic strains) according to the finite element size: c) slab C1.8 and d) slab U1.8. 

  
a) b) 

    
c) d) 

Source: Author. 

Figure 6-4 shows the summary of the mesh sensibility study performed, which 

comprehended the slabs C1.8, C0.6, U1.8 and U0.6. Here, only the results from the slabs C1.8 

and U1.8 are described as the findings from C0.6 and U0.6 are similar. Figure 6-4 shows that 

the governing failure mode and global response of the FEM did not change significantly with 

the mesh discretization due to the consistency of the material models adopted (Section 3.5). 

The finite element size was chosen as 9.5 mm, which allows having 12 elements over the 

thickness of the slab model. Despite requiring a higher time to perform the numerical analyses, 
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the finer mesh discretization allowed tracking the cracking pattern evolution from the FEM and 

better represented the post-peak behavior from the load versus mid-span displacement graphs 

(Figure 6-4b). 

Figure 6-5a shows the mesh discretization of two models, highlighting the areas of 

UHPFRC and NSC in different colors. A more refined mesh discretization was required to 

allow varying the thickness of the UHPFRC layer in the parametric study (Section 7), assuring 

at least three elements over the UHPFRC layer thickness (Figure 6-5b).   

 

Figure 6-5 – Mesh discretization of a) slab CU-A-F-18 and b) example of a slab with a small 

thickness of the UHPFRC layer on the compression side used in the parametric study (Section 

6.7). Note: Only a quarter was modeled. 

 
Source: Author. 

6.3.5 Material modeling  

Table 6-3 shows the material models used for describing the stress-strain behavior of 

NSC under compression (CARREIRA; CHU, 1985) and tension (HORDIJK, 1992). The model 

of Hordijk (1992) considers the crack bandwidth length leq to reduce the mesh sensitivity 

through the same approach described by Genikomsou and Polak (2015). In this study, leq was 

assumed equal to the finite element size (9.5 mm). 
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Table 6-3 – Stress-strain behavior models for NSC. 

Tension 

behavior – 

Hordijk (1992) 
 

( )
( )

2
2

3

3

11 1c

w
c

wt c

ct c c

w w w
c e c e

f w w

 - 
-

  
 = +   -  +  
   

          (6.1) 

With: c1 = 3; c2 = 6.93; wc is the critical crack opening or fracture crack 

opening: 

 5.14
f

c

ct

G
w

f
=   (6.2) 

The tensile strain after cracking can be described in terms of the crack 

opening from the following kinematic relation: 

 
,

ct
t t cr

c eq eq

f w w

E l l
 = + = +  (6.3) 

Compression 

behavior – 

Carreira and 

Chu (1985) 

 
( ) ( )

( )
1

1
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cm CC c
f



    

  


=

- +
 (6.4) 

 

1

1

1
CC

cm

c c

f

E





=

-


 (6.5) 

Source: Hordijk (1992) and Carreira and and Chu (1985). 

The fracture energy Gf and concrete tensile strength fct were calculated according with 

fib Model Code 2010: 

 
0.180.073f cmG f=   (6.6) 

 
230.3 ,  for 50ct cm cmf f f MPa=    (6.7) 

 
0.31

1 0.7
1000

cm
c

f
 =   (6.8) 

Table 6-4 shows the damage evolution models used for the NSC. The model of Alfarah, 

López-Almansa and Oller (2017) was chosen since it accounts for the bandwidth length leq in 

tension (leq = 9.5 mm). Therefore, this model can reduce mesh sensitivities due to tension 

cracking. 
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Table 6-4 – Damage evolution laws used for NSC. 

Reference Tension damage 

Alfarah, López-Almansa 

and Oller (2017) ( ) ( ) ( )
1

1 2 1 exp exp 2
2

in in

t t t t t t t

t

d a b a b
a

  = - + - - -
 +

 (6.9) 

at = 1; 1
2

ct eq t
t

f

f l a
b

G

  
=  + 

 
 

 Compression damage 

Birtel and Mark (2006) 

( )

1

1
1

1/ 1

c c
c pl

c c c c

E
d

b E



 

-

-


= -

 - + 
                                 (6.10) 

bc = 0.9; pl in

c c cb =   

Source: Alfarah, López-Almansa and Oller (2017) and Birtel and Mark (2006). 

Table 6-5 - Stress-strain behavior models used for UHPFRC. 

Reference Tension behavior 

Fehling et al. 

(2014).  ( )

2

0 1 2t cf

f

w
w

l
 

 
=  -   

 

 (6.11) 

σcfo = fct of the UHPFRC: 23
0 0.3cf cmf =  ; lf = 13 mm in this study. 

 

 Compression behavior 

Carreira and 

Chu (1985) 

modified by  

Mansur et al. 

(1999) 

 
( ) ( )

( ) 2

1 1

1 1
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0.35

1 0.0005 0.00000072
f f

f
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l
f

d


r  
+      

 

=



 (6.16) 

Source: Fehling et al. (2014), Carreira and Chu (1985) modified by Mansur et al. (1999). 

Table 6-5 shows the proposed stress-strain models used to describe the behavior of 

UHPFRC under tension and compression. The only available information about the UHPFRC, 

despite the volume fraction and material properties of the fibers, are the average tensile strength 

and the compressive strength for each batch. In the absence of detailed information about the 

strain-hardening behavior, UHPFRC was assumed as a strain-softening material in tension 
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using the stress-crack opening relationship described by Fehling et al. (FEHLING et al., 2014). 

The parameter σcf0 was assumed equal the peak tensile strength of the UHPFRC. In 

compression, the model of Carreira and Chu (CARREIRA; CHU, 1985) modified by Mansur 

et al. (MANSUR; CHIN; WEE, 1999) was considered, as used in Krahl, Carrazedo and El Debs 

(2018). 

The models from Krahl, Gidrão and Carrazedo (2019) and Alfarah, López-Almansa and 

Oller (2017) were used to describe the damage evolution laws under compression and tension 

for the UHPFRC, respectively (Table 6-6). 

Table 6-6 – Damage evolution laws used for UHPFRC. 

Reference Tension damage 

Alfarah, López-Almansa 

and Oller (2017)  
( ) ( )

( )

2 1 exp1
1

2 exp 2

ck

t t t

t
ck

t t t c

a b
d

a a b





 + -
 = -

+  - -
 

 (6.17) 

at = 1; 1
2

ct eq t
t

f

f l a
b

G

  
=  + 

 
; leq = 9.5 mm 

 Compression damage 

Krahl, Gidrão and 

Carrazedo (2019) 
 ( )( ) ( )( )tanh exp

k

c c cd m r n =    -   (6.18) 

For ρf  = 2%: m = 106.2; n = 188.5; k = 3.05; r = 0.93   
Source: Alfarah, López-Almansa and Oller (2017) and Krahl, Gidrão and Carrazedo (2019). 

6.3.6 Plasticity parameters 

The parameters used for NSC were chosen based on the literature review 

(GENIKOMSOU; POLAK, 2015, 2016, 2017a; MILLIGAN; POLAK; ZURELL, 2020, 2021; 

NANA et al., 2017). The dilation angle adopted for NSC was 30º. Notably, this value is close 

to that expected by Poliotti and Bairan (2019) for the maximum dilation angle of NSC (Ψ = 

32º) based on inverse analyses of experimental investigations. The fracture energy adopted for 

NSC was calculated according to the fib Model Code 2010 (FÉDÉRATION 

INTERNATIONALE DU BÉTON (FIB), 2012) since the values with the Model Code 1990 

(COMITÉ EURO-INTERNATIONAL DU BÉTON, 1993) underestimated the punching 

capacity of the numerical models. The default value of the ratio σb0/σc0 in ABAQUS is 1.16 for 

NSC. This value is based on the experimental tests of Kupfer et al. (1973; 1969). However, it 

should be highlighted that this value was found for NSC with a concrete compressive strength 

lower than 60 MPa.  

The parameters used for the UHPFRC were mainly based on inverse analyses of 

experimental results proposed by Krahl, Carrazedo and El Debs (2018). The higher dilation 

angle used for UHPFRC was based on reverse analysis of triaxial tests (SPECK, 2008; 
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ZOHREVAND; MIRMIRAN, 2011). However, other experimental investigations with triaxial 

tests also support that higher dilation angles for UHPFRC than for NSC are suitable since the 

addition of fibers and the better matrix packing allows increasing the toughness of the concrete 

(BABANAJAD; FARNAM; SHEKARCHI, 2012; ÖZTEKIN; PUL; HÜSEM, 2016).  For 

UHPFRC specimens, where the fibers induce more toughness in compression, Krahl, Carrazedo 

and El Debs 2018) found a value of σb0/σc0 = 1.07 based on the tests of Speck (SPECK, 2008) 

(compression-compression tests) and Lee et al. (2017) (tension-compression tests).  

6.3.7 Summary of the material parameters of the reference FEM 

In order to ease the identification of the material parameters used in the reference finite 

element models, Table 6-7 summarized the main information of the materials models used for 

the stress-strain behavior and damage evolution of NSC and UHPFRC.  

 

Table 6-7 – Concrete damaged plasticity (CDP) model parameters used for the reference 

numerical analyses. 

Parameter NSC UHPFRC 

Yield criterion 

Compressive behavior (σc x εc) Carreira and Chu (1985) Mansur et al. (1999) 

Tensile behavior (σt x εt) Hordijk (1992) Fehling et al. (2014). 

Damage evolution 

Compression damage (dc x εc
in) Birtel and Mark (2006) 

Krahl, Gidrão and Carrazedo 

(2019) 

Tensile damage (dt x εt
ck) 

Alfarah, López-Almansa 

and Oller (2017) 

Alfarah, López-Almansa 

and Oller (2017) 

Plasticity parameters 

Dilation angle, Ψ (º) 30  

54 (KRAHL; 

CARRAZEDO; EL DEBS, 

2018) 

σb0/σc0 

1.16 (KUPFER; 

GERSTLE, 1973; 

KUPFER; HILSDORF; 

RUSCH, 1969) 

1.07 (KRAHL; 

CARRAZEDO; EL DEBS, 

2018) 

Parameter Kc 

0.66 (DASSAULT 

SYSTEMS SIMULIA 

CORP., 2014) 

0.66 (KRAHL; 

CARRAZEDO; EL DEBS, 

2018) 

Eccentricity, e 0.1 0.1 

Viscosity parameter, μ 0.00001 0.00001 

Fracture energy, Gf fib Model Code 2010 - 

fct fib Model Code 2010 

Hoang and Fehling (2017): 
230.3ct cmf f=   

 

Source: Author. 
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The stress-inelastic strain values used for NSC (slab C1.8) and UHPFRC (slab U1.8) 

are listed in Table 6-8, as provided in other numerical studies (MARTÍN-SANZ et al., 2020; 

ZHU et al., 2020). In order to avoid numerical convergence problems, the maximum value for 

the damage parameters was assumed as 0.9, which is also consistent with experimental 

measurements from this variable for both materials (FELIPE et al., 2019; KRAHL; GIDRÃO; 

CARRAZEDO, 2019). 

 

Table 6-8 – Information used to define the stress-strain behavior of NSC and UHPFRC under 

compression and tension in the CDP (values used for slabs C1.8 and U1.8). 

Compression behavior of NSC Tension behavior of NSC 

Compressive stress 

(MPa) 

Inelastic 

strain (-) 

Damage 

parameter (-) 

Tensile stress 

(MPa) 

Inelastic 

strain (-) 

Damage 

parameter (-) 

18.00 0.00000 0.000 3.80 0.00000 0.0000 

30.17 0.00009 0.029 2.69 0.00106 0.2545 

38.99 0.00027 0.067 1.94 0.00212 0.4640 

43.69 0.00057 0.120 1.27 0.00369 0.6846 

45.00 0.00098 0.183 0.85 0.00576 0.8495 

44.00 0.00146 0.256 0.65 0.00783 0.9000 

35.82 0.00306 0.470 0.50 0.00990 0.9000 

29.02 0.00440 0.611 0.37 0.01197 0.9000 

18.41 0.00744 0.807 0.26 0.01404 0.9000 

8.84 0.01410 0.900 0.16 0.01611 0.9000 

2.70 0.03523 0.900 0.08 0.01817 0.9000 

Compression behavior of UHPFRC Tension behavior of UHPFRC 

Compressive stress 

(MPa) 

Inelastic 

strain (-) 

Damage 

parameter (-) 

Tensile stress 

(MPa) 

Inelastic 

strain (-) 

Damage 

parameter (-) 

99.43 0.000000 0.0000 7.64 0.00000 0.00000 

112.73 0.000023 0.0000 7.04 0.02737 0.23729 

123.69 0.000086 0.0056 6.47 0.05474 0.43850 

128.60 0.000266 0.0154 5.92 0.08211 0.59539 

107.13 0.002873 0.2312 4.89 0.13684 0.79736 

57.96 0.007109 0.6373 3.53 0.21895 0.90000 

34.21 0.010857 0.7805 2.40 0.30105 0.90000 

22.45 0.014373 0.8523 1.48 0.38316 0.90000 

14.36 0.018915 0.8985 0.60 0.49263 0.90000 

10.90 0.022272 0.9000 0.20 0.57474 0.90000 

8.58 0.025607 0.9000 0.01 0.65684 0.90000 

Source: Author. 

6.4 Analytical predictions with mechanical-based models 

This section reviews the proposed approach by Maya et al. (2012) to calculate the 

punching capacity of SFRC slabs. After that, the proposed approach to calculate the punching 

capacity of reinforced concrete slabs designed with the rational use of UHPFRC is presented. 
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6.4.1 CSCT-based model for SFRC 

The punching shear capacities of the control slabs (ZOHREVAND et al., 2014), as well 

as those predicted by the FEM developed in the parametric study (Section 7), were compared 

to those provided by the CSCT developed by Muttoni (2008) and modified by Maya et al. 

(2012) to cover SFRC flat slabs.  In this model, the punching capacity is calculated by: 

 , , , , ,R CSCT R c CSCT R f CSCTP P P= +  (6.19) 

where, PR,c,CSCT and PR,f,CSCT are the contribution of the concrete and the fibers to the 

punching capacity, respectively (MAYA et al., 2012). The contribution of concrete, which 

represents the failure criterion of NSC flat slabs without transverse reinforcement, can be 

calculated as (MAYA et al., 2012): 

 ( ), , 0

0

3 / 4

1 15

cm

R c CSCT
CSCT

g ag

f
P b d

d

d d




=  


+ 

+

 (6.20) 

where, ψ
CSCT

 is the slab rotation at failure; d is the effective depth of the slab; b0 is the 

control perimeter at a distance of d/2 from the face of the column; fcm is the average compressive 

strength of the concrete; dag is the maximum aggregate size of the concrete, and dg0 is a 

reference aggregate size set to 16 mm (MAYA et al., 2012). For symmetrical slab-column 

connections, the rotation ψ
CSCT

 at failure can be estimated according to the provisions of fib 

Model Code 2010 at the Level of Approximation III (FÉDÉRATION INTERNATIONALE 

DU BÉTON (FIB), 2012; MUTTONI et al., 2013; MUTTONI; FERNÁNDEZ RUIZ, 2012): 

 

3/2

1.2
ys

CSCT

s flex

fr P

d E P


 
=      

 

 (6.21) 

with rs equal to the distance from the column axis to the line of contra-flexure of the 

bending moments, fy the average yield strength of the flexural reinforcement, and Es the 

modulus of elasticity of the longitudinal reinforcement (MUTTONI, 2008). The flexural 

capacity Pflex for the square slabs tested by Zohrevand et al. (2014) as well the slabs in the 

parametric analysis, was calculated as suggested by Zohrevand et al. (2014): 

 
1

8 3 2 2

1
flex R

load

P m
c

B

 
 

=   - + 
 -
 

  (6.22) 

where B and cload are the dimensions of the slab and plate load, respectively (both in 

mm); mR is the average flexural strength per unit width in the support strip. The yield flexural 
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strength per unit width mR for SFRC, which includes the contribution of the fibers, is calculated 

as Maya et al. (2012): 
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 (6.23) 

β1 is the factor that is the parameter that defines the depth of the equivalent rectangular 

stress block, calculated as β1 = 0.80 – (fcm-50)/400; fct2,f is the residual tensile strength or tensile 

stress in fiber-reinforced concrete for a crack opening w = 3 mm. In this study, fct2,f was 

calculated as: 
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 (6.24) 

αcc is factor that accounts for long-term effects on the compressive strength and 

unfavorable effects from the way load is applied (GOUVEIA et al., 2019a). 

In the simplified form Maya et al. (2012), the contribution of the fibers PR,f,CSCT to the 

punching capacity can be calculated as: 

 , , pR f CSCT tfP A =   (6.25) 

In Eq. (6.25), Ap is the horizontally projected area of the punching failure surface and 

σtf is the fiber bridging stress, which can be calculated according to the Variable Engagement 

Model (VOO; FOSTER, 2003): 

 tf f f f bK  r =     (6.26) 

where Kf is the global orientation factor; ρf is the fiber volume content; τb is the bond 

stress between the fibers and the concrete matrix, and αf is the aspect ratio of the fibers, defined 

as the ratio between the length (lf) and diameter (df) (αf = lf/df) (MAYA et al., 2012). According 

to Voo and Foster (2004, 2003), Kf can be estimated by: 
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=   -      

   

 (6.27) 

where αe is defined as an engagement parameter that can be taken as αe = 3.5. According 

to Maya et al. (2012), the interfacial bond strength between the matrix and the fiber τb is given 

by: 
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 cmb bk f =   (6.28) 

6.4.2 Proposed approaches for UHPFRC and NSC-UHPFRC flat slabs 

The equations developed to calculate the unitary flexural capacity of SFRC flat slabs 

could underestimate the flexural capacity of UHPFRC slabs due to the lower residual tensile 

strength from the SFRC compared to the UHPFRC. In this way, a set of equations, based on 

the work from Fehling et al. (2014), was devised for estimating the unitary moment capacity 

mR1 of slab cross-sections with UHPFRC distributed over (i) the full depth, (ii) at the tension 

side and (iii) at the compression side of the slabs (Table 6-9).  

Table 6-9 - Equations for estimating the compression zone depth (x) and unitary moment capacity 

(mR1) for sections with different distributions of UHPFRC over the thickness. 

Full depth 

( )

( ) ( )

,

1 ,

0.81 / 0.5 0.81

0.5 0.81 0.45 0.55
3

s y slab w w c UHPFRC w

R w

Ftu Ftu

Ftc UHPFRC w u

x A f h b b f b

x
m x b f d h x b d x h

f f

f

=  +      +  

 
=     - -  -    -  -  

 

 (6.29) 

Tension side 
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Compression side 
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(6.31) 
Source: Author. 

Figure 6-6a shows the assumed stress distribution and internal forces on the cross-

sections with UHPFRC distributed over the entire thickness.  Figure 6-6b shows the locations 

from the resulting tensile force carried by the fibers upon reaching the ultimate limit state (Ffd) 

assuming a more realistic stress distribution on the cross-section (FEHLING et al., 2014). 

Figure 6-6c shows the equivalent stress blocks for Figure 6-6b that make the calculations more 

straightforward and provide similar flexural capacity results (FEHLING et al., 2014). Similar 

assumptions described in Figure 6-9 were considered in evaluating the flexural capacity for 

cross-sections NSC-UHPFRC accounting for the thickness of the UHPFRC layer. 
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The equations shown in Table 6-9 were used to predict the equivalent bending moment 

due to the different materials used over the slab thickness (mR1) in the region around the 

concentrated load (see Figure 6-6d). The unitary bending moment over the remaining region 

that contains only NSC (mR,NSC) was calculated according to Muttoni (2008): 
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r
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=    -   

 (6.32) 

Figure 6-6 - a) Stress distribution and resultant internal forces for the cracked cross-section; b) 

realistic stress distribution and resultant tensile force carried by the fibers upon reaching the 

ultimate limit state; c) stress blocks equivalent to b) (adapted from Fehling et al. (2014)); and d) 

outlined regions with different flexural capacities and equivalent flexural capacities. 

 
Source: Author. 

For slabs with the rational use of UHPFRC, the different distributions of UHPFRC over 

the slab plan were also accounted for (Figure 6-6d). The equivalent moment capacity per unit 

width mR2 at the support strip was calculated based on Gouveia et al. (2019a) by the following 

expression: 

 
( )1 ,

2

R UHPFRC R NSC UHPFRC

R

m c m B c
m

B

 +  -
=   (6.33) 

where cUHPFRC is the strip width of the UHPFRC region in the plan and B is the slab 

span length. In Table 6-9, fFtu, was calculated according to Hoang and Fehling (2017): 
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,0.3Ftu c UHPFRCf f=   (6.34) 

The first investigated approach to predict the punching capacity of UHPFRC flat slabs, 

as well as NSC-UHPFRC flat slabs, was based on trying to adjust the failure criterion derived 

for SFRC from Maya et al. (2012) using characteristics from the UHPFRC. The higher packing 

of UHPFRC compared to SFRC allows reaching enhanced bond factors kb for straight steel 

fibers, such as used in the experiments by Zohrevand (2014). Supported by the experimental 

results from (LANWER et al., 2019) and (DENARIÉ; HABEL; BRÜHWILER, 2003) with 

similar micro-coated steel fibers, the bond factor kb was assumed equal to 1 in the calculations 

with the CSCT derived for SFRC (MAYA et al., 2012). In order to consider the thickness of 

the UHPFRC layer into the computed contribution from the fibers, the following expression 

was used: 

 
, ,
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R f CSCT p tf
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=   

 
 (6.35) 

The term hUHPFRC/hslab was added to Eq. (6.35) to deal with the rational use of the 

UHPFRC over the slab thickness. hUHPFRC and hslab are the thickness of the UHPFRC layer and 

the slab thickness, respectively. 

The second approach investigated was based on the modified failure criterion proposed 

by Moreillon (2013), which suggests the following simplified failure criterion for UHPFRC flat 

slabs, also based on the CSCT: 

 , , 0
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1
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R f CSCT

CSCTfo slab

u

f h
P b d

dK h

w





 
=       +

 (6.36) 

where Kf0 is the fiber orientation coefficient for general effects (taken equal to 1 for most 

applications (MOREILLON, 2013)), and fFtu is the residual tensile strength at an ultimate crack 

opening wu. In this study, fFtu for the UHPFRC was assumed as the peak tensile strength 

(expression (6.34)). 

For slabs that use only UHPFRC (for instance, U1.8 and U0.6), wu assumed a value 

equals lf /4, as suggested by Moreillon (2013). On the other hand, for specimens with the rational 

use of UHPFRC, the value of wu = ψ
CSCT

∙ d/6 suggested by Maya et al. (2012) fitted better the 

experimental (ZOHREVAND et al., 2014) and numerical results (Section 7). The different 

values of wu were justified here because the deformation capacity of NSC-UHPFRC flat slabs 

can be limited by the punching capacity from the outer region without UHPFRC, such as 

identified by Zohrevand et al. (2014).  
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In order to account for the different contributions of the concrete (PR,c,CSCT) between the 

NSC and the UHPFRC, this parameter was weighted according to the thickness of the enhanced 

material in the slabs with the rational use of the UHPFRC: 
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(6.37) 

where fc,UHPFRC and fc,NSC are the compressive strengths of the UHPFRC and NSC, 

respectively. 

6.5 Validation of the fem and modeling choices study 

This section presents the validation of the FEM proposed to simulate the behavior and 

punching capacity of reinforced concrete slabs fully made with NSC or fully made with the 

UHPFRC. 

6.5.1 Validation of the proposed FEM for NSC flat slabs 

Figure 6-7 compares the FEM results with the experiments using NSC in terms of the 

punching capacity and failure mode. The proposed FEM reproduced reasonably well not only 

the punching capacity (Figure 6-7) but also the governing failure mode of the control slabs 

according to the cracking pattern (Figure 6-8). As described in reference (ZOHREVAND et al., 

2014), the slab C0.6 developed reinforcement yielding at failure (characteristic of flexure-

induced punching) and C1.8 showed a brittle punching failure without yielding of the 

reinforcement at failure. Figure 6-8 confirms that the numerical models accurately predicted 

the cracking pattern and failure mechanisms of the specimens. 

Figure 6-7 - Comparison between load-displacement of experiment and NLFEA for a) C1.8 and 

b) C0.6. 

  
a) b) 

Source: Author. 
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Figure 6-8 - Comparison between crack patterns after the failure of experimental tests and 

NLFEA for a) C1.8 and b) C0.6. Note: PE is the tension plastic strain. 

  
a) b) 

Source: Author. 

Figure 6-7b shows that at failure, the FEM of the test C0.6 showed a slight drop in the 

measured punching force followed by an increase in capacity until a higher peak load. This 

behavior indicates that the FEM allowed load redistribution with the reinforcement yielding 

until reaching concrete crushing at the compression side of the slab. This behavior was not 

identified in the test because the test was potentially stopped when the first significant drop in 

the measured load occurred and major cracks had formed. Another explanation is that the tests 

may have been conducted by force control instead of displacement control. Therefore, some 

differences between the experimental and numerical graphs are reasonable for the post-peak 

load branch. 

6.5.2 Validation of the proposed FEM for UHPFRC flat slabs 

Figure 6-9 and Figure 6-10 compare test and numerical results in terms of crack pattern 

and predicted punching shear capacity for the flat slabs built with UHPFRC and different 

reinforcement ratios. The proposed NLFEA accurately predicted the crack pattern of U0.6 and 

U1.8 at the bottom side and in the cut views (Figure 6-9a and Figure 6-10a). The punching 

capacity predictions with the NLFEA differed from the experimental ones by less than 20%. 

The load-displacement graphs from the numerical models reproduced well the main 

characteristics observed at the tests: (i) punching capacity and (ii) yielding of the reinforcement 

prior to failure, (iii) the shape of the load-displacement graph in the non-linear branch for U0.6 

(Figure 6-9b) and (iv) sharp decrease of the punching load after a certain degree of 

reinforcement yielding for U1.8 (Figure 6-10b). Since the cracking pattern based on the tensile 

damage (DAMAGET) of concrete for U0.6 and U1.8 was diffuse due to the higher post-peak 

tensile strength from the UHPFRC, the cracking pattern was evaluated at these FE models by 

the compressive damage (DAMAGEC) in Figure 6-9a and Figure 6-10a. The results confirm 
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that the failure mode of U1.8 was governed by reaching the full capacity of the compressive 

struts close to the loaded area. 

Figure 6-9 - Cracking pattern of slab U0.6 a) experimental test and numerical model; b) prediction 

of the punching capacity. Note: DAMAGEC is the damage variable in compression. 

 
 

a) b) 
Source: Author. 

The main differences between the experimental and numerical curves relate to the 

vertical displacements at failure. While the numerical model reached the maximum capacity at 

a displacement lower than the control experiment for U0.6 (Figure 6-9b), the numerical model 

of U1.8 failed at a higher vertical displacement than the experimental model (Figure 6-10c). 

Since the punching capacity and cracking pattern were well-represented by the numerical 

models, these differences in capturing the deflections at failure were considered acceptable. In 

this study, these differences can be related to the different stiffness of the support conditions 

used in the tests.  

Figure 6-10 – Cracking pattern and load-displacement graph of slab U1.8 a) experimental test and 

numerical model; b) prediction of the punching capacity. Note: DAMAGEC is the damage 

variable in compression.  

 

 
a) b) 

Source: Author. 
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Figure 6-10 shows that the specimens with a higher amount of reinforcement (U1.8) 

failed at the struts that carry shear close to the loaded area, while the specimen with a lower 

reinforcement ratio (U0.6) failed by a combination of reinforcement yielding (softer decrease 

of the measured load) with the concrete crushing close to the loaded area. Proof that the 

UHPFRC material model was adequately represented in the FEM was that the governing failure 

mode of the tests was well-predicted despite the significant difference in the reinforcement 

ratios between slabs U1.8 and U0.6 and a relatively small difference in the punching capacities 

of these tests (22%).  

6.6 Predicting the punching capacity of NSC-UHPFRC flat slabs 

This section presents the validation of the FEM to simulate the behavior and punching 

capacity of slabs that combined the use of NSC and UHPFRC. Besides, this section also 

presents the comparison between tested and predicted resistances using the analytical and 

numerical approaches. 

6.6.1 NLFEA results for NSC-UHPFRC-flat slabs 

This section investigates the level of accuracy of the FEM proposed to describe the 

behavior of slabs with the rational use of UHPFRC at shear-critical regions (NSC-UHPFRC 

flat slabs). In this section, the material parameters described in Table 6-7 were used to model 

the non-linear behavior of NSC and UHPFRC, respectively.  

Figure 6-11 shows that the proposed material models for NSC and UHPFRC allowed 

predicting the punching capacity and the behavior of the hybrid flat slabs accurately. Since the 

tests from Zohrevand et al. (2014) may have been unloaded after reaching the maximum 

punching capacity, all reported force-displacement curves at failure could be misinterpreted as 

a brittle failure mode due to the sharp decrease of load at failure. Because of this, Figure 6-11 

reports if reinforcement yielding was measured in the tests. Notably, when a brittle failure mode 

was observed in the control slabs, a sharp decrease of the load was also observed in the NLFE 

models at failure. Moreover, the finite element models captured reinforcement yielding of all 

control slabs that showed flexure-induced punching. The maximum error in the predicted 

punching capacities was 21%, which is within the mean error of material parameters such as 

the concrete tensile strength. Therefore, the level of accuracy reached was considered 

satisfactory.
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Figure 6-11 – Punching capacity predictions with the NLFEA for the members with the rational 

use of UHPFRC (NSC-UHPFRC flat slabs) tested by Zohrevand et al. (2014). 

   
a) b) c) 

   
d) e) f) 

Source: Author. 

 

Figure 6-12 shows that the FE models reproduced the cracking pattern in the control 

slabs at failure well. Minor differences were related to the development of the flexural crack at 

the interface between NSC and UHPFRC in some numerical models (Figure 6-12a), which were 

not identified for the control slabs. 

Figure 6-12 - Comparison between crack patterns observed in the tests and in NLFEA for CU-A-

F-1.8 and CU-B-H-1.8. Note: DAMAGET is the damage variable in tension. 

  
Source: Author. 

The higher tensile damage at the shear crack in NSC indicates that the crack opening at 
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UHPFRC at failure (ZOHREVAND et al., 2014). This behavior may be related not only to the 

higher tensile and compressive strength of the UHPFRC compared to NSC but also to its 

capacity to redistribute inner forces due to its higher residual tensile strength after cracking. 

6.6.2 Analytical results and comparison with NLFEA 

Table 6-10 shows that the punching capacities predicted for NSC flat slabs (C1.8 and 

C0.6) with the CSCT (MUTTONI, 2008) are similar to those predicted with NLFEA, such as 

shown by Millingan et al. (2021) in similar analyses. However, limited information is available 

about the level of accuracy of the CSCT and NLFEA to predict the punching capacity of 

UHPFRC flat slabs (MOREILLON, 2013). Table 6-10 shows that the proposed NLFE models 

predicted well the punching capacity of the UHPFRC flat slabs. The values reached with the 

CSCT were more conservative using the failure criteria derived for SFRC (MAYA et al., 2012), 

despite using some adjustments to account for the improved performance from the UHPFRC 

(Section 4.2) (Pexp/Pcalc equal to 1.51 and 1.36, respectively for U1.8 and U0.6, see Table 6-10). 

However, improved predictions of the punching capacity were found using the simplified 

failure criteria proposed by Moreillon (2013) (Pexp/Pcalc equal to 1.25 and 1.26, respectively). 

Comparatively, the predictions with the semi-empirical model from Harris (HARRIS, 2004), 

whose results were reported in Zohrevand et al. (2014) underestimated the punching capacities 

significantly for all tests. The model proposed by Harris (2004) is inspired by ACI 318-11 (ACI 

COMMITTEE 318, 2011) and was calibrated for experiments with unreinforced UHPFRC flat 

slabs. In this model, a shear cone starting from the column face and propagating at a 34° angle 

was assumed. 

Table 6-11 then shows a similar comparison for the control slabs with the rational use 

of UHPFRC in the region close to the loaded area. The contribution of PR,f,CSCT was neglected 

for tests CU-B-H-1.8 and CU-B-H-0.6  since these did not develop a critical shear crack 

crossing the fibrous material (ZOHREVAND et al., 2014). This comparison shows that the 

proposed FE models accurately predicted the punching capacity. The mean ratio between 

experimental and predicted punching capacities was equal to 0.93 with a coefficient of variation 

(COV) of 13%, which is a reasonable value given the complexity of the problem and several 

parameters involved. 
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Table 6-10 – Comparison between experimental and predicted punching capacities (Pexp/Pcalc) 

according to NLFEA, Harris (2004), the CSCT models for SFRC (MAYA et al., 2012; MUTTONI, 

2008), and modified for UHPFRC (MOREILLON, 2013). 

Model Grade Pexp / VFEM Pexp / VHarris
a Pexp / PCSCT

b Pexp / PCSCT
c 

  NLFEA 
Harris  

(2004) 

PR,f,CSCT  by Maya et al. 

(2012) 

PR,f,CSCT by Moreillon (2013) 

C1.8 Full depth 1.25 4.15 1.10 1.10 

C0.6 Full depth 1.19 2.68 1.05 1.05 

U1.8 Full depth 1.08 3.72 1.51 1.25 

U0.6 Full depth 1.18 3.04 1.36 1.26 

  AVG 1.17 3.40 1.25 1.16 

  COV 6.1% 19.5% 17.1% 8.84% 
a) PHarris values reported by Zohrevand et al. (2014). b) PR,c,CSCT given by eq. (6.20) and PR,f,CSCT by 

eq. (6.25); c) PR,c,CSCT given by eq. (6.20) and PR,f,CSCT calculated by eq. (6.36); Source: Author. 

 

Table 6-11 – Comparison between experimental and predicted punching capacities with the 

investigated approaches. 

Model Grade Pexp / PFEM Pexp / PHarris
 a Pexp / VCSCT 

b Pexp / VCSCT 
c 

  NLFEA 
Harris (HARRIS, 

2004) 

PR,f,CSCT  by Maya 

(MAYA et al., 

2012) 

PR,f,CSCT by 

Moreillon 

(MOREILLON, 

2013) 

CU-A-F-1.8 Full depth 0.78 2.10 0.92 1.09 

CU-A-F-0.6 Full depth 0.84 1.31 0.85 0.86 

CU-C-F-1.8 Full depth 0.94 2.32 0.92 1.11 

CU-C-F-0.6 Full depth 0.94 1.31 0.97 0.97 

CU-B-H-1.8 Half depth 1.14 2.27 0.95 0.95 

CU-B-H-0.6 Half depth 0.92 1.56 0.94 0.94 

  AVG 0.93 1.81 0.93 0.99 

  COV 13.0% 26.1% 4.44% 9.72% 
a PHarris reported by Zohrevand et al. (2014); b PR,f,CSCT calculated by eq. (6.35); c PR,f,CSCT calculated 

by eq. (6.36); Source: Author. 

Comparatively, this level of accuracy from the FEM was similar to that reported by Wu 

et al. (2019) for a numerical study using the UHPFRC as an extra strengthening layer. 

Moreover, the predicted punching capacities with FEM were more accurate than semi-empirical 

approaches such as those proposed by Harris (2004). The predictions of the CSCT using the 

models from Maya (2012) and Moreillon (2013), adjusted for slabs with the rational use of 

UHPFRC, reached similar levels of accuracy to those provided by the NLFEA.  

6.7 Parametric analyses  

This section presents the parametric study results with three focuses: (i) investigate the 

influence of the position of the UHPFRC layer; (ii) investigate the influence of the thickness 

and size of the UHPFRC layer on the compressed side of the slab, (iii) investigate the accuracy 
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of the proposed approach to predict the punching capacity of slabs built in the parametric 

analyses. 

6.7.1 Position of the UHPFRC on the slab depth  

While some authors investigated the performance of hybrid slabs with the improved 

material at the tension side of the slab (ZOHREVAND et al., 2014), others used it at the 

compression side (INÁCIO; LAPI; PINHO RAMOS, 2020). Since the governing shear transfer 

action of mechanical punching shear models may vary between the aggregate interlock 

(MUTTONI, 2008) and the compression chord capacity (MARÍ et al., 2018), the location of 

the enhanced material layer may influence the punching capacity differently accordingly for 

the reinforcement ratio of the slabs. 

Figure 6-13 – Effect of the location of the UHPFRC at the tension or compression side of the 

specimens a) CU-B-H-1.8 and b) CU-B-H-0.6. Note: Thickness of the enhanced material equal to 

0.5h. 

  
a) b) 

Source: Author. 

Figure 6-13a shows that placing the UHPFRC on the compression side for slabs with 

higher ratios of flexural reinforcement (CU-B-H-1.8) improves the punching capacity by 

around 64% compared to placing the UHPFRC at the tension side, and it increases the 

deformation capacity of the slab (ductility) markedly. For the slabs with a lower amount of 

flexural reinforcement (CU-B-H-0.6), the punching capacity did not change significantly 

comparing the two investigated options (Figure 6-13b). However, adding the UHPFRC on the 

compression side increased the deformation capacity of the slab-column connection. Since the 

flexure capacity is enhanced more efficiently with the UHPFRC placed at the tension side (see 

Table 6-9), this result was justified because placing the UHPFRC at the compression side 

hampers the development of the critical shear crack at failure more efficiently than placing the 

UHPFRC at the tension side of the slabs. Proof of this is that the critical shear crack did not 

cross the UHPFRC in the tests CU-B-H-1.8 and CU-B-H0.6 from Zohrevand et al. (2014). 
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6.7.2 Punching capacity enhancement with the rational use of UHPFRC 

A parametric study was carried out to investigate the effect of different configurations 

of the UHPFRC layer placed in the shear-critical region for punching. In total, 48 numerical 

models were performed, varying the reinforcement ratio ρ (0.6%; 1.2% and 1.8%), the depth of 

the UHPFRC layer (0.25h, 0.33h, 0.50h, 1h), and the size of the UHPFRC region in plan view 

(square areas with edges at a distance  0.5h (configuration a), 1h  (configuration b),1.5h 

(configuration c) and 2h (configuration d) from the column edges (Figure 6-14). The slabs had 

the geometry and support conditions of the hybrid slabs tested by Zohrevand et al. (2014). For 

these analyses, the material properties of the NSC were those of the slabs C1.8 and C0.6 tested 

by Zohrevand (2014): fcm = 45 MPa and dag = 9.5 mm. The compressive strength and tensile 

strength of the UHPFRC were fixed as 140 MPa and 8 MPa, respectively, as previously studied. 

The material models used for both concretes are described in Table 6-7. 

Figure 6-14 – Configurations studied for the rational use of UHPFRC. 

 
Source: Author. 

Figure 6-15 shows that the use of enhanced material such as the UHPFRC increases the 

punching capacity regardless of the reinforcement ratios. The results of punching capacities 

enhancements herein reported are based on the comparison with the FEM predictions for 

specimens without UHPFRC (NSC flat slabs). The punching capacity enhancements varied 

between 26% and 156%, according to the reinforcement ratios and configurations of UHPFRC 

investigated. For the smaller thickness of the UHPFRC layer (0.25h) and the minimum area 

covered around the column load (0.5h from the load edge), the punching capacity enhancements 

varied between 26% and 29% according to the reinforcement ratios. Using the UHPFRC layer 

over the entire slab thickness and in a square area of 2h from the loading edges allowed reaching 

punching capacity enhancements of over 130% regardless of the reinforcement ratios.  
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However, different behaviors occurred according to the thickness of the UHPFRC layer. 

For the small thicknesses of the UHPFRC layer (0.25h and 0.33h), the increase of the UHPFRC 

layer in the horizontal plane did not significantly increase the punching capacity enhancements. 

On the other hand, when the UHPFRC layer was used over the entire slab thickness, the 

punching capacity enhancements increased almost linearly with the horizontal area of the 

UHPFRC layer, regardless of the reinforcement ratios. The increase of the punching capacity 

enhancements varied according to the reinforcement ratios for the slabs with the UHPFRC layer 

used at a half-thickness (0.5h). For the slabs with the smallest reinforcement ratio (ρ = 0.6%), 

the punching capacity enhancement increased from 42% to 62%, increasing the UHPFRC layer 

area from configuration 0.5h to configuration 2h. For the slabs with higher reinforcement ratios 

(ρ = 1.8%), the punching capacity enhancement varied between 54% and 94% according to the 

UHPFRC layer area. 

Figure 6-15 - Punching capacity enhancements with the rational use of UHPFRC according to the 

UHPFRC layer thickness over the depth (0.25h, 0.33h, 0.50h and 1h), use of UHPFRC in plan 

(Figure 6-14) and for different values of the longitudinal reinforcement ratio: a) ρ = 0.6%; b) ρ = 

1.2%; c) ρ = 1.8%. Legend: FY and PY indicate punching failures with full (FY) and partial (PY) 

yielding of flexural reinforcement. 

 
Source: Author. 

As observed in the control tests from Zohrevand et al. (2014), different punching failure 

mechanisms were identified in the parametric analyses according to the reinforcement ratios. 

All slabs with the smallest reinforcement ratio (ρ = 0.6%) developed flexure-induced punching 

failures with full yielding of flexural reinforcement (FY). The failure mode from slabs with ρ 

equal to 1.2% and 1.8% varied between brittle punching failures (without any reinforcement 

yielding) and punching failure with partial yielding of the flexural reinforcement (PY). Figure 
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6-15 indicates which tests developed reinforcement yielding at failure. Notably, most 

configurations studied developed partial or full yielding of the flexural reinforcement, which 

assures higher deformation capacity for such joints. Even though some specimens showed no 

signal of flexural yielding at failure, the deformation capacity increased compared to the control 

slabs. Therefore, the failure mode in the slab-column connections with the rational use of 

UHPFRC tends to be less brittle than in NSC slab-column connections. 

6.7.3 Comparison between NLFEA and analytical predictions for NSC-UHPFRC slabs 

In daily engineering, analytical models are more practical for assessing problems such 

as the punching capacity in preliminary designs. In this section, the predicted punching 

capacities with the NLFEA in the parametric analyses (Section 7.2) were compared to those 

provided by the proposed analytical approach using the failure criteria from Moreillon (2013) 

and the proposed adjustments for the rational use of UHPFRC (Section 4.2).  

Figure 6-16 shows the comparison between numerical and analytical predictions of 

punching capacity according to the configuration of UHPFRC used in the slabs. The mean ratio 

between numerical and analytical punching capacities for the entire dataset, including 48 

results, was 1.09 with a COV equal to 10.3%. These results indicate a close approximation 

between the NLFEA and the mechanical punching shear model based on the CSCT. Therefore, 

the CSCT can be extended to the use of NSC-UHPFRC flat slabs in design practice. 

Figure 6-16 - Comparison between numerical results and predicted punching shear capacities by 

the proposed approach for NSC-UHPFRC flat slabs: a) ρ = 0.6%; (b) ρ = 1.2% and c) ρ = 1.8%. 

  
Source: Author. 
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6.8 Discussion of Chapter 6 

Only a limited number of studies have investigated the punching capacity of flat slabs 

with total depth (MOREILLON, 2013; SHOUKRY; TARABIA; YASSIN, 2020) or the rational 

use of UHPFRC (ZOHREVAND et al., 2014) at the shear-critical regions, which has hampered 

the spreading of this design practice. Notably, most studies make use of the UHPFRC only on 

the tension side of the slab (BASTIEN-MASSE; BRÜHWILER, 2016a, 2016b; BRÜHWILER, 

2019; FISET; BASTIEN; MITCHELL, 2016; MENNA; GENIKOMSOU, 2021; WU et al., 

2019). At the same time, while modeling approaches are well established to investigate the 

behavior of flat slabs with NSC (GENIKOMSOU; POLAK, 2015, 2016, 2017a; MILLIGAN; 

POLAK; ZURELL, 2020, 2021), similar guidelines for UHPFRC involving the CDP are scarce 

(MENNA; GENIKOMSOU, 2021; WU et al., 2019). Furthermore, most of them were not 

validated to predict the behavior of UHPFRC-flat slabs since they used this material only as 

extra strengthening layer. Therefore, this chapter provides a useful tool to suggest how the CDP 

model can be calibrated to model UHPFRC and then, after proper calibration, to extend the 

knowledge about the punching behavior of UHPFRC flat slabs and hybrid slabs (NSC-

UHPFRC) through parametric studies. 

The calibrated FEM predicted precisely the punching shear capacity and the governing 

failure mode of NSC, UHPFRC, and NSC-UHPFRC flat slabs. Compared to other studies that 

also modeled UHPFRC with the CDP model (BAHIJ et al., 2018; FANG et al., 2019; JANG et 

al., 2018; MAHMUD; YANG; HASSAN, 2013; MARTÍN-SANZ et al., 2020; OTHMAN; 

MARZOUK, 2018; WU et al., 2019), most of the input parameters used herein were derived 

from inverse analyses of experimental investigations (KRAHL; CARRAZEDO; EL DEBS, 

2018; KRAHL; GIDRÃO; CARRAZEDO, 2019), which increases the consistency of the 

selected parameters and the validity of the results. For instance, some authors proposed to use 

a dilation angle ranging from 10º to 15º due to the enhanced dense microstructure of the 

UHPFRC (CHEN; GRAYBEAL, 2011; OTHMAN; MARZOUK, 2018). However, the inverse 

analyses of triaxial tests indicated that a value of 54º should be considered for modeling 

UHPFRC (KRAHL; CARRAZEDO; EL DEBS, 2018). This occurs because the higher post-

peak tensile strength from the UHPFRC increases the transversal deformation capacity of the 

material under high confining stresses. 

Section 6 shows that the level of accuracy of the NLFEA proposed was similar to that 

provided with the CSCT for NSC flat slabs and UHPFRC flat slabs with the recommendations 

of Moreillon (2013). In contrast, the predictions with the modified CSCT (MAYA et al., 2012) 
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for SFRC provided more conservative predictions for UHPFRC flat slabs compared to the FEM 

results. This indicates that the behavior of UHPFRC flat slabs was not fully captured by the 

investigated approach, probably due to the higher toughness of UHPFRC compared to SFRC.  

The parametric analyses (Section 6.7) indicate that placing the UHPFRC on the 

compression side of flat slabs is more efficient to improve the punching capacity of the slabs 

than placing the UHPFRC on the tension side of the slabs, mainly for those with higher 

reinforcement ratios (Figure 6-13a). Conversely, for slabs with lower reinforcement ratios (for 

instance, ρ = 0.6%), placing the UHPFRC on the tension or compression side did not enhance 

the punching capacity significantly (Figure 6-13b). However, the deformation capacity of the 

slabs with UHPFRC on the compression side for such cases was enhanced more efficiently. In 

summary, these results are in close agreement with those reported by Inácio et al. (2020), which 

showed by analytical calculations with the CSCT that the beneficial effect provided by the 

enhanced material such as UHPC increases for higher reinforcement ratios. This behavior 

occurs because the punching strength is benefited in different ways increasing the reinforcement 

ratios: (i) the flexural stiffness of the slab increases, which decreases the slab rotations and 

corresponding crack openings; (ii) the interlocking strength is improved due to the lower crack 

openings (INÁCIO; LAPI; PINHO RAMOS, 2020; MUTTONI, 2008) and (iii) due to the 

enhanced fiber bridging stresses along the failure surface (MOREILLON, 2013). Consistently, 

the CSCT model allows considering all these effects. 

The proposed approach to predict the punching capacity of NSC-UHPFRC slabs 

(Section 4.2), based on the works of Moreillon (2013), Inácio et al. (2020) and Gouveia et al. 

(2019a) using different types of materials,  provided accurate predictions of punching strength 

for the slabs tested by Zohrevand et al. (2014) (Section 6.2) and close predictions to advanced 

NLFEA developed in the parametric studies (Section 6.3). Therefore, the proposed approach 

may be used in the preliminary design for the punching capacity of flat slabs with the rational 

use of UHPFRC.  

As suggestions for future works, the authors highlight that further experimental 

investigations should be performed to validate these results for other slab thicknesses and 

varying the material properties of NSC and UHPFRC. 

6.9 Conclusions of Chapter 6 

This study investigated the level of accuracy of NLFEA performed with 3D continuum 

elements to predict the punching capacity and failure mode of three types of specimens: (i) flat 

slabs fully made of NSC, (ii) flat slabs fully made of UHPFRC and (iii) flat slabs with the use 
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of UHPFRC only at a certain thickness of the slab and in the column vicinity. In the end, an 

analytical approach based on the CSCT was proposed to predict the punching capacity of hybrid 

slabs (NSC-UHPFRC slabs) with the rational use of UHPFRC, which was validated against 

experimental and numerical results.  

From the parametric analyses, the following conclusions can be drawn: 

• Placing the UHPFRC at the compression side of slabs is more efficient to improve the 

punching capacity, mainly for slabs with higher reinforcement ratios. Furthermore, the slabs 

showed higher deformation capacity with the use of UHPFRC in the shear-critical regions, 

which is an additional benefit for the performance of flat slabs in seismic regions. 

• The parametric analyses also indicated that the punching shear enhancement with the 

rational use of UHPFRC at the compression side of the slabs depends significantly on the 

geometry of the UHPFRC layer. For slabs with reinforcement ratios of 1.8%, the punching 

capacity enhancement varied between 27% and 153%, changing the size of the UHPFRC layer 

(thickness and area around the loaded area). Although the higher punching capacity 

enhancements were reached using the UHPFRC over the entire thickness (> 100% in some 

analyses), significant enhancements in the punching capacity were also reached with layers of 

small thickness (0.25h and 0.33h) placed at the compression side of the slabs.  

From the proposed analytical approach to predict the punching capacity, the following 

conclusions can be drawn: 

• The proposed approach based on the CSCT (MAYA et al., 2012; MUTTONI, 2008) and 

inspired by the works of Moreillon (2013), Inácio et al. (2020) and Gouveia et al. (2019a) leads 

to good predictions of the punching capacity of NSC-UHPFRC slabs with the rational use of 

UHPFRC around the loaded area and at the compression side. This statement is supported by 

comparisons between the analytical predictions and the experimental results of Zohrevand et 

al. (2014), as well as by comparisons between the analytical calculations with advanced NLFEA 

developed in the parametric studies (Section 6.2 and Section 6.3).  

• The bond factor kb used to predict the punching capacity with the CSCT can be assumed 

equal to 1 due to the higher packing of the UHPFRC matrix, regardless of the fiber shape, when 

using the equations from Maya et al. (2012) developed for SFRC. However, more accurate 

predictions were reached with the CSCT following the proposed approach based on the works 

of Moreillon (2013) to predict the punching strength of UHPFRC flat slabs with the CSCT: (i) 

estimating the ultimate crack opening wu from a relation with the fiber length (wu = lf /4); (ii) 
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considering the higher post-cracking tensile strength in the punching capacity; and (iii) 

calculating the contribution of the fibers PR,f,CSCT by Eq. (6.36). 

In summary, the main significance of this research is that an economical and sustainable 

solution may be achieved by increasing the punching capacity of flat slabs without requiring 

stirrups with the rational use of UHPFRC. Since limited experiments are available about this 

kind of connection using this promising material (ZOHREVAND et al., 2014), numerical 

studies may be a useful tool to extend the knowledge in this field. The importance of identifying 

analytical methods that are able to predict the behavior of such joints is also highlighted, as 

such analytical methods are the main tools used in engineering practice. Therefore, the accurate 

predictions with the CSCT model with the proposed modifications should help to spread a 

design practice with the rational use of UHPFRC. 
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7 NLFEA OF ONE-WAY SLABS IN TRANSITION 

BETWEEN SHEAR AND PUNCHING: 

RECOMMENDATIONS FOR MODELING 

This chapter deals with the non-linear finite element analyses of one-way slabs under 

concentrated loads. In this context, a numerical model was validated to represent different shear 

failure mechanisms observed in an experimental program from the literature. The challenges in 

predicting all possible shear failure mechanisms involved for such slabs are highlighted. 

Ultimately, the impact of different modeling choices in the predictions of ultimate capacity is 

investigated. 

7.1 Context 

One-way slabs under large concentrated loads are commonly found on bridge deck 

slabs, industrial floor slabs and even residential buildings during their building or use (BUI et 

al., 2017b; FERNÁNDEZ; MARÍ; OLLER, 2021; HENZE; ROMBACH; HARTER, 2020; 

LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013). Assuming the use of such structures 

on bridge deck slabs, the reader may realize that the load position varies significantly during its 

use. In practice, different failure mechanisms may be critical for a given slab depending on the 

load position and other parameters such as the slab width (SOUSA et al., 2021a, 2021c). For 

instance, when the slab width is not so large compared to the load size in the width direction, 

the slab may fail as a wide beam in one-way shear (LANTSOGHT et al., 2014; REIßEN; 

CLASSEN; HEGGER, 2018). At the same time, when the load is placed close to the support 

and the slab width is considerably larger than the load size, not the entire slab strip may 

contribute effectively to the sectional shear capacity (LANTSOGHT et al., 2014). In such cases, 

a slab strip called effective shear width is assumed to contribute effectively to the sectional 

shear capacity (LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013). On the other hand, 

when the distance from the load to the support increases, the shear flow around the load 

becomes predominantly radial; hence, the punching failure may become more critical than a 

wide beam in one-way shear. In such cases, the sectional shear capacity may eventually not be 

reached if the test fails by punching.  

A large number of studies contributed to predicting the sectional shear capacity of 

reinforced concrete (RC) beams (RIBEIRO et al., 2020; SANTOS et al., 2019) and the punching 

capacity of flat slabs or slab-column connections (SOUSA et al., 2021b; GENIKOMSOU; 
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POLAK, 2015) using three-dimensional (3D) non-linear finite element analyses (NLFEA). 

However, a limited number of them addressed the challenge of using the same modeling 

strategy to assess the ultimate capacity of RC members that may develop different shear failure 

mechanisms (one-way shear and punching shear), such as one-way slabs under concentrated 

loads (HENZE, 2019; REIßEN, 2016). Moreover, the failure mechanism of such structures is 

not frequently discussed in detail. Consequently, the influence of some parameters on the 

ultimate capacity cannot be well understood when the failure mechanism may have changed in 

the test varying parameters such as the slab width and load position. Therefore, further studies 

are needed to discuss the problem from a most comprehensive perspective. 

At the same time, another aspect also draws attention in recent publications addressing 

numerical studies: the methodology followed in several papers has some minor points subjected 

to discussions. For instance, during the validation step of the numerical models, it is frequent 

in the literature to use only one test result with a specific failure mechanism for validating the 

modeling strategy. However, other failure mechanisms could appear when performing 

parametric analyses with significant changes from material and geometry parameters. In this 

way, such different failure mechanisms should also be investigated during the validation step 

to assure that the modeling strategy would also represent them accurately. At this point, it is 

important to note that the primary purpose of this study is not to describe a modeling approach 

capable of representing several failure mechanisms for such slabs. As possible, this chapter tries 

to bring some light to problems that may occur when using numerical models validated against 

only one test result to investigate other parameters in parametric analyses. 

Besides that, some modeling options are frequently not discussed in numerical studies. 

For instance, the influence of considering or not the concrete damage evolution (degradation of 

the elastic modulus) with the increasing loading was scarcely investigated (GENIKOMSOU; 

POLAK, 2015). Until now, most studies that propose not using the damage evolution law for 

simulating static tests assume that this material characteristic would influence only cyclic tests. 

However, some papers have already shown that this parameter may have a not insignificant 

influence on the numerical results (GENIKOMSOU; POLAK, 2015). Herein, it is assumed that 

the variation of the elastic stiffness from concrete could influence the confining conditions on 

three-dimensional problems. Additionally, some mechanical models of one-way shear strength 

already include the elastic modulus from concrete as a critical parameter in the predictions of 

ultimate capacity (TRAN, 2020). Since no specific study was found on this matter, the results 

of NLFEA with and without the damage evolution parameters should be investigated.
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 In this study, it is proposed to investigate the accuracy of a developed modeling strategy 

to represent different shear failure mechanisms that can take place for one-way slabs under 

concentrated loads: one-way shear as wide beams and punching shear. Besides that, a sensibility 

study is performed to show the influence of some modeling choices from the constitutive model 

adopted in the numerical results. Herein, the following parameters are investigated: (i) the 

influence of considering or not the concrete damage evolution (variation of the elastic modulus 

in the concrete non-linear phase); (ii) the influence of the stress-strain behavior adopted in 

compression and tension; and (iii) the viscosity parameter. In advance, one of the research 

significances of this chapter is to show how some assumptions and methodologies can lead to 

questionable results.  

Ai this point, it is important to remember that in the Concrete Damaged Plasticity (CDP) 

model, the effective elastic modulus used in the simulations varies as a function of the damage 

parameter d through the following expression: 

 ( )0 1E E d=  -  (7.1) 

E is the effective elastic modulus in the simulations and E0 is the initial or undamaged 

elastic modulus. d is the damage variable that varies between 0 (undamaged) and 1 (fully 

damaged). Added to that, the damage parameter also changes the proportion between the 

inelastic strains and the plastic strains through the following expression: 
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εc
pl is the compressive plastic strain; εc is the total compressive strain; ε0c

el is the 

undamaged compressive elastic strain; εc
in is the damage inelastic strain. From expression (7.2)

it can be noted that when the damage parameter is neglected (assumed null or d = 0), the plastic 

strains become equal to the damage inelastic strain. Therefore, even in simulations of static 

problems (not cyclic tests), neglecting the damage parameters influence may play influence the 

simulation results due to its influence on the evolution of plastic strains, which deserves more 

investigations. 

First, the selected tests from Reiβen, Classen and Hegger (2018) used as reference are 

detailed in Section 7.2. In the following, the modeling strategy proposed is presented, detailing 

the constitutive models, material models, and finite element types used. In the validations step, 

the numerical results are compared to the experimental results in terms of failure mechanism 

and ultimate load. The sensibility study section presents the results of changing specific material 
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parameters of the numerical models. Next, the Discussions section provides a comprehensive 

look at the main results presented compared to the previous studies, highlighting the main 

contributions from this work. From this, a set of recommendations are stated in the Conclusions 

sections. 

 

7.2 Control specimens from literature 

This section details the motivation behind the choice of the control tests, the geometry 

and material properties of the studied slabs. 

7.2.1 Choice of control specimens 

This study uses one-way slabs under concentrated loads tested by Reiβen et al. (2018) 

as reference tests. This study selected a set of tests on which different failure mechanisms 

occurred, varying specifically parameters in the analyses, such as the load position and slab 

width, illustrating possible problems on using only one test to validate a defined modeling 

strategy. At this point, the reader may realize that the parameters varied could be selected to be 

investigated by parametric analyses on a hypothetical study but herein were investigated 

experimentally. In total, 13 tests were selected to be investigated in detail based on the key 

parameters in the reported paper by Reiβen, Classen and Hegger (2018). Herein, these 

parameters are mainly (i) the shear span a defined between axes of support and loading plate 

and (ii) the slab width bslab. By varying these two parameters in the reported study, different 

failure mechanisms were observed (shear, punching or a mixed-mode between them). 

 

7.2.2 Geometry of control experiments 

Figure 7-1 shows the generic geometry of the one-way slabs (control specimens) tested 

by Reiβen, Classen and Hegger (2018). In this study, only the simply supported slabs were 

evaluated. In the selected tests, two main parameters were varied along with the tests: (i) the 

shear span a and (ii) the slab width bslab. The span length lspan was also changed in some tests, 

particularly those on which it was possible to perform two tests on the same slab. However, no 

relation between the span length and the governing failure mechanism was identified (REIßEN; 

CLASSEN; HEGGER, 2018). 
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Figure 7-1 - Schematic view of the geometry of the one-way slabs tested by Reiβen, Classen and 

Hegger (2018) evaluated in this study: a) layout of the first test on the specimens and ; b) layout 

of the second test on the specimens. 

 
Source: Reiβen, Classen and Hegger (2018). 

Table 7-1 describes the geometry of the slabs, the layout of the tests (see Figure 7-1), 

the reinforcement ratios in the longitudinal and transverse directions and the failure loads for 

the 13 investigated tests.  

In the notation of the tests, for instance S25B-1: S means "slab"; the first two numbers 

following means the slab width in meter (5: blsab = 0.5 m; 15: bslab = 1.5 m; 25: bslab = 2.5 m; 

and 35: bslab = 3.5 m). The last letter refer to the shear slenderness (A: a/dl = 2.9; B: a/dl = 4.2; 

C: a/dl = 5.4). The last number means the number of the test (1 = first test; 2 = second test). The 

concrete cover was 20 mm for all slabs. High-strength steel bars (fyk ≈ 900MPa) were used for 

the longitudinal reinforcement in the tensiled side of the slabs to ensure shear or punching 

failures instead of flexural failures without increasing the reinforcement ratios. Normal strength 

steel bars (fyk = 500 MPa) were applied in the transverse direction. The longitudinal and 

transverse reinforcement ratios (ρl and ρt) on the slabs tensiled side were fixed on 0.98% and 

0.45% respectively (Ø15/7.5 and Ø12/10). This resulted in an effective depth of the longitudinal 

bending reinforcement of dl = 0.241 m and an effective depth of the transverse reinforcement 

of dt = 0.254 m. The reinforcement layer on the compressed side consisted of normal strength 

steel bars (fyk ≈ 500 MPa) with the following distribution: Ø10/15 in the longitudinal direction 

(0.22%) and Ø12/10 in the transverse direction (0.45%). Figure 7-2 shows the reinforcement 
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layout, including the stirrups (Ø12) placed at the support end at the midspan. Reiβen, Classen 

and Hegger (2018) used these stirrups to prevent shear failures out of the region studied, to 

improve the reinforcement anchorage at the supports and also to make easier the installing of 

the top reinforcement. 

Table 7-1 – Geometry, test layout and failure load of the control slabs. 

Test 
lc1 

(m) 

lspan 

(m) 

lc2 

(m) 

ltotal 

(m) 

bslab 

(m) 

h 

(m) 

ρl 

(%) 

ρt 

(%) 

a/d 

(-) 

av/dl 

(-) 

Fu 

(kN) 

VFu 

(kN) 

S5A 0.20 3.0 1.90 5.9 0.5 0.28 0.98 0.45 2.9 1.92 189 145 

S5B-1 0.20 4.0 0.2 4.4 0.5 0.28 0.98 0.45 4.2 3.17 183 137 

S5B-2 1.2 3.0 0.2 4.4 0.5 0.28 0.98 0.45 4.2 3.17 215 144 

S15B-1 0.2 4.0 0.2 4.4 1.5 0.28 0.98 0.45 4.2 3.17 543 407 

S15B-2 1.2 3.0 0.2 4.4 1.5 0.28 0.98 0.45 4.2 3.17 638 425 

S25B-1 0.2 4.0 0.2 4.4 2.5 0.28 0.98 0.45 4.2 3.17 664 498 

S25B-2 1.2 3.0 0.2 4.4 2.5 0.28 0.98 0.45 4.2 3.17 780 520 

S35A-1 0.2 3.0 1.2 4.4 3.5 0.28 0.98 0.45 2.9 1.92 1143 876 

S35A-2 0.2 3.0 1.2 4.4 3.5 0.28 0.98 0.45 2.9 1.92 892 684 

S35B-1 0.2 4.0 0.2 4.4 3.5 0.28 0.98 0.45 4.2 3.17 985 739 

S35B-2 1.2 3.0 0.2 4.4 3.5 0.28 0.98 0.45 4.2 3.17 1024 683 

S35C-1 0.2 4.0 0.2 4.4 3.5 0.28 0.98 0.45 5.4 4.42 1066 787 

S35C-2 0.2 4.0 0.2 4.4 3.5 0.28 0.98 0.45 5.4 4.42 924 623 

Source: Reiβen, Classen and Hegger (2018). 

Figure 7-2 - Reinforcement layout of simply supported slabs with ltotal = 4.4 m tested by Reißen, 

Classen and Hegger (2018). Dimensions in cm. 

 

 

Source: Adapted from Reiβen, Classen and Hegger (2018). 

 

7.2.3 Material properties of control slabs 

Table 7-2 describes the material properties of the concrete used in the tests according to 

Reiβen (2016) and Reiβen et al. (2018). The main properties used to simulate the concrete 

behavior are the average tensile strength (fctm) measured on drill cores drawn from the slabs (D 

≈ 54.5 mm, H ≈ 110 mm), the compressive strength measured on cylinder specimens fc,cyl (D = 

150 mm, H = 300 mm), and the mean modulus of elasticity (secant modulus) of concrete Ecm 

(measured at 40% of fcm). Coarse aggregate with a maximum size of 16 mm was used. 
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Table 7-2 - Concrete properties described in references. 

Test 
fc,cube 

(MPa) 

fc,cyl 

(MPa) 

fctm 

(MPa) 

fct,sp 

(MPa) 

Ecm 

(MPa) 

S5A 44.3 36.9 2.7 3.2 24200 

S5B-1 43.7 39.2 3.0 3.5 26200 

S5B-2 46.1 40.5 2.8 2.8 28100 

S15B-1 43.4 37.7 2.8 3.1 27300 

S15B-2 45.0 38.2 3.0 3.6 27600 

S25B-1 32.0 27.9 2.5 2.3 22400 

S25B-2 33.4 29.5 2.6 2.5 21000 

S35A-1 47.5 41.3 2.7 3.2 29900 

S35A-2 31.0 29.0 2.7 2.4 23300 

S35B-1 45.3 35.9 2.8 3.1 28200 

S35B-2 47.8 38.2 3.0 3.1 *28200 

S35C-1 47.4 39.6 2.4 3.1 27200 

S35C-2 31.0 29.5 2.5 2.5 22700 
*assumed value. Source: Reiβen (2016). 

The measured yield strength varied between 822 MPa and 920 MPa for the 15 mm 

diameter bars; 540 MPa to 573 MPa for the 12 mm diameter bars; and it was assumed as 550 

MPa for the 10 mm diameter bars. The ultimate tensile strength fut varied between 1077 MPa 

to 1110 MPa for the 15 mm diameter bars; 595 MPa to 639 MPa for the 12 mm diameter bars. 

The average steel elastic modulus Es was 199 GPa for the 15 mm diameter bars and 200 GPa 

for the other bars. 

 

7.3 Finite element simulations 

This section presents the details of the modeling of the control slabs, with emphasis on 

(i) material models (ii) mesh discretization and (iii) boundary conditions. 

7.3.1 Overview 

The finite element software ABAQUS/CAE (DASSAULT SYSTEMS SIMULIA 

CORP., 2014) was used to model the reference tests. By considering specimens' symmetry, half 

of the slab's geometry was modeled to reduce the processing time of the numerical models 

(Figure 7-3a). Figure 7-3b shows a 3D view of the built numerical models in the simulations 

with highlighted to the boundary conditions and symmetry planes. A rigid body interaction was 

implemented between the center node of the loading plate (master node) and the top surface of 

the loading plate (slave surface) (Figure 7-3c). In this interaction, the rotation of the slab surface 

was free in relation to the master node. In this way, an axial hinge has been simulated above 

the loading plate. A similar interaction was also implemented in the supports to allow a free 
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rotation around the Z-axis while the vertical and horizontal displacements were fixed. Figure 

7-3d shows all reinforcements modeled. 

Figure 7-3 - Boundary conditions applied in the numerical models: a) detail of the symmetry axis 

b) three-dimensional view of the built numerical model; c) detail of the applied load using rigid 

body displacement with free rotation of the slave surface. 

 

 
a) b) 

  
c) d) 

Source: Author. 

7.3.2 Interfaces 

The interface between the support plates and loading plate surface with the slab was 

modeled assuming (i) hard contact (allowing separation of the surfaces) and (ii) frictionless. A 

perfect bond between reinforcement and concrete was also assumed based in previous 

publications (SOUSA et al., 2021b) since no anchorage failure was reported. 

 

7.3.3 Mesh and Procedure of solution 

Concrete parts, supporting plates and loading plates meshed with 8-node hexahedral 

solid elements with reduced integration (C3D8R). Reduced integration was considered to avoid 

the undesirable shear locking of the brick elements (DASSAULT SYSTEMS SIMULIA 

CORP., 2014; NANA et al., 2017). The rebars were modeled with 2-node truss elements 

(T3D2). Two mesh discretizations were used for the concrete parts to optimize the time of 

processing. In the region closer to the loading plate (Figure 7-4), where failure was expected to 
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occur, the element size for concrete and reinforcement parts was chosen as 28 mm, which 

allows having 10 elements over the thickness of the model. In the second part of the slab, the 

element size used was approximately 56 mm. The interaction between the two parts of the slab 

was performed by a tied contact, which allows having different mesh discretizations between 

the two regions (Figure 7-4).  

 

Figure 7-4 – Sketch of the mesh discretization applied in the numerical models. 

 

Source: Author. 

 

7.3.4 Material modeling of the reference FEM  

The Concrete Damaged Plasticity (CDP) model available on ABAQUS was used to 

simulate the concrete non-linear behavior. The CDP model is grounded on three main parts: (i) 

damage evolution, yield criterion, and plastic flow rule (DASSAULT SYSTEMS SIMULIA 

CORP., 2014). The damage evolution laws describe how the elastic stiffness Ec is degraded 

with increasing strains. The yield criterion is described according to Lubliner (1989) and further 

modified by Lee and Fenves (1998). The plastic flow in the CDP used the non-associated 

potential plastic flow hypothesis. In this way, the CDP uses a potential function G that assumes 

a Drucker-Prager type hyperbolic form (XENOS; GRASSL, 2016). Further details on the 

expressions that describe the CDP model can be consulted elsewhere (GENIKOMSOU; 

POLAK, 2015). 

In summary, the required input data for CDP in ABAQUS to represent the concrete 

compressive behavior are the relations between (i) the compressive stress σc with the inelastic 

compressive strains εc
in; and (ii) the evolution of the compressive damage variable dc according 

to the compressive damage inelastic strains εc
in. The tensile behavior data is inputted with the 

respective relations between (i) the tensile stress σt with tensile cracking strain εt
in and (iii) the 

evolution of the tension damage variable dt with the tensile cracking strain εt
in (CHENG et al., 

2020). The auxiliary input parameters to define the yield criterion and the plastic flow rule are 
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(i) dilation angle ψ; shape factor Kc; eccentricity parameter e; viscosity parameter μ and the 

ratio between the biaxial compressive strength σb0 and the uniaxial compressive strength σc0. 

The stress-strain behavior under compression was modeled herein according to the 

expressions from the current fib Model Code 2010 and EN 1992-1-1:2005 (CEN, 2005): 
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Where: 

 1/c c  =  (7.4) 

 1 1.05 /cm c cmk E f=   (7.5) 

In these expressions, εc1 is the strain at peak stress and it was calculated according to 

EN 1991-1:2005 (CEN, 2005): 
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The stress-strain behavior under tensile stresses was modelled according to the model 

of Hordijk (1992), which considers the bandwidth leq to reduce the mesh sensitivity of the results 

through the same approach described by Genikomsou and Polak (2015). In this study, the value 

of leq was assumed to be equal to the average finite element size (28 mm and 56 mm, 

respectively in the different regions of the slab). In this model, first, a crack opening relationship 

with the tensile stress is given by: 
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With: c1 = 3; c2 = 6.93; wc is the critical crack opening or fracture crack opening given 

by: 

 5.14
f

c

ct

G
w

f
=   (7.8) 

The tensile strain in the descending segment of the tensile stress-strain curve can be 

described in terms of the crack opening from the following kinematic relation 

(GENIKOMSOU; POLAK, 2015): 
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Table 7-3 shows the damage models used for the concrete. The model of Alfarah, López-

Almansa and Oller (2017) was chosen since it accounts for the bandwidth length leq in tension. 

Therefore, this model can reduce mesh sensitivities due tension cracking. 

Table 7-3 – Damage evolution laws used for normal strength concrete. 

Reference Tension damage 

Alfarah, López-

Almansa and Oller 

(2017) 
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(2006) 
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Source: Author. 

 

7.3.5 Plasticity parameters of the reference FEM 

The parameters used for NC were chosen based on the literature review 

(GENIKOMSOU; POLAK, 2015, 2016, 2017a; MILLIGAN; POLAK; ZURELL, 2020, 2021; 

NANA et al., 2017). The dilation angle adopted for the concrete was 30º. Notably, this value is 

close to that expected by Poliotti and Bairan (2019) for the maximum dilation angle of normal 

strength concretes (Ψ = 32º) based on inverse analyses of experimental investigations. The 

fracture energy Gf was calculated according to the fib Model Code 2010 (FÉDÉRATION 

INTERNATIONALE DU BÉTON (FIB), 2012) since the values with the Model Code 1990 

(COMITÉ EURO-INTERNATIONAL DU BÉTON, 1993) underestimated the punching 

capacity of the tests that failed by punching. The default value of the ratio σb0/σc0 in ABAQUS 

is 1.16 for NC. This value is based on the experimental tests of Kupfer et al. (1973; 1969).  

The viscosity parameter value chosen was 0.00001 in such a way to decrease the 

sensibility of the results to the viscoplastic regularization in ABAQUS/Standard (implicit 

integration). However, in the literature, the values applied vary significantly between 0.00001 

and 0.005, for instance. In practice, a viscosity parameter is a numerical tool used in the 

Concrete Damaged Plasticity model to improve convergence and eventually increase the speed 
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of the simulation through the damping of the crack propagation through the numerical models. 

In practice, using higher values of the viscosity parameter makes cracks not concentrate in small 

regions and the damaged region increases considerably (MICHAŁ; ANDRZEJ, 2015). 

However, for values of viscosity higher such as 0.001, for instance, the material may behave as 

a perfect elastoplastic behavior (which means that the residual tensile strength, for instance, 

keeps being the maximum tensile strength during the full simulation after cracking). In other 

words, the viscosity parameter has a similar effect to the mass scaling for problems of explicit 

integration (ABAQUS/Explicit). In the last case, the mass scaling allows an artificially increase 

mass of some elements of the model to speed up the simulation. However, this can also lead to 

inaccurate results in the same way that using high values of viscosity parameter. Since the effect 

of this parameter is not well discussed in most publications, we evaluated the influence of 

different values of the viscosity parameter in the numerical results in the next sections.  

 

7.3.6 Summary of the material parameters of the reference FEM 

 In order to ease the identification of the material parameters used in the reference finite 

element models, Table 6-7 summarized the main information about the materials models used 

for behavior and damage evolution for concrete. 

Table 7-4 - CDP model parameters used for the reference numerical analyses. 

Parameter Reference 

Yield criterion  

Compressive behavior (σc x εc
in) EN 1992-1-1:2005 (CEN, 2005) 

Tensile behavior (σt x εt
in) Hordijk (1992) 

Damage evolution  

Compression damage (dc x εc
in) Birtel and Mark (2006) 

Tensile damage (dt x εt
in) Alfarah, López-Almansa and Oller (2017) 

Plasticity parameters  

Dilation angle, Ψ (º) 30  

σb0/σc0 
1.16 (KUPFER; GERSTLE, 1973; KUPFER; 

HILSDORF; RUSCH, 1969) 

Parameter Kc 0.66 (DASSAULT SYSTEMS SIMULIA CORP., 2014) 

Eccentricity, e 0.1 

Viscosity parameter μ 0.00001 

Fracture energy, Gf fib Model Code 2010 

fct measured (Table 7-2) 
Source: Author.
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7.4 Validation of the modelling approach 

This section presents the validation results of the proposed approach to describe the non-

linear behavior of a different set of tests. In practice, this section tries to highlight how the 

proposed approach allowed to simulate the different shear failure modes identified for the slabs. 

7.4.1 Level of accuracy of the NLFEA according to the slab width 

Figure 7-5 compares the FEM results and test results in terms of applied load at failure 

and governing failure mechanism. The tested load × displacement graph of most tests was not 

reported in the references (REIßEN; CLASSEN; HEGGER, 2018). Consequently, only a 

horizontal dashed line was added to represent the test's maximum achieved load.  

Figure 7-5 - Level of approximation of FE models for the tests a) S5A; b) S5B-1; c) S5B-2; d) S15B-

1; e) S15B-2; f) S25B-1; g) S25B-2; h) S35B-1; and i) S35B-2. 

   

a) b) c) 

   
D e) f) 

   
g) h) i) 

Source: Author. 
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Excluding the results of S5A, which will be described in more detail in the following, 

the results of the numerical models approximate fairly well from the test results regarding the 

applied loads at failure. Moreover, all numerical results clearly indicate a sharp decrease of the 

load capacity after failure, which is a well-known characteristic of brittle failure mechanisms 

from shear and punching failures. The FEM model from S5A overestimated the failure load in 

approximately 38%. The other numerical models deviate less than 20% from the test results 

regarding the ultimate load Fu. In none of the numerical models was identified reinforcement 

yielding at failure, which agrees with the test results evaluated. 

Since the presented modeling approach does not include a specific calibration for each 

test, for instance, regarding the concrete tensile strength, fracture energy or dilation angle, the 

level of accuracy is considered satisfactory in a global way. In other words, by consistency, this 

study follows the same modeling strategy for all tests using the same expressions and values of 

material parameters for all tests. 

However, it is important to note that the test S5A may indicate some limitations from 

the proposed modeling approach. Since these tests correspond to the lower shear slenderness 

(a/dl = 2.9 or av/dl = 1.92), this test may have benefited from arching action in the numerical 

model in a more straightforward way compared to the test result. In practice, comparing the test 

results of S5A and S5B-1, the ultimate load Fu from these tests is approximately the same, 

regardless of the lower shear slenderness av/dl for the test S5A (1.92 compared to 3.17). This 

means that the numerical model may have some limitations to represent the one-way shear 

failure mechanism of non-slender beams. Similar problems were found by Henze modeling 

cantilever slabs when the load was placed too close to the support (av/dl = 1 and av/dl = 2). At 

the same time, this result could also indicate that the test result S5A does not behave as it would 

be expected. Proof of that is that other tests were performed by Reiβen, Classen and Hegger 

(2018) with lower shear slenderness, and they achieved a significantly higher failure load (tests 

S5-D, S5D-L8, S5E-L8).  

In Figure 7-5, a small tendency of overestimation from the failure load was observed 

for the tests that failed as wide beams (one-way shear governing: bslab = 0.50 m and 1.50 m). 

Nevertheless, the NLFE models predictions were slightly more conservative for the tests that 

failed by punching or a mixed failure mode between shear and punching (tests with bslab = 2.5 

m and bslab = 3.5 m). 

Figure 7-6 also shows that the cracking pattern from the test results was well reproduced 

by the numerical models, regardless of the governing failure mechanism. In Figure 7-6 and 
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Figure 7-7, the tensile damage variable (DAMAGET) is plotted to represent the cracking 

pattern. In Figure 7-6, the numerical models reproduced well the flexure cracks followed by the 

formation of an inclined crack that promotes the failure mechanism. However, some small 

differences shall also be highlighted (which are commonly neglected in most publications). 

While the cracking pattern of the test results of slender beams indicates an inclined crack with 

a convex/parabolic shape around the flexural cracks, the numerical models show inclined cracks 

with a more straightforward shape. In test S5A, this may explain the large difference in the 

failure loads observed. In practice, a parabolic cracking pattern disturbs more the load transfer 

in the struts between the load and the support. Therefore, it is reasonable that the failure load in 

the numerical model from S5A has achieved a large failure load.  

Figure 7-6 - Comparison between crack patterns after the failure of experimental tests and FE 

models for a) S5A; b) S5B-1; c) S5B-2. Note: DAMAGET is the damage variable in tension. 

 
S5A (side view)  

 
a) 

 
S5B-1 

 

 
S5B-2 

  
b) c)  

Source: Author. 

Figure 7-7 shows that, as occurred in the experimental program, the numerical models 

started to fail by punching shear when the slab width increased to 2.5 m. At this point, noticeable 

differences between the cracking pattern of the tests S15B-1 and S25B-1 appear: (I) the inclined 

crack visible on the sides views from the test S15B-1 does not appear in the test S25B-1 at 

failure; (ii) the inclined crack in the test S25B-1 develops only in the vicinity of the load, visible 

though cut views (typical from punching failures); (iii) the shape of the cracks from S15B-1 

and S25B-1 are significantly different: while the test S15B-1 develop an inclined crack the 
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connect different flexure cracks, the inclined crack in the test S25B-1arise within a strut region 

around the load. 

Figure 7-7 - Comparison between the FE models and the test results in terms of the cracking 

pattern for: a) S35A-1; b) S35A-2; c) S35B-1; d) S35B-2; e) S35C-1; f) S35C-2. DAMAGET is the 

scalar damage variable in tension. Note: DAMAGET is the damage variable in tension. 

 
S15B-1 (side view) 

 
(side view) 

 
S15B-2 (side view) 

 
(side view) 

 

a) b)  

 
S25B-1 (cut view) 

 
(Side view) 

 
(cut view) 

 

 
S25B-2 (cut view) 

 
(Side view) 

 
(cut view) 

 

 
S35B-1 (cut view) 

 

 
S35B-2 (cut view) 

 
 

   

c) d)  
Source: Author. 

 

7.4.2 Level of accuracy of the NLFEA according to the shear span for the wider slabs (bslab 

= 3.5 m) 

Figure 7-8 shows the load × displacement graphs of the numerical models and the 

ultimate load capacity of the tests (horizontal dashed lines - FEXP). The tested load × 

displacement graph of most tests was not reported in the references (REIßEN; CLASSEN; 
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HEGGER, 2018). Figure 7-8 shows that the numerical model predicted well the ultimate 

capacity from most test results when varying the shear span, excepting for the test S35C-1 (a/dl 

= 5.4). Besides that, it is notable that the results tend to become more conservative when the 

shear slenderness increased. In practice, increasing the shear span means decreasing the load 

eccentricity in relation to the span length between the supports.  

Figure 7-8  - Level of approximation of FE models for the tests in terms of the failure load a) S35A-

1; b) S35A-2; c) S35B-1; d) S35B-2; e) S35C-1; f) S35C-2. 

   
a) c) e) 

   
b) d) f) 

Source: Author. 

Figure 7-9 shows that the punching shear failure that took place in the tests was well 

represented by the numerical models. Due to the higher shear demand in one of the sides of the 

load, an asymmetrical punching cone appeared in some tests. This characteristic was also well 

represented in the numerical models based on the higher concentration of tensile damage 

(DAMAGET) between the load and the closer support. 

Figure 7-9 - Comparison between the FE models and the test results in terms of the cracking 

pattern for: a) S35A-1; b) S35A-2; c) S35B-1; d) S35B-2; e) S35C-1; f) S35C-2. Note: DAMAGET 

is the damage variable in tension. 
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S35-A1 (cut view)       

 

 
S35-A2 (cut view) 

 
 

a) b)  

 
S35B-1 (cut view) 

 

 
S35B-2 (cut view) 

 
 

c) d)  

 
S35C-1 (cut view) 

 

 
S35C-2 (cut view) 

 
 

e) f)  
Source: Author. 

7.4.3 Summary of the level of accuracy with the proposed approach 

Table 7-5 describes a summary of the relation between the tested and predicted 

concentrated loads using the proposed approach for NLFEA. Different subsets were organized 

removing and not removing outliers identified in the predictions. Besides, subsets were 

organized to highlight the results according with the governing failure mechanism (wide beams 

shear = WB and punching shear = P). 

Table 7-5 shows that the average ratio between tested and predicted applied loads at 

failure (FEXP/FFEM) was 1.07 with a coefficient of variation of only 17%. Since no specifical 

calibration of the fracture energy or dilation angle was performed for each single test (the values 

used followed the same values and expressions for all tests), this level of precision was 

satisfactory. Removing the outliers S5A and S35C-1, the coefficient of variation decreases to 

11%, which highlights the excellent precision of the proposed approach. 
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Table 7-5 - Summary of the predictions of ultimate capacity with the proposed approach for 

different subsets. 

Test Failure mechanism av/dl [-] a/dl [-] bslab/lload [-] FEXP / FFEM [-] 

S5A WB = shear 1.91 2.91 1.25 0.63 

S5B-1 WB = shear 3.13 4.17 1.25 0.92 

S5B-2 WB = shear 3.13 4.17 1.25 0.92 

S15B-1 WB = shear 3.13 4.17 3.75 1.18 

S15B-2 WB = shear 3.13 4.17 3.75 1.24 

S25B-1 P = Punching 3.13 4.17 6.25 0.97 

S25B-2 P = Punching 3.13 4.17 6.25 1.06 

S35A-1 P = Punching 1.91 2.91 8.75 1.14 

S35A-2 P = Punching 1.91 2.91 8.75 0.94 

S35B-1 P = Punching 3.13 4.17 8.75 1.10 

S35B-2 P = Punching 3.13 4.17 8.75 1.10 

S35C-1 P = Punching 4.375 5.42 8.75 1.55 

S35C-2 P = Punching 4.375 5.42 8.75 1.20 

 

All tests  AVG  1.07 

All tests COV  17% 

  

All - S5A, S35C1 AVG  1.07 

All - S5A, S35C1 COV  11% 

 

WB S5B-1; S5B-2; S15B1; S15B-2 AVG  1.06 

WB S5B-1; S5B-2; S15B1; S15B-2  COV  16% 

 

P S25(B1,B2); S35(A1; A2; B1; B2; C2) AVG  1.07 

P S25(B1,B2); S35(A1; A2; B1; B2; C2) COV  9% 

Source: Author. 

 

Organizing two subsets according with the governing failure mechanism, it can be seen 

that the level of precisions was very similar for both failure mechanisms (WB and P). The 

average ratio between tested and predicted loads FEXP/FFEM was 1.06, with a coefficient of 

variation of 16%, for the tests that failed as wide beams (WB). In turn, the tests that presented 

a punching failure (P), presented a average ratio FEXP/FFEM of 1.07 with a coefficient of 

variation of 9%. Therefore, a lower scatter was identified for the tests that failed  by punching. 

7.5 Sensibility study 

This section presents the results from the sensibility study to show how some modelling 

options influence in the numerical results of NLFEA. 

7.5.1 Effect of the concrete damage evolution 

In the literature, there is no consensus about including or not including the concrete 

damage evolution in numerical simulations with static loading. Theoretically, including the 

damage evolution law decreases the elastic modulus according to the increase of the plastic 
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strain. Most researchers, however, consider that the lower elastic modulus along the simulation 

would play a significant role only on cyclic tests. In such tests, is expected that simulating the 

lower elastic modulus allows representing the crack closing more accurately and tracking the 

load × displacement relationships more closely. 

Table 7-6 compares tested and predicted resistances with the FEM by considering and 

not considering the damage evaluation laws in the simulations. In general, it was observed that 

the predictions of ultimate capacity become less conservative without including the damage 

parameters. In other words, it was observed that the ultimate capacity predicted with the FEM 

decreased for all tests by including the damage parameters. 

Table 7-6 - Comparison between tested and predicted resistances considering or not considering 

the damage parameters in the simulations. 

Comparison 
With damage 

parameterd 

Without damage 

parameters 
 

Test Failure mechanism av/dl [-] a/dl [-] 
bslab/lload 

[-] 
FEXP / FFEM [-] FEXP / FFEM [-] ∆ (%) 

S5A WB = shear 1.91 2.91 1.25 0.63 0.60 -5% 

S5B-1 WB = shear 3.13 4.17 1.25 0.92 0.85 -7% 

S5B-2 WB = shear 3.13 4.17 1.25 0.92 0.90 -3% 

S15B-1 WB = shear 3.13 4.17 3.75 1.18 1.15 -3% 

S15B-2 WB = shear 3.13 4.17 3.75 1.24 1.17 -5% 

S25B-1 P = Punching 3.13 4.17 6.25 0.97 0.87 -10% 

S25B-2 P = Punching 3.13 4.17 6.25 1.06 0.95 -11% 

S35A-1 P = Punching 1.91 2.91 8.75 1.14 1.09 -4% 

S35A-2 P = Punching 1.91 2.91 8.75 0.94 0.89 -5% 

S35B-1 P = Punching 3.13 4.17 8.75 1.10 1.05 -4% 

S35B-2 P = Punching 3.13 4.17 8.75 1.10 1.06 -4% 

S35C-1 P = Punching 4.375 5.42 8.75 1.55 1.39 -10% 

S35C-2 P = Punching 4.375 5.42 8.75 1.20 1.16 -4% 

   

All tests AVG  1.07 1.01 -6% 

All tests COV  20% 19%  

   

All - S5A, S35C1 AVG  1.07 1.01 -5% 

All - S5A, S35C1 COV  11% 12%  

   

WB S5B-1; S5B-2; S15B1; S15B-2 AVG  1.06 1.02 -4% 

WB S5B-1; S5B-2; S15B1; S15B-2 COV  16% 16%  

   

P S25(B1,B2); S35(A1; A2; B1; B2; C2) AVG  1.07 1.01 -6% 

P S25(B1,B2); S35(A1; A2; B1; B2; C2) COV  9% 11%  

Source: Author. 

In Table 7-6, the ratio FEXP/FFEM varied between 3% and 11% by including the damage 

parameters. In practice, the same level of variation was observed regardless of the governing 
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failure mechanism being wide beam shear (WB) or punching (P). Since both approaches 

(including and not including the damage parameters) led to similar levels of accuracy, it can be 

stated that the simulations could be performed without the damage parameters for simplicity. 

Figure 7-10 - Influence of including or not the damage parameters in the load – displacement 

curves of the numerical simulations. 

   
a) b) c) 

   
c) d) e) 

   
f) g) h) 

   
i) j) l) 

Source: Author. 
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Figure 7-10 shows the load-displacement graph of the simulations with and without the 

damage parameters. In general, including the damage parameters influence only marginally the 

ultimate load and deformation capacity. In other words, it was observed that the displacement 

at failure also varied by considering the damage parameters in the numerical simulations. 

Besides, Figure 7-10 shows that in most cases, the brittle failure mechanism of the slabs 

was well represented with and without the damage parameters. Herein, this brittle mechanism 

is mainly related to the sharp decrease of the applied load at failure in numerical simulations. 

These small differences in the ultimate loads and displacements at failure can be owned 

as a small influence of the elastic modulus of the concrete at failure (and consequently of the 

irreversible plastic strains). Despite the test be not cyclical, shear redistribution at failure allow 

load relief on some regions of the slab, and consequently some crack closing would be expected 

in these regions. This kind of shear redistribution is presented, for instance, in Natário, 

Fernandez Ruiz and Muttoni (2014), for cantilever slabs under concentrated loads. In these 

tests, it was observed that after reaching the ultimate shear capacity in the front side of the load, 

at the symmetry axis, the load was redistributed to the lateral zones. 

Moreover, the elastic modulus of the concrete around the load influence the confining 

stresses in this region. Therefore, including the damage parameters allows consider more 

realistically some aspects of the problem. Nevertheless, the failure loads with and without 

including the damage parameters can be considered similar. 

7.5.2 Effect of the stress-strain behavior in compression 

Several models were proposed in the literature to describe the non-linear behavior of 

normal strength concrete in compression (CARREIRA; CHU, 1985; FEENSTRA, 1993; GUO, 

2014; HOGNESTAD, 1953; KRÄTZIG; PÖLLING, 2004), which differ mainly in the post-

peak behavior in compression and tension (Figure 7-11a). This occurs because some models 

include parameters related to the element size leq and crushing energy Gch to softer the 

degradation of stresses under compression (FEENSTRA, 1993; KRÄTZIG; PÖLLING, 2004). 

In Figure 7-11a, the model of Krätzig and Pölling (2004) considers the crushing energy Gch, 

which was calculated through the following expression (OLLER, 1988), which is dependent of 

the fracture energy: 
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Figure 7-11 - Comparison of different stress-strain models to describe the behavior under a) 

compression and b) tension for normal strength concretes. 

  

a) b) 

Source: Author. 

In tension, most models used to describe the non-linear behavior of the concrete provide 

similar results regarding the relation tensile stress-crack opening displacement 

(CORNELISSEN, H. A. W.; HORDIJK, D. A.; AND REINHARDT, 1986; FÉDÉRATION 

INTERNATIONALE DU BÉTON (FIB), 2012; HORDIJK, 1992; PETERSSON, 1981). In 

Figure 7-11b, the models from Hordijk (1992), Petersson (1981), and Hillerborg et al. (1976) 

account for the fracture energy Gf to describe the softening behavior of concrete in terms of 

tensile stress × crack opening (σt × w). In Figure 7-11, the crack openings w are translated to 

tensile strains εt by the expression εt = fct/Ec+w/leq. It can be seen that the expressions from 

Peterson (1981), Hillerborg et al. (1976) and Hordijk (1992)  provides quite similar results. 

Conversely, the curves built with the expressions from Carreira and Chu (1986) and Guo (2014) 

does not consider the finite element size in the expression and provides quite different post-

peak tensile strengths.  

Figure 7-7 shows the comparison between tested and predicted resistances with the FEM 

according to the different stress-strain behaviors in compression assumed to the concrete. In 

these analyses, the finite element models assume all properties of the reference finite element 

approach, except that the damage parameters were not considered in these evaluations. 
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Table 7-7 - Comparison between tested and predicted resistances FEXP/FFEM according to the 

stress-strain behavior assumed in compression. 

     Stress-strain behavior in compression 

     
EN 1992-1-1:2005 

(Reference) 
Carreira and Chu Krätzig and Pölling 

Test Failure mechanism av/dl [-] a/dl [-] bslab/lload [-] FEXP / FFEM [-] FEXP / FFEM [-] FEXP / FFEM [-] 

S5A shear 1.91 2.91 1.25 0.60 0.59 0.55 

S5B-1 shear 3.13 4.17 1.25 0.85 0.76 0.74 

S5B-2 shear 3.13 4.17 1.25 0.90 0.75 0.89 

S15B-1 shear 3.13 4.17 3.75 1.15 0.76 0.92 

S15B-2 shear 3.13 4.17 3.75 1.17 1.02 0.97 

S25B-1 Punching 3.13 4.17 6.25 0.87 0.82 0.85 

S25B-2 Punching 3.13 4.17 6.25 0.95 0.90 0.87 

S35A-1 Punching 1.91 2.91 8.75 1.09 1.10 1.07 

S35A-2 Punching 1.91 2.91 8.75 0.89 0.89 0.89 

S35B-1 Punching 3.13 4.17 8.75 1.05 1.16 1.04 

S35B-2 Punching 3.13 4.17 8.75 1.06 1.00 1.01 

S35C-1 Punching 4.375 5.42 8.75 1.39 1.31 1.24 

S35C-2 Punching 4.375 5.42 8.75 1.16 1.08 1.02 

    

All tests AVG 1.01 0.93 0.93 

All tests COV 19% 19% 14% 

 

All tests (-) S5A, S35C1 AVG 1.01 0.93 0.93 

All tests (-) S5A, S35C1 COV 12% 16% 10% 

 

WB S5B-1; S5B-2; S15B1; S15B-2 AVG 1.02 0.82 0.88 

WB S5B-1; S5B-2; S15B1; S15B-2 COV 16% 16% 11% 

 

P S25B1-2 ; S35A-1; A2; B1; B2; C2 AVG 1.01 0.99 0.96 

P S25B1-2 ; S35A-1; A2; B1; B2; C2 COV 11% 13% 9% 

Source: Author. 

Table 7-7 shows that the accuracy of the different approaches are quite similar for slabs 

failing by punching. However, the predictions deviates in >12% compared to the reference 

approach considering only the tests that failed as wide beams in shear. In practice, considering 

the large post-peak compressive strength according to the models from Carreira and Chu (1985) 

and Krätzig and Pölling (2004) overestimated the tested resistances in one-way shear. However, 

it can be seen re-calibrating other parameters such as the fracture energy and dilation angle, 

these approaches may lead to almost the same results. Therefore, any of these models could be 

used since other secondary parameters be well calibrated.  

Figure 7-12 shows the influence of the different stress-strain behavior in compression 

assumed for the concrete. Figure 7-12 shows that in general, the studied models changed only 

slightly the ultimate loads and the displacements at failure. The stress-strain models with a large 

residual compressive strength (Eurocode < Carreira and Chu < Krätzig and Pölling) led in most 

cases to a higher ultimate load and displacement at failure. In most simulations, the governing 

failure mechanism was not changed by changing the stress-strain behavior in compression. 
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However, the tests S15B1- and S15B-2 showed that, in some cases, the use of the models from 

Carreira and Chu and Krätzig and Pölling might lead to less brittle failure mechanisms at failure 

(almost ductile, indeed).  Therefore, it is necessary evaluate very carefully the use of models 

that assume a large residual tensile strength in compression. 

Figure 7-12 - Influence of the stress-strain behavior in compression assumed for the concrete. 

   
a) b) c) 

   
c) d) e) 

   
f) g) h) 

   
i) j) l) 

Source: Author. 
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7.5.3 Comparative analyses of different approaches from literature 

In the literature, the numerical studies may differ in several modeling options. In the 

case of the Concrete Damaged Plasticity model, these modeling options may include the use of 

different dilation angles and fracture energy as well as the use of significantly different viscosity 

parameter values. This section intended to show how some different modeling options may lead 

to similar levels of accuracy and, in some cases, to overly erroneous predictions. 

Figure 7-8 describes four modeling approaches that combine different modeling options 

involving: (i) stress-strain behaviors in compression and tension, (ii) dilation angles values, (iii) 

fracture energy values, and (iv) viscosity parameters. Approach 1 is the proposed one 

(reference) in this study. Approach 2 is a modeling approach commonly found in studies related 

to punching capacity (GENIKOMSOU; POLAK, 2015). Approach 3 is one commonly used in 

studies related to composite structures. In approach 3, the stress-strain behavior in tension 

(CARREIRA; CHU, 1986) does not include the finite element size and, in general, the result is 

a significantly lower residual tensile strength after the peak stress compared to the models from 

Hordijk (1992) and Petersson (1981) (see Figure 7-11). Based only on the stress-strain behavior 

in tension, someone could expect in this way a considerably lower ultimate capacity of the slabs 

considering Approach 3. 

Table 7-8 - Modelling options proposed and from different approaches commonly found in the 

literature. 

Parameter 
Approach (1) - 

Reference 
Approach (2) Approach (3) Approach (4) 

σc  × εc 
Eurocode 

(CEN, 2005) 

(HOGNESTAD; HANSON; 

MCHENRY, 1955) 

(CARREIRA; 

CHU, 1985) 

(CARREIRA; 

CHU, 1985)  

σt × εt 
(HORDIJK, 

1992)  
(PETERSSON, 1981) 

(CARREIRA; 

CHU, 1986) 

(CARREIRA; 

CHU, 1986)  

dc × εc - - - - 

dt × εt - - - - 

Fracture 

energy 
Model Code 2010 Model Code 1990 - - 

Dilation 

angle  
30 40 40 40 

viscosity 0.00001 0.00001 0.001 0.00001 

Finite 

element 
C3D8R C3D8R C3D8R C3D8R 

Source: Author. 
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Approach 4 is a modified approach from Approach 3, changing only the viscosity 

parameter. The damage parameters were not included in this section since it was observed that, 

in general, this parameter does not significantly change the global behavior from the numerical 

models in static problems. 

Table 7-9 compares experimental and predicted resistances with the FEM using the 

different approaches (modeling options detailed in Table 7-8). Table 7-9 shows that even using 

significantly different values of fracture energy and dilation angle, approaches 1 and 2 led to 

similar levels of accuracy. In practice, this occurs because the higher fracture energy used in 

approach 1 is balanced with the lower dilation angle used. Comparing the predictions from 

approaches 1 and 2, the higher differences occurred for the tests that failed in wide beam shear 

(WB), reaching differences between 10 and 20% in the predicted failure load. Conversely, the 

punching capacity predictions were very similar for both approaches. 

Table 7-9 – Comparison between tested and predicted resistances using the FEM based on 

different approaches (modelling options from Table 7-8). 

     Approach 1 Approach 2 Approach 3 Approach 4 

Test F.M. 
av/dl 

[-] 

a/dl 

[-] 

bslab/lload 

[-]  
FEXP / FFEM [-] FEXP / FFEM [-] FEXP / FFEM [-] FEXP / FFEM [-] 

S5A shear 1.91 2.91 1.25 0.60 0.55 0.36 0.63 

S5B-1 shear 3.13 4.17 1.25 0.85 0.73 0.52 1.32 

S5B-2 shear 3.13 4.17 1.25 0.90 0.71 0.54 1.22 

S15B-1 shear 3.13 4.17 3.75 1.15 0.95 0.51 1.18 

S15B-2 shear 3.13 4.17 3.75 1.17 1.01 0.51 1.30 

S25B-1 Punching 3.13 4.17 6.25 0.87 0.87 0.40 1.02 

S25B-2 Punching 3.13 4.17 6.25 0.95 0.92 0.43 1.08 

S35A-1 Punching 1.91 2.91 8.75 1.09 1.07 0.49 1.51 

S35A-2 Punching 1.91 2.91 8.75 0.89 0.89 0.37 1.43 

S35B-1 Punching 3.13 4.17 8.75 1.05 1.02 0.53 1.51 

S35B-2 Punching 3.13 4.17 8.75 1.06 0.95 0.51 1.43 

S35C-1 Punching 4.375 5.42 8.75 1.39 1.20 0.74 2.21 

S35C-2 Punching 4.375 5.42 8.75 1.16 1.07 0.56 1.30 
         

All tests AVG 1.01 0.92 0.50 1.32 

All tests COV 19% 19% 20% 27% 
         

All tests (-) S5A, S35C1 AVG 1.01 0.93 0.49 1.30 

All tests (-) S5A, S35C1 COV 12% 13% 12% 13% 
         

WB S5B-1; S5B-2; S15B1; S15B-2 AVG 1.02 0.85 0.52 1.25 

WB S5B-1; S5B-2; S15B1; S15B-2 COV 16% 18% 2% 5% 
         

P S25B1-2 ; S35A-1; A2; B1; B2; C2 AVG 1.01 0.97 0.47 1.32 

P S25B1-2 ; S35A-1; A2; B1; B2; C2 COV 11% 9% 15% 15% 

Source: Author. 

On the other hand, approach 3 led to errors in the predicted failure load higher than 50%. 

All FEM predicted an overly unsafe failure load using approach 3, even though this approach 
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is based on the use of a stress-strain behavior in tension with a considerably lower residual 

tensile strength after cracking. In practice, this occurred because the viscosity parameter used 

(0.001) changed the effective stress-strain behavior in tension completely. In practice, a value 

higher than 0.0001 may change the material behavior to a perfect-plastic material (MICHAŁ; 

ANDRZEJ, 2015). Consequently, the material never fails in the concrete and the slabs only fail 

after the reinforcement starts to yield. 

In approach 4, the viscosity parameter from approach 3 was reduced to the value of 

0.00001, which was demonstrated in other studies as being a value sufficiently low to not 

change the material behavior in an undesirable way and allow numerical convergence in the 

processing of the FEM (SOUSA et al., 2021b). Table 7-9 shows that the predicted failure load 

decreased markedly from approach 3 to approach 4, and most of the prediction failure loads 

arose on the safe side. In practice, the results from approach 4 become more conservative than 

the other approaches due to the lower residual tensile strength after cracking. This occurs 

because the model from Carreira and Chu (1986) to describe the stress-strain behavior in tension 

is not based on a stress-crack opening relationship and, hence, does not allow to include the 

finite element size in the expressions. In general, approach 4 still led to large errors in the 

predicted failure load (> 25%) for most tests and shall also be avoided. 

Figure 7-13 shows the influence of different sets of modeling options on load × 

displacement graphs (F × δ) of the numerical models (see Table 7-8 for notations). From Figure 

7-13, the main observation is that beyond overestimating the failure load with approach 3, the 

failure mechanism of the slabs is also not represented by the numerical models. In practice, all 

numerical models presented a ductile failure mode using approach 3. Therefore, viscosity 

values should be carefully evaluated since they can introduce a large bias in the numerical 

results. In other words, using high values of viscosity parameters, it cannot be possible to 

identify different failure mechanisms of the slabs. 
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Figure 7-13 - Influence of different set of modelling options (see Table 7-8) on load × displacement 

graphs of the numerical models (F × δ). 

   
a) b) c) 

   
d) e) f) 

   
   

   
   

Source: Author. 
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7.6 Discussion of Chapter 7 

Most publications with recommendations for modeling test results focus on the idea that 

the NLFEA can represent very well test results evaluated. However, some problems arise 

frequently in many studies: (i) the proposed approach is validated against one specific test 

results; (ii) the limitations of the numerical model are not discussed or investigated; (iii) the 

material parameters are calibrated without worry to the physical meaning of such. In this study, 

it was investigated the accuracy of an arbitrary modeling approach to bring some light to the 

discussion.  

When the numerical model is validated against one specific test result, a severe problem 

may arise: (i) the proposed numerical model may have been validated against outlier test results 

and, hence may not represent well most similar problems. For instance, if material parameters 

from the numerical model are calibrated to represent the test results S5A (as tested), the 

numerical model would not represent most test results well. In practice, the error of some 

numerical models increased to more than 50% when the modeling approach was changed to 

represent better the test S5A. Therefore, calibrating the numerical models for only one test result 

before applying the modeling strategy for a parametric study can be dangerous. 

Another main pitfall observed in several numerical studies is that the validations step 

from the study usually focuses on representing only one failure mechanism possible and does 

not cover all possible failure mechanisms that may arise in the parametric studies. For instance, 

in the testing program performed by Reiβen, Classen and Hegger (2018), it was identified that 

both one-way shear failures (as wide beams) and punching shear failures could occur by 

changing the slab width. Therefore, this study could not include (by consistency) a variable 

such as a slab width in the parametric analyses if the numerical model is not validated to 

represent both failure mechanisms. Although this methodology could appear as a rule of thumb 

for more experienced researchers, this practice is commonly not followed in many recent 

publications. 

For instance, it was identified in the numerical studies presented herein that the 

numerical model might not represent failures like non-slender beams. Therefore, the variables 

investigated in a future parametric study could not include non-slender beams failure 

mechanisms. However, it was shown herein that the numerical model simulates well both one-

way shear failures and punching failures. Therefore, the numerical models can be used to 

investigate situations in which both failure mechanisms can be critical. 
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In the context of NLFEA, it is also essential to understand the results of the outliers 

(numerical predictions that deviate overly from the test results). For instance, the difficulty of 

representing the failure load for the test S5A is not coincidental. The failure load from non-

slender beams (or wide slabs) is very sensitive to the cracking pattern that develops during the 

loading and the strut efficiency to transfer shear forces (SOUSA; LANTSOGHT; EL DEBS, 

2020; MIHAYLOV; BENTZ; COLLINS, 2013). Consequently, a large scatter in the failure 

loads appears for such members, even testing equal members. Therefore, it is more difficult for 

the numerical model to predict the right failure load from a more sensitive failure mechanism. 

In the case of test S35C-1, a similar interpretation occurs since the punching phenomenon also 

occurs in a region governed by strut and tie mechanisms (load vicinity) (MUTTONI; 

FERNANDEZ RUIZ, 2010a). Since this test represents an asymmetrical punching in terms of 

load position and reinforcement ratios and no specific calibration was applied for each test, it 

would be natural that some predictions deviate more from the test results. 

In many numerical studies, damage evolution parameters are not considered in the CDP 

model. The main argument for this is that the degradation of elastic stiffness would play a 

significant role only on cyclic tests, on which the unloading would produce crack closing. 

However, an essential aspect of three-dimensional problems is neglected in this way: the 

degradation of the elastic modulus influences the triaxial state of concrete under confining 

problems. Since the yielding surface of the CDP model is pressure-sensitive, and the punching 

problems mobilize high confining stresses around the column, it can be expected that not 

including damage parameters could influence the numerical results. However, until now, no 

comprehensive investigation on this aspect has been conducted. This study showed that the 

failure load for shear and punching failure modes decreases around 5% to 10%, including the 

damage parameters. On the other hand, someone could also not include the damage parameters 

and change other parameters to reach similar results in terms of failure load. In practice, this 

would make the numerical models simpler. 

One of the most common problems in numerical studies involving the Concrete 

Damaged Plasticity model is the value of the viscosity parameter used. In practice, many 

researchers are tempted to use high values such as 0.001 and 0.0001 due to the lower time of 

processing from the numerical models. In practice, increasing the viscosity parameter from 

0.00001 to 0.001 may speed the processing more than 10 times (substantially decreasing the 

time required in the simulation). However, this has a cost that is not discussed in most papers. 

In practice, depending on the value of μ, the concrete may behave as a perfect plastic material 
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in tension and compressions. Michał and Andrzej (2015) show that after a certain value of the 

viscosity parameter, the post-peak behavior of concrete under tensions and compressions 

changes overly, losing the descending branch in the stress-strain relationships expected for such 

materials. While this characteristic may have a minor influence on problems governed by 

flexure mechanisms, using high values of viscosity parameters may induce flexure failures for 

all simulations. Therefore, using high viscosity values when more than one failure mechanism 

(eg. concrete crushing, shear or punching) can be critical in the study and should be avoided. 

 

7.7 Conclusions of Chapter 7 

This study discusses the level of accuracy of the proposed approach to predict the 

ultimate capacity of slabs strips and slabs under concentrated loads aided by NLFEA. The 

limitations and advantages of the proposed approach are highlighted. Besides, a sensibility 

study was performed to show the effect of modeling options such as the stress-strain behavior 

assumed in compression and the effect of including or not the damage parameters in simulation 

of static tests. The following conclusions can be drawn: 

• The NLFEA proposed accurately predicts the ultimate capacity of slab strips and slabs 

under concentrated loads when the load is placed at distances av > 2dl. When the 

concentrated loads are placed closer to the support (av < 2dl), sometimes the ultimate 

capacity is not predicted accurately because such tests are mostly influenced by the 

efficiency of the struts between the load and the support. Since there is a large scatter 

of experimental results for such loading conditions, it can be expected that the numerical 

models also have more difficulty in representing such failure mechanisms. Considering 

the 13 tests evaluated (including the outlier results), the average ratio between tested 

and predicted resistances PEXP/PFEM with the NLFEA was 1.01 with a coefficient of 

variation of 19%., which is a satisfactory level of precision for a complex problem. 

Removing the two outlier results (S5A and S35C-1), the ratio PEXP/PFEM has an average 

value of 1.01 with a coefficient of variation of 12%. 

• Including the damage parameters in the NLFEA allows for representing more accurately 

the change in the confining stresses around the load at failure. However, it was found 

that the effect of including the damage parameters in static tests was limited for the 

evaluated tests. The variations in the predicted ultimate loads were in the order of 3% 

to 11% including and not including the damage parameters. The failure mechanism of 

the tests did not change when not including the damage parameters. In practice, the tests' 
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predicted ultimate load and deformation capacity decrease by including the damage 

parameters. For simplicity, engineers may opt to use or not the damage parameters in 

static tests since other secondary parameters (fracture energy, dilation angle) be well 

calibrated within certain limits. 

• The stress-strain behavior assumed in compression may influence the ultimate capacity 

of wide beams and slab strips by around 10%. The influence of this parameter on the 

slabs that failed by punching was lower (around 5%). In general, the assumed stress-

strain behavior in compression did not change the failure mechanism of the slabs. 

However, some tests presented a less brittle failure mechanism at the maximum load 

when using models with considerably higher residual compressive strength (for 

instance, Krätzig and Pölling (2004), which is an undesirable characteristic. 

• The use of large values of viscosity parameter (for instance 0.001) shall be avoided on 

NLFEA since these values change the effective material properties. In practice, the 

concrete becomes a perfectly plastic material; hence, the slabs' failure loads and 

mechanisms cannot be well represented. Even when flexure failure modes are well 

represented with large values of viscosity parameter, the reader shall be aware that using 

such values introduces a large bias in the numerical results. In practice, the members 

will almost always fail by flexure regardless of other material properties and geometric 

characteristics. Therefore, the numerical models with large values of viscosity 

parameter can be not used when different failure mechanisms are expected by changing 

specific material and geometric properties of the problem. Besides, large values of 

viscosity μ block any failure mechanism associated with concrete crushing in the 

simulations. 

• Other approaches, even using considerably different values of fracture energy and 

dilation angle (stress-strain behavior under confining pressure), may lead to similar 

levels of accuracy for shear and punching. As possible, these parameters should be 

chosen based on characterization tests from the laboratory. Nevertheless, since these 

parameters are most difficult to measure in the laboratory and many uncertainties arise 

on the values that should be used, some recommendations may be useful. In practice, 

when a large value of dilation angle is used (for instance, 40 degrees), it is recommended 

to use a lower value of fracture energy (for instance, the one predicted with fib Model 

Code 1990). Conversely, when a higher value of fracture energy is used (for instance, 
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the one predicted with fib Model Code 2010), a lower dilation angle shall be employed 

(≤ 30 degrees). 
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8 FAILURE MECHANISM OF ONE-WAY SLABS 

UNDER CONCENTRATED LOADS AFTER 

LOCAL REINFORCEMENT YIELDING 

In this chapter, the experimental program conducted on the framework from this thesis 

is described. The motivation of the experimental program is discussed. Herein, the ultimate 

capacity of one-way slabs under concentrated loads subjected to local reinforcement yielding 

at failure is investigated in detail. In the end, a comparison between tested and predicted 

resistances with the current European and Brazilian code expressions is performed. 

8.1 Introduction of chapter 8  

One-way slabs under large concentrated loads are commonly found in parking floors, bridge 

deck slabs, industrial floor slabs, and even residential building slabs during their construction 

or use (BUI et al., 2017b; FERNÁNDEZ; MARÍ; OLLER, 2021; HENZE; ROMBACH; 

HARTER, 2020; LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013). Assuming the use 

of such structures on parking floors or bridge decks, the reader may realize that the load position 

varies significantly during its use. In practice, different failure mechanisms may be critical for 

a given slab depending on the load position and other parameters such as the slab width 

(SOUSA et al., 2021a, 2021c). For instance, when the slab width bslab is not large compared to 

the load size in the width direction lload, the slab may fail as a wide beam in one-way shear 

(LANTSOGHT et al., 2014; REIßEN; CLASSEN; HEGGER, 2018) (Figure 8-1a). At the same 

time, when the load is placed close to the support or the slab width is considerably larger than 

the load size, the shear flow around the load becomes predominantly radial and, hence, the 

punching failure may become more critical than as a wide beam in one-way shear (Figure 8-1b). 

The same behavior occurs when the distance from the load to the support increases (SOUSA et 

al., 2021a). In this context, the sectional shear capacity may eventually not be reached if the 

test fails by punching. Since the entire slab strip does not always contribute effectively to the 

sectional shear capacity (LANTSOGHT et al., 2014), a slab strip called effective shear width 

(beff - Figure 8-1b) is commonly defined to evaluate the one-way shear capacity 

(LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013) for such slabs. The effective shear 

width is commonly defined as the width on which the maximum shear force integrated along a 

this width equals the total shear force along the slab width (Figure 8-1b). 
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Most experimental studies on one-way slabs under concentrated loads focused on the 

one-way shear and punching capacity on tests without any reinforcement yielding (BUI et al., 

2017a; HALVONIK; VIDAKOVIĆ; VIDA, 2020; HENZE; ROMBACH; HARTER, 2020; 

LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013; NATÁRIO; FERNÁNDEZ RUIZ; 

MUTTONI, 2014). Investigations related to combined failure mechanisms between flexure and 

punching were conducted on slab-column connections or flat slabs under concentric loads 

(GAYED; PEIRIS; GHALI, 2017; WIDIANTO; BAYRAK; JIRSA, 2009). However, 

investigations related to one-way slabs under concentrated loads presenting local reinforcement 

yielding or at the transition between shear and flexural failure mechanisms were not often 

discussed (BELLETTI et al., 2014). Consequently, it is not clear in the literature if analytical 

expressions based on yield line analysis, for instance, could predict well the slab flexural 

capacity for a such loading condition. In practice, most design philosophies make the shear and 

punching capacities from such slabs higher than the flexural capacity to avoid brittle failure 

modes at ultimate limit state. In this context, it is likely that at failure due to an unexpected 

overload (for instance), the slabs start failing by flexure before shear or punching. Therefore, it 

is important to evaluate shear and punching capacity predictions for members with yielding of 

the flexural reinforcement. 

In the case of concentric punching tests, some authors already pointed out that after 

limited reinforcement yielding a brittle punching failure mode could occur, named flexure-

induced punching (GAYED; PEIRIS; GHALI, 2017; WIDIANTO; BAYRAK; JIRSA, 2009). 

For such cases, the ultimate load would be lower than the predicted punching capacity and also 

lower than the flexural capacity Pflex predicted by yield line analyses. For instance, Hawkins 

and Ospina (HAWKINS; OSPINA, 2017) pointed out that in some tests rated as critical in 

flexure the reinforcement started to yield at the load of 50% of Pflex, and flexure-induced 

punching occurred at 80% of Pflex.  While this mechanism is well-understood in concentric 

punching tests from slab-column connections (GAYED; PEIRIS; GHALI, 2017; HAWKINS; 

OSPINA, 2017; WIDIANTO; BAYRAK; JIRSA, 2009), limited information is available on 

the case of one-way slabs under concentrated loads (FERREIRA et al., 2016). 
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Figure 8-1 – a) a) Sketch of a slab failing as a wide beam with a critical shear crack visible at the 

slab side due to the reduced ratio bslab/lload and b) slab failing by punching or a one-way shear 

mechanism along a limited slab strip due to the larger ratio bslab/lload. 

 
Source: Author. 

 

This study investigates the ultimate capacity and failure mechanism of one-way slabs 

under concentrated loads subjected to local reinforcement yielding at failure. Compared to 

previous publications, this study tries to provide a most comprehensive look into the problem 

by evaluating three possible failure mechanisms: one-way shear as wide beams, the punching 

shear around the load and the flexural capacity by different yield line patterns. 

First, the experimental design is described in detail in Section 8.2 addressing the test 

layout, material properties and instrumentation detailing. Consecutively (Section 8.3), the 

experimental results are discussed in terms of the ultimate loads reached, the failure 

mechanisms identified and load redistribution tracked by the instrumentation. In Section 8.4, 

the main results are discussed and compared to those observed in the literature. In the end, the 

main conclusions are described.
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8.2 Experimental investigation 

This section presents details from the (i) test setup, (ii) specimens and (iii) 

instrumentation of the tests. 

8.2.1 Test setup 

This study focuses on one-way slabs with a small thickness (150 mm) compared to 

previous investigations (HALVONIK; VIDAKOVIĆ; VIDA, 2020; HENZE; ROMBACH; 

HARTER, 2020; LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013; NATÁRIO; 

FERNÁNDEZ RUIZ; MUTTONI, 2014; REIßEN; CLASSEN; HEGGER, 2018) and relatively 

high longitudinal reinforcement ratios (ρl = 0.99% ρl = 1.32%). This choice is motivated mainly 

to represent short-span bridges from rural roads typically found in Brazil. Besides, these 

thicknesses can also be representative of certain floor slabs found in industrial plants, nuclear 

buildings (LIMAM et al., 2017) or building slabs loaded by heavy equipment during their 

building or use (BUI et al., 2017b). In Brazil, a large number of rural bridges and culverts in 

reinforced concrete are built to facilitate the grain flow on farms and rural roads (BORGHI et 

al., 2021). These bridges and culverts have span lengths that can be very limited (2 m - 6 m) 

and the slab thickness varies between 150 mm and 250 mm. Nowadays, a large number of 

bridges are being replaced by reinforced concrete slabs (sometimes prefabricated) and 

reinforced concrete box culverts, as illustrated in Figure 8-2. 

Figure 8-2 – Example of rural bridges commonly found in Brazil: a) prefabricated two-way slabs 

for a composite bridge  b) culvert bridge  c) prefabricated deck slab. 

   
a) b) c) 

Source: a) (PREFEITURA DE ARARAS, 2015); b) (PREFEITURA DE EXTREMA, 2020); c) 

(CONCRENORTE - PRÉ MOLDADOS E CONSTRUTORA, [s.d.]). 

Figure 8-3 shows a sketch of the test setup as used in the experimental program for each 

slab. In total, 6 slabs were tested at the São Carlos School of Engineering (EESC) from the 

University of São Paulo, and each slab was tested twice. The specimens measured 3.40 m × 

1.60 m with a thickness of 150 mm (hslab). The line supports (sup 1 and sup 2 in Figure 8-3a) 

consist of a 100 mm wide steel hinge, a rubber layer of 10 mm thick and two instrumented 
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aluminum beams. A rubber layer was used between the slab bottom face and the steel hinged 

supports. The hinged supports are supported on instrumented aluminum beams to estimate the 

distribution of reaction forces, inspired by the work of Natário et al. (NATÁRIO; 

FERNÁNDEZ RUIZ; MUTTONI, 2014). Figure 8-4 shows a detail of the supports used in 

detail. 

Figure 8-3 - Sketch of test setup as used in the experimental program for each slab: a) test 1 and 

b) test 2. 

 
Source: Author. 

In the first test of each slab, the span length between the supports was 3 m (Figure 8-3a). 

After conducting the first test close to support 1, a second test was conducted close to support 

2 (Figure 8-3b). To remove the influence of failure caused by the first test for the second test, 

the span length was reduced in the second test to 2 m. 

The measured rubber layer stiffness is approximately 110 MPa (Figure 8-4b) based on 

a direct compression test on samples of 100 mm × 100 mm × 10 mm as suggested in the 

literature (PROCHAZKOVA; LANTSOGHT, 2011). 

The concentrated load was applied displacement-controlled through a 400 kN servo-

controlled actuator. The loading was applied onto a 200 mm × 200 mm square plate and 30 mm 
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thick, representing a reduced scale (1:2) of the 400 mm × 400 mm tire contact area used in Load 

Model 1 of NEN-EN 1991-2:2003 for bridge design (CEN, 2003). 

The load positions tested were av/dl = 1, av/dl = 2 and av/dl = 3. Herein, av is the clear 

shear span (measured between the inner edges of the loading plate and support) and dl is the 

effective depth of the longitudinal reinforcement (span direction). These values were chosen to 

study the failure mechanism of the slabs (shear, punching or flexure) when direct load transfer 

by strut mechanisms could play a significant role in the tests. 

Figure 8-4 - a) Assembly of the support (rubber layer, hinged support and aluminum beam; b) 

calculation of the average elastic stiffness of the support. 

 
 

a) b) 

Source: Author. 

8.2.2 Specimens 

The experimental program consisted of six slabs of 3.4 m × 1.60 m × 0.15 m. The slab 

properties are given in Table 8-1. The letter “N” or “S” indicates the first or the second test (N 

= first test and S = second test). Two mixes of concrete were used for the slabs. The material 

properties presented are mean values. The concrete compressive strength (fc,cyl) was measured 

at cylinder specimens of 100 mm × 200 mm (6 samples for each mix). The concrete tensile 

strength (fct,sp) was determined with splitting tests on cylinder specimens with 100 mm × 200 

mm (6 samples for each mix). The fracture energy Gf was measured according to RILEM TCS 

(RILEM TECHNICAL COMMITTEES, 1985) on notched prismatic specimens (3 specimens 

for mix 1 and 2 specimens for mix 2). The only change concerning the RILEM guidelines is 

that the depth of the notch was reduced to 25 mm. Therefore, the value of 25 mm was used in 

the determination of Gf. Figure 8-5 shows the measured stress-strain behavior in compression 

for both concrete mixes used (6 cylindrical specimens for each mix). Both mixes develop a 

large post-peak regime. 
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Table 8-1 – Main properties of slabs L1 to L6. Note: the number between parenthesis represent 

the coefficient of variation; the presented material properties are mean values. 

Ref-Teste fc,cyl (MPa) fct,sp (MPa) Gf (N/mm) ρl (%) ρt (%) av/dl [-] a/dl [-] lspan (m) 

L1-N 22.0 (12.0%) 2.36 (11.0%) 0.181 0.99 0.44 1.00 2.21 3 

L1-S 22.0 (12.0%) 2.36 (11.0%) 0.181 0.99 0.44 1.00 2.21 2 

L2-N 22.0 (12.0%) 2.36 (11.0%) 0.181 0.99 0.44 2.00 3.21 3 

L2-S 22.0 (12.0%) 2.36 (11.0%) 0.181 0.99 0.44 2.00 3.21 2 

L3-N 22.0 (12.0%) 2.36 (11.0%) 0.181 0.99 0.44 3.00 4.21 3 

L3-S 22.0 (12.0%) 2.36 (11.0%) 0.181 0.99 0.44 3.00 4.21 2 

L4-N 28.3 (12.0%) 2.63 (12.6%) 0.208 1.32 0.44 1.00 2.21 3 

L4-S 28.3 (10.6%) 2.63 (12.6%) 0.208 1.32 0.44 1.00 2.21 2 

L5-N 28.3 (10.6%) 2.63 (12.6%) 0.208 1.32 0.44 2.00 3.21 3 

L5-S 28.3 (10.6%) 2.63 (12.6%) 0.208 1.32 0.44 2.00 3.21 2 

L6-N 28.3 (10.6%) 2.63 (12.6%) 0.208 1.32 0.44 3.00 4.21 3 

L6-S 28.3 (10.6%) 2.63 (12.6%) 0.208 1.32 0.44 3.00 4.21 2 
Source: Author. 

 

Figure 8-5 - Compression stress-strain behavior of the tested concrete mixes: a) 22 MPa mix and 

b) 28 MPa mix. 

  

a) b) 
Source: Author. 

Figure 8-6 shows the test results used to measure the fracture energy for both mixes. A 

different number of test results for each mix were used to determine the fracture energy due to 

brittle failures that occurred for some specimens and that influenced the ability to obtain the 

complete curve (Figure 8-6). The maximum aggregate size was 19.0 mm for both mixes. 

Basaltic coarse aggregates were used. 
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Figure 8-6 - Force-displacement relationship at the mid-span used to measure the fracture energy 

based on the RILEM TCS: a) test results for 22 MPa mix and b) test results for 28 MPa mix. 

  

a) b) 

Source: Author. 

The longitudinal reinforcement ratios were chosen to reach shear or punching failure 

mechanisms at failure but allow some reinforcement yielding. The bottom longitudinal 

reinforcement of the slabs consisted of 12.5 mm bars spaced at each 100 mm (ρl = 0.99%) or 

12.5 mm bars spaced every 75 mm (ρl = 1.32%). The bottom reinforcement in the transverse 

direction of the slabs consisted of 8 mm bars spaced at each 100 mm, resulting in ρt = 0.44%. 

The top reinforcement in the longitudinal and transverse directions (compressed reinforcement) 

consisted of 8 mm diameter bars spaced at each 200 mm (ρl,comp = 0.20% and ρt,comp = 0.21%). 

The reinforcement layout of the two series of slabs is shown in Figure 8-7. The reinforcement 

ratio was calculated based on the spacing of the flexural rebars. 

Figure 8-7 – Geometry and reinforcement layout of the slabs a) L1, L2 and L3; b) L4, L5 and L6. 

Dimensions in mm. 

 
Source: Author. 

The properties of the deformed bars were measured by performing direct tensile tests 

on rebar samples. The properties reported by the manufacturer of the 12.5 mm diameter bars 
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are: a yield strength, fym = 579 MPa and an ultimate strength, fum = 803 MPa. The deformed bars 

with a diameter of 8 mm have the following properties: fym = 552 MPa and fum = 764 MPa. 

Figure 8-8 show the results from the tensile tests conducted at our laboratory. A considerably 

lower yield strength was found for both rebars: (i) fym = 514 MPa for 12.5 mm rebars and (ii) 

fym = 513 MPa for 8.0 mm rebars. A concrete cover of 20 mm was applied, resulting in an 

effective depth to the longitudinal reinforcement of dl = 123.75 mm.  

Figure 8-8 - Stress-strain graphs of the rebars measured at our laboratory: a) 12.5 mm rebars; b) 

8.0 mm rebars. 

  
a) b) 

Source: Author. 

8.2.3 Instrumentation 

During the tests, the following parameters were measured: applied load, vertical 

displacements of the slab, concrete strain around the load, strains at the tensile reinforcement, 

and strain distribution along the support beam (aluminum beam). The actuator system directly 

measured the applied load. The vertical displacements of the slab were measured by linear 

variable differential transformers (LVDT’s). LVDT's with range equal 50 mm and precision of 

0.01 mm were applied for the slab vertical deflections. The main vertical displacements 

monitored were at the center of the slab and at one distance dl/2 from the loading plate face. 

The arrangement of the LVDTs is shown in Figure 8-9a.  

For each test, three extensometers were placed in the load vicinity (compression side of 

the slab) to measure the concrete compressive strain at failure (Figure 8-9b). Strains at the 

longitudinal and transverse reinforcement were also monitored by couples of strain gauges 

glued to the rebar in each direction (Figure 8-10). The position of the strain gauges was always 

within the square of the loading plate, as sketched in Figure 8-10. For other tests, the position 

of the extensometers was moved to fit with the different load positions. 
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Figure 8-9 - Sketch of the instrumentation: a) side view of the LVDT's position; b) top view of the 

strain gauges along the concrete surface. 

 
 

a) b) 
Source: Author. 

 

Figure 8-10 - Strain gauges position in the reinforcement for the test L1-N. 

 
Source: Author. 

Inspired by the work of Natário (2015), the web of two aluminum beams was 

instrumented to capture the distribution of reaction forces at the support. The strain gauges were 

placed between the fixing screws. The dimensions of the beams, position and spacing of strain 

gauges are described in Figure 8-11. Two extensometers were placed on each side of the web 

to remove the influence of eventual bending on the profile. 
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Figure 8-11 - Geometry of the instrumented beams and layout of the instrumentation with strain 

gauges. Dimensions in mm. 

 
 

Source: Author. 

 

Figure 8-12 shows some of the main phases of the specimen preparation. Three 

formworks were prepared to mold each series of the slabs (Figure 8-12a). The reinforcements 

bars were provided bent and cut by the manufacturers. The reinforcement meshes were 

assembled in the laboratory by the author (Figure 8-12b). After preparing the reinforcement 

mesh, including the instrumented rebars, the mesh was inserted into the formwork (Figure 

8-12c). Lastly, the slabs were cast with concrete provided by local suppliers (Figure 8-12d). 

Figure 8-12e shows the details of the support assembly and instrumentation of the aluminum 

beam. Figure 8-12f shows the layout of the three steel beams and the two support assemblies 

that support the slab in each test. Only two support assemblies (roller support + aluminum 

beam) were used for each test. The steel beams were kept in the same position during the tests, 

and only one of the support assemblies was moved for the second test of each slab. 
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Figure 8-12 – Details of the slabs preparation: a) assembly of the formworks; b) assembly of the 

reinforcement mesh; c) assembly of the reinforcement in the formworks; and d) casting of the first 

three slabs. 

  
a) b) 

  
c) d) 

 
 

e) f) 

Source: Author. 

Figure 8-13a,b shows the layout of the tests with the position of the reaction frame,  the 

actuator, loading plate and the rolling bridge that was used to move the reaction frame for each 

test (from test one to test two of each slab). Figure 8-13c shows an example of the cracking 

pattern on the compressed side of the slab, which indicates an initial punching failure 
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mechanism. Figure 8-13d shows an example of wide beams shear failure that arises after 

increasing the applied displacement due to shear redistribution. 

Figure 8-13 – a) and b) Layout of the tests; c) example of the punching failure around the load 

visible on the compressed side of the slab; and d) example of wide beam shear failure visible on 

the slab sides. 

  

a) b) 

  

c) d) 

Source: Author. 
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8.3 Experimental results 

This section presents the main results of (i) ultimate loads and load x displacement 

graphs, (ii) reinforcement strains, (iii) cracking patterns, (iv) distribution of reaction forces at 

the support and (v) failure mechanism of the slabs. 

8.3.1 Ultimate load and load-displacement curves 

Until now, few studies investigated the failure mechanism of one-way slabs under 

concentrated loads with local reinforcement yielding (FERREIRA et al., 2016). In this study, 

all tests presented some degree of reinforcement-yielding at failure or failure at the onset of 

reinforcement yielding. Table 8-2 describes the peak loads (Ptest) applied in the tests and the 

tested shear capacity (Vtest), assuming the static scheme of a beam. The self-weight was 

considered in Vtest by assuming γself = 25 kN/m3 and the shear force Vtest was calculated at the 

mid-shear span between the center of load and the support. Table 8-2 also describes the main 

material properties, failure mechanism and load layout for each test. The detailed description 

about the classification of the failure mechanism in Section 8.35. 

Table 8-2 - Tested loads and failure mode for slabs L1 to L6. 

Test 
lspan 

(m) 

fc,meas 

(MPa) 

fct,meas 

(MPa) 

ρl 

(%) 

ρt 

(%) 

av/dl 

(-) 

a/d 

(-) 
F.M. 

Ptest 

(kN) 

Vtest 

(kN) 

L1-S 2 22.0 2.36 0.99 0.44 1 2.21 WB+P 332.1 291.6 

L2-S 2 22.0 2.36 0.99 0.44 2 3.21 WB+P 270.4 221.3 

L3-S 2 22.0 2.36 0.99 0.44 3 4.21 WB+P 253.9 192.0 

L4-S 2 28.3 2.63 1.32 0.44 1 2.21 P 374.1 327.9 

L5-S 2 28.3 2.63 1.32 0.44 2 3.21 WB+P 296.3 242.0 

L6-S 2 28.3 2.63 1.32 0.44 3 4.21 P 314.8 237.0 

L1-N 3 22.0 2.36 0.99 0.44 1 2.21 WB+P 273.5 256.4 

L2-N 3 22.0 2.36 0.99 0.44 2 3.21 WF+P 282.1 252.3 

L3-N 3 22.0 2.36 0.99 0.44 3 4.21 WB+P 275.4 234.7 

L4-N 3 28.3 2.63 1.32 0.44 1 2.21 WB+P 351.5 327.3 

L5-N 3 28.3 2.63 1.32 0.44 2 3.21 WB+P 321.6 286.5 

L6-N 3 28.3 2.63 1.32 0.44 3 4.21 WB+P 267.0 227.8 
F.M.: failure mode (WB = wide beam shear failure (one-way shear); P = punching; F = flexure). 

Source: Author. 

Figure 8-14 shows the load-displacement (F–d) diagrams provided by the actuator for 

each specimen tested: a) tests L1-N to L3-N;  b) tests L1-S to L3-S; c) tests L4-N to L5-N and 

d) tests L4-S to L6-S. All specimens presented a higher displacement at the peak load as the 

shear slenderness av/dl increased (for instance, comparing the test results from L1-N to L3-N or 

from L4-N to L6-N). The only exception occurred for the pair of tests L4-S and L5-S, which 

developed almost the same deflection at the peak load. Conversely, even having reached similar 
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deflections at failure, the test L4-S developed a relatively stiffer behavior in the load-

displacement graph compared to L5-S. 

Comparing the deflections at the peak load for tests having the same reinforcement ratio 

and shear slenderness but with a lower span length, it can be seen that the displacements at the 

peak load decreased as the span length decreased, which is also consistent with flexural theory. 

Figure 8-14 - Load–displacement (F–d) diagrams for: a) tests L1-N to L3-N;  b) L1-S to L3-S; c) 

L4-N to L5-N and d) L4-S to L6-S. 

  
a) b)  

  
c) d) 

Source: Author. 

Evaluating the shape of the curves around the peak load (Figure 8-14), typical brittle 

shear failures (L5-N and L6-N, for instance), and shear failures with a limited amount of post-

peak ductility (test L1-N, for instance), were observed. 

At the peak load, most tests developed a partial punching cone at the front face of the 

loading plate. After this, increasing the applied displacement in the loading plate resulted in a 

large redistribution of the shear forces and some slabs showed a wide beam failure mode (WB). 
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This mechanism is characterized by an inclined crack similar to those of beams failing in shear, 

visible at the sides of the slab. 

Figure 8-15 shows how the peak loads and sectional shear forces vary as the shear 

slenderness increases for the four sets of tests. As can be seen in Figure 8-15a, the ultimate 

loads (Ptest) did not change significantly (<5%) by increasing the shear slenderness from av/dl = 

2 to av/dl = 3 for most tests. The only exception was the set of tests summarized in Figure 8-14c 

(L4-N to L6-N), which presented a decrease of the load Ptest of 17% (comparing L5-N and L6-

N). Conversely, the ultimate load increased considerably as the shear slenderness av/dl 

decreased from 2 to 1 for most groups of tests. This increment was 18% between L1-S and L2-

S, for instance. The only exception occurred for the set of tests L1-N and L2-N, which presented 

almost the same peak loads at failure. In this study, these deviations from tendencies identified 

can be attributed to the complex interaction between the shear failure mechanisms and the local 

yielding of the flexural reinforcements, which may trigger different failure mechanisms for 

some tests. The failure mechanism will be discussed in more detail in next sections. 

Figure 8-15 - Influence of shear slenderness av/dl or distance from the concentrated load to 

support: (a) on tested peak loads Ptest and b) on calculated shear forces Vtest. 

  
a) b) 

Source: Author. 

As performed in previous publications (LANTSOGHT; VAN DER VEEN; 

WALRAVEN, 2013), the predicted one-way shear resistance enhancement was calculated 

based on the β factor from EN-1992-1-1:2005 (CEN, 2005), which relates the enhancement of 

the shear capacity to the ratio av/dl. In practice, the code suggests decreasing the shear demand 

Vtest instead of increasing the predicted shear resistance VR for loads close to the support. 

However, herein it is assumed that both approaches are equivalent. By decreasing the ratio av/dl 

from 2 to 1, an increase in the tested sectional shear Vtest of 2 (or 100%) was expected. In 
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practice, the sectional shear capacity increased between 2% (L2-N to L1-N) and 35% (L5-S to 

L4-S). The higher enhancements in the shear capacity were achieved in the tests with a higher 

longitudinal reinforcement ratio. The lower increase in the shear resistance was previously 

explained (LANTSOGHT; VAN DER VEEN; WALRAVEN, 2013) by the lower compressive 

struts efficiency of slabs compared to beams. This occurs because in slabs, a fan of compressive 

struts develops between the load and the line support for slabs, resulting in different relations 

av/dl for each strut. This study added the observation that if local reinforcement yields 

substantially at failure, as identified in the tests L1, L2 and L3, the increase of the sectional 

shear capacity by compressive struts can be significantly lower.  

 

8.3.2 Reinforcement strains 

The shear force redistribution in one-way slabs decreases the brittleness at 

failure(CANTONE; FERNÁNDEZ RUIZ; MUTTONI, 2021; NATÁRIO; FERNÁNDEZ 

RUIZ; MUTTONI, 2014; ROMBACH; LATTE, 2009). This phenomenon has been more 

investigated based on the redistribution of shear forces at the support (CANTONE; 

FERNÁNDEZ RUIZ; MUTTONI, 2021; LANTSOGHT et al., 2015b; LANTSOGHT; DE 

BOER; VAN DER VEEN, 2017a; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; 

REIßEN; CLASSEN; HEGGER, 2018). In this study, the evolution of the strain on the 

instrumented rebars also confirms this phenomenon. Figure 8-16 and Figure 8-17 show the 

distribution of the strains at the longitudinal (L1 and L2) and transverse (T1 and T2) 

reinforcement with the applied load (F). 

For instance, Figure 8-16a shows that after reaching the peak load, the longitudinal 

reinforcement strains stop increasing, even increasing the applied displacement into the 

actuator. On the other hand, the transverse reinforcement strain keeps increasing by increasing 

the applied displacement in the actuator. Monitoring the reinforcement strain confirms that after 

a local failure mechanism by punching, the transverse reinforcement allows redistribution of 

internal stresses around the load. On the other hand, after the first shear crack on the front side 

of the load, the longitudinal reinforcement seems to reach a plateau of strains. 
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Figure 8-16 - Evolution of reinforcement strains around the loaded area during the tests: a) test 

L1-N; b) test L1-S; c) test L2-N; d) test L2-S; e) test L3-N; f) test L3-S. 

   
a) b) 

  
c) d) 

  
e) f) 

Source: Author. 
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Figure 8-17 - Evolution of reinforcement strains around the loaded area during the tests: a) test 

L4-N; b) test L4-S; c) test L5-N; d) test L5-S; e) test L6-N; f) test L6-S. 

  
a) b) 

  
c) d) 

  
e) f) 

Source: Author. 

The comparison between Figure 8-16a, Figure 8-16b and Figure 8-16c (increasing the 

shear span from L1-N to L3-N) demonstrates that the relation between the measured strains at 

the longitudinal reinforcement with the strains at the transverse reinforcement increases 

substantially. 
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These strains can distinguish another phenomenon. Most tests closely matched the 

reinforcement strains measured on the two longitudinal rebars, and this is the expected behavior 

due to the tests' intended geometric symmetry. In practice, some minor deviations of the loading 

frame or from the reinforcement position could occur during the frame assembly (< 5 mm) or 

during the concrete casting, resulting in small eccentricities. This aspect explains deviations in 

the measured strains at the longitudinal rebars from small load levels (for instance, L2-2). 

However, it is noteworthy that even in the tests on which a close match of measured strains was 

possible at the beginning of the tests (F < 0.5 Fmax ) (L2-N, L3-N, L3-S), the deviations in the 

reinforcement strains at some point increase due to the asymmetrical cracking pattern of 

concrete structures. 

8.3.3 Cracking pattern 

The cracking pattern is one of the best parameters to indicate the failure mechanisms 

that took place in the slabs. Figure 8-18 and Figure 8-19 show the cracking pattern of the slabs 

around the loaded area for each test. Cracks in the top view, bottom view and side views were 

tracked mainly after unloading the slabs. Different from shear and punching cracks, some 

flexural cracks closed after unloading and are not visible for some slabs (for instance, side views 

of L6 in Figure 8-19). 

The top view of the slabs shows that all tests presented an asymmetrical punching failure 

starting between the front sides load and support. The bottom view of the slabs L1, L2 and L3 

shows a large presence of tangential and circumferential cracks around the load, as expected 

for punching failures (Figure 8-18). Slabs L4, L5 and L6 presented a lower number of visible 

cracks due to the higher reinforcement ratio, which decreased the crack openings at failure 

(Figure 8-19). 

In most tests, concrete detachment close to the support was visible, which helps to 

explain why most publications considered the most critical section at the support for one-way 

shear analyses  for simply supported slabs. Nowadays, with the aid of finite element models, 

the idea that the section near the load is governing is more common, which explains the 

punching failures visible in the top views. 
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Figure 8-18 - Cracking pattern of the slabs L1, L2 and L3 in terms of top view, bottom view and 

side views. 

 
Source: Author. 
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Figure 8-19 - Cracking pattern of the slabs L4, L5 and L6 in terms of top view, bottom view and 

side views. 

 
Source: Author. 
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The side views of the tests show that, after a first punching failure, many tests 

experienced a large redistribution of forces due to the relatively large transverse reinforcement 

ratio for one-way slabs (half of the longitudinal reinforcement ratio in tests L1, L2 and L3 and 

a third for slabs L4, L5 and L6). The tests L1-S, L2-S and L3-N and L4-S show cracks typical 

of beam-shear failures (named wide beam shear failure = WB) on at least one of the sides. The 

tests L1-N (side E) and L2-N (side E) developed a form of beam shear failure on one of the 

sides, but the inclination of the cracks indicates failure in the strut zone (steeper cracks not 

following the flexural cracks). Since these tests were performed with the load close to the 

support, such failures could be expected due to the large shear transfer by strut mechanisms in 

such tests.  

In the tests L1-S, L2-S, L3-N and L3-S, the shear cracks clearly develop from the 

flexural cracks in the critical shear zone, and indicate thus flexure-shear failures. In the tests 

L1-S (side E) and L3-S (side E), the shape of the critical shear crack closely matches the shear 

failure of wide beams from the literature by the presence of two horizontal branches, one at the 

reinforcement level and another at the compression chord, joined by an inclined crack that 

developes between two flexure cracks. 

In the tests L4-N, L5-N and L6-N, a wide beam shear failure was visible on at least one 

of the sides of the slabs after a punching failure. The shape of the shear crack indicates a failure 

as slender beams on such regions (cracking arising above flexure cracks). In the tests L4-S, L5-

S and L6-S, punching failures occurred at the beginning and a wide beam shear failure was 

visible in only one of the tests (L5-S, side E). Therefore, the failure was more concentrated 

around the loaded area as the span length between the supports decreased. 

 

8.3.4 Distribution of reaction forces in the support 

The distribution of reaction forces in the support close to the loaded area was measured 

for all tests. In total, 10 sections of the aluminum beams were instrumented on two sides ( = 20 

strain gauges for each support). Each section has an influence length of 160 mm (or 0.160 m). 

The reaction force on each section Freaction is given by the product of the compressive stress 

measured on the section (σc,measured = Ealuminium ∙ εc,measured) by the influence area over the support 

(160 mm × 25 mm). The shear force per meter is calculated by the ratio between the calculated 

force and the length of 0.160 m (vmeasured = Freaction / 0.160 m). 
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Figure 8-20 shows the distribution of the reaction forces in the support for the tests L1-

S and L4-S, which differ mainly in the longitudinal reinforcement ratios. Figure 8-19 shows 

that the overall shape of the curves is quite similar for both tests, with a more pronounced 

concentration of reaction forces in the symmetry axis of the slab and a smaller concentration of 

reaction forces at the outer edges. This behavior is similar to that reported by Natário et al. 

(NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014)  for cantilever slabs and that reported 

by Reißen, Classen and Hegger (2018) for tests performed close to continuous support. This 

distribution of reaction forces is also consistent with studies conducted with linear elastic finite 

element analyses (SOUSA et al., 2021a; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014). 

Figure 8-20 - Distribution of reaction forces in the support as a function of the percentage of the 

maximum applied load (Ftest): a) test L1-S and b) test L4-S. 

  
a) L1-S b) L4-S 

Source: Author. 

The sharp valleys of strains measured in the vicinity of the symmetry axes were also 

reported in the studies from Natário (NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014) but 

were not expected based on finite element analyses. Reißen, Classen and Hegger (2018) 

attribute these measurements to minor irregularities in the support constructions. However, this 

valley remains inexplicable since a thin layer of rubber was placed at the support to prevent 

such irregularities. 

By integrating the calculated reaction forces in each section and comparing the support 

reaction measured with that predicted by static equilibrium, an error of around 10% was 

achieved for both tests at the maximum applied load. Comparatively, this error is slightly higher 

than that reported by Natário et al. (NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014) and 

Reiβen et al. (5% and 4%, respectively). Therefore, improvements in the instrumentation should 

be performed in future investigations to achieve better performance with such an approach.  
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8.3.5 Failure mechanism 

Table 8-3 shows a summary of the major characteristics considered in the classification 

of the failure mechanism. The failure mechanism was determined based on three aspects: (i) 

the shape of the force-displacement curve measured by the actuator; (ii) the tensile strains from 

the instrumented rebars around the load; and (iii) the cracking pattern. In most tests, the strain 

gauges indicated some reinforcement yielding at the peak load Fexp, which means that a local 

flexural failure mechanism started to occur first.  

Table 8-3 - Mains aspects considered in the determination of the governing failure mechanism of 

the slabs. 

Test Sharp decrease 

of the applied 

load on failure? 

Yielding of all 

rebars at Fmax ? 

Punching cone  

at the  

top view? 

Shear crack 

visible at the 

slab sides? 

Shear crack visible at 

the bottom side? 

Failure 

mode 

L1-N not clear No = Shear Yes Yes: one side Yes: linear  WB+P 

L2-N Yes = Shear Yes Yes Yes: one side Yes: linear + conical WB+P 

L3-N Yes = Shear Yes Yes Yes: one side Yes: linear WB+P 

L1-S Yes = Shear Yes Yes Yes: two sides Yes: linear WB+P 

L2-S Yes = Shear Yes  Yes Yes: two sides Yes: linear WB+P 

L3-S Yes = Shear Yes Yes Yes: two sides Yes: linear WB+P 

L4-N not clear  No = shear Yes Yes: two sides Yes: linear WB+P 

L5-N Yes = shear No = shear Yes Yes: two sides Yes: linear WB+P 

L6-N Yes = shear Yes Yes Yes: one side Yes: linear + conical WB+P 

L4-S Yes/No  No = shear Yes No Yes: conical P 

L5-S Yes/No No = shear Yes Yes: one side Yes: linear + conical WB+P 

L6-S Yes = shear Yes Yes No Yes: conical P 

Source: Author. 

However, to be classified as a clear flexural mechanism that is expected with the yield 

line analyses, a plateau would be necessary for the load-displacement curves (such as 

commonly found on tests of beams that fail by flexure). Because of this, no test was classified 

as failing by flexure, although some of them presented large reinforcement yielding at failure 

(tests L3 and L6) or a smooth decrease in the applied load prior to failure (tests L1-N, L4-N, 

L4-S and L5-S). Consequently, it is assumed herein that the failure of all tests was governed by 

shear and punching. 

The main aspect considered to determine if a punching failure mechanism arose in the 

tests (letter “P” in the failure mode) was the appearance of a conical crack surrounding the load 

on the compression side. These cracks occurred for all tests. The conical crack on the tension 

side was not evident in the tests due to the large reinforcement ratios employed in the 

longitudinal and transverse directions, which allowed large shear redistribution around the first 

failed region. 
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To classify if a wide beam shear failure mechanism also occurred in the tests, at least 

one of the sides of the slab should present a beam shear crack at the slab sides. This mechanism 

occurred for most tests. Therefore, it can be stated that most tests (10/12) failed by a 

combination of wide beam shear and punching shear (WB+P), while two tests failed only by 

punching.  

8.4 Comparison between experimental and predicted strengths  

This section presents the equations and approaches used to predict the shear and 

punching capacities, as well as the theoretical governing failure mechanism of the tests. In the 

end, this section compares tested and predicted resistances with different design codes and 

expressions. 

8.4.1 Design code expressions 

In most design codes the sectional shear capacity VR (or one-way shear capacity) of slabs 

is determined by multiplying the nominal shear capacity (shear force capacity per unit area, 

vR,shear) by a given length, usually called effective shear width beff, and by the effective depth to 

the longitudinal reinforcement dl. 

Table 8-4 shows the expressions of some of the main design codes to determine the 

sectional shear capacity of the tested slabs. 

The effective shear width herein was determined based on the French guidelines, which 

assumes the load spreading from the back faces of the loading plate towards the support with 

45 degree angles (Figure 8-21a). According to this approach, the effective shear width increases 

as the shear slenderness av/dl increases. This choice was motivated based on previous 

investigations that showed the best accuracy of this approach (LANTSOGHT et al., 2015d; 

SOUSA; EL DEBS, 2019). 

The NEN EN1992-1-1:2005 (CEN, 2005) accounts for the influence of direct load 

transfer depending on the clear shear span to effective depth ratio av/dl. According to this code, 

the contribution of a load applied within a distance 0.5dl < av < 2dl from the edge of a support 

to the shear force caused by the concentrated load (VFu) may be multiplied by the reduction 

factor βCEN: 
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Consequently, the determination of the reduced shear demand (VEd,red) that shall be 

compared to the one-way shear resistance assume the following expression: 

 , ( )Ed red Fu CEN g fq effV V v v b=  + +   (8.2) 

On which vg is the shear force per unit meter caused by the self-weight and vfq is the 

shear force caused by line loads or other axles of loads on the control section (not applied in 

this study). 

Table 8-4 - Expressions used to determine the one-way shear capacity according to the Brazilian 

(ABNT NBR 6118, 2014)  and European design codes (CEN, 2005). 
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Source: Author. 
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Figure 8-21 – a) Determination of the effective shear width for one-way shear resistance analyses 

according to the French practice (FD P 18-717, 2013); b) determination of the shear resisting 

control perimeter according to the Brazilian and European design codes. Note: dimensions in mm. 

 
Source: Author. 

 

According to some authors (BAIRÁN et al., 2020; NATÁRIO, 2015), direct load 

transfer could be considered an enhancement to the sectional shear capacity equivalent to the 

decrease of the shear demand. Therefore, it was included βCEN in the determination of the 

nominal shear capacity by multiplying the calculated nominal shear capacity vR for 1/βCEN and 

VEd becomes: 

 ,Ed red Fu g effV V v b= +   (8.12) 

The punching capacity PR is commonly determined as the product of the unitary 

punching capacity (shear force capacity per unit length, vR,punch) by the calculated resisting 
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control perimeter u1. The Brazilian and European code expressions for calculating the punching 

capacity of slabs without shear reinforcement are based on the same expressions (Table 8-5). 

Table 8-5 - Expressions for calculating the unitary punching capacity according the Brazilian 

(ABNT NBR 6118, 2014) and European codes (CEN, 2005). 

Code Reference Expression 

ABNT 

NBR 

6118:2014 

and NEN 

EN 1992-1-

1:2005 
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2014)  and 
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Source: Author. 

8.4.2 Determination of the most critical failure mechanism 

In this study, it was compared the tested and predicted resistances to determine which 

would be the most critical failure mechanism theoretically. In order to compare which would 

be the most critical failure mechanism in a clear way, it was compared the predicted ultimate 

loads F that would cause a one-way shear failure (Fpredicted,shear) with those causing a punching 

failure (Fpredicted,punching). It was assumed the punching capacity PR is approximately equal to the 

applied load Fpredicted,punching at failure when using the punching expressions (the influence of the 

self-weight on the control perimeter was neglected due to the small thickness of the slab). To 

determine the concentrated load Fpredicted,shear associated with the predicted sectional shear 

capacity VR,predicted, the influence of the self-weight was considered in the following way. Firstly, 

the net value of the shear capacity that should resist only the concentrated load was calculated, 

since part of the shear capacity is used to resist the self-weight vg. 

 ( ), 1/R net R CEN g effV V v b=  -   (8.17) 

Next, the relation between the applied load and the respective shear force (F ↔ VFu) 

caused by the concentrated load was used (fixed value which depends only of the statics of the 
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problem to determine the applied load (Fpredicted,shear) corresponding to the sectional shear 

capacity VR,net. 

 
, ,

,

test
predicted shear R net

Fu test

F
F V

V
=   (8.18) 

Comparing the relations Vtest/VR with Ftest/Fpredictedshear, the differences were commonly 

lower than 2% due to the limited influence of the self-weight on the calculations. Therefore, 

one can also compare directly the relations Vtest/VR with Ptest/PR to determine the most critical 

failure mechanism. Comparing the ratios Ftest/Fpredicted,shear and Ftest/Fpredicted,punching, one can 

observe that the higher value determines the most conservative prediction and the theoretical 

most critical failure mechanism.  

8.4.3 Extended Strip Model calculations 

The Extended Strip Model (ESM) is a plasticity-based model that describes a lower-

bound solution to the load capacity of slabs under concentrated loads (LANTSOGHT et al., 

2017; LANTSOGHT; VAN DER VEEN; DE BOER, 2017). This model was inspired in the 

bond model developed for concentric punching shear (ALEXANDER; SIMMONDS, 1992), 

which combines the two-way shear transfer mechanism within the quadrants with arching 

action from one-way shear in the strips (Figure 8-12).  

Figure 8-22 – Layout of the original bond model with strips and quadrants. 

 

Source: Adapted from Lantsoght, van der Veen and de Boer (2017). 

According to this model, the maximum concentrated load PESM is predicted by the 

following expressions (Figure 8-23): 
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Psup, Px, Py and Pedge are the capacities of the four strips around the load for simply 

supported or continuous slabs. Psup is the capacity of the strip between the closer support and 

the load in the longitudinal direction; Px is the capacity of the strip between the load and the far 

support in the longitudinal direction. Py and Pedge are the capacities of the strips in the transverse 

direction. When the concentrated load is placed at the center of the slab width, Pedge is calculated 

as Py and no torsion is considered in the transverse direction. 

Figure 8-23 - Layout of the strips and quadrants for the Extended Strip Model in simply supported 

slabs. 

 

Source: Adapted from Lantsoght, van der Veen and de Boer (2017).  
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βtorsion is the parameter that considers the relative effect of torsion on the capacity of the 

strips:  
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ledge is the distance between the free edge and the edge of the concentrated loads in the 

slab width direction. br is the distance between the slab free edge and the load axis. The loaded 

length of the strip lw is a reference parameter for loads close to the free edge of one-way slabs 

and is calculated as:  
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L is the span length between two supports for simply supported slabs and the largest 

distance between the farthest support from the load and the point of contraflexure for loads 

close to continuous support. aM is equal to the shear span a for simply supported slabs and the 

distance between the load center to the point of contraflexure for continuous slabs. vDL is the 

unitary shear demand due to the dead load over the strips in the y-direction. 

According to Lantsoght, van der Veen and de Boer (2017), the moment capacities in the 

longitudinal and transverse directions of the slab are calculated as: 

 , , ,s x sag x moment hog xM M M= +   (8.26) 

 , , ,s y sag y moment hog yM M M= +   (8.27) 

With:  

 
sup

moment

span

M

M
 =  (8.28) 

Msup and Mspan are the bending moments at the support and load axes of the slabs 

assuming a beam behavior or the slab loaded over the entire width. Besides, Msup and Mspan 

consider all loads applied in the slab. When the concentrated load is placed close to a simple 

support (hinged support), λmoment = 0 and the moment capacities from Ms,x and Ms,y become 

Msag,x and Msag,y. Herein, Msag,x and Msag,y are the moment capacities per unit length to sagging 

moment (tensile in the bottom side of the slab) in the longitudinal and transverse directions. 
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Mhog,x and Mhog,y are the moment capacities to hogging moment (tensile in the top side of the 

slab) in the longitudinal and transverse directions. The following expressions were applied to 

compute Msag,x , Msag,y, Mhog,x and Mhog,y: 
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wACI,x and wACI,y are the unitary capacities (shear force per unit length) calculated 

according to the ACI 318-14 and corrected by a size effect factor as: 
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8.4.4 Results of the comparison between test results and theoretical predictions 

Table 6 shows the comparison between tested and predicted resistances using the shear 

and punching shear calculations. Added to the calculations using the Brazilian (ABNT NBR 

6118, 2014) and European code provisions (CEN, 2005), it was also included a set of 

predictions using the lower-bound plasticity-based model named Extended Strip Method 

(ESM) (LANTSOGHT et al., 2017; LANTSOGHT; VAN DER VEEN; DE BOER, 2017). 

In columns #5 and #6, Table 8-6 shows that the comparison between tested and 

predicted shear capacities (Vtest/Vpred) can provide a good measurement of the tested and 

predicted concentrated loads that caused the one-way shear failure (Ftest/Fpred,shear). This occurs 

mainly when the effect of the self-weight is negligible compared to the concentrated loads that 

cause failure. 
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Comparing columns #6 and #7, it can be seen that both one-way shear and punching 

shear predictions provided accurate results with the Brazilian code, with a coefficient of 

variation (COV) lower than 20%. Notably, the predictions of the punching capacity fitted 

slightly better with the experimental results (average Ftest / Fpred,shear = 1.37 compared to 

Ftest/Fpred,punching = 1.19). Therefore, these results agree well with the experimental observations 

that the failure mechanism started with a local punching between the front faces of load and 

support. Since the punching provisions from Brazilian (ABNT NBR 6118, 2014) and European 

codes (CEN, 2004) are equal, similar predictions were achieved with both codes 

(Ftest/Fpred,punching with an average of 1.19 and COV of 11.7%).  

Table 8-6 - Comparison between tested and predicted resistances according to different design 

codes and the ESM (LANTSOGHT et al., 2017; LANTSOGHT; VAN DER VEEN; DE BOER, 

2017). 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Test 
lspan 

(m) 

av/dl 

(-) 

a/dl 

(-) 

test

pred

V

V
 

,

test

pred shear

F

F
 

,

test

pred punching

F

F
 

,

test

pred shear

F

F
 

,

test

pred punching

F

F
 test

pred

F

F
 

Details    
ABNT 

βCEN 

ABNT 

βCEN 

ABNT 

βCEN 

CEN 

βCEN 

CEN 

βCEN 
ESM 

L1-N 3 1 2.21 1.24 1.22 1.19 1.18 1.19 1.00 

L2-N 3 2 3.21 1.90 1.86 1.18 1.80 1.18 1.33 

L3-N 3 3 4.21 1.45 1.41 1.15 1.36 1.15 1.29 

L1-S 2 1 2.21 1.43 1.41 1.44 1.36 1.44 1.21 

L2-S 2 2 3.21 1.68 1.65 1.13 1.59 1.13 1.26 

L3-S 2 3 4.21 1.20 1.16 1.06 1.12 1.06 1.17 

L4-N 3 1 2.21 1.24 1.22 1.34 1.26 1.34 1.09 

L5-N 3 2 3.21 1.68 1.65 1.18 1.71 1.18 1.29 

L6-N 3 3 4.21 1.10 1.07 0.98 1.10 0.98 1.06 

L4-S 2 1 2.21 1.25 1.24 1.42 1.28 1.42 1.15 

L5-S 2 2 3.21 1.44 1.41 1.09 1.46 1.09 1.18 

L6-S 2 3 4.21 1.15 1.13 1.15 1.16 1.15 1.23 

   AVG 1.40 1.37 1.19 1.37 1.19 1.19 

   COV (%) 17.8% 17.8% 11.7% 16.9% 11.7% 8.5% 
Source: Author. 

Notably, despite being based on different expressions, the predictions of capacity based 

on the one-way shear expressions from ABNT NBR 6118:2014 (ABNT NBR 6118, 2014) and 

NEN-EN 1992-1-1:2005 (CEN, 2004) resulted in almost equal values (comparing columns #6 

and #8). However, these results are not surprising since both one-way shear expressions from 

these design codes were calibrated using similar test results (small and heavily reinforced 

slender reinforced concrete beams, typically tested in a four-point-bending test). Besides, it is 
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noteworthy that the most conservative predictions (Ftest/Fpred,shear >1.50) occurred for the tests 

with shear slenderness av/dl = 2, for which no arching action was considered in the expressions. 

This result indicates that arching action should be considered in a larger range of shear 

slenderness. Natário et al.(NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014), for instance, 

suggested considering arching action for 0 < av < 2.75dl instead of 0 < av < 2dl. 

In column #10, it can be seen that the Extended Strip Model (LANTSOGHT et al., 2017; 

LANTSOGHT; VAN DER VEEN; DE BOER, 2017) provided the best predictions, with an 

average ratio Ftest/Fpred,punching of 1.19 and a coefficient of variation equal to 8.5%. 

8.5 Discussions of Chapter 8 

Most previous publications in the field of one-way slabs under concentrated loads 

focused on conditions in which the shear and punching capacity are considerably larger than 

the slab’s flexural capacity (BUI et al., 2017a; HALVONIK; VIDAKOVIĆ; VIDA, 2020; 

HENZE; ROMBACH; HARTER, 2020; LANTSOGHT; VAN DER VEEN; WALRAVEN, 

2013; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014; REIßEN; CLASSEN; HEGGER, 

2018).These studies contributed to a better understanding of the problem when no local yielding 

of the flexural reinforcement occurs at failure. However, traditionally slabs are designed in such 

a way that the flexural capacity is lower than the shear and punching capacities to assure 

ductility at failure. Consequently, most slabs may present some reinforcement yielding before 

reaching failure by one-way shear or punching shear. In this study, slabs were tested in such a 

way as to identify if the local reinforcement yielding at failure could modify the behavior of the 

slabs failing by shear. In practice, the results indicated that after local reinforcement yielding 

of the slabs, the load may keep increasing until reaching another failure mechanism as the 

punching or the one-way shear and fail in a brittle manner (mainly seeing the force × 

displacement graph from test L3-N). 

In other tests, such as the test L1-N (av/dl =1), it was expected a most brittle failure 

mechanism due to the smaller distance from the load to the support and the predominant of 

direct shear transfer from the load towards the support by struts(LANTSOGHT; VAN DER 

VEEN; WALRAVEN, 2013). However, a smooth drop in the measured load was observed in 

such test (see Figure 8-14a). Therefore, this test may have not failed at the strut, but eventually 

had the ultimate capacity limited by the reinforcement yielding. Since the ultimate load of the 

tests L2-N and L1-N was almost the same, this could explain why the shear capacity did not 

increase considerably by decreasing the ratio av/dl from 2 to 1 between the tests L2-N and L1-
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N.  Therefore, the enhancement in the shear capacity for loads close to the support due to direct 

load transfer may be disturbed by local reinforcement yielding.  

In this study, an important evaluation commonly not performed was also added: the 

comparison between the ultimate concentrated loads predicted by one-way shear mechanisms 

and two-way shear mechanisms (punching)(HALVONIK; VIDAKOVIĆ; VIDA, 2020; 

HENZE; ROMBACH; HARTER, 2020; NATÁRIO; FERNÁNDEZ RUIZ; MUTTONI, 2014). 

In this study, it was observed that both Brazilian (ABNT NBR 6118, 2014) and European code 

expressions (CEN, 2004) provided conservative determinations of the ultimate capacity, when 

using both the one-way shear or punching shear expressions. When arching action was 

considered in a most appropriate way for the one-way shear predictions (considering a large 

length of influence of arching action until 2.5dl), both one-way shear and punching shear 

predictions provided close estimations of ultimate capacity. Since both one-way shear failure 

mechanisms were observed at failure (punching followed by one-way shear at most slabs), both 

one-way shear and punching shear capacities predicted should perform well for such slabs. 

Conversely, if the slabs failed only by one-way shear, it would be reasonably that the punching 

shear approach does not lead to accurate values of resistance. 

8.6 Conclusions of chapter 8 

In this study, the failure mechanism is studied of one-way slabs under concentrated 

loads with some local reinforcement yielding at failure. The load × displacement graphs, 

cracking pattern, reinforcement strains and support reactions were monitored along the tests. 

Besides, analytical predictions with the current Brazilian (ABNT NBR 6118, 2014) and 

European code expressions (CEN, 2004) were performed and compared to those provided with 

the Extended Strip Method (LANTSOGHT et al., 2017; LANTSOGHT; VAN DER VEEN; DE 

BOER, 2017). The following conclusions can be drawn: 

• One-way slabs under concentrated loads may fail in a complex way when reinforcement 

yields at failure. In practice, the resistance enhancement expected for loads close to the 

support may not be achieved. Besides, brittle failure mechanisms can also occur after large 

reinforcement yielding. 

• Shear redistribution can occur around the load after punching and activate a secondary 

failure mechanism of one-way shear visible at the slab sides, called wide beam shear failure. 

In this study, this level of redistribution was attributed to the high reinforcement ratio in the 

transverse direction compared to the longitudinal direction (ρt / ρl = 0.34 and 0.50, 
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approximately) and also due to the reduced ratio between the slabs width and load size 

(bslab/lload = 8). 

• The Extended Strip Model stands out as solution to predict the ultimate capacity of 

reinforced concrete slabs under concentrated loads, especially when the slabs are subjected 

to some local reinforcement yielding at failure. 

• Combining the predictions of ultimate capacity (concentrated loads) that would cause a one-

way shear failure or a punching failure in tested slabs, a conservative determination is 

achieved with the Brazilian (ABNT NBR 6118, 2014) and European design codes (CEN, 

2004). 
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9 CONCLUSIONS OF THE THESIS 

This chapter highlights the main contributions from this research to the state of 

knowledge. In the end, the main aspects that need further investigations in future studies are 

also described. 

9.1 Introduction of chapter 9: an overview of main contributions 

This chapter brings together a summary of the main contributions from this work to the 

state of knowledge in the field of reinforced concrete slabs under concentrated loads without 

shear reinforcement. 

In this thesis, a comprehensive review of the behavior and failure mechanism of one-

way slabs under concentrated loads was firstly performed in Chapter 2. This review aided in 

highlighting the different shear failure mechanisms that can take place: one-way shear as wide 

beams, punching shear, or a mixed mode between them. The main shear transfer mechanisms 

and cracking patterns of different tests from the literature were discussed and evaluated. The 

main parameters influencing the ultimate load and failure mechanism of such slabs were 

identified. 

After that, the study presented a close look to the evaluation of the one-way shear 

capacity of reinforced concrete slabs loaded over the entire width (predominant one-way shear 

behavior). At this point, the purpose was trying to improve the understanding of a smaller 

problem (the one-way shear capacity of members loaded over the entire width) before trying to 

develop an approach to predict the shear capacity of slabs under concentrated loads (a most 

complex problem that requires the definition of an effective or contributing slabs strip to the 

sectional shear capacity). In this framework, a database of wide beams and slabs loaded over 

the entire width was firstly organized, which aided in identifying the key parameters influencing 

the unitary shear capacity. Added to that, this database was also used to evaluate several one-

way shear expressions from codes of practice and mechanical-based models. These expressions 

were evaluated according to fewer study parameters, such as the support conditions and slab 

width-member depth ratio. 

In the following, the idea was to bring a proposal to predict the sectional shear capacity 

of one-way slabs under concentrated loads based on the use of a mechanical-based model to 

calculate the unitary shear capacity. Until now, most publications had focused on the evaluation 
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using only semi-empirical expressions or combining mechanical-based models with linear 

elastic finite element analyses. An effective shear width expression was also proposed to 

improve the predictions of sectional shear capacity for tests that could be critical in punching. 

In this way, conservative estimations of resistance could be achieved. 

In the framework of this thesis, other approaches based on the use of more sophisticated 

tools were also explored to predict the shear and punching capacity of the slabs. Herein, the 

proposed approach from Natário (2015), which uses linear elastic finite element analyses 

combined with the Critical Shear Crack Theory expressions, was investigated. Small 

improvements on the approach from Natário were suggested based on the use of parameters 

that consider the change in the governing failure mechanism of the slabs according to the slab 

width-to-load size ratio. Besides that, it was also shows how the same expressions could be 

used without the need of linear elastic finite element analyses. 

In Chapter 6, non-linear finite element analyses were explored to predict the ultimate 

capacity of flat slabs designed with the rational use of Ultra-high-performance fiber-reinforced 

concrete. Added to that, it was shown how the Critical Shear Crack Theory expressions could 

be used to predict the punching capacity of such kinds of slabs or connections. 

In Chapter 7, the NLFEA was applied to predict the ultimate capacity of one-way slabs 

under concentrated loads tested from the literature. The level of accuracy and precision from 

different approaches and according to different modeling options was discussed. In this chapter, 

the author highlights how some modeling options may differ and still lead to similar levels of 

precisions and also show how some modeling options may result in worrying predictions and 

introduce large bias in the results. 

In the end, Chapter 8 shows the results of the proposed experimental program under a 

different look. The ultimate capacity and failure mechanism of the slabs were evaluated under 

the conditions that the shear and flexure capacities of the slabs were close. Therefore, 

reinforcement yielding at failure took place before failure. In practice, since the slabs are most 

likely designed to fail by flexure prior to shear or punching, such an experimental program 

could improve the understanding of the problem under the most realistic circumstances. 

In summary, the main contributions from this thesis can be summarized as: 

• Different approaches to evaluate the shear and punching capacity of one-way slabs 

under concentrated loads were investigated: (i) using only analytical expressions; (ii) 
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using analytical expressions combined with linear elastic finite element analyses; (iii) 

using three-dimensional non-linear finite element analyses; (iv) and using 

experimentation testing.  

• Different mechanical-based models, mainly the Critical Shear Displacement Theory 

(CSDT) and the Critical Shear Crack Theory (CSCT), were explored to predict the shear 

and punching capacity of one-way slabs under concentrated loads. 

• Different recommendations were developed to enhance the predictions of shear and 

punching capacity of one-way slabs under concentrated loads and two-way slabs with 

rational use of UHPFRC. 

• The ultimate capacity of one-way slabs under concentrated loads was investigated 

experimentally under a not frequent circumstance in the literature: when the shear and 

flexure capacity of the slabs are closer to each other. 

 

9.2 Summary of conclusions and research findings 

This section reviews and details the main conclusions chapter by chapter of this thesis. 

9.2.1 Transition between one-way shear and two-way shear 

In Chapter 2, it was highlighted that different shear failure mechanisms could take place 

for one-way slabs under concentrated loads: one-way shear as wide beams, two-way shear by 

punching, or a mixed mode between them. The main parameters influencing the ultimate 

capacity and failure mechanism of one-way slabs under concentrated loads are the shear 

slenderness av/dl (av being the clear shear span or the face-to-face distance between the load 

and the support and dl the effective depth of the longitudinal reinforcement), and the slab width-

to-load size ratio bslab/lload. Therefore, these parameters can be used in the current approaches 

of evaluations to improve the predictions of shear capacity when the slabs are critical in 

punching; or improve the predictions of punching capacity when the slabs are critical in one-

way shear.  

9.2.2 One-way shear strength of wide reinforced concrete members without shear 

reinforcement 

The most influencing parameters in the unitary shear capacity of wide beams and slabs 

are (i) the shear slenderness, (ii) the reinforcement ratio, and (iii) the size effect. However, the 

shear slenderness seems to have a marked influence only in the region that benefited from 

arching action (strut mechanisms). Consequently, many expressions that do not include any 

parameter related to the shear slenderness become more conservative in such loading 
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conditions. The reinforcement spacing and the slab width did not play a marked influence on 

the global capacity. Besides that, the support condition did not significantly influence the 

ultimate loads compared to parameters such as the shear slenderness. In practice, the support 

conditions are well considered in most mechanical-based models according to the shear 

slenderness M/V∙dl. 

Despite being based on different theories or calibrations, most mechanical based-models 

and semi-empirical models from codes of practice lead to similar levels of accuracy in 

predicting the one-way shear capacity of wide beams and slabs. Since these expressions are 

commonly devised using similar databases, this finding is not surprising. However, an 

important finding was that the one-way shear capacity of non-slender slabs (λ < 3) could be 

reasonably well predicted with the same expressions devised to slender conditions ( λ > 3). This 

is accomplished by considering arching action through a semi-empirical factor related to the 

shear slenderness (av/dl). 

The comparison between tested and predicted resistances according to several 

expressions showed that the ones based on the Critical Shear Displacement Theory (CSDT) and 

Critical Shear Crack Theory (CSCT) stand out. In other words, the expressions based on the 

CSDT and CSCT led to the best levels of accuracy regardless of the evaluated conditions. 

9.2.3 Assessment of one-way slabs under concentrated loads using only analytical 

expressions and the CSDT 

The one-way shear capacity of one-way slabs under concentrated loads can be predicted 

with the CSDT expressions. When the slabs are critical in one-way shear, the French effective 

shear width model can be used to define the slab strip that contributes effectively to the sectional 

shear capacity. In practice, this occurs mainly when the shear slenderness M/V∙dl < 3. Despite 

being devised to deal only with slender loading conditions, which means M/V∙dl > 3, the use of 

a correction factor β that considers arching action allows extending the use of such expressions 

to M/V∙dl < 3 in a conservative way. 

When the governing failure mechanism of the slabs is unknown, the effective shear 

width predicted with the French approach shall be corrected according to the shear slenderness 

av/dl. In practice, this means decreasing the effective shear width calculated to large distances 

of the load to the support. In this way, conservative and precise estimations of shear capacity 

can be observed even if the tests failed by punching. 
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9.2.4 Approach using linear elastic finite element analyses combined to analytical 

expressions 

The proposed approach by Natário (2015) accurately predicts the one-way shear 

capacity of one-way slabs under concentrated loads. In practice, it was observed that the one-

way shear approach presented excellent levels of accuracy regardless of the governing failure 

mechanism being one-way shear or punching shear. However, the predictions of punching 

capacity combining the CSCT expressions with LEFEA were accurate only when the slabs 

failed by punching. In this study, it was shown that the predictions of punching capacity could 

be enhanced by considering the lower contribution of the sides of the critical perimeter parallels 

to the free edges depending on the ratio slab width-to-load size ratio bslab/lload. In this way, both 

approaches can lead to similar levels of accuracy. 

Besides that, this study shows how the predictions of shear and punching capacity based 

on the CSCT can also be based only on analytical calculations (without the use of LEFEA). To 

this, simplifications in the approach from Natário were proposed, and factors related to the shear 

slenderness av/dl and bslab/lload were derived. In practice, the simplified approach leads to the 

same accuracy level as the refined approach from Natário.  

9.2.5 Assessing the punching capacity of flat slabs designed with rational use of UHPFRC 

in the load vicinity by NLFEA 

 The use of the proposed NLFEA analyses allowed tracking accurately the behavior and 

punching capacity of slabs designed with rational use of UHPFRC. Between the main finding 

in the parametric analyses, it was confirmed that the use of the UHPFRC in the compressed 

side of the slabs allows for improving the punching capacity and deformation capacity of the 

slabs compared to its use on the tensiled side. Added to that, it was observed that the punching 

capacity increases only until certain limits when the area of the UHPFRC is increased in the 

plan. Conversely, the punching capacity always increases by increasing the proportion of the 

UHPFRC in the slab thickness. 

In this study, using CSCT expressions with simple adjustments accurately predicts the 

punching capacity of the slabs designed with rational use of UHPFRC. In practice, the main 

adjustments required compared to the version devised by Maya et al. (2012) are (i) that 

UHPFRC present a higher residual tensile strength after cracking compared to SFRC that needs 

be considered in the flexure capacity calculations, (ii) and that punching capacity enhancement 

is proportional to the UHPFRC layer thickness on the slab thickness. Besides, the flexure 



284 

 

 

 

capacity of the slabs or connections needs to consider the spatial distribution of UHPFRC over 

the slab plan. 

9.2.6 Assessing the ultimate capacity of one-way slabs under concentrated loads aided by 

NLFEA 

In this study, the proposed modeling approach allowed accurately predicting the 

governing failure mechanism and ultimate capacity of slabs with different failure mechanisms. 

In practice, both one-way shear and punching shear failure modes were accurately represented. 

Along the sensibility study, the influence of some modeling options was tracked: 

• The inclusion of damage parameters in simulations of static tests allows representing 

more accurately the confining stresses around the load at failure due to the variable 

elastic modulus with increasing cracking. However, the failure mechanism of the slabs 

did not change, including or not the damage parameters. Besides, the influence of 

including the damage parameters was relatively small. In practice, the ultimate loads 

varied between 5% and 10%, including the damage parameters in static tests. 

Consequently, someone could perform the analyses without the damage parameters and 

recalibrate other parameters (such as the fracture energy and dilation capacity) to 

achieve similar results to the analyses that include the damage parameters. 

• The influence of the stress-train behavior assumed in compression in the numerical 

simulations may also affect the ultimate capacity of the FEM. In practice, using models 

with a large residual post-peak compressive strength may increase the ultimate capacity 

of the FEM around 15%. 

• The use of a large viscosity parameter in the Concrete Damaged Plasticity shall be 

avoided since this overestimates the ultimate capacity of FEM when they present some 

failure mechanism related to the concrete (for instance, shear or concrete crushing). In 

practice, using values around 0.001 introduce a significant bias in the numerical results 

since all models fail in a ductile manner. In this study, it was concluded that using a 

value of 0.00001 can allow convergence in the simulations without changing the 

behavior of the numerical models. 

9.2.7 Experimental program: slabs under concentrated loads with local reinforcement 

yielding 

In this study, it was found that one-way slabs under concentrated loads can present a 

first failure mechanism initiated by punching. After this, depending on the reinforcement ratio 
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used in the transverse direction of the slabs, large shear redistribution can occur around the load 

and activate a second failure mechanism as wide beam shear. 

The reinforcement yielding around the load may limit the contribution of arching action 

to the direct shear transfer. As a consequence, the ultimate capacity of the slabs may not increase 

by decreasing the shear slenderness av/dl. 

The combination of the french effective shear width with the expressions preconized by 

the ABNT NBR 6118:2014 for predicting the unitary shear capacity allows reaching good 

levels of accuracy for slabs loaded by concentrated loads at distances av ≤ 3dl. Besides, the 

punching capacity predictions from the same code also led to good levels of accuracy for the 

tested slabs. In general, the Extended Strip Model allowed presented the best levels of accuracy 

in predicting the ultimate capacity of the tested slabs. 

9.3 Recommendations for future studies 

In this study, most slabs evaluated were tested under a single concentrated load. In 

practice, bridge deck slabs are loaded by a combination of the concentrated loads. Therefore, 

further studies shall be developed to increase the number of tests or numerical studies 

simulating the combination of loads on the slabs. 

In this framework, it is also interesting to note that slab bridge decks can also be 

supported on four sides (typically, two longitudinal girders and two transverse beams). 

Therefore, it is important in the future to extend this kind of study from one-way slabs to other 

boundary conditions that may arise in practice. 
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