• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.18.2019.tde-26112019-125059
Document
Author
Full name
Túlio Raunyr Cândido Felipe
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2019
Supervisor
Committee
Beck, André Teófilo (President)
Flórez-lópez, Julio
Greco, Marcelo
Pimenta, Paulo de Mattos
Vieira Junior, Luiz Carlos Marcos
Title in Portuguese
Análise mecânica e probabilística de estruturas treliçadas sujeitas ao colapso progressivo
Keywords in Portuguese
Colapso progressivo
Confiabilidade estrutural
Dano dúctil
Estruturas treliçadas
MEF Posicional
Não linearidade física
Não linearidade geométrica
Abstract in Portuguese
Neste trabalho, um abrangente modelo de dano dúctil é deduzido para a análise não linear estática e dinâmica de estruturas treliçadas. O modelo é acoplado a uma formulação em Elementos Finitos Posicional (MEF Posicional) usando a medida de deformação logarítmica para lidar com grandes deslocamentos e grandes deformações. Ademais, a formulação proposta é combinada à confiabilidade estrutural para avaliar os caminhos de falha das estruturas treliçadas sujeitas ao colapso progressivo. Tal modelo captura a degradação mecânica em termos de variação de porosidade devido ao crescimento e coalescência de microcavidades e microfissuras no material. Usando o modelo proposto, a evolução da degradação mecânica cresce continuamente até que seja alcançado o dano crítico do material, conforme a pressuposição apontada pela comunidade científica. Isso implica que, em aplicações numéricas, a utilização do modelo proposto não acarreta instabilidade numérica na matriz Hessiana, uma vez que o módulo tangente vai tender ao valor obtido via curva experimental, diferentemente dos modelos apresentados na literatura, os quais conduzem a valores de módulo tangente que tendem a zero. A formulação proposta fornece um excelente ajuste para curvas de tensão vs: deformação de onze materiais diferentes, registrando o endurecimento, o amolecimento e a falha do material. Nas aplicações ao concreto, o modelo proposto resulta em uma melhor aproximação para os resultados experimentais em comparação com modelos da literatura. Por fim, a formulação proposta apresenta boa convergência dos resultados para a análise da trajetória de equilíbrio de estruturas treliçadas sob colapso progressivo considerando a não linearidade física e geométrica.
Title in English
Mechanical and Probabilistic Analysis of Truss Structures Considering Progressive Collapse
Keywords in English
Ductile damage
Geometric nonlinearity
Physical nonlinearity
Positional FEM
Progressive collapse
Structural reliability
Truss structures
Abstract in English
In this work, a comprehensive ductile damage model is deducted for static and dynamic nonlinear analysis of truss structures. The model is based on the Positional Finite Element Method (Positional FEM) using log-strain measure to deal with large displacements and strains. Furthermore, the proposed formulation combines structural reliability to evaluate failure paths of truss structures subject to progressive collapse. The model captures mechanical degradation in terms of porosity variation due to the growth and coalescence of microcavities and microcracks in the material. According to the proposed model, the mechanical degradation evolves continuously until the critical damage is reached, as indicated by assumptions of the scientific community. This implies that in numerical applications, use of the proposed model does not result in numerical instability of the Hessian matrix, given that the tangent modulus tends to its experimental value, unlike the models presented in the literature, in which the tangent modulus tends to zero. The proposed formulation provides an excellent fit to stress v:s strain curves of eleven different materials, including hardening and softening material failure. When applied to concrete, the proposed model results in a better approximation to experimental results, in comparison with the models indicated in the literature. Finally, the proposed formulation presents good convergence in the results for the analysis of the equilibrium trajectory of truss structures under progressive collapse considering physical and geometric nonlinearities.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-12-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.