Thèse de Doctorat
DOI
https://doi.org/10.11606/T.18.2019.tde-23052019-084903
Document
Auteur
Nom complet
Tiago Morkis Siqueira
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2019
Directeur
Jury
Coda, Humberto Breves (Président)
Paccola, Rodrigo Ribeiro
Rubert, José Benaque
Siqueira, Gustavo Henrique
Souza, Alex Sander Clemente de
Titre en portugais
Ligações deslizantes para análise dinâmica não linear geométrica de estruturas e mecanismos tridimensionais pelo método dos elementos finitos posicional
Mots-clés en portugais
Dinâmica não linear
Ligações deslizantes
Método dos elementos finitos posicional
Resumé en portugais
Titre en anglais
Sliding connections for the geometrical nonlinear dynamical analysis of three-dimensional structures and mechanisms by the positional finite element method
Mots-clés en anglais
Nonlinear dynamics
Positional finite element method
Sliding connections
Resumé en anglais
This study deals with the development of a mathematical formulation for sliding connections applied to the geometrical nonlinear dynamical analysis of three-dimensional structures and mechanisms along with its computational implementation. These kinds of connections have several applications in aerospace, mechanical and civil industries when simulating, e.g.: satellite antennas, robotic arms and cranes; frame like civil structures, such precast structures; and the coupling between moving vehicles and bridges of any geometry. For the introduction of sliding connections in plane frames, spatial frames and shell finite elements the Lagrange multipliers, augmented Lagrangian and penalty function methods are employed as to enforce the joints kinematic constraints. Aspects such as roughness and friction dissipation on the connections sliding path are considered as to complement the numerical model. Rotational connections between the employed finite elements are also considered. In addition, a formulation for flexible actuators is developed to introduce motion to the bodies. In order to simulate the behaviour of solids, a total Lagrangian finite element method formulation based on positions is employed. The Saint-Venant-Kirchhoff constitutive relation is used to characterize the materials. The time integration of the constrained nonlinear equations of motion is studied by the Newmark and generalized-α methods and the solution of the nonlinear system is obtained by the Newton-Raphson method. Several examples are presented to verify the proposed formulations.

AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-06-11

AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.