Doctoral Thesis
DOI
https://doi.org/10.11606/T.18.2018.tde-17042018-093122
Document
Author
Full name
Antonio Roberto Balbo
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1998
Supervisor
Committee
Proença, Sérgio Persival Baroncini (President)
Arenales, Marcos Nereu
Pereira, Nestor Alberto Zouain
Santos, Sandra Augusta
Silva, Geraldo Nunes
Title in Portuguese
Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo
Keywords in Portuguese
Localização de deformação
Mecânica do dano contínuo
Modelos com dano
Abstract in Portuguese
A Mecânica do Dano Contínuo é atualmente uma poderosa ferramenta para se modelar o comportamento não-linear de vários materiais decorrente da evolução de um processo de microfissuração. A perda de rigidez causada pelo processo físico tem sido considerada em modelos constitutivos através de variáveis de dano escalar, vetorial ou tensorial. Quando o carregamento é proporcionalmente crescente as deformações residuais podem ser ignoradas e relações constitutivas simples podem ser obtidas, onde os efeitos do dano aparecem por uma penalização direta das propriedades elásticas. Por outro lado, efeitos de dano podem ser acoplados com deformações residuais levando a relações constitutivas mais gerais. Esse trabalho está relacionado a esses tipos de modelos assumindo que o meio ideal apresenta um comportamento elástico linear com danificação ou elastoplástico com danificação. Um dos principais aspectos discutido relaciona-se à formulação variacional, a qual está baseada em conceitos de Análise Convexa e Não-Convexa. Explorando o fato que a evolução do dano tem correspondência com a idealização de regime de encruamento negativo, a teoria de localização de deformação é abordada e um estudo da condição necessária de singularidade ou perda da condição de elipticidade é realizado. Na sequência, uma proposta preliminar para uma análise de pós-singularidade, baseada na Teoria de Bifurcação, é feita no sentido de caracterizar pontos limite ou pontos de bifurcação de solução, em sistemas conservativos.
Title in English
Contribution to mathematic formulation of continuum damage materials constitutive models
Keywords in English
Continuum damage mechanics
Damage models
Strain localization
Abstract in English
Continuum Damage Mechanics is nowadays a powerful tool to model the non-linear behaviour of several materials due to evolution of a microcracking process. The lost of rigidity caused by such physical process has been accounted in the constitutive models through a scalar, vectorial or tensorial damage variables. When proportional loading is considered the residuals strains can be ignored and simple constitutive relations can be obtained in which damage effects appear by direct penalization of the elastic properties. On the other hand, damage effects can be coupled with residual strains leading to more general constitutive relations. This work is related to such kind of models assuming that the ideal medium presents a linear elastic-damage or an elastoplastic-damage behaviour. One of the main topics discussed is related to the variational formulation which is based on Convex and Non-Convex Analysis concepts. Exploring the fact that damage evolution has correspondence with a softening idealised regime, the strain localization theory is treated and a study of a necessary condition for singularity or ellipticity tose condition is developed. In the sequence, a introductory poscritical analysis is proposed, based in the bifurcation theory and aiming to detect if the singularity corresponds to a limit or a bifurcation point solution, in conservative systems.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-04-17