• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2017.tde-06122017-140613
Document
Auteur
Nom complet
Valério da Silva Almeida
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1999
Directeur
Jury
Paiva, João Batista de (Président)
Bucalem, Miguel Luiz
Coda, Humberto Breves
Titre en portugais
Uma adaptação do MEF para análise em multicomputadores: aplicações em alguns modelos estruturais
Mots-clés en portugais
Método dos elementos finitos
Método dos gradientes conjugados
Multicomputadores
Pré-condicionadores
Processamento paralelo
Resumé en portugais
Neste trabalho, apresenta-se uma adaptação dos procedimentos utilizados nos códigos computacionais seqüenciais advindos do MEF, para utilizá-los em multicomputadores. Desenvolve-se uma rotina para a montagem do sistema linear particionado entre os diversos processadores. Resolve-se o sistema de equações lineares geradas mediante a rotina do PIM (Parallel Iterative Method). São feitas adaptações deste pacote para se aproveitar as características comuns do sistema linear gerado pelo MEF: esparsidade e simetria. A técnica de resolução do sistema em paralelo é otimizada com o uso de dois tipos de pré-condicionadores: a decomposição incompleta de Cholesky (IC) generalizado e o POLY(0) ou Jacobi. É feita uma aplicação para a solução de pavimento com o algoritmo-base totalmente paralelizado. Também é avaliada a solução do sistema de equações de uma treliça. Mostram-se resultados de speed-up, de eficiência e de tempo para estes dois modelos estruturais. Além disso, é feito um estudo em processamento seqüencial da performance dos pré-condicionadores genéricos (IC) e do advindo de uma série truncada de Neumann, também generalizada, utilizando-se modelos estruturais de placa e chapa.
Titre en anglais
Multicomputer finite element method analysis of usual structures models
Mots-clés en anglais
Conjugate-gradients method
Finite element method
Multicomputers
Parallel processing
Preconditioners
Resumé en anglais
This work presents an adaptation of conventional finite element method (FEM) computing procedures to multicomputers. It is presented the procedure which the linear system of equations is split among the processor and its solution. It was improved a public software called PIM (Parallel Iterative Method) is used to solve this system of equations. These improvements explore efficiently the usual features of the FEM systems of equations: sparseness and symmetry. To improve the solution of the system, two different preconditioners are used: a generic Incomplete Cholesky (IC) and the Polynomial preconditioning (POLY(0) or Jacobi). It is carried out a full adaptation of the method to parallel computing with a program developed to analyse floor structures. The improved PIM is also used to solve the system of equations of a tri-dimensional truss. It is presented the speed-up, the efficiency and the time used in the resolution of the systems of equations for the floor and for the truss. It is also presented a study of performance in sequential processing of the generic (IC) and the generic Neumann series preconditioners in the analysis of plates in bending and in plane actions.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-12-07
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.