• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.18.2017.tde-13062017-112014
Document
Author
Full name
Flávio Henrique Justiniano Ribeiro da Silva
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2004
Supervisor
Committee
Bretas, Newton Geraldo (President)
Costa, Vander Menengoy da
Feltrin, Antonio Padilha
Milani, Basílio Ernesto de Almeida
Ramos, Rodrigo Andrade
Title in Portuguese
Funções de Lyapunov estendidas para análise de estabilidade transitória em sistemas elétricos de potência
Keywords in Portuguese
Condutâncias de transferência
Estabilidade transitória
Funções de Lyapunov
Método de Lyapunov
Abstract in Portuguese
O método de Lyapunov, também conhecido como método direto, é eficiente para análise de estabilidade transitória em sistemas de potência. Tal método possibilita a análise de estabilidade sem requerer o conhecimento das soluções das equações diferenciais que modelam o problema. A maior desvantagem da utilização dos métodos diretos, é sem dúvida encontrar uma função (V) que satisfaça as condições do Teorema de Lyapunov, ou seja, V > 0 e V '< ou =' 0. Durante muitos anos a inclusão das condutâncias de transferência na modelagem do sistema de potência, com a rede reduzida aos nós dos geradores, foi um assunto que despertou interesse em vários pesquisadores. Em 1989, Chiang provou a não existência de uma Função de Lyapunov para sistemas de potência quando as condutâncias de transferência são consideradas. Essas condutâncias de transferência são responsáveis por gerar regiões no espaço de estados onde tem-se V > 0, não satisfazendo as condições do Teorema de Lyapunov. Recentemente, Rodrigues, Alberto e Bretas (2000) apresentaram a Extensão do Princípio de Invariância de LaSalle, onde é permitido que a Função de Lyapunov possua, em algumas regiões limitadas do espaço de estados, a derivada positiva. Neste caso, estas funções passam a ser denominadas Funções de Lyapunov Estendidas (FLE). Neste trabalho, são utilizadas a Extensão do Princípio de Invariância de LaSalle e as Funções de Lyapunov Estendidas para a análise de estabilidade transitória, considerando o efeito das condutâncias de transferência na modelagem do problema. Para isto, são propostas Funções de Lyapunov Estendidas para modelos de sistemas de potência que não apresentam uma Função de Lyapunov no sentido usual. Essas FLE's são propostas tanto para sistemas de 1-máquina versus barramento infinito quanto para sistemas multimáquinas. Para a obtenção de boas estimativas do tempo de abertura, nos estudos de estabilidade transitória, é proposto um algoritmo iterativo. Este algoritmo fornece uma boa estimativa local da área de atração do ponto de equilíbrio estável de interesse.
Title in English
Extended Lyapunov function for analysis and control of electrical power systems transient stability
Keywords in English
Lyapunov functions
Lyapunov methods
Transfer conductances
Transient stability
Abstract in English
The method of Lyapunov, one of the direct method, is efficient for transient stability analysis of power systems. The direct methods are well-suited for stability analysis of power systems, since they do not require the solution of the set of differential equations of the system model. The great difficulty of the direct methods is to find an auxiliary function (V) which satisfies the conditions of Lyapunov's Theorem V > 0 and V '< or =' 0. For many years the inclusion of the transfer conductances in the power system model, with the reduced network, is a issue of interest for several researchers. In 1989, Chiang studied the existence of energy functions for power systems with losses and he proved the non existence of a Lyapunov Function for power systems when the transfer conductance is taken into account. The transfer conductances are responsible for generating regions in the state space where the derivative of V is positive. Therefore, the function V is nor a Lyapunov Function, because its derivative is not semi negative definite. Recently, an Extension of the LaSalle's Invariance Principle has been proposed by Rodrigues, Alberto and Bretas (2000). This extension relaxes some of the requirements on the auxiliary function which is commonly called Lyapunov Function. In this extension, the derivative of the auxiliary function can be positive in some bounded regions of the state space and, for distinction purposes, it is called, as Extended Lyapunov Function. Inthis work, the Extension of the LaSalle's Invariance Principle and the Extended Lyapunov Function are used for the transient stability analysis of power systems with the model taking transfer conductances in consideration. For at purpose in this research, Extended Lyapunov Functions for power system models which do not have Lyapunov Functions in the usual sense are proposed. Extended Lyapunov Functions are proposed for a single-machine-infinite- bus-system and multimachine systems. For obtaining good estimates of the critical clearing time in transient stability analysis, an iterative algorithm is proposed. This algorithm supplies a good local estimate of the attraction area for the post fault stable equilibrium point.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-06-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.