Master's Dissertation
DOI
https://doi.org/10.11606/D.17.2023.tde-17112023-101844
Document
Author
Full name
Victor Guerra Martins
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2023
Supervisor
Committee
Santos, Antonio Carlos dos (President)
Velasco, Tonicarlo Rodrigues
Araújo, Dráulio Barros de
Title in Portuguese
Detecção automática de realce de contraste em imagens de ressonância magnética cerebral ponderada em T1 usando inteligência artificial
Keywords in Portuguese
Imagem por ressonância magnética
Inteligência artificial
Realce pós-contraste
Abstract in Portuguese
Introdução: O uso da ressonância nuclear magnética (RM) na prática médica é extensa e abrange auxílio no diagnóstico de múltiplas condições como: neoplasias, infecções, doenças inflamatórias, dentre outras. Nestes contextos, a análise do realce pós-contraste é essencial. Tal detecção e quantificação do realce em imagens de (RM) cerebral ponderada em T1 é uma tarefa desafiadora devido à complexidade das imagens e à variabilidade na aparência do realce de contraste. Técnicas de inteligência artificial (IA) têm potencial para melhorar a eficiência e precisão desse processo, mas o desenvolvimento e avaliação de abordagens baseadas em IA para esse fim é uma tarefa laborosa. Objetivos: Desenvolvimento e validação de ferramenta para detecção de realce pós-contraste em imagens de RM ponderadas em T1. Implementação desta ferramenta na rotina clínica do serviço de radiologia e diagnóstico por imagem do Hospital das Clínicas de Ribeirão Preto (HCRP).Método: Neste estudo, desenvolveremos e avaliaremos uma abordagem baseada em IA para a detecção de realce de contraste em imagens de ressonância magnética cerebral ponderadas em T1 usando um grande conjunto de dados de um hospital público brasileiro. A abordagem baseada em IA será baseada em uma rede neural convolucional (CNN) treinada em uma base de aprendizado supervisionado, com o objetivo de prever com precisão a presença ou ausência de realce de contraste nas imagens. A entrada para a CNN serão as imagens de ressonância magnética e a saída será uma previsão binária da presença ou não de realce de contraste. Resultados: Foi observada uma sensibilidade de 78,5% e especificidade foi de 88,2%, sendo a acurácia de 85,7% entre os 7638 exames avaliados.Conclusão: A ferramenta desenvoldida obteve sucesso em seus objetivos com alta sensibilidade e especificidade na detecção de realce pós-contraste na sequência ponderada em T1, de forma totalmente automática. Durante nossa rotina diária, o software mostrou auxílio real e prático na avaliação destes exames, diminuindo o tempo para confecção dos laudos radiológicos. Os exames falso positivos são fácil e rapidamente descartados pelo médico radiologista. Palavras-chave: realce pós-contraste; imagem por ressonância magnética; inteligência artificial.
Title in English
Automatic detection of contrast enhancement in T1-weighted brain magnetic resonance images using artificial intelligence
Keywords in English
Artificial intelligence
Magnetic resonance imaging
Post-contrast enhancement
Abstract in English
Introduction: The use of magnetic resonance imaging (MRI) in medical practice is extensive and encompasses the diagnosis of multiple conditions such as neoplasms, infections, inflammatory diseases, among others. In these contexts, the analysis of post-contrast enhancement is essential. The detection and quantification of enhancement in T1-weighted cerebral MRI images is a challenging task due to the complexity of the images and the variability in the appearance of contrast enhancement. Artificial intelligence (AI) techniques have the potential to improve the efficiency and accuracy of this process, but the development and evaluation of AI-based approaches for this purpose is a laborious task. Objectives: Development and validation of a tool for post-contrast enhancement detection in T1-weighted MRI images. Implementation of this tool in the clinical routine of the radiology and diagnostic imaging service of Clinical Hospital of Ribeirao Preto. Methodology: In this study, we will develop and evaluate an AI-based approach for the detection of contrast enhancement in T1-weighted cerebral MRI images using a large dataset from a Brazilian public hospital. The AI-based approach will be based on a convolutional neural network (CNN) trained on a supervised learning basis, with the objective of accurately predicting the presence or absence of contrast enhancement in the images. The input to the CNN will be the MRI images, and the output will be a binary prediction of the presence or absence of contrast enhancement. Results: A sensitivity of 78,5% and a specificity of 88,2% were observed, with an accuracy of 85,7% among the 7638 tests evaluated. Conclusion: The developed tool successfully achieved its objectives with high sensitivity and specificity in the detection of post-contrast enhancement in T1- weighted sequences, fully automatically. During our daily routine, the software provided real and practical assistance in the evaluation of these exams, reducing the time required to produce radiology reports. False positive exams are easily and quickly discarded by the radiologist. Keywords: post-contrast enhancement; magnetic resonance imaging; artificial intelligence.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2023-12-06