Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.17.2019.tde-09012019-132535
Documento
Autor
Nome completo
Ana Katariny de Souza Cacheta
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Ribeirão Preto, 2018
Orientador
Banca examinadora
Pazin Filho, Antonio (Presidente)
Marques, Paulo Mazzoncini de Azevedo
Miranda, Carlos Henrique
Adolfi Junior, Mario Sergio
Título em português
Exploração da mineração de texto em documentos da saúde em diferentes idiomas para acompanhamento médico de pacientes com doenças crônicas
Palavras-chave em português
CleverCare
Doenças crônicas
Processamento de linguagem natural
Resumo em português
O CleverCare é um framework para controle, gestão e orientação de pacientes que necessitam de acompanhamento médico contínuo. O sistema possui ferramentas de mineração de textos responsáveis por compreender o conteúdo das mensagens e integrar com serviços de mensagem para envio e recebimento das mesmas, onde inicia diálogos com o paciente para gerenciar atividades rotineiras personalizadas e permite, inclusive, ao paciente fazer perguntas a respeito de uma enfermidade ou condição clínica. Desta forma, a comunicação com o paciente é a base para o sucesso do CleverCare, o qual atualmente possui suporte para o português, atuando por meio de suporte e empoderando o paciente ao cuidado de sua saúde. Compreender as implicações lógicas e adaptações necessárias para a compreensão de textos em diferentes idiomas pode fornecer informações para a aplicação dos mesmos procedimentos a outros idiomas, correlacionando informações e estabelecendo lógicas para traduções e tratamento de termos específicos da área, permitindo atender a uma maior demanda de pacientes que necessitam de tratamento contínuo. Para o desenvolvimento do projeto foram utilizadas abordagens e técnicas visando a escalabilidade e expansão de idiomas de maneira dinâmica. Para isso além das decisões de alterações específicas do sistema foram utilizadas ferramentas como o NLTK para o aperfeiçoamento e realização das adaptações necessárias ao projeto, uma vez que essa ferramenta possui suporte a diversos idiomas e está em constante melhoria. Os resultados, analisados por meio de técnicas de acurácia, precisão e revocação, demonstram que a melhoria observada com as adaptações do sistema para suporte aos idiomas de interesse foram positivas e significativas, com aumento de 13% nos indicadores de revocação e acurácia e manutenção da precisão em 100%. Sendo assim, o CleverCare apresentou um bom desempenho e foi capaz de classificar corretamente as mensagens, permitindo ao sistema reconhecer e classificar corretamente diferentes idiomas. Esta solução permite ao sistema não apenas fazer o processamento de diálogos em português, inglês e espanhol, mas também ingressar no mercado internacional com a possibilidade de expansão e escalabilidade para outros idiomas
Título em inglês
Exploration of text mining in health documents in different languages for medical follow-up of patients with chronic diseases
Palavras-chave em inglês
Chronic diseases
CleverCare
Natural language processing
Resumo em inglês
CleverCare is a framework for the control, management, and guidance of patients who need ongoing medical follow-up. The system has text-mining tools responsible for understanding the content of the messages and integrating with message services to send and receive messages, where it initiates dialogues with the patient to manage personalized routine activities and allows the patient to ask questions about them in relation to an illness or clinical condition. In this way, communication with the patient is the basis for the success of CleverCare, which currently has support for Portuguese, acting through support and empowering the patient to take care of their health. Understanding the logical implications and adaptations required for the understanding of texts in different languages can provide information for the application of the same procedures to other languages, correlating information and establishing logics for translations and treatment of specific terms of the area, allowing to supply a greater demand of patients who require continuous treatment. For the development of the project, it was used approaches and techniques aimed at scaling and language expansion in a dynamic way. For this in addition to the system-specific changes decisions tools like NLTK were used, aiming at the improvement and accomplishment of the necessary adaptations to the project, since this tool has support to several languages and is constantly improving. The results, analyzed using accuracy, precision and recall techniques, demonstrate that the improvement observed with the system adaptations to support the languages of interest were positive and significant, with an increase of 13% in recall and accuracy indicators and maintenance of 100% of precision. Thus, CleverCare performed well and was able to classify messages correctly, allowing the system to correctly recognize and classify different languages. This solution allows the system not only to process dialogues in Portuguese, English and Spanish, but also to enter the international market with the possibility of expansion and scalability for other languages
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-02-22