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RESUMO 
 

PLAÇA, Jessica Rodrigues. Avaliação de perfis moleculares e microambientes em 
linfomas de células B. 2022. Tese (Doutorado em Ciências) – Faculdade de Medicina 

de Ribeirão Preto, Ribeirão Preto, 2022. 

 
O linfoma de células B compreende um grupo heterogêneo de tumores que surgem a 

partir de diferentes estágios de desenvolvimento das células B e do seu microambiente 

celular, retratando características morfológicas distintas. Vários estudos mostraram 

subgrupos biológicos importantes, que muitas vezes coincidem com resposta à terapia. 

No entanto, a maioria desses estudos não foram validados em coortes independentes 

ou os dados disponíveis são escassos. Assim, o objetivo deste projeto foi identificar os 

genes associados as assinaturas específicas de linfoma (relacionadas ao tumor e ao 

microambiente), caracterizar seus perfis de expressão e associar esses perfis à funções 

biológicas e desfechos clínicos. Caracterizamos padrões de expressão gênica de dois 

subtipos de linfomas de células B. O primeiro foi o linfoma de Hodgkin clássico (LHc) que 

possui células T CD4+ altamente abundantes nas proximidades das células tumorais, 

consideradas essenciais para a sobrevivência das células tumorais, mas são mal 

definidas. Embora sejam ativadas, elas podem não expressar o marcador de ativação 

CD26. Assim, comparamos suspensões de células T de linfonodo CD4+CD26- e 

CD4+CD26+ por RNA-seq que revelou que as células T CD4+CD26- foram 

apresentadas à antígenos provavelmente pela expressão de fatores de transcrição 

associados à exaustão TOX e TOX2, checkpoints imunológicos PDCD1 e CD200 e 

quimiocina CXCL13, que estavam entre os 100 genes significativamente enriquecidos 

em comparação com as células T CD4+CD26+. Esta população é provavelmente um dos 

principais contribuintes para as taxas de resposta muito altas aos inibidores de 

checkpoint imunológico em LHc. O segundo grupo foi o linfoma difuso de grandes células 

B (LDGCB), onde além do classificador de células de origem (CO), nenhuma assinatura 

foi reproduzida em estudos independentes ou avaliada para capturar aspectos distintos 

da biologia de LDGCB. Assim, reproduzimos 4 assinaturas em 175 amostras da corte 

HOVON-84 em um painel de 117 genes usando a plataforma NanoString. As quatro 
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assinaturas de genes capturam a CO, a atividade do gene MYC, a sinalização do 

receptor da célula B, a fosforilação oxidativa e a resposta imune. O desempenho de 

nossos algoritmos de classificação foi confirmado nos conjuntos de dados originais. 

Conseguimos validar três das quatro assinaturas. O algoritmo CO resultou em 94 (54%) 

casos relacionados à células B do centro germinativo (CGB), 58 (33%) de células B 

ativadas (CBA) e 23 (13%) casos não classificados. O classificador MYC revelou 77 

casos associados ao escore de alta atividade MYC (44%) e essa assinatura foi 

observada com mais frequência no ABC em comparação ao GCB LDGCB (68% vs. 32%, 

p < 0,00001). A assinatura da resposta do hospedeiro (RH) do agrupamento consenso 

estava presente em 55 (31%) pacientes, enquanto os demais agrupamentos não 

puderam ser reproduzidos. A sobreposição entre CO, grupo consenso e atividade de 

MYC diferenciou seis clusters de expressão gênica: CGB/MYC-alto (12%), CGB/RH 

(16%), CGB/não-RH (27%), CO-não classificado (13%) %), CBA/MYC-alto (25%) e 

CBA/MYC-baixo (7%). Em conclusão, este estudo identificou novos alvos moleculares 

acionáveis para subgrupos específicos de pacientes, o que pode ajudar no 

desenvolvimento de estratégias terapêuticas mais precisas e eficazes do linfoma de 

células B no futuro. 

 

Palavras-chave: Linfoma de células B. Bioinformática. Perfil de expressão gênica. 
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ABSTRACT 
 

PLAÇA, Jessica Rodrigues. Evaluation of molecular profiles and micro-
environments in B-cell lymphomas. 2022. Tese (Doutorado em Ciências) – Faculdade 

de Medicina de Ribeirão Preto, Ribeirão Preto, 2022. 
 

B-cell lymphoma comprises a heterogeneous group of malignancies that arise from a 

specific developmental stage of B-cells and shape of their microenvironment as depicted 

by the distinct morphological features. Several studies have shown biologically 

meaningful subgroups, which often coincides with either good or bad response to therapy. 

However, most of these studies have not been validated in independent cohorts and for 

several B-cell lymphoma subtypes available data are scarce. Thus, the aim of this project 

was to identify the genes associated with specific lymphoma signatures (either tumor 

related or microenvironment), characterize their expression profiles, and associate these 

profiles with biological functions and clinical outcomes. We characterized an in-depth 

gene expression pattern of two groups of B-cell lymphomas. The first was the classical 

Hodgkin lymphoma which has highly abundant CD4+ T cells in the vicinity of tumor cells 

are considered essential for tumor cell survival but are ill-defined. Although they are 

activated, they consistently lack expression of activation marker CD26. We compared 

sorted CD4+CD26- and CD4+CD26+ T cells lymph node cell suspensions by RNA 

sequencing. This revealed that CD4+CD26- T cells are antigen experienced. This can be 

explained by the expression of exhaustion associated transcription factors TOX and 

TOX2, immune checkpoints PDCD1 and CD200, and chemokine CXCL13, which were 

amongst the 100 significantly enriched genes in comparison with the CD4+CD26+ T cells. 

This population is likely a main contributor to the very high response rates to immune 

checkpoint inhibitors in cHL. The second group was diffuse large B-cell lymphoma which 

multiple gene expression profiles have been identified but besides the cell of origin (COO) 

classifier, no signatures have been reproduced in independent studies or evaluated for 

capturing distinct aspects of DLBCL biology. So, we reproduced 4 signatures in 175 

samples of the HOVON-84 trial on a panel of 117 genes using the NanoString platform. 

The four gene signatures capture the COO, MYC activity, B-cell receptor signaling, 
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oxidative phosphorylation, and immune response. Performance of our classification 

algorithms were confirmed in the original datasets. We were able to validate three of the 

four GEP signatures. The COO algorithm resulted in 94 (54%) germinal center B-cell 

(GCB) type, 58 (33%) activated B-cell (ABC) type, and 23 (13%) unclassified cases. The 

MYC-classifier revealed 77 cases with a high MYC-activity score (44%) and this MYC-

high signature was observed more frequently in ABC as compared to GCB DLBCL (68% 

vs. 32%, p < 0.00001). The host response (HR) signature of the consensus clustering 

was present in 55 (31%) patients, while the B-cell receptor signaling, and oxidative 

phosphorylation clusters could not be reproduced. The overlap of COO, consensus 

cluster and MYC activity score differentiated six gene expression clusters: GCB/MYC-

high (12%), GCB/HR (16%), GCB/non-HR (27%), COO-Unclassified (13%), ABC/MYC-

high (25%), and ABC/MYC-low (7%). In conclusion, this study lead to identification of new 

actionable molecular targets for specific patient subgroups. This may help in the 

development of more precise and effective therapeutic strategies for B-cell lymphoma 

patients in the future. 

 

Keywords: B-cell lymphoma. Bioinformatics. Gene expression profile 
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1 INTRODUCTION  
 Lymphomas mainly comprise Hodgkin lymphoma (HL) and non-Hodgkin lymphoma 

(NHL), representing a heterogeneous group of lymphoproliferative diseases. B-cell 

lymphomas account for almost 95% of all lymphoma cases and an annual incidence of 

around 20 new cases per 100,000 persons (IAFC, 2018). It is estimated that for each year 

of the triennium 2020/2022, 2.640 new cases of HL and 12030 new cases of NHL are 

diagnosed in Brazil (CÂNCER, 2020). While in the Netherlands, 500 HL and 3850 NHL 

cases were reported in 2018 (SWERDLOW; CAMPO; HARRIS, 2017).  

 Patients with B-cell lymphomas are usually characterized by lymphadenopathy, 

extranodal disease or both and present the potential for multiple organ involvement 

(SEHN; SALLES, 2021). Despite improvement of treatment strategies, the number of 

lymphoma-associated deaths remains high with 5-year survival rates varying between 

30-90% depending on stage and lymphoma subtype. In addition, undesired treatment-

induced side effects, such as cardiac disease, secondary malignancies and infertility 

present major risks for lymphoma patients (SWERDLOW; CAMPO; HARRIS, 2017). 

 Despite successful introduction of novel agents in indolent lymphoma and substantial 

increase in biological understanding in specific B-cell lymphoma subtypes, attempts to 

improve survival by combining standard therapy with novel targeted agents yielded 

disappointing results for some aggressive B-cell lymphomas, like the common Diffuse 

large B-cell lymphoma (DLBCL) (SWERDLOW; CAMPO; HARRIS, 2017). At the same 

time, although survival in young patients with HL is favorable, the outcome of patients 

above the age of 60 years is still poor. One barrier to the effective use of novel therapies 

targeting specific pathways is the biological intra- and inter-individual heterogeneity of B-

cell lymphoma and the likely existence of multiple distinct subtypes, which might respond 

differentially to specific treatments. To permit more accurate targeting in clinical trials, it 

is essential to define distinct molecular subtypes between patients and assess 

heterogeneity within patients, permitting stratification between patients that are likely to 

respond to standard treatment and patients that may benefit from emerging therapies. 

 Large-scale molecular characterization studies in combination with advanced 

bioinformatics approaches to identify new molecular subgroups with clinical utility, should 

be implemented in clinical practice to maximize treatment of the patients, improving 



 

 

16 

outcome, selecting candidates for escalation therapy, and ultimately also de-escalation 

studies. 

1.1 Tumor microenvironment 
 The tumor microenvironment (TME) is a complex network that comprises cellular and 

noncellular components, forming a physical barrier around tumor cells (CASEY; AMEDEI; 

AQUILANO; AZMI et al., 2015). Accumulating studies have suggested that the TME 

components play important roles in the initiation and maintenance of carcinogenesis 

instead of being bystanders (WANG; DING; ZHENG; XIAO et al., 2020). TME is 

instrumental in a variety of biological processes, including pathogenesis, progression, 

metastasis and drug resistance, through sustained proliferation and immune escape 

(HUI; CHEN, 2015). Given the limited efficacy of standard therapies in several patients, 

TME-based therapies have been explored as new treatment strategies to achieve a more 

immunogenic environment and better drug delivery, ultimately increasing the response 

rates of patients. Recent studies suggest that the composition of TME is essential for the 

pathogenesis of lymphoma. Moreover, the TME also provides new strategies for targeted 

therapies and tumor prognosis prediction. 

 The TME can be divided into two parts: the immune microenvironment that contains 

immune cells and the nonimmune microenvironment dominated by fibroblasts 

(JUNTTILA; DE SAUVAGE, 2013). The immune microenvironment consists of T and B 

lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells 

(MDSCs), tumor-associated neutrophils (TANs), natural killer (NK) cells, dendritic cells 

(DCs) and others. These cells mediate the immunosuppressive microenvironment and 

escape immunity. The nonimmune microenvironment mainly consists of stromal cells, 

including cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), pericytes, 

mesenchymal stromal cells and other secreted molecules, including growth factors, 

cytokines, chemokines and extracellular vesicles (BEJARANO; JORDĀO; JOYCE, 2021). 

1.3 Classical Hodgkin lymphoma 
 Hodgkin lymphoma (HL) is a B-cell malignancy that has a bi-modal age distribution 

with a peak in young adults (age 20–34) and in elderly patients (age 65-77). Especially 

elderly patients still have a poor outcome. Whether this is due to intrinsic differences in 
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tumor and TME or are related to the toxicity of treatment in elderly patients is unknown. 

HL can be subdivided into classical HL (cHL) and nodular lymphocyte predominant HL 

(NLPHL) based on morphological and clinical differences (SWERDLOW; CAMPO; 

HARRIS, 2017; SWERDLOW; CAMPO; PILERI; HARRIS et al., 2016). NLPHL is more 

frequent in the youngest patients with mediastinal involvement and sometimes bulky 

disease. Differential diagnosis is with primary mediastinal lymphoma CD20+, CD23+, or 

CD30+ occurring in young women or in patients with rare grey-zone lymphomas. 

 cHL is characterized by a low number of tumor cells, called Hodgkin-Reed Sternberg 

(HRS) cells which derive from germinal centre B-cells, surrounded by a heterogeneous 

inflammatory infiltrate (NAGASAKI; TOGASHI; SUGAWARA; ITAMI et al., 2020; 

POPPEMA; BHAN; REINHERZ; POSNER et al., 1982). HRS cells evade anti-tumor 

immune responses by shaping the TME and by inhibiting immune cells (CADER; 

SCHACKMANN; HU; WIENAND et al., 2018; HOLLANDER; ROSTGAARD; SMEDBY; 

MOLIN et al., 2018; LIU; SATTARZADEH; DIEPSTRA; VISSER et al., 2014). The highly 

abundant CD4+ T cells also play a critical role in the pathogenesis of cHL. CD4+ T cells 

are actively recruited by the HRS cells and can form so-called rosettes in a subset of 

cases (IELLEM; MARIANI; LANG; RECALDE et al., 2001; ISHIDA; ISHII; INAGAKI; 

YANO et al., 2006; NIENS; VISSER; NOLTE; VAN DER STEEGE et al., 2008; 

POPPEMA; BHAN; REINHERZ; POSNER et al., 1982; STUART; WILLIAMS; 

HABESHAW, 1977). In each rosette, the CD4+ T cells physically interact with an HRS 

cell, providing it with pro-survival signals and shielding it from cytotoxic CD8+ T cells and 

NK cells (LIU; SATTARZADEH; DIEPSTRA; VISSER et al., 2014). Recently, was shown 

that rosetting CD4+ T cells communicate with the HRS cell through formation of the 

immunological synapse, with a central role for HLA class II-T cell receptor (TCR) 

interactions (VELDMAN; VISSER; HUBERTS-KREGEL; MULLER et al., 2020). In 

addition, CD4+ T cells have been implicated as key players in the response to 

programmed cell death-1 (PD-1) immune checkpoint inhibition. Membranous HLA class 

II expression by HRS cells was predictive for complete remission and increased 

progression-free survival (ROEMER; REDD; CADER; PAK et al., 2018). Moreover, 

CD4+ TCR diversity significantly increased in the blood of patients who achieved 

complete remission after PD-1 inhibition (CADER; HU; GOH; WIENAND et al., 2020). 
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Thus, CD4+ T cells residing in proximity to HRS cells are emerging as crucial players in 

cHL pathogenesis and response to PD-1 blockade. 

 In recent years, studies on the characterization of the cHL TME have suggested that 

the CD4+ T cells are mainly CD4+ regulatory T cells (Tregs) and exhausted T-effector 

cells (AOKI; CHONG; TAKATA; MILNE et al., 2020; CADER; SCHACKMANN; HU; 

WIENAND et al., 2018). Exhausted T cells are characterized by increased expression of 

inhibitory cell surface receptors, reduced secretion of cytokines, reduced cytotoxicity and 

reduced proliferative potential. Indeed, expression of immune checkpoint molecules PD-

1, CTLA-4 and/or LAG-3 has been identified in variable proportions of cHL CD4+ T cells 

(AOKI; CHONG; TAKATA; MILNE et al., 2020; CAREY; GUSENLEITNER; LIPSCHITZ; 

ROEMER et al., 2017; PATEL; WEIRATHER; LIPSCHITZ; LAKO et al., 2019). However, 

detailed and unbiased characterization of CD4+ T cells in the cHL TME has remained 

challenging due to the difficulty of separating CD4+ T cells in proximity to HRS cells from 

more distant CD4+ T cells in lymph nodes (FROMM; KUSSICK; WOOD, 2006). The 

CD4+ T cells close to the HRS cells are known to express several activation-associated 

cell surface markers, including CD38 and CD69, but not CD26, while CD4+ T cells more 

distant from HRS cells do express CD26 (MA; VISSER; BLOKZIJL; HARMS et al., 2008; 

POPPEMA, 1989; 1996; TANAKA; CAMERINI; SEED; TORIMOTO et al., 1992). CD26, 

also known as dipeptidyl peptidase IV (DPP4), is a proteolytic enzyme that is upregulated 

after stimulation under normal physiological conditions and plays a role in co-stimulation 

(FLEISCHER, 1994; KLEMANN; WAGNER; STEPHAN; VON HÖRSTEN, 2016). 

However, CD4+CD26- T cells in cHL remain CD26 negative after activation and can also 

not or only moderately induce expression of T cell activation-associated cytokines, 

suggesting a functionally unresponsive or anergic state (MA; VISSER; BLOKZIJL; 

HARMS et al., 2008; POPPEMA, 1989; 1996; TANAKA; CAMERINI; SEED; TORIMOTO 

et al., 1992). Moreover, the CD4+CD26- T cell population expresses more Treg and Th17 

cell associated markers compared to CD4+ CD26+ T cells (MA; VISSER; BLOKZIJL; 

HARMS et al., 2008).  
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1.2 Diffuse large B-cell lymphoma  
 DLBCL, not otherwise specified (NOS) is a heterogeneous disease that accounts for 

40% of all B-NHL lymphomas (SWERDLOW; CAMPO; HARRIS, 2017). The outcome of 

patients with a good risk disease as determined by the clinical International Prognostic 

Index (IPI) score is excellent using chemoimmunotherapy regimens based on the 

combination of anthracyclines and anti-CD20 antibodies, i.e. R-CHOP (rituximab, 

cyclophosphamide, doxorubicin, vincristine and prednisone) (SEHN; BERRY; 

CHHANABHAI; FITZGERALD et al., 2007). However, in high risk patients nearly 40% of 

patients fail R-CHOP. These patients suffer from recurrent or progressive disease that is 

often fatal. DLBCL displays distinct clinical, histological and immunophenotypic features, 

with a highly variable short-term and long-term response to treatment making the 

identification and characterization of this B-NHL a major priority (SWERDLOW; CAMPO; 

HARRIS, 2017). 

 The past 20 years the biological basis of DLBCL has been extensively studied mainly 

by gene expression profiling (GEP), fluorescence in situ hybridization (FISH) and next 

generation sequencing (NGS) for identification of DLBCL biological subgroups which can 

guide the clinical procedure. The cell-of-origin (COO) concept was first published in 2000, 

dividing DLBCL based on GEP profiles in germinal center B-cell (GCB) type, activated B-

cell (ABC) type and unclassified cases (15%) (ALIZADEH; EISEN; DAVIS; MA et al., 

2000). The COO subgroups were shown to have distinct features indicating involvement 

of different oncogenic pathways. Patients with ABC-type DLBCL showed an inferior 

outcome in a retrospective setting (ALIZADEH; EISEN; DAVIS; MA et al., 2000). So far, 

clinical studies targeted towards specific oncogenetic characteristics of ABC-type DLBCL 

patients, e.g., combining the small molecules bortezomib, ibrutinib, and lenalidomide to 

R-CHOP have not been successful to improve outcome, which underpins that a simple 

dichotomy to define DLBCL does not sufficiently capture the oncogenetic complexity of 

this disease (LEONARD; KOLIBABA; REEVES; TULPULE et al., 2017; VITOLO; WITZIG; 

GASCOYNE; SCOTT et al., 2019; YOUNES; SEHN; JOHNSON; ZINZANI et al., 2019). 

Moreover, about 15% of DLBCL cases remain unclassified and these cases do not have 

other characteristic aberrations that can advise the treatment of these patients 

(ALIZADEH; EISEN; DAVIS; MA et al., 2000).  
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 In 2017 the World Health Organization (WHO) classification categorized high grade 

B-cell lymphomas with a MYC rearrangement in combination with a BCL2 and/or BCL6 

rearrangements as a separate entity, called high grade B cell lymphoma with a double hit 

(HGBCL DH) (SWERDLOW; CAMPO; HARRIS, 2017). Within this group of HGBCL DH 

lymphomas, especially those cases with a MYC-IG rearrangement have an inferior 

survival (ROSENWALD; BENS; ADVANI; BARRANS et al., 2019). Despite the use of 

more intensive chemotherapy and small molecules within this subgroup no improvement 

in outcome has been achieved in randomized clinical trials (CASAN; BARRACLOUGH; 

SHORTT; HAWKES, 2019; CHAMULEAU; BURGGRAAFF; NIJLAND; BAKUNINA et al., 

2019).  

 Traditionally, DLBCL had been recognized as less dependent on its 

microenvironment as compared to other lymphomas, in agreement with a near-complete 

disorganization and/or displacement of normal lymphoid architecture. In addition, given 

that tumors with very distinct genetic backgrounds share similar TME composition, this 

should not form the sole basis of a comprehensive taxonomy. However, there is 

increasing evidence that an immunologic niche and cross-talk with various immune cell 

types is critical for disease development and adds another layer of complexity to genetic 

and molecular subtypes. In particular, it has been increasingly recognized that the 

disrupted cross-talk between lymphoma cells and the microenvironment contributes to 

the ability of lymphoma cells to escape the immune surveillance of the host in DLBCL 

(SCOTT; GASCOYNE, 2014). 

 From 2010 onward, the focus has been in deciphering the mutational landscape of 

DLBCL (CHAPUY; STEWART; DUNFORD; KIM et al., 2018; LACY; BARRANS; BEER; 

PAINTER et al., 2020; REDDY; ZHANG; DAVIS; MOFFITT et al., 2017; SCHMITZ; 

WRIGHT; HUANG; JOHNSON et al., 2018). The established mutational profiles show 

overlapping features and are at least partially correlated to COO, but not to MYC 

rearrangements (CHAPUY; STEWART; DUNFORD; KIM et al., 2018). Identifying genetic 

abnormalities that drive the disease in a group of patients can help identify the best drug 

for treatment. However, due to the diversity of DLBCL-causing drivers and intra-individual 

tumor heterogeneity multiple drugs might be needed to effectively treat patients. 

Identifying homogeneous subgroups may help to more accurately establish optimal 
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treatment regimens. Moreover, identification of main drivers of lymphomagenesis, no 

matter which lymphoma-initiating event caused the lymphoma, may allow development 

of novel targeted treatment strategies. 

 In parallel several GEP studies have identified biological subgroups that further 

subclassify DLBCL (CAREY; GUSENLEITNER; CHAPUY; KOVACH et al., 2015; CHAN; 

TELENIUS; HEALY; BEN-NERIAH et al., 2015; CIAVARELLA; VEGLIANTE; FABBRI; 

DE SUMMA et al., 2018; ENNISHI; JIANG; BOYLE; COLLINGE et al., 2019; KEANE; 

VARI; HERTZBERG; CAO et al., 2015; LENZ; WRIGHT; DAVE; XIAO et al., 2008; LI; 

KIM; RAI; BOLLA et al., 2009; MASQUÉ-SOLER; SZCZEPANOWSKI; KOHLER; SPANG 

et al., 2013; MONTI; SAVAGE; KUTOK; FEUERHAKE et al., 2005; ROSENWALD; 

BENS; ADVANI; BARRANS et al., 2019; SCOTT; WRIGHT; WILLIAMS; LIH et al., 2014; 

SHIPP; ROSS; TAMAYO; WENG et al., 2002; STAIGER; ALTENBUCHINGER; 

ZIEPERT; KOHLER et al., 2020). These studies have generated profiles related to tumor 

cell characteristics including MYC activity and composition of the TME. However, the 

biological relevance and clinical impact of these gene signatures have not resulted in 

incorporation in clinical trials, probably due to the lack of validation cohorts.  
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2 AIM 

2.1 Overall aim 
 The overall aim of this project is to define gene expression signatures to characterize 

molecular B cell lymphoma subgroups. 

 

2.2 Specifics aims 
A- Characterize gene expression profiles of rosetting T cells in classical HL 

B- Verify the reproducibility of published gene expression signatures for DLBCL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

23 

3 CHARACTERIZE GENE EXPRESSION PROFILES OF ROSETTING T CELLS IN 
CLASSICAL HL 
 This specific aim was to further characterize the CD4+CD26- T cells in the TME that 

are in the direct vicinity of the malignant HRS cells. We compared CD4+CD26- to 

CD4+CD26 + T cells sorted from cHL lymph node derived cell suspensions and 

characterized their gene expression profiles. We established differentially expressed 

gene signatures, most likely CD4+ T cell subset lineages. 

 

3.1 Materials and methods 

3.1.1 Patients, tissue, and cell suspensions 
 For bulk RNA-seq, cryopreserved cell suspensions derived from lymph nodes of 19 

cHL patients were retrieved from the cell bank of the department of Pathology and Medical 

Biology, University Medical Center Groningen, Groningen, The Netherlands. Patient 

characteristics are summarized in Table 1.  

 

Table 1. Patient Characteristics 

Characteristic Number of samples (%) 

Median age (range) 38 (13-80) 

Female 10 (53) 

Histology 
 

NS 14 (74) 

MC 2 (11) 

LR 2 (11) 

NOS 1 (5) 

EBV positive 7 (37) 

Relapse 4 (21) 

  

 Patients were selected based on membranous HLA class II positivity (>90%) on the 

HRS cells as determined by immunohistochemistry for HLA-DP, DQ, DR (clone: CR3/43; 

1:200; Dako; Santa Clara, CA, USA) on corresponding formalin fixed paraffin embedded 
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(FFPE) tissue sections. Material was used in accordance with the ethical principles of the 

Declaration of Helsinki. The medical ethical review board of the UMCG approved the 

protocol under #RR202100080. 

 

3.1.2 Cell sorting 
 All 19 cell suspensions were stained for CD4 (clone: Edu-2) and CD26 (clone: 2A6) 

as described previously (MA; VISSER; BLOKZIJL; HARMS et al., 2008). CD4+CD26- and 

CD4+CD26+ T cells were sorted using a MoFlo sorter (BD Biosciences, CA, USA) with a 

70 µm nozzle. Purity of sorted populations was checked and was at least 94% or higher 

for all 38 sorted populations. 

 

3.1.3 RNA isolation and bulk RNA sequencing 
 Total RNA was extracted from the 38 populations using a miRNeasy Mini or Micro kit 

(Qiagen; Hilden, Germany) according to manufacturer’s instructions. The concentration 

and quality of total RNA was determined using a Fragment Analyzer and all samples had 

an RNA integrity number of 8.5 or above. Three of the 38 populations, all CD4+CD26+, 

were excluded from RNA-seq due to an insufficient amount of RNA (<10 ng total). RNA 

libraries were made after depletion of rRNA (rRNA depletion kit, NEB #E6310) using the 

NEBNext Ultra II Directional RNA library prep kit for Illumina at GenomeScan (Leiden, 

The Netherlands) according to manufacturer’s instructions (NEB #E7760S/L). Paired-end 

sequencing with a read length of 151 nucleotides was performed on an Illumina 

NovaSeq6000 sequencer (lllumina; CA, USA) aiming at ~25 million paired reads per 

sample. Image analysis, base calling, and quality check was performed with the Illumina 

data analysis pipeline RTA3.4.4 and Bcl2fastq v2.20. 

 

3.1.4 RNA sequencing analysis 
 RNA-seq reads were mapped to the human reference genome GRCh37 using Hisat2 

(KIM; PAGGI; PARK; BENNETT et al., 2019). Reads were counted into ensembl v75 
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genes with Htseq-count. One patient was excluded from further analysis due to a low 

number of aligned unique reads in both sorted populations (Table 2).  

 

Table 2. Overview of the results obtained for HLA class II positive cHL cases used to sort CD4+ T cells for 

bulk RNA-seq 

 

 

 Analysis and visualization of RNA-seq data were performed in the R statistical 

environment (version 4.0.2). Normalization and differential expression analysis (DEA) 

was performed by R/Bioconductor package DESeq2 (LOVE; HUBER; ANDERS, 2014). 

Genes were considered differentially expressed when the adjusted p-value ≤0.05 and 

−1< log2foldchange>1. Genes of interest were selected based on the following criteria: 

(i) protein coding gene; (ii) described presence in T cells, according to RNA levels in the 

Schmiedel dataset (see: https://dice-database.org) (SCHMIEDEL; SINGH; MADRIGAL; 

VALDOVINO-GONZALEZ et al., 2018), and function, as found in PubMed searches; (iii) 

availability of antibodies; and (iv) moderate-to-high expression levels. Gene set variation 

analysis (GSVA) was utilized to measure enrichment for specific CD4+ T cell subsets 

within each sorted population with the R/Bioconductor package GSVA.26 CD4 subset-

specific gene sets were retrieved from a previous study (SCHMIEDEL; SINGH; 

MADRIGAL; VALDOVINO-GONZALEZ et al.). DESeq2ʹs median of ratios, Regularized 

log transformation (rlog) and Variance Stabilizing Transformed (vst) values were used for 

    
Flow cytometry %>=Q30 Total number of raw reads Total number of reads 

aligned 
Number of unique reads 

aligned 
Case Histolygy EBV HLA-

II 
CD4+ CD4+CD26- CD4+CD26+ CD4+CD26- CD4+CD26+ CD4+CD26- CD4+CD26+ CD4+CD26- CD4+CD26+ CD4+CD26- CD4+CD26+ 

cHL1 NS Neg Pos 48 78 22 90.1 89.9 60114052 53577190 59440241 52916065 51325667 44493053 

cHL2 NS Pos Pos 16 74 26* 90.4 NA 75417874 NA 74007623 NA 40964672 NA 

cHL3 NS Pos Pos 16 76 24 90.8 91.1 82591834 98128764 81570076 96276479 53467612 59908171 

cHL4 NS Neg Pos 23 69 31 90.1 90.4 53877334 67208522 53171174 66376872 43174986 45573445 

cHL5 LR Pos Pos 38 81 19 89.8 91.4 90873584 71404732 89541316 70642648 68596868 58490586 

cHL6 LR Neg Pos 43 70 30 89.5 89.5 74471994 60434830 73429894 59612108 57962935 43839588 

cHL7  NS Neg Pos 35 43 57 90.6 90.3 63839052 83284486 63021469 82416279 51117425 65629191 

cHL8 NS Pos Pos 39 36 64 90.3 90.1 54983662 61844556 54368627 61074716 47295726 47977256 

cHL9 NS Neg Pos 21 67 33* 89.8 NA 59956912 NA 59169847 NA 40884590 NA 

cHL10 NOS Pos Pos 45 58 42 90.4 90.2 77451216 55415780 76589818 54723834 62644629 43935730 

cHL11 NS Pos Pos 47 82 18 90.4 91.0 63283726 64524452 62604698 63808736 51205628 53235762 

cHL12 NS Neg Pos 21 68 32 89.7 89.5 59023568 56166156 58362209 55369851 48843500 45680654 

cHL13 NS Pos Pos 60 70 30 89.4 89.8 50705684 63912686 50091200 63027639 43209591 49517575 

cHL14 NS Neg Pos 39 88 12 90.9 90.4 70762148 50928816 70001228 50246631 56763336 27561527 

cHL15 MC Neg Pos 59 62 38 90.1 90.5 64925868 90989224 63990742 89814111 49729551 70758726 

cHL16 MC Neg Pos 91 59 41 90.0 89.6 51859360 59883880 50873454 59222310 36411849 51079236 

cHL17 NS Neg Pos 80 89 11 90.3 89.9 55957278 55399298 55337313 54722710 47204985 39689062 

cHL18 NS Neg Pos 39 92 8* 91.0 NA 95744502 NA 94588428 NA 65998429 NA 

cHL19** NS Neg Pos 29 76 24 89.4 88.3 51645708 50626264 50004908 49386087 8693792 13862008 
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data visualization, clustering and GSVA, respectively. Bulk RNA-seq BAM files are 

deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under accession 

number PRJEB46009. 

  

3.2 Results 

3.2.1 Sorting and RNA-sequencing of CD4+ T cell subsets in cHL 
 CD4+ T cells of 19 HLA class II positive cHL cell suspensions were sorted based on 

membranous CD26 expression. The mean percentage of CD4+CD26- T cells was 70% 

(range 36–92%) (Table 2). In 14/19 cases, the percentage of CD4+CD26- T cells was at 

least 2-fold higher compared to the percentage of CD4+CD26+ T cells, showing that 

CD4+CD26- T cells were usually dominant in the cHL TME. RNA was isolated from the 

sorted CD4+CD26- and CD4+CD26+ T cells, which was used for RNA-seq. The total 

number of aligned RNA-seq reads ranged from 49 to 96 × 106 (mean: 65 × 106) (Table 

2). The fraction of mapped reads marked as a duplicate ranged from 12.8– to 2.4% 

(mean: 25.7%). Both samples of one patient were excluded from further analysis due to 

a low number of aligned unique reads. The number of unique reads of the samples 

included in the subsequent analyses ranged from 28–71 × 106 (mean: 50 × 106). 

Subsequent analyses based on RNA-seq compared CD4+CD26- and CD4+CD26+ T 

cells using GSVA to identify similarities with specific CD4+ T cell subset lineages and 

DEA to identify distinct gene expression profiles. 

 

3.2.2 CD4+CD26- T cells in cHL share characteristics with antigen experienced 
CD4+ T cell subsets 
 The GSVA scores for eight distinct CD4+ T cell subset gene signatures described by 

Schmiedel et al. were determined for each sorted T cell subset. CD4+CD26- T cells were 

mainly enriched for memory Treg and T follicular helper (Tfh) gene signatures in 

comparison with CD4+CD26+ T cells, and also showed some overlap with Th17 cells 

(Figure 1).  
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Figure 1. Supervised hierarchical clustering of GSVA-scores for CD4+ T cell subset gene signatures. Heatmap of the 

supervised hierarchical clustering of GSVA-scores for eight CD4+ T cell subset gene sets in 18 CD4+CD26- T cell 
populations and 15 CD4+CD26+ T cell populations. Supervised clustering is based on CD4 subset. NS = Nodular 

Sclerosis; MC = Mixed Cellularity; LR = Lymphocyte Rich; NOS = Not Otherwise Specified. 

 

 CD4+CD26+ T cells were mainly enriched for naïve CD4+ T cells and Th1/17 cells, 

and to a lesser extent for naïve Treg and Th2 cells, indicating that the CD4+CD26- T cells 

had a memory signature, while CD4+CD26+ T cells had a naïve signature. This indicated 

that CD4+CD26- T cells are more antigen experienced than CD4+CD26+ T cells. 

 

3.2.3 The CD4+CD26- T cells have a distinct gene expression signature 
 Principal component analysis (PCA) considering the whole-gene expression profile 

revealed that samples separated based on CD26 expression status along PC1, the axis 

representing the highest variance in the data (Figure 2).  
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Figure 2. Principal Component Considering expression downstream data processing. First two components of the PCA. 

Dots represent individual samples, colors represent the different CD4+ T cell subsets. 

 

 This already suggested that CD4+CD26- and CD4+CD26+ T cells have distinct gene 

signatures. Comparison of the RNA-seq data of CD4+CD26- T cells to those of the 

CD4+CD26+ T cells resulted in identification of 567 differentially expressed genes 

(DEGs) (adjusted p-value <0.05 and −1< log2foldchange>1) (Figure 4). Of the 567 genes, 

100 were upregulated and 467 downregulated in CD4+CD26- T cells. 
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Figure 3. Volcano plot for CD4+CD26- versus CD4+CD26+ . – log10(adjusted p-values) are plotted against 

log2(foldchange). Red dots are indicating upregulated genes, blue dots are indicating dowregulated genes. Grey dashed 

lines indicate an adjusted p-value of <0.05 and a log2(foldchange) greater than 1 in both directions. 

 

 Of these, 100 genes were significantly upregulated and 467 genes were significantly 

downregulated in CD4+CD26- T cells compared to CD4+CD26+ T cells. Unsupervised 

hierarchical clustering of the 567 DEGs revealed two clusters with a clear separation 

between CD4+CD26- and CD4+CD26+ T cells (Figure 4). Within each T cell subset, no 

further clustering was observed for histological subtype or EBV status. The top DEG was 

DPP4 (CD26; log2foldchange = 5.83; padj = 5.45x10−45) consistent with our sorting 

strategy.  
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Figure 4. Heatmap showing the unsupervised hierarchical clustering of 567 genes differentially expressed between 

CD4+CD26- and CD4+CD26+ T cells. Rows are genes, columns are samples. NS = Nodular Sclerosis; MC = Mixed 

Cellularity; LR = Lymphocyte Rich; NOS = Not Otherwise Specified. 

 

 As we were interested in characterizing the CD4+CD26- T cells residing in proximity 

to the HRS cells we focused on the 100 genes significantly upregulated in this T cell 

population. Thus, CD4+CD26- T cells have increased expression of genes encoding for 

exhaustion associated transcription factors TOX and TOX2, transcription factor nuclear 
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factor I A (NFIA), immune checkpoints PD-1 and CD200, chemokine CXCL13 and actin-

binding filament protein cortactin (CTTN). 

 

3.3 Discussion 
 Using bulk RNA-seq approach, we have characterized the CD4+CD26- T cells in the 

cHL TME. Our results show that these CD4+CD26- T cells are antigen experience. 

Markers that were most prominently enriched in CD4+CD26- compared to CD4+CD26+ T 

cells and were expressed in the majority of rosetting CD4+ T cells were thymocyte 

selection-associated high-mobility group box (TOX) and TOX2, which are exhaustion 

associated transcription factors. 

 The finding that CD4+CD26- T cells in the TME of cHL displays an antigen 

experienced gene expression profile fits well with cHL associated T cell types that have 

been described in multiple previous reports (AOKI; CHONG; TAKATA; MILNE et al., 

2020; CADER; SCHACKMANN; HU; WIENAND et al., 2018; FERRARINI; RIGO; ZAMÒ; 

VINANTE, 2019; MA; VISSER; BLOKZIJL; HARMS et al., 2008). Our group has recently 

established that initial interaction between T cells and HRS cells is fast and involved a 

large proportion of T cells (VELDMAN; VISSER; HUBERTS-KREGEL; MULLER et al., 

2020), which is consistent with antigen experienced T cells recognizing a broad spectrum 

of HRS cell derived antigens. These interactions occur by means of the immunological 

synapse, resulting in formation of T cell rosettes and low-level IL-2 production, suggesting 

that these T cells get activated, but only to some extent (VELDMAN; VISSER; HUBERTS-

KREGEL; MULLER et al., 2020). This low-level activation state is consistent with 

expression of early activation markers CD38 and CD69, while CD25 and CD26 are 

missing (MA; VISSER; BLOKZIJL; HARMS et al., 2008; POPPEMA, 1996; TANAKA; 

CAMERINI; SEED; TORIMOTO et al., 1992). 

 Our gene expression data suggest that these antigen experienced T cells consist of 

memory Treg cells and/or Tfh cells. However, further evidence for a contribution of Tfh 

cells in the cHL TME is lacking in literature and characteristic markers like BCL-6 and 

CXCR5 (ROIDER; SEUFERT; UVAROVSKII; FRAUHAMMER et al., 2020) are not 

present in our differentially expressed gene set. Memory Treg cells have commonly been 

described and are actively recruited by HRS cells that attract them by secreting high 
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amounts of chemokines CCL17/TARC and CCL22/MDC (IELLEM; MARIANI; LANG; 

RECALDE et al., 2001; ISHIDA; ISHII; INAGAKI; YANO et al., 2006; NIENS; VISSER; 

NOLTE; VAN DER STEEGE et al., 2008). Thus, memory Treg constitute a major source 

of CD4+ T cells in the cHL TME. 

 Besides the already known characteristic feature of being CD26-, we identified two 

additional proteins enriched in CD4+ T cells in the TME. These proteins, i.e. TOX and 

TOX2, were also frequently expressed by rosetting T cells in cHL. The TOX protein family 

consists of four members that all function as transcription factors: TOX (also known as 

TOX1), TOX2, TOX3 and TOX4 (LIANG; HUANG; ZHAO; CHEN et al., 2021). TOX and/or 

TOX2 are involved in many early lymphoid developmental processes, including positive 

selection in thymocytes, early development of CD4+ T and NK cells, development of 

innate lymphoid cells and lymph node organogenesis (ALIAHMAD; KAYE, 2008; VONG; 

LEUNG; HOUSTON; LI et al., 2014; YU; LI, 2015). Corresponding with our DEG, TOX 

can induce the expression of the Tfh defining chemokine CXCL13, and immune 

checkpoint molecule PD-1, which is a well-established marker of exhaustion (WANG; HE; 

SHEN; XIA et al., 2019; XU; ZHAO; WANG; FENG et al., 2019; YAO; SUN; LACEY; JI et 

al., 2019)42. Induction of exhaustion by TOX and TOX2 is the inability of CD4+ CD26- T 

cells to upregulate production of several cytokines upon in vitro stimulation (MA; VISSER; 

BLOKZIJL; HARMS et al., 2008). It is well known that TOX and TOX2 are both induced 

by chronic antigen stimulation of the TCR (ALFEI; KANEV; HOFMANN; WU et al., 2019; 

SCOTT; DÜNDAR; ZUMBO; CHANDRAN et al., 2019; SEO; CHEN; GONZÁLEZ-

AVALOS; SAMANIEGO-CASTRUITA et al. ; YAO; SUN; LACEY; JI et al., 2019). It would 

be interesting to study if this is also the case in HL, given the importance of HLA class II-

TCR interactions in HL rosetting (VELDMAN; VISSER; HUBERTS-KREGEL; MULLER et 

al., 2020).  

 Increased TOX levels in T cells are very prominent in our study in cHL and have also 

been described in solid malignancies and B cell non-Hodgkin lymphoma (HUANG; 

LIANG; ZHAO; DENG et al., 2022; KIM; PARK; PARK; KIM et al., 2020; MAESTRE; 

GARCÍA-GARCÍA; JIMÉNEZ; REYES-GARCÍA et al., 2020; WANG; HE; SHEN; XIA et 

al., 2019). Interestingly, several lines of evidence support a role of TOX and TOX2 in 

CD8+ T cells in sensitivity to immune checkpoint blockade. Knockdown of TOX in CD8+ T 
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cells in a patient-derived xenograft mouse model of hepatocellular cancer decreased 

tumor growth, alleviated the CD8+ T cell exhaustion, increased CD8+ T cell infiltration 

and improved responses to PD-1 blockade therapy (WANG; HE; SHEN; XIA et al., 2019). 

In addition, CD8+ chimeric antigen receptor (CAR) T cells with a combined deficiency in 

TOX and TOX2 were more active and promoted profound tumor regression and 

prolonged survival in a melanoma mouse model (SEO; CHEN; GONZÁLEZ-AVALOS; 

SAMANIEGO-CASTRUITA et al.). If these results in CD8+ T cells can be extrapolated to 

CD4+ T cells in cHL several important implications arise. First, cHL has a very high 

response rate to PD-1 blockade with objective response rates as high as 87% in the 

relapsed and refractory setting with also excellent efficacy in first-line treatment combined 

with concomitant or sequential de-intensified chemotherapy regimens in ongoing trials 

(BRÖCKELMANN; GOERGEN; KELLER; MEISSNER et al., 2020; MERRYMAN; 

ARMAND; WRIGHT; RODIG, 2017; RAMCHANDREN; DOMINGO-DOMÈNECH; 

RUEDA; TRNĚNÝ et al., 2019; VOLTIN; METTLER; VAN HEEK; GOERGEN et al., 

2021). Reversal of exhaustion in CD4+ T cells is likely responsible for these very high 

response rates because of their high abundance, their importance to survival of HRS cells 

and their predictive role in response to PD-1 blockade (CADER; HU; GOH; WIENAND et 

al., 2020; LIU; SATTARZADEH; DIEPSTRA; VISSER et al., 2014; ROEMER; REDD; 

CADER; PAK et al., 2018; VELDMAN; VISSER; HUBERTS-KREGEL; MULLER et al., 

2020). Second, the extent of exhaustion in CD4+ T cells is expected to be predictive for 

immune checkpoint blockade outcome and it would be interesting to study TOX and TOX2 

expression in this setting. Finally, targeting TOX and/or TOX2 with small molecule 

inhibitors (AGRAWAL; SU; HUANG; HSING et al., 2019), might revert T cell exhaustion, 

thereby being an attractive way to further improve immunotherapy results in cHL. 
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4 VERIFY THE REPRODUCIBILITY OF PUBLISHED GENE EXPRESSION 
SIGNATURES FOR DLBCL. 
 This specific aim was to reproduce four biology driven gene expression signatures in 

a large cohort of clinically well annotated DLBCL NOS/HGBCL samples from the 

HOVON-84 trial using the NanoString platform, which permits robust amplification free 

GEP analysis of RNA from formalin-fixed paraffin-embedded tissue with minimal 

background signal (VELDMAN-JONES; BRANT; ROONEY; GEH et al.). Selection of the 

four gene expression signatures was based on the biological features presenting COO, 

MYC activity, oxidative phosphorylation (OxPhos), B-cell receptor (BCR) signaling, and 

the TME as well as the potential reproducibility of the classifiers (FFPE based, number of 

genes, and availability of algorithms) (CAREY; GUSENLEITNER; CHAPUY; KOVACH et 

al., 2015; KEANE; VARI; HERTZBERG; CAO et al., 2015; MONTI; SAVAGE; KUTOK; 

FEUERHAKE et al., 2005; SCOTT; WRIGHT; WILLIAMS; LIH et al., 2014). In addition, 

we studied whether the reproducible gene expression profiles are independent of each 

other and whether their combined use can indicate distinct DLBCL NOS/HGBCL 

subgroups. Finally, we tested potential associations with clinical features in a well-defined 

population of patients with DLBCL NOS/HGBCL.  

 

4.1 Materials and Methods  

4.1.1 Patient Cohort  
 HOVON-84 is a multicentric, randomized phase III trial, with no benefit of the 

intensification of rituximab combined with 2-weekly CHOP chemotherapy in patients with 

newly diagnosed DLBCL. At the time of the study HGBCL DH was not considered a 

distinct entity and as such was included in the trial (LUGTENBURG; BROWN; HOLT; 

D'AMORE et al., 2020). The study was conducted in accordance with the ethical 

guidelines mandated by the Declaration of Helsinki and approved by all relevant 

institutional review boards or ethical committees. Written informed consent, including use 

of biopsy material for research purposes, was obtained from all patients. The HOVON-84 

trial included 574 patients and good quality NanoString (Seattle, WA, USA) data could be 

generated for 175 patients. This cohort forms the core of the present study. In the other 
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399/574 patients, no representative formalin-fixed paraffin embedded (FFPE) biopsy 

material was available for this study (blocks not available for study, blocks exhausted, or 

insufficient quality) or NanoString data were of insufficient quality. Clinical characteristics 

of the 175 HOVON-84 patients studied in this report as well as the characteristics of the 

total cohort and the original GEP signatures cohorts are listed in Table 3.  

 

Table 3. Overview of characteristics of the HOVON-84 and previously published cohorts. 

Characteristic 
HOVON-84 
(all patients) 

HOVON-84 
(current 
study) 

Scott et al 
2014  

Monti et al 
2005  

Carey et al 
2015  

Keane et al  
2015  

Patients n 574 175 119 176 70 158 

Prospective  Yes Yes No Yes No Yes 

Number of centers >10 >10 10 1 2 4 

Females n (%) 275 (48) 89 (51) 48 (40) 84 (48) 32 (47) – 2 NA 66 (42) 

Age≥60 years n (%) 396 (69) 116 (66)  112 (64) 38 (56) – 2 NA .. 

Stage II n (%) 114 (20) 40 (23) 53 (46) 53 (32) .. .. 

Stage III/IV n (%) 460 (80) 135 (77) 
63 (54) – 3 

NA 

115 (68) – 8 

NA 
.. .. 

Extranodal sites >1 n 

(%) 
.. .. 

13 (12) – 11 

NA 
21 (12) – 2 NA .. .. 

LDH elevated n (%) 379 (66) 104 (59) 
53 (55) – 22 

NA 

81 (56) – 31 

NA 
.. .. 

IPI good risk n (%) 246 (43)aa 84 (48)aa 71 (66) 82 (57) .. .. 

IPI poor risk n (%) 328 (57)aa 91 (52)aa 
37 (34) – 11 

NA 

62 (43) – 32 

NA 
.. 64 (42) – 6 NA 

Treatment R-CHOP R-CHOP .. CHOP-based R-CHOP R-CHOP 

OS events n (%) 164 (29) 37 (21)  ..  76 (43) .. 36 (23) 

COO ABC n (%) 151 (38)a 61 (34)* 49 (41)* 24 (18)b 26 (39)a 54 (34)b 
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COO GCB n (%) 
242 (62)a – 181 

NA 
95 (53)* 48 (40)* 

106 (82)b – 46 

NA 

40 (61)a – 4 

NA  
104 (66)b 

Percentages were calculated under available data. The number of samples with unavailable data are 

described with NA. aa Age adjusted IPI. * COO based on Lymph2Cx algorithm; a COO based on Hans 

algorithm; b COO based on Bayesian classifier of 19 genes as previously described by Wright et al.; The 

treatment is randomized between R-CHOP and RR-CHOP for HOVON-84 cohort with no significant 

difference between the two groups. NA, not available. 

 

 No statistically significant differences were observed between the cases included in 

the present study and the entire HOVON-84 cohort, making the samples used in this 

study a representation of the entire cohort. (Gender p-value = 0.5; Age p-value = 0.5; 

Stage p-value = 0.3; LDH levels p-value = 0.1; aaIPI p-value = 0.2; OS p-value = 0.06; 

COO p-value = 0.9.)  

 

4.1.2 Immunohistochemistry  
 Immunohistochemistry (IHC) was performed as part of previous studies by the 

Lunenburg Lymphoma Biomarker Consortium (North Bethesda, MD, USA) 

(ROSENWALD; BENS; ADVANI; BARRANS et al., 2019; SALLES; DE JONG; XIE; 

ROSENWALD et al., 2011) and available for 167 DLBCL patients for CD10, MUM1, and 

BCL6. In addition, BCL2 and MYC IHC was performed for 161 DLBCL patients using 

routine diagnostic procedures on tissue microarrays. Scoring of CD10, MUM1, and BCL6 

staining and subsequent classification as GCB or non-GCB was performed according to 

the Hans algorithm (HANS; WEISENBURGER; GREINER; GASCOYNE et al., 2004). 

MYC IHC was scored as the percentage of positive tumor cells as estimated by an 

experienced hematopathologist in 10% increments. Lymphomas were defined as double 

expressors (DE) based on MYC positivity in ≥40% and BCL2 positivity in ≥50% of the 

tumor cells (HU; XU-MONETTE; TZANKOV; GREEN et al., 2013). For correlation to the 

MYC gene signature as published by Carey et al., we used a cutoff of ≥50% positive 

tumor cells for MYC-High and <50% for MYC-Low consistent with the cutoff as defined in 

this paper. For MHC-II (HLA-II), IHC was performed on tissue microarrays and cores were 
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scored for intensity of staining. No or weak staining was classified as MHC-II low and all 

other cases were classified as MHC-II high (NIJLAND; VEENSTRA; VISSER; XU et al.). 

 

4.1.3 Detection of Chromosomal Translocations in BCL2, BCL6, and MYC 
 Fluorescence in situ hybridization (FISH) for MYC, BCL2, and BCL6 was performed 

on 152, 148, and 153 cases, respectively, with break apart probes from Vysis LSI, Abbott 

(Chicago, IL, USA). Scoring was performed as described previously (ROSENWALD; 

BENS; ADVANI; BARRANS et al., 2019; SALLES; DE JONG; XIE; ROSENWALD et al., 

2011). In addition to the FISH, targeted NGS was performed for 140 samples to identify 

structural variants (SV) in MYC, BCL2, and BCL6 using the protocols as previously 

described (MENDEVILLE; ROEMER; VAN DEN HOUT; LOS-DE VRIES et al., 2019). 

The SV information was combined with the FISH results to classify cases as HGBCL DH, 

regarding all cases with a positive result for either FISH (8) or NGS (7) or both (125) as 

positive. 

 

4.1.4 Gene Expression Profiling 
 For a total of 175 samples, we were able to obtain sufficient good quality RNA with 

FFPE RNeasy Kit (Qiagen, Hilden, Germany) for analysis on the NanoString Platform. 

The core set of probes for 117 genes (Table 4) was hybridized to 100–200 ng of RNA for 

16 h at 65 ◦C. Samples were loaded on an nCounter SPRINT Cartridge and processed 

on the nCounter SPRINT™ Profiler. The expression data were analyzed using 

Nanostring’s nSolver analysis software (version 3.0). Registered counts passing the 

standard QC parameters were used for further analysis. The normalized data were scaled 

and transformed to log2. 

 

Table 4. List of genes used to classify the four GEP using quantification by the Nanostring platform. 

GeneID Signature GeneID Signature GeneID Signature 
TNFRSF13B COO PRMT1 MYC activity DDX11 Consensus clustering 

LIMD1 COO LDHB MYC activity UBA1 Consensus clustering 

IRF4 COO TRAP1 MYC activity PLCG2 Consensus clustering 
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CREB3L2 COO AHCY MYC activity CD22 Consensus clustering 

PIM2 COO LRP8 MYC activity SIPA1L3 Consensus clustering 

CYB5R2 COO EBNA1BP2 MYC activity CD79A Consensus clustering 

RAB29 COO CDK4 MYC activity CD37 Consensus clustering 
CCDC50 COO ETFA MYC activity PMS2P9 Consensus clustering 

R3HDM1 COO UCK2 MYC activity PAX5 Consensus clustering 

WDR55 COO CTPS1 MYC activity PMS2P2 Consensus clustering 

ISY1 COO GOT2 MYC activity EZR Consensus clustering 

UBXN4 COO TMEM97 MYC activity MAP4K1 Consensus clustering 

TRIM56 COO RRS1 MYC activity INPP5D Consensus clustering 

MME COO DDX21 MYC activity LAMP1 Consensus clustering 

SERPINA9 COO PHB2 MYC activity TNFRSF1A Consensus clustering 
ASB13 COO WDR3 MYC activity SELPLG Consensus clustering 

MAML3 COO KIAA0101 MYC activity CTSB Consensus clustering 

ITPKB COO FASN MYC activity IFITM1 Consensus clustering 

MYBL1 COO SAMD13 MYC activity GATA3 Consensus clustering 

S1PR2 COO CDC25A MYC activity MAF Consensus clustering 

MYC MYC activity LYAR MYC activity SLAMF8 Consensus clustering 

SRM MYC activity SLC12A8 MYC activity SERPING1 Consensus clustering 

AKAP1 MYC activity P2RY12 MYC activity TCIRG1 Consensus clustering 
NME1 MYC activity TMEM119 MYC activity IL6R Consensus clustering 

FBL MYC activity SHISA8 MYC activity CD2 Consensus clustering 

RFC3 MYC activity SLAMF1 MYC activity TNFSF13 Consensus clustering 

TCL1A MYC activity COX7A2L Consensus clustering CD3E Consensus clustering 

POLD2 MYC activity PSMA6 Consensus clustering DAB2 Consensus clustering 

RANBP1 MYC activity RPLP0 Consensus clustering CD6 Consensus clustering 

GEMIN4 MYC activity MRPL3 Consensus clustering IRF1 Consensus clustering 
MRPS34 MYC activity NDUFB1 Consensus clustering MAFB Consensus clustering 

DHX33 MYC activity ATRAID Consensus clustering ITGB2 Consensus clustering 

PPRC1 MYC activity PSMA5 Consensus clustering CXCL12 Consensus clustering 

PPAT MYC activity PSMA2 Consensus clustering GRN Consensus clustering 

FAM216A MYC activity SOD1 Consensus clustering CD4 Immune ratio 

PAICS MYC activity MRPL15 Consensus clustering CD8 Immune ratio 

UCHL3 MYC activity DBI Consensus clustering CD163 Immune ratio 

NOLC1 MYC activity XRCC5 Consensus clustering CD68 Immune ratio 
RUBCNL MYC activity MKI67 Consensus clustering PDL1 Immune ratio 
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4.1.5 COO Classifier 
 For COO classification, raw counts obtained by NanoString gene expression analysis 

for all genes of the algorithm were uploaded at the Lymphoma/Leukemia Molecular 

Profiling Project (LLMPP) website 

(https://llmpp.nih.gov/LSO/LYMPHCX/lymphcx_predict.cgi, accessed on 12 September 

2017) to run the Lymph2Cx classifier (SCOTT; WRIGHT; WILLIAMS; LIH et al., 2014).  

 

4.1.6 MYC Activity Score 
 To reproduce the MYC activity score we used the selection and bioinformatics 

strategy as reported by Carey et al., since the algorithm is not publicly available. In brief, 

we used their original training cohort as training set of the elastic net classifier. This 

training set included 14 cases scored as MYC-low based on positive staining in <40% of 

the tumor cells and 16 cases as MYC-high based on positive staining in >60% of the 

tumor cells. The classifier was subsequently applied to the HOVON-84 (n = 175) test set. 

The training dataset was normalized with the R package NanoStringNorm (WAGGOTT; 

CHU K FAU - YIN; YIN S FAU - WOUTERS; WOUTERS BG FAU - LIU et al.), considering 

the sum of the expression values to estimate the technical assay variation, the mean to 

estimate background count levels, and the sum of the six housekeeping genes to 

normalize for the RNA sample content. In addition, the data were log2 transformed. The 

alfa and gamma parameters were set at 0.1 and the classification accuracy was assessed 

with the Leave One Out Cross Validation (LOOCV), as in the original publication. A cutoff 

of 0.5 was used to stratify the tumors with high and low MYC activity score. The 

importance of each gene was calculated based on combinations of the absolute values 

of the weights as reported by (GEVREY; DIMOPOULOS; LEK, 2003). All the analyses 

were conducted with the R package caret (KUHN, 2008). The spearman’s correlation was 

used to evaluate the association between the MYC activity score and MYC IHC values 

and the predictions were compared with the outcome of the IHC staining. 
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4.1.7 Monti Consensus Clustering 
 Briefly, the three consensus clustering approaches applied were Hierarchical 

Clustering (HC) considering the Euclidean distance, Self-Organizing Maps (SOM) with 

the R packages ConsensusClusterPlus (WILKERSON; HAYES) and Kohonen 

(WEHRENS; KRUISSELBRINK, 2018), and the Gaussian Finite Mixture Models 

algorithm (which represents the probabilistic clustering (PC)) using the R package mclust 

(SCRUCCA; FOP; MURPHY; RAFTERY). To define the best number of clusters, we used 

80% of resampling on 200 replicates for each clustering algorithm, as in the original paper. 

Consensus matrices including two to nine clusters were built and evaluated by the relative 

change in area under CDF curves or Bayesian Information Criterion (BIC) metrics. 

Confusion matrices were used to determine the number of samples assigned to similar 

clusters by any 2 algorithms. HOVON-84 samples with the same classification by all three 

algorithms (“metaconsensus”) were defined as samples belonging to the main clusters. 

For the remaining HOVON-84 samples, we built a naive-Bayes classifier with the R 

package caret (KUHN, 2008). The naïve-Bayes classifier was first trained with the 

samples from the original meta-consensus clustering study and subsequently used to 

predict the cluster membership for the remaining HOVON-84 samples, similar to the 

approach applied in the original publication. 

 

4.1.8 Immune Ratio 
 To reproduce the prognostic marker based on the expression ratio between immune 

effectors and inhibitory (immune checkpoint) genes, we followed the approach as 

published by Keane et al.. We decided to focus on their main finding, which was the 

prognostic significance of the CD4 × CD8 to CD163:CD68 × PD-L1 ratio. This immune 

ratio was additive and independent to the revised-IPI and COO in the original paper. The 

ratio was calculated using the log2 scaled gene expression values and to assess the 

prognostic value of this ratio in the HOVON-84 cohort we used the Keane proposed cut-

off (−0.278958829) to stratify samples into high and low expression ratio subgroups. 
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4.1.9 Statistical Analysis 
 To compare categorical data, we used Fisher’s Exact Test or the X2 test, where 

applicable. The Kaplan–Meier method was used to estimate the overall survival (OS) and 

progression free survival (PFS). Univariable and multivariable Cox proportional hazard 

regression models and Wald p-values were used to evaluate the prognostic impact and 

statistical significance. All the analyses were performed in R 3·6·2 (TEAM, 2019). We did 

not separately analyze patients per study treatment arm since PFS and OS were similar, 

and treatment regimens differed on Rituximab-dose only. Patients with significant therapy 

protocol violations were not included. 

 

4.2 Results 

4.2.1 Study Design 
 In addition to the widely used COO signature to classify DLBCL cases (Scott et al. 

2014), we prioritized three additional signatures that were NanoString based, since it is a 

reproducible technology by different laboratories, available at that time, and reflected 

different biological aspects. The three selected signatures included MYC activity score 

(Carey et al. 2015), Monti consensus clustering (Monti et al. 2005), and the immuneratio 

signature (Keane et al. 2015). As the COO classifier and immune ratio classifiers were 

both based on a limited number of genes, we included all genes and applied the published 

algorithms. For the two much larger classifiers, i.e., MYC activity score and the consensus 

clustering, with algorithms that had to be re-designed, we followed a different approach. 

We first recreated the clustering and/or classification algorithms and tested their 

performance on the originally reported cohorts, with the original set of genes. To make a 

subsequent clinical application feasible, we reduced the gene list, by prioritizing the genes 

with the strongest contributions to the algorithms and applied the validated algorithms on 

the original cohorts to establish the effectivity of our selected gene set. 
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4.2.2 Performance of the MYC Activity Score Using a Subset of the Genes 
 The MYC activity score algorithm was first reproduced in the Carey cohort using the 

original set of 61 genes (Figure 5A). Next, we tested the validated algorithm on our subset 

consisting of 34 genes (Figure 51B).  

 

 
Figure 5. MYC activity classifier for the original Carey training cohort. (a) Heatmap with relative expression levels of the 
61 genes including the relative contribution of each gene to the classifier (horizontal, shaded bar graph) and the MYC 

activity score (line graph). (b) Heatmap with relative expression levels of the 27 genes selected for our study including 

the relative contribution of each gene to the classifier (horizontal, shaded bar graph) and the MYC activity score (line 

graph). (c) Spearman’s correlation between MYC activity score and MYC IHC expression for the 30 samples of the 

Carey training cohort considering 61 genes in the model. (d) Spearman’s correlation between MYC activity score and 

MYC IHC expression for the 30 samples of the Carey training cohort considering 45 genes in the model. The selected 

set of 45 genes recapitulates the original MYC activity clusters. 

 

 Although the impact of the genes in the classifier was different from the original 

publication for both gene sets (CAREY; GUSENLEITNER; CHAPUY; KOVACH et al., 

2015), MYC had the highest impact consistent with the original paper. We observed a 
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good correlation between the MYC activity score and the percentage of tumor cells 

staining positive for MYC in the Carey training set cases using both the initial gene set 

and the subset included in our analysis (Figure 5C,D). Moreover, we observed a perfect 

match of the MYC activity score with the MYC expression as determined by IHC in the 

training set (Table 5). 

 

Table 5. Performance of MYC activity classifier in the Carey training and HOVON-84 test sets. 

Metric Carey training dataset (30 samples) HOVON-84 dataset (161 samples) 

Accuracy 1 0.65 

Sensitivity* 1 0.65 

Specificity 1 0.65 

PPV 1 (30/30) 0.43 (105/161) 

NPV 1 (0/30) 0.82 (56/161) 

Spearman’s correlation 0.96 0.48 

Only cases with matched MYC IHC and MYC activity scores were included. The total number of samples 

equally and not equally classified in comparison to MYC IHC expression are in parenthesis. *The sensitivity 

refers to the ability of the test to identify tumors with high MYC IHC expression (>50%) as having MYC 

activity score >0.5. 

 

4.2.3 Performance of the Monti Consensus Clustering Algorithm Using a Subset of 
the Genes 
 We first reproduced the Monti consensus clustering into Oxidative phosphorylation 

(OxPhos), B-cell Receptor/Proliferation (BCR), and Host response (HR) groups using the 

dataset of Monti et al.. The three algorithms revealed three subgroups consistent with the 

original Monti publication using 1112 annotated genes from the 2118 microarray probes. 

Meta-consensus clustering revealed an initial classification of 115 out of 176 samples 

(Figure 6A).  
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Figure 6. Consensus clusters in original Monti cohort. (a) Heatmap indicating the three identified clusters applying our 

algorithm using all 2118 Monti probes. The upper bars represent the classification of the meta-consensus clusters, 

hierarchical clustering (HC) only, self-organized maps (SOM) only, probabilistic clustering (PC) only and the original Monti 
defined clusters, respectively. Two samples were misclassified comparing the meta-consensus clusters to the original 

Monti classes (b) Heatmap indicating the three identified clusters applying our algorithm using the 50 selected probes. 
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The upper bars represent the samples classification of the meta-consensus clusters, hierarchical clustering (HC) only, 

self-organized maps (SOM) only, probabilistic clustering (PC) only and the original Monti defined clusters, respectively. 

Three samples were misclassified comparing the meta-consensus clusters to the original Monti classes. 

 

 This showed that our algorithm correctly recapitulates the original clustering patterns 

as reported by Monti et al.. After successful reproduction of the original clustering pattern, 

we evaluated the performance of the algorithm on our selected subset of genes, which 

included probes ranking in the top 50 most relevant probes to define each of the three 

biologic clusters, as specified by Monti. In total, this gene set comprised 47 out of 1112 

annotated genes (12 out of 342 OxPhos related genes, 14 out of 344 BCR/Proliferation 

related genes, and 21 out of 427 HR related genes). This revealed for 130 of the 176 

samples of the Monti cohort a consistent clustering, indicating that our selection of genes 

correctly assigned the majority of the samples to the three clusters (Figure 6B). 

 

4.2.4 COO Classifier in HOVON-84 
 Application of the COO classifier revealed 94 (54%) GCB, 58 (33%) ABC, and 23 

(13%) unclassified cases (Figure 7). 

 

 
Figure 7. Heatmap showing relative expression levels of the COO genes used to classify cases using the Lymph2Cx 
algorithm. A clearly distinct gene expression pattern can be observed for ABC and GCB subtype DLBCL cases. 
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 According to Hans classification, 91 cases (54%) were classified as GCB and 76 (46%) as non-GCB. We 

observed a significant association (p < 0.00001) between the COO classifier and the Hans algorithm (Table 6).  

 

Table 6. Comparison of cell of origin (COO) allocation between COO classifier and Hans’ algorithm.  

      Hans’s algorithm 

Lymph2Cx (GEP) N 
IHC 
Sensitivity 

IHC 
Specificity 

IHC PPV IHC NPV 
Non-GCB 
(n=76) 

GCB 
(n=91) 

Not scored 
(n=8) 

ABC (33%) 58 91% 84% 78% 94% 51 5 2 

GCB (54%) 94 84% 84% 94% 78% 14 76 4 

Unclassified (13%) 23 .. .. .. .. 11 10 2 

Unclassified and not scored cases were excluded from calculations. ABC, activated B-cell; GCB, germinal 

center B-cell; GEP, gene expression profiling; IHC, immunohistochemistry; NPV, negative predictive value; 
PPV, positive predictive value. 

 

 Sensitivity and specificity values were 91% and 84% for ABC and non-GCB 

comparison and 84% and 91% for GCB classes, as previous reported (YOON; AHN; 

YONG YOO; JIN KIM et al., 2017). We also found that ABC cases were enriched in older 

patients (>60 years) (p < 0.002), as reported by Klapper et al. in 2012 (KLAPPER; KREUZ 

M FAU - KOHLER; KOHLER CW FAU - BURKHARDT; BURKHARDT B FAU - 

SZCZEPANOWSKI et al.). 

 

4.2.5 MYC Activity Score in HOVON-84 
 For the HOVON-84 cohort, we classified 77 cases (44%) as MYC high and 98 (56%) 

cases as MYC low (Figure 8A).  
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Figure 8. Results of the MYC activity classifier in the HOVON-84 cohort: (A) Heatmap for relative expression of the 

profiling panel including the relative contribution of each gene to the classifier (horizontal, shaded bar graph on the left) 

and the MYC activity score for the HOVON-84 cohort (line graph on top of the figure). (B) Spearman’s correlation 

between MYC activity score and MYC IHC expression for the 161 samples of the HOVON-84 cohort. ND, Not Done; 
NE, Not Evaluable 

 

 The sensitivity and specificity values relative to the MYC IHC score based on staining 

in at least 50% of the tumor cells were 0.65 and 0.65, respectively. The negative and 

positive predictive values were 0.82 and 0.43, respectively, for the identification of MYC 

IHC expression (Table 5). A significant correlation (R 0.493; Fisher exact test p = 0.006) 

was observed for the MYC activity score and the percentage of tumor cells staining 
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positive for MYC in the HOVON-84 cohort (Figure 8B). The high-activity MYC group was 

enriched for DE (p < 0.00001) and ABC-type (p < 0.00001) lymphoma. There was no 

association between the MYC activity score and HGBCL DH. Thus, the MYC activity 

score could be validated in the HOVON-84 cohort and showed a clear correlation with DE 

and ABC-type lymphomas.  

 

4.2.6 Monti Consensus Clustering in HOVON-84  
 For the HOVON-84 cases, application of the validated algorithms revealed two as the 

most optimal number of clusters (Figure 9A,B).  

 
Figure 9. Identification of consensus clusters in the HOVON-84 cohort using 47 selected genes following the approach 

as published by Monti. (a) Relative change in area under CDF curve for HC algorithm for k from 2 to 9 with 175 samples. 

(b) Relative change in area under CDF curve for SOM algorithm for k from 2 to 9 with 175 samples. (c) BIC for PC 

algorithm for k from 2 to 9 with 175 samples. (d) Contingency table between clusters identified by HC and SOM 

algorithms. (e) Contingency table between clusters identified by HC and PC algorithms. (f) Contingency table between 

clusters identified by PC and SOM algorithms. After doing the first step of consensus clustering we tried to re-cluster the 

non-Host Response subgroup, however the samples didn’t differentiate in a new cluster, as in Monti paper. 

 

 The meta-consensus clustering exhibited a consistent subgroup for all three 

algorithms for 67 (38%) HOVON-84 cases. These cases were characterized by two 

profiles: a larger cluster (43 samples–24%) with high expression of both BCR/proliferation 

and Oxphos genes (BCR/Proliferation/Oxphos-high cases) and a cluster (24 samples–
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14%) characterized by a high expression of HR genes (HR-high cases). Thus, in contrast 

to the findings of Monti, the non-HR cases were not characterized by a differential 

expression of BCR/proliferation and Oxphos genes.  

 Next, we followed the same strategy as reported by Monti to define the most likely 

cluster for the remaining 108 (62%) HOVON-84 cases. This revealed a consensus 

BCR/proliferation/Oxphos-high cluster signature for 77 (44%) samples and a consensus 

HR cluster-signature for 31 (18%) samples. In total 120 (77 + 43) cases were classified 

as BCR/proliferation/OxPhos-high and 55 (24 + 31) cases (31%) as HR cluster (Figure 

10). 

 
Figure 10. Heatmap showing the relative expression levels of BCR/Proliferation, Host Response (HR) and Oxphos 

genes used to reproduce the Monti consensus clustering. The HR cluster was validated in 55/175 HOVON-84 cases; 

the remaining cases showed low expression of HR genes, but no distinct clustering based on BCR/Proliferation and 

Oxphos genes. 

 

 The clusters were distributed across all three COO groups, with an enrichment of 

BCR/proliferation/Oxphos-high cluster in ABC cases (p = 0.02). In summary, the HR 
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cluster, but not the BCR/Proliferation and Oxphos clusters could be validated in the 

HOVON-84 cohort. 

 

4.2.7 Immune-Ratio Classifier 
 The immune ratio (KEANE; VARI; HERTZBERG; CAO et al., 2015) revealed a ratio 

under the cut-off for 74 (42%) of the HOVON-84 samples (Figure 11). 

 

 
Figure 11. Reproduction of the immune ratio. Distribution of the CD4*CD8:(CD163:CD68)*PD-L1 immuno-ratio for 

HOVON-84 cohort. The grey line indicates the cut-off (-0.278958829) used to stratify OS in the Keane et al., 2015. 

 

4.2.8 Comparison of the Reproduced GEPs 
 Next, we compared the four expression signatures to establish a potential 

overlapping or shared biology. We focused on the overlap among the three larger GEP 

profiles and separately analyzed a potential overlap with the immune-ratio signature. The 

mutual impact of the COO, MYC, and the HR group of the Monti consensus clustering 

signatures, is shown in Figure 12. The overall picture indicated that the three profiles 

reflect different aspects of lymphoma biology, with no clear overlap. Most ABC cases 

were characterized by high MYC activity (45/58–77.6%; p < 0.00001), whereas the 

consensus HR-cluster was uncommon (12/58–20% samples) and showed no clear 

pattern in relation to the MYC signature (p = 0.44). The GCB samples largely consisted 

of MYC-low activity cases (73/94–77.7%; p < 0.00001), with in about one third of the 
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cases a consensus HR-cluster (31/94–33%). The smaller GCB/MYC-high group was 

enriched for DH (p = 0.019), DE (p = 0.41) and MYC immune positive cases (p = 0.002). 

About half of the cases in the COO-Unclassified cases were high MYC activity (11/23–

48%) and consensus HR cases (12/23–52%). Thus, the MYC and consensus clustering 

profiles within the COO-Unclassified cases showed an intermediate profile and did not 

indicate a closer association with either ABC or GCB-type DLBCL 

 

 
Figure 12. Overlap of the gene expression signatures that were validated in the HOVON-84 cohort. The three signatures 

show no clear overlap and together are likely to capture different aspects of DLBCL biology. OS events were observed 

in each of the six clusters, with a slight enrichment in the ABC/MYC-high group. 

 

 The high immune-ratio subgroup was associated with the HR consensus cluster (OR 

= 2.82; p = 0.003) and with the high MYC activity cluster (OR = 0.387; p = 0.003) while 

no association was found with the COO classifier (Figure 13).  

 

 
Figure 13. Overlap of Immune ratio, Lymph2CX and Consensus Clusters signatures in the HOVON-84 cohort. There is 
an association between high Immune ratio and high Host Response. No association with Lymph2Cx was found. 

 

 We evaluated the correlation of MHC-II IHC with the different gene signatures as 

proposed by Ennishi et al. 2020. We did not identify an association of MHC-II-IHC high 

and HLA-II-IHC with COO, MYC activity score, Monti consensus clustering, and immune-

ratio signatures.  
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4.2.9 Prognostic Impact of Validated Signatures  
 Consistent with previous publications, poor aaIPI, which does not consider age, 

advanced age (>60 years), the COO ABC-type, and the high MYC activity score were 

significantly associated with poor five-years OS in a univariate analysis (Figure 14A–C, 

15A and Figure 16A). The HR cluster of the Monti consensus clustering had no impact 

on survival consistent with the original report (Figure 14D). In contrast to the original 

paper, we could not validate the prognostic relevance of the immune-ratio classifier 

(Hazard ratio 1.6; p = 0.2) (Figure 14E). Other MYC molecular features known to impact 

patient’s survival based on the literature such as high MYC IHC expression and DE and 

DH events had no impact on five-years OS (Figure 15B-D). 

 Multivariate analysis including the four variables significant in the univariate analysis, 

i.e., aaIPI, age, GCB versus ABC, and MYC activity score showed that only the COO 

ABC-type remained prognostic (Hazard ratio 3.06; p = 0.023) (Figure 16B). 
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Figure 14. Kaplan–Meier curves showing overall survival of 175 patients from the HOVON-84 cohort: According to (A) 

the aaIPI, (B) the COO classification defined by the Lymph2Cx algorithm, (C) the Monti consensus clusters, (D) the MYC 

activity classifier, (E) the immune-ratio subgroups. 
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Figure 15. Kaplan Meier curves for overall survival of the HOVON-84 cohort for (a) the COO classification defined by 

Hans. (b) the MYC IHC expression low (<50%) and high (>50%) subgroups. (c) Double expressor lymphoma. (d) 

Double-hit lymphoma. 

 
 
 
 



 

 

55 

 
 
Figure 16. Five-year OS of HOVON-84 patients: (A) Forest plot with the univariate effect of the clinical variables and 

GEP signatures. (B) Forest plot with the multivariate effect of clinical variables and GEP signatures. In this cohort, only 

the COO as defined by the Lymph2Cx remains signific 

 

4.3 Discussion  
 In this NanoString-based GEP-profiling study we used a selected set of genes to 

validate previously published signatures. With this limited set of genes, we were able to 

faithfully reproduce the classifications of the original MYC activity score and Monti 

consensus clustering algorithms. Besides the COO, we also reproduced the HR cluster 

of the Monti consensus clustering and the MYC activity signature in the well-defined 

HOVON84 study population. We were not able to reproduce the BCR or Oxphos 

signatures of the Monti consensus clustering. In contrast to the original study, we did not 

observe a significant difference in survival for the immune-response ratio (KEANE; VARI; 

HERTZBERG; CAO et al., 2015).  

 Although COO is well established, its prognostic value has been disputed (STAIGER; 

ZIEPERT; HORN; SCOTT et al., 2017). The poor survival as observed for ABC type 

DLBCL has been used as a starting point for the design of several clinical trials. 
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Combination of lenalidomide and ibrutinib in relapsed DLBCL showed efficacy particularly 

in patients with Hans-based non-GCB type DLBCL, supporting clinical relevance of the 

COO concept (GOY; RAMCHANDREN; GHOSH; MUNOZ et al., 2019). Molecular 

subclassification with or without considering the COO might be used for the design of 

more focused clinical trials to improve the outcome of specific DLBCL subgroups 

(CHAPUY; STEWART; DUNFORD; KIM et al., 2018; ENNISHI; HSI; STEIDL; SCOTT ; 

SCHMITZ; WRIGHT; HUANG; JOHNSON et al., 2018).  

 There are several ways to categorize DLBCL cases based on MYC status: i.e., DH 

(FISH), DE (IHC), and GEP classifiers. The more recently published DH GEP signature 

enables identification of cases with cryptic MYC rearrangements (ENNISHI; JIANG; 

BOYLE; COLLINGE et al., 2019). The biological rationale underlying the MYC activity 

GEP signatures is evident, since this enables capturing of the indirect activity of MYC; 

although, implementation of such a profile in clinical practice warrants further 

development. We were able to reproduce the Carey MYC classifier, but the impact of the 

genes was different from the original paper. A possible explanation for this difference 

might be that our cohort includes cases with the entire spectrum of percentage positive 

cells, whereas the training set from Carey has been selected for cases with more extreme 

IHC-based MYC scores. The differences in the spectrum of MYC scores possibly explains 

the weaker correlation and lower positive predictive value for identifying HGBCL-DH in 

the HOVON-84 samples. The high MYC activity group showed a poor outcome, while DH 

cases had no impact on OS, probably because we observed a limited number of events 

in the HOVON-84 cohort of patients with a HGBCL-DH. Nevertheless, comparison of 

different algorithms is needed to select the best algorithm for clinical application.  

 The HR cluster was the most eminent profile identified by Monti et al. and highlights 

the TME as a defining feature. HR cases had increased expression of genes associated 

with T-cell-mediated immune responses, the classical complement pathway, coregulated 

inflammatory mediators, and connective tissue components. A micro-environment-based 

GE profiling described by Lenz et al. (LENZ; WRIGHT; DAVE; XIAO et al., 2008) 

(macrophage 1 (M1) and macrophage 2 signatures (M2)) showed a clear distribution 

among the COO subgroups. Although we did not include the genes to validate the M1 

and M2 signatures, the inflammatory response described by Monti et al. is characterized 
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by and recapitulates this profile. More recently, a novel interest for microenvironment-

based GEP using CIBERSORT (CHEN; KHODADOUST; LIU; NEWMAN et al., 2018) or 

single-cell RNA-seq analysis has arisen. The clinical value of the HR signature might 

become more important with the rise of a whole new range of therapies, including chimeric 

antigen receptor T cells (CAR T-cells) and bispecific monoclonal antibodies, where the 

nature of the microenvironment is likely to be important for a durable clinical response 

(QIN; JOHNSTONE; BATUREVYCH; HAUSE et al., 2020).  

 Recently, three additional signatures associated with MYC and TME were reported 

(CIAVARELLA; VEGLIANTE; FABBRI; DE SUMMA et al., 2018; ENNISHI; JIANG; 

BOYLE; COLLINGE et al., 2019; STAIGER; ALTENBUCHINGER; ZIEPERT; KOHLER 

et al., 2020). However, the limited overlap with our gene panel precluded validation of 

these signatures. Most likely, part of these studies basically looks at similar underlying 

biology, including two different MYC classifiers but using a different set of genes (CAREY; 

GUSENLEITNER; CHAPUY; KOVACH et al., 2015; ENNISHI; JIANG; BOYLE; 

COLLINGE et al., 2019). There was no evident overlap among the COO, HR, and MYC 

activity subgroups, emphasizing that each classifier captures a different aspect of the 

biological heterogeneous panorama. In a recent review, a reclassification of DLBCL 

based on molecular genetics and gene expression profiling was proposed by Ennishi et 

al.. We now show experimental evidence supporting their proposed subgrouping, with 

GCB-type DLBCL samples being split in three subgroups as high MYC activity non-HR 

cases and low MYC activity score splitting in either HR or non-HR cases. Similarly, ABC 

DLBCL were mainly characterized by high MYC activity scores. However, we did not find 

any associations with MHC-II expression in the HOVOV-84 cohort. So, our data mostly 

support the newly proposed classification by Ennishi et al. and emphasizes the 

importance of biology-driven molecular subgroups.  

 Profiling of a dedicated subset of genes has become feasible using the Nanostring 

gene expression system even on FFPE tissue samples containing poor quality RNA. We 

show a reliable classification of DLBCL cases with multiple gene expression signatures 

even when using a limited set of genes. Further validation studies are required to link the 

established signatures to more recently published GEP and mutational signatures and 

elucidate the complete spectrum of the very heterogenous group of DLBCL. Beyond the 
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biological relevance, COO and MYC activity gene expression signatures had an impact 

on survival. This highlights the potential of combining different classifiers to improve the 

identification of high-risk cases and emphasizes the need to integrate these signatures in 

future clinical trials. The limited gene set required to generate the signatures in 

combination with the freely available algorithms enables a strait forward and cost-effective 

implementation. Moreover, combining multiple GEP may lead to improved stratification of 

patients into specific molecular subgroups that may be sensitive to specific targeted 

therapeutics. 
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5 CONCLUSIONS 
 We have extensively characterized CD4+CD26- T cells in the TME of cHL. These T 

cells are antigen experienced and probably originate from memory Treg cells. They are 

enriched for exhaustion associated transcription factors TOX and TOX2, which also 

induce expression of immune checkpoints. Targeting of TOX and TOX2 might reverse T 

cell exhaustion and thereby provides an interesting opportunity for immunotherapy. 

 We showed that COO, MYC activity score, and the HR cluster of the Monti consensus 

clustering were reproduced in the HOVON-84 cohort of DLBCL patients. These three 

signatures identify distinct subgroups based on different aspects of DLBCL biology, 

emphasizing that each classifier captures distinct molecular profiles, offering a framework 

for clinical trials. More comparative studies with gene expression profiles need to be done 

to enable a further integration and to help develop new taxonomy systems for clinical 

utility. 
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