• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.17.2018.tde-19072018-134033
Document
Author
Full name
Vinícius Oliverio
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2018
Supervisor
Committee
Nétto, Oméro Benedicto Poli (President)
Carrara, Helio Humberto Angotti
Sa, Claudio Cesar de
Schor, Eduardo
Tiezzi, Daniel Guimarães
 
Title in Portuguese
Inteligência artificial aplicada ao auxilio no diagnóstico da dor pélvica crônica
Keywords in Portuguese
Aprendizagem de máquina; Diagnóstico automático; Dor pélvica crônica; Ginecologia e obstetrícia; Inteligência artificial
Abstract in Portuguese
A dor pélvica crônica (DPC) é uma condição clínica comum, inclusive no Brasil. Estudos do nosso núcleo de pesquisa evidenciam uma prevalência em torno de 11%. Ela é, dentre outros agravos, causa recorrente de procura a serviços de saúde, falta ao trabalho e baixa produtividade. Com a inserção definitiva da mulher no mercado de trabalho a doença tem impactado negativamente no desempenho econômico desse grupo, afetando diretamente a atividade econômica domiciliar. Todavia, o diagnóstico da causa desta condição clínica não é trivial e erros podem ocorrer devido à falta de conhecimento sobre o assunto, portanto, a criação de um sistema que possa auxiliar no diagnóstico e na identificação das causas desta condição clínica é de grande importância para que os erros de diagnósticos sejam minimizados e para que esta condição seja tratada da melhor maneira possível. Contudo, o presente trabalho tem como objetivo o desenvolvimento de um sistema de inteligência artificial que auxilie no diagnóstico da DPC em seu estágio inicial, minimizando erros e tempo de tratamento por meio da mineração de dados em uma base médica previamente preenchida com casos já diagnosticados como auxilio a aprendizagem do sistema.
 
Title in English
Artificial intelligence applied to aid in the diagnosis of chronic pelvic pain
Keywords in English
Artificial intelligence; Automatic diagnose; Chronic pelvic pain; Ginecology and obstetrics; Machine learning
Abstract in English
Chronic pelvic pain (CPP) is a common clinical condition, including in Brazil. Studies held by our research group shows evidences of a prevalence around 11%. It is, among other illness, a recurrent cause of lack of productivity, work miss and utilization of healthcare services. As the women is each time more inserted in the labor force this condition is impacting negatively the economic performance of this group, affecting directly the domestic economic activity. However, the diagnostic of the cause of this condition is not trivial, and mistakes can happen due to the lack of knowledge about the matter, therefore, the creation of a system that may help in the diagnosing and identification of the causes of this clinical condition is of great importance to the decrease of mistaken diagnoses leading to a better treatment of the condition. However, the current work has as objective the development of an artificial intelligence system that help in the CPP diagnose in its initial stage, decreasing mistakes and treatment time by using data mining in a medical database previously filled with already diagnosed cases as auxiliary to the learning of the system.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
ViniciusOliverio.pdf (7.71 Mbytes)
Publishing Date
2018-07-30
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.