• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.17.2009.tde-28102009-161433
Document
Author
Full name
Emilio Augusto Coelho Barros
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2009
Supervisor
Committee
Achcar, Jorge Alberto (President)
Bolfarine, Heleno
Ruffino Netto, Antonio
Title in Portuguese
Análise estatística para dados de contagem longitudinais  na presença de covariáveis: aplicações na área médica
Keywords in Portuguese
Dados de contagem
Dados longitudinais
Infer^encia Bayesiana
Abstract in Portuguese
COELHO-BARROS, E. A. Analise estatstica para dados de contagem longitudinais na presenca de covariaveis: Aplicações na area medica. Dissertação (mestrado) - Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto - SP - Brasil, 2009. Dados de contagem ao longo do tempo na presenca de covariaveis são muito comuns em estudos na area da saude coletiva, por exemplo; numero de doenças que uma pessoa, com alguma caracteristica especifica, adquiriu ao longo de um período de tempo; numero de internações hospitalares em um período de tempo, devido a algum tipo de doença; numero de doadores de orgãos em um período de tempo. Nesse trabalho são apresentados diferentes modelos estatsticos de\fragilidade" de Poisson para a analise estatística de dados de contagem longitudinais. Teoricamente, a distribuição de Poisson exige que a media seja igual a variância, quando isto não ocorre tem-se a presenca de uma variabilidade extra-Poisson. Os modelos estatsticos propostos nesta dissertação incorporam a variabilidade extra-Poisson e capturam uma possvel correlação entre as contagens para o mesmo indivduo. Para cada modelo foi feito uma analise Bayesiana Hierarquica considerando os metodos MCMC (Markov Chain Monte Carlo). Utilizando bancos de dados reais, cedidos por pesquisadores auxiliados pelo CEMEQ (Centro de Metodos Quantitativos, USP/FMRP), foram discutidos alguns aspectos de discriminação Bayesiana para a escolha do melhor modelo. Um exemplo de banco de dados reais, discutido na Seção 4 dessa dissertação, que se encaixa na area da saude coletiva, e composto de um estudo prospectivo, aberto e randomizado, realizado em pacientes infectados pelo HIV que procuraram atendimento na Unidade Especial de Terapia de Doencas Infecciosas (UETDI) do Hospital das Clnicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP). Os esquemas terapêuticos estudados consistiam em zidovudina e lamivudina, associadas ao efavirenz ou lopinavir. Entre setembro de 2004 e maio de 2006 foram avaliados 66 pacientes, sendo 43 deles includos no estudo. Destes, 39 participantes alcançaram a semana 24 de acompanhamento, enquanto 27 atingiram a semana 48. Os grupos de pacientes apresentavam características basais semelhantes, quanto a idade, sexo, mediana de CD4 e carga viral. O interesse desse experimento e estudar a contagem de CD4 considerando os dois esquemas terapêuticos (efavirenz e lopinavir).
Title in English
Statistical Analyze For Longitudinal Counting Data in Presence of Covariates: Application in Medical Research
Keywords in English
Bayesian inference.
Counting data
Longitudinal data
Abstract in English
COELHO-BARROS, E. A. Analise estatstica para dados de contagem longitudinais na presenca de covariaveis: Aplicac~oes na area medica. Dissertac~ao (mestrado) - Faculdade de Medicina de Ribeir~ao Preto - USP, Ribeir~ao Preto - SP - Brasil, 2009. Longitudinal counting data in the presence of covariates is very common in many applications, especially considering medical data. In this work we present dierent \frailty"models to analyze longitudinal Poisson data in the presence of covariates. These models incorporate the extra-Poisson variability and the possible correlation among the repeated counting data for each individual. A hierarchical Bayesian analysis is introduced for each dierent model considering usual MCMC (Markov Chain Monte Carlo) methods. Considering reals biological data set (obtained from CEMEQ, Medical School of Ribeir~ao Preto, University of S~ao Paulo, Brazil), we also discuss some Bayesian discrimination aspects for the choice of the best model. In Section 4 is considering a data set related to an open prospective and randomized study, considering of HIV infected patients, free of treatments, which entered the Infection Diseases Therapy Special Unit (UETDI) of the Clinical Hospital of the Medical School of Ribeir~ao Preto, University of S~ao Paulo (HCFMRP-USP). The therapeutic treatments consisted of the drugs Zidovudine and Lamivudine, associated to Efavirenz and Lopinavir. The data set was related to 66 patients followed from September, 2004 to may, 2006, from which, 43 were included in the study. The patients groups presented similar basal characteristics in terms of sex, age, CD4 counting median and viral load. The main goal of this study was to compare the CD4 cells counting for the two treatments, based on the drugs Efavirenz and Lopinavir, recently adopted as preferencial for the initial treatment of the disease.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
EMILIO_BARROS.pdf (586.30 Kbytes)
Publishing Date
2009-11-23
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.