Tesis Doctoral
DOI
https://doi.org/10.11606/T.17.2014.tde-23092014-120646
Documento
Autor
Nombre completo
Emilio Augusto Coelho Barros
Dirección Electrónica
Área de Conocimiento
Fecha de Defensa
Publicación
Ribeirão Preto, 2014
Director
Tribunal
Achcar, Jorge Alberto (Presidente)
Martinez, Edson Zangiacomi
Ruffino Netto, Antonio
Santos, Carlos Aparecido dos
Souza, Aparecida Doniseti Pires de
Título en portugués
Modelagem em análise de sobrevivência para dados médicos bivariados utilizando funções cópulas e fração de cura
Palabras clave en portugués
Fracão de cura
Funcões cópulas
Inferência Bayesiana.
Resumen en portugués
Título en inglés
Modeling in survival analysis for medical data using bivariate copula functions and cure fraction.
Palabras clave en inglés
Bayesian inference.
copula function
Cure fraction
Resumen en inglés
Mixture and non-mixture lifetime models are applied to analyze survival data when some individuals may never experience the event of interest. Dierent statistical models are proposed to analyze survival data in the presence of cure fraction. In this thesis, we propose the use of new models. From the univariate case, we consider that the lifetime data have a three-parameter Burr XII distribution, which includes the popular Weibull mixture model as a special case. We consider a general survival model where the scale and shape parameters of the Burr XII distribution depends on covariates. Also considering the univariate case the two-parameters exponentiated exponential distribution is used. The two-parameter exponentiated exponential or the generalized exponential distribution is a particular member of the exponentiated Weibull distribution introduced by Mudholkar and Srivastava (1993). We also consider in this case a general survival model where the scale, shape and cured fraction parameters of the exponentiated exponential distribution depends on covariates. We also introduce the univariate Weibull distributions in presence of cure fraction, censored data and covariates. Two models are explored in this case: the mixture model and non-mixture model. When we have two lifetimes associated with each unit (bivariate data), we can use some bivariate distributions: as special case the Block and Basu bivariate lifetime distribution. We also presents estimates for the parameters included in Block and Basu bivariate lifetime distribution in presence of covariates and cure fraction, applied to analyze survival data when some individuals may never experience the event of interest and two lifetimes are associated with each unit. We also consider in bivariate case the bivariate Weibull distributions derived from copula functions in presence of cure fraction, censored data and covariates. Two copula functions are explored in this paper: the Farlie-Gumbel-Morgenstern copula (FGM) and the Gumbel copula. Classical and Bayesian procedures are used to get point and condence intervals of the unknown parameters. Illustrations of the proposed methodologies are given considering medicals data sets.

ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Emilio.pdf (2.48 Mbytes)
Fecha de Publicación
2015-01-05