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Abstract

A Bayesian approach for left-censored data based on mixture and
semi-continuous models using Tobit structure

The main objective of this thesis is to introduce a left-censored data analysis using the tobit
model for univariate and multivariate data. The tobit model can be used as an alternative
to the least squares regression model when the assumption of linearity is not satisfied.
The tobit model is able to fit the data adequately by formulating a regression model for
which the response is pre-fixed to a limit value. In this thesis we present five chapters,
each considering a manuscript submitted for publication and with different approaches
and applications. The estimation of the model parameters is performed using Bayesian
inference methods. The summaries a posterior i of interest are obtained using existing
MCMC (Monte Carlo on Markov Chains) simulation methods, as Gibs and Metropolis-
Hasting. In the first paper (Chapter 2) we present the tobit-Weibull mixture model to
analyze environmental data under the left censoring scheme. The considered dataset is
related to ammonia nitrogen concentrations in rivers. In the second paper (Chapter 3),
the bivariate tobit-Weibull model under a hierarchical Bayesian analysis is presented
considering a dataset in stellar astronomy where a fragility or latent variable is considered
to capture the possible correlation between the bivariate responses for the same sample
unit; applications of the univariate and bivariate tobit-Weibull model are also presented
in Chapter 4, considering two medical datasets (cancer survival data and vaccine data).
The tobit-Weibull model in the presence of some covariates with linear and quadratic
effects, under the left censoring scheme, is presented in Chapter 5 considering a dataset
concerning total daily precipitation collected at a weather station located in the city
of São Paulo, Brazil. In Chapter 6 we present a generalized form of the tobit-Weibull
model in the presence of covariates and excess zeros; the application was performed using
data concerning total daily precipitation. Chapter 7 concludes this thesis with general
conclusions showing the usefulness of the proposed model fot analyzing left-censored data
or with an excess of zero-valued observations.

Keywords: Tobit model, left censored data, Bayesian analysis, MCMC methods, Weibull
distribution, data analysis.



Resumo
Uma abordagem Bayesiana para dados censurados à esquerda baseada em

modelos de mistura e semi-contínuos usando a estrutura Tobit

O principal objetivo desta tese é introduzir uma análise de dados censurada à esquerda
usando o modelo tobit para dados univariados e multivariados. O modelo tobit pode
ser usado como uma alternativa ao modelo de regressão de mínimos quadrados quando
a suposição de linearidade não é satisfeita. O modelo proposto é capaz de se ajustar
adequadamente aos dados, formulando um modelo de regressão para o qual a resposta é pré-
fixada a um valor limite. Nesta tese, apresentamos cinco capítulos, cada um considerando
um manuscrito submetido para publicação e com diferentes abordagens e aplicações. A
estimativa dos parâmetros do modelo é feita usando métodos de inferência Bayesianos. Os
resumos a posteriori de interesse são obtidos usando os métodos de simulação existentes
MCMC (Monte Carlo on Markov Chains), como Gibs e Metropolis-Hasting. No primeiro
trabalho (Capítulo 2) apresentamos o modelo de mistura tobit-Weibull para analisar os
dados ambientais. O conjunto de dados considerado está relacionado às concentrações de
nitrogênio amônia em rios. No segundo trabalho (Capítulo 3), é apresentado o modelo tobit-
Weibull bivariado sob uma análise Bayesiana hierárquica considerando um conjunto de
dados em astronomia estelar onde uma variável de fragilidade ou latente é considerada para
capturar a possível correlação entre as respostas bivariadas para a mesma unidade amostral.
Aplicações do modelo univariado e bivariado tobit-Weibull também são apresentadas no
Capítulo 4, considerando dois conjuntos de dados médicos (dados de sobrevivência ao câncer
e dados de vacinas). O modelo tobit-Weibull na presença de alguns covariáveis com efeitos
lineares e quadráticos é apresentado no Capítulo 5, considerando um conjunto de dados
referentes à precipitação total diária coletada em uma estação meteorológica localizada
na cidade de São Paulo, Brasil. No Capítulo 6 apresentamos uma forma generalizada
do modelo tobit-Weibull na presença de covariáveis e excesso de zeros; a aplicação foi
realizada utilizando dados referentes à precipitação total diária. O Capítulo 7 conclui esta
tese com conclusões gerais mostrando a utilidade do modelo proposto para análise de
dados censurados à esquerda ou com um excesso de observações com valor nulo.

Palavras-chave: Modelo de Tobit, dados com censuras à esquerda, análise Bayesiana,
métodos MCMC, distribuição de Weibull , análise de dados.
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Chapter 1

Introduction

1.1 Background

In survival analysis, the main goal is to analyze the time until the occurence of
an event of interest. The data for this kind of analysis is called time-to-event data. A
classic example of time-to-event data is the time until the death of a patient, as the
term suggests, but it can also be any well defined characteristic. For example, in medical
research, events of interest can be: the onset of Alzheimer’s disease, the recurrence time of
a cancer, the time of exposed individuals becoming infected, the time for a patient to be
free of a disease. In reliability analysis, the event of interest can be linked to the time until
the failure of a particular component of a system, or be related to the breakdown and
repair of machines. In other areas of study the possible events are: the time of probation
of criminals (criminology); time of service, time of marriage until divorce (sociology); time
of hospitalization, time until a company’s bankruptcy (administration) among many other
applications (see, for example, Cox, 1972, Maller and Zhou, 1996, Klein and Moeschberger,
1997, De Angelis et al., 1999, Lee and Wang, 2003, Fleming and Lin, 2000, Frees, 2009,
Cox et al., 2007, Giolo and Colosimo, 2006, Lagakos and Williams, 1978, Bewick et al.,
2004, Struthers and Farewell, 1989, Leung et al., 1997, Lindsey and Ryan, 1998, Guo, 1993,
Lynn, 2001, Romeu, 2004, Rausand and Hoyland, 2004, Ibrahim et al., 2005, Sreeja and
Sankaran, 2008, Hougaard, 2012, Crowder, 2012, Eryilmaz and Tank, 2012).

An important characteristic of survival data occurs when some individuals in the
study do not experience the event of interest at the end of the study or withdraw during
the follow-up period of analysis. For example, some patients may still be alive or free
of disease at the end of the study period. The exact survival time of these individuals
is unknown. The data of these individuals are called censored observations or censored
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times occurring for several reasons such as: the patient may drop-out of the study before
the observation of the event of interest, or die of other causes different of the goal of the
study. Without the presence of censoring, classical classical statistical techniques, such as
regression analysis, could be used in the analysis of the data [Giolo and Colosimo, 2006].

A survival time is censored if all that is known is that it started or ended within
some given time interval, and thus the total cycle length (from entry time to transition) is
not known exactly. Censoring can occur in a number of ways, among which are:

• Type I censoring: occur in studies that when terminated after a predetermined
period of time record, without their termination, some individuals who have not yet
presented the event of interest. As an example, a clinical study in which the event
of interest is the death of a subject after being diagnosed with a certain malignant
tumor; if the individual is alive at the end of the study, you have censoring on the
right;

• Type II censoring: a sample of n units are tested, for which the experiment begins
at a fixed time zero, 𝑡 = 0, and ends when a fixed number of units, 𝑟(𝑟 < 𝑛), have
failed. Failure times are only observed for r units, i.e., units that fail after unit r
has failed are not observed. The total number of censored units is fixed, while the
experimental time is random. Experiments involving Type II censoring are often
used to test equipment life;

• Type III or random censoring: typically occurs in time-to-event medical studies. An
individual who withdraws from the study before the event of interest occurs has a
random censoring value. For example, the subject may change address, no longer
want to participate in the study, or when the participate in the study, or when the
subject dies for a reason other than the one other than the one studied.

1.1.1 Left-Censored Data

To define this scheme mathematically, let Y be a random variable denoting the
lifetime of an unit or patient such that the lifetime data is given by 𝑇 = max(𝐶, 𝑌 ) where
𝐶 is a censored time and Y is a complete observation. Thus, we could define a indicator
variable as

𝛿 =

⎧⎪⎨⎪⎩1, if T is a complete observation (𝑌 > 𝐶)

0, if T is a left censored observation (𝑌 ≤ 𝐶).
(1.1)
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Examples of left-censored data:

• Left-censoring is very common in environmental analysis. For example, in water
quality studies, the censorship could occurs when the level of a chemical trace in a
sample is less than the "limit of quantification" (LOQ) or "limit of detection" (LOD) of
the analytical instruments. The physical meanings of LOQ and LOD differ associated
to the analytical technology applied. Such observations are usually reported as "less
than detectable", meaning that a measurement was made, but its low level prevented
the reporting of a quantitative value [Akritas et al., 1994]. The literature on the
analysis of censored environmental data is largely driven by the issues raised by
water quality analysis. Water quality problems are widespread where negative health
impacts are associated even with low levels of concentrations of certain chemicals.
Among several articles already published using frequentist and Bayesian methods to
model viral concentrations we can cite, for example, Petterson et al. [2015], Pouillot
et al. [2015], Vergara et al. [2016], Atwood et al. [1991].

• In the medical field, a relevant topic of study is the determination of antibody
concentration by quantitative assays. This topic is relevant because there is always a
concentration value (threshold) where below this value an accurate measurement
cannot be obtained, regardless of the technique used. When dealing with data from
an assay where left-censoring is present, the lower limit of detection (LD) can be used
to replace the unobserved value as a censored observation. In this regard, one can
cite the studies of Moulton and Halsey, 1995, Lynn, 2001, Guo, 1993, Balakrishnan,
1989, Balakrishnan and Varadan, 1991, Arellano-Valle et al., 2012, Canales et al.,
2018, Achcar et al., 2018, Mitra and Kundu, 2008, Jacqmin-Gadda et al., 2000.

1.1.2 Generalized forms of the Weibull distribution

A very popular distribution widely used in reliability studies is the Weibull distri-
bution [Weibull, 1951], mainly due to the flexibility of its hazard function and the facility
to estimate its parameters. In data analysis considering positive asymmetric data, new
classes of parametric distributions based on extensions of the Weibull distribution have
been introduced in the literature. As special cases, we have the exponentiated Weibull
(EW) (Mudholkar and Srivastava, 1993, Pal et al., 2006), the generalized modified Weibull
[Carrasco et al., 2008] and the log-beta Weibull distributions [Ortega et al., 2013].

Some generalized forms of the Weibull distribution can be seen in a review paper
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introduced by [Pham and Lai, 2007] among which we can mention Gurvich et al. [1997]
that introduced a class of distributions generalizing the traditional two parameters Weibull
distribution; Nadarajah and Kotz [2006] proposed another generalization of the Weibull
distribution that contains the model proposed by Xie et al. [2002], with the model proposed
by Chen [2000] as a particular case; Muralidharan and Lathika [2006] considered a lifetime
situation with early failures showing that such situation can be modeled by mixing a
Weibull distribution with a singular distribution, thus resulting in a generalized Weibull
model; Nikulin and Haghighi [2006] proposed a generalized power Weibull distribution
with three parameters. Also a modified form of the Weibull distribution was introduced by
Lai et al. [2003].

1.1.2.1 The generalized modified Weibull (GMW) distribution

A generalized modified Weibull (GMW) [Carrasco et al., 2008] distribution with
four parameters is defined by a probability density function given by,

𝑓(𝑡) =
𝛼𝛽𝑡𝛾−1(𝛾 + 𝜆𝑡) exp

(︁
𝜆𝑡 − 𝛼𝑡𝛾𝑒𝜆𝑡

)︁
{1 − exp (−𝛼𝑡𝛾𝑒𝜆𝑡)}(1−𝛽) (1.2)

where 𝑡 > 0, 𝛼, 𝛽, 𝛾 and 𝜆 are positive parameters and the survival function 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡)
is given by,

𝑆(𝑡) = 1 −
{︁
1 − exp

(︁
−𝛼𝑡𝛾𝑒𝜆𝑡

)︁}︁𝛽
(1.3)

The GMW distribution with four parameters contains as special cases many usual
lifetime distributions as the Weibull distribution when 𝜆 = 0 and 𝛽 = 1; the exponential
distribution when 𝜆 = 0, 𝛽 = 1 and 𝛾 = 1; the Rayleigh distribution when 𝜆 = 0, 𝛽 = 1
and 𝛾 = 2; the extreme value distribution when 𝛽 = 1 and 𝛾 = 0; the Exponentiated
Weibull distribution (EW) when 𝜆 = 0; the Exponentiated exponential distribution (EE)
when 𝜆 = 0 and 𝛾 = 1; the Generalized Rayleigh distribution (GR) when 𝜆 = 0 and 𝛾 = 2
and the Modified Weibull distribution (MW) when 𝛽 = 1.

1.1.2.2 The exponentiated Weibull distribution

A exponentiated Weibull (EW) [Mudholkar and Srivastava, 1993] distribution with
three parameters is obtained from (6.4) assuming 𝜆 = 0 , with probability density function
given by,

𝑓(𝑡) = 𝛼𝛽𝛾𝑡𝛾−1 exp (−𝛼𝑡𝛾)
{1 − 𝑒𝑥𝑝 (−𝛼𝑡𝛾)}1−𝛽 (1.4)
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where 𝑡 > 0, 𝛼, 𝛽 and 𝛾 are positive parameters and the survival function 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡)
is given by,

𝑆(𝑡) = 1 − {1 − exp (−𝛼𝑡𝛾)}𝛽 (1.5)

1.1.2.3 The Weibull distribution

The Weibull distribution [Weibull, 1939], widely known for its simplicity and
flexibility in accommodating different forms of risk function, is perhaps the most widely
used distribution model for life time analysis. For a random variable T with Weibull
distribution, the probability density function is given by,

𝑓(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
, 𝑡 ≥ 0 (1.6)

where 𝛼 is the shape parameter and 𝛽 the scale parameter, both positive. For this
distribution, the survival function 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) and the hazard function ℎ(𝑡) are given
respectively by,

𝑆(𝑡) = exp
{︃

−
(︃

𝑡

𝛽

)︃𝛼}︃
(1.7)

where 𝑡 > 0 and 𝛼 > 0, 𝛽 > 0. The mean of the Weibull distribution with density (1.6) is
given by 𝐸(𝑇 ) = 𝛽Γ(1 + 1/𝛼). In this case, one may have increasing risks (failure rates) if
𝛼 > 1; decreasing if 𝛼 < 1 and constant if 𝛼 = 1, that is, we have great flexibilty of it for
the data.

Another parameterization of the Weibull distribution is obtained from (6.4) as-
suming 𝜆 = 0 and 𝛽 = 1 (a Weibull distribution with two parameters), with probability
density function given by,

𝑓(𝑡) = 𝛼𝛾𝑡𝛾−1 exp (−𝛼𝑡𝛾) (1.8)

where 𝑡 > 0, 𝛼 and 𝛾 are positive parameters and the survival function 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) is
given by,

𝑆(𝑡) = exp (−𝛼𝑡𝛾) (1.9)

Bayesian inferences for the three distributions introduced in this section are pre-
sented by many authors in the literature (see, for example, Achcar et al. [1985, 1999] and
Martinez et al. [2013]).
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1.1.3 Tobit Models

The Tobit model was proposed by Tobin [1958] for a limited (censored) dependent
variable (or response). Tobin was motivated to develop his model by a case study where he
needed to analyze the relationship between household expenditure on a durable good with
household incomes. The common regression approach with ordinary least squares could
not be used in this situation because there were many cases where the expenditure was
zero, which destroyed the assumption of linearity. To solve the problem, Tobin proposed a
model that could fit the data appropriately formulating a regression model whose response
was censored to a prefixed limiting value (see Amemiya [1984]).

1.1.3.1 Tobit Models for Left-Censored Data

Let Y be an independent random variable and 𝑌 = (𝑌1, . . . , 𝑌𝑚, 𝑌𝑚+1, . . . , 𝑌𝑛)⊤

be a sample of size 𝑛. Suppose that this sample includes 𝑚 censored observations and
𝑛 − 𝑚 uncensored observations. Thus, such censoring scheme can be visualized under a
regression setting with a censored response 𝑌 *, which is a (unobserved) latent variable.
Hence, the 𝑚 censored data (unobserved) correspond to the values of 𝑌 * less than or equal
to a threshold point 𝑦0, so that all of these data take the value 𝑦0 (censoring to the left).
The other 𝑛 − 𝑚 data (observed) are related to values of 𝑌 * greater than 𝑦0, which can be
described by a linear regression structure of the type x⊤

𝑖 𝛽. This modeling approach may
be formulated by the normal Tobit model with censored response to the left as

𝑌𝑖 =

⎧⎪⎨⎪⎩𝑦0, 𝑌 *
𝑖 ≤ 𝑦0 𝑖 = 1, . . . , 𝑚

𝑌 *
𝑖 = x⊤

𝑖 𝛽 + 𝜀𝑖, 𝑌 *
𝑖 > 𝑦0 𝑖 = 𝑚 + 1, . . . , 𝑛

(1.10)

where 𝜀𝑖 ∼ 𝑁(0, 𝜎2) is the model error term, 𝛽 is a vector of regression coefficients
corresponding to unknown parameters to be estimated, and x𝑖 is a vector containing the
covariate values. Observe that 𝑦0 given in (2.1) is a prefixed limiting value that makes the
response of the regression model to be limited (or censored), as mentioned by Tobin [1958].

Tobit models rely on the normality assumption. Proposals of Tobit models that
relax this assumption are extremely important, since it is of common knowledge that most
of the data available in the real world are often well modeled by non-normal distributions.
A number of authors have noticed that the asymmetry of data for censored responses and
their kurtosis usually are different from the expected for a normal distribution, so that
more flexible Tobit models are needed. The interested reader is referred to Barros et al.,
2010, 2016, Arellano-Valle et al., 2012, Chib, 1992, Martínez-Flórez et al., 2013, Leiva et al.,
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2007, Villegas et al., 2011, Moulton and Halsey, 1995, Amemiya, 1984, Thorarinsdottir
and Gneiting, 2010, Desousa, 2016 for some works related to non-normal Tobit models.

1.2 Motivation

Mixture models provide a way to model time to failure in various situations where a
single parametric probability density is inadequate to correctly describe the heterogeneity
of the data. In the medical field, mixture models are applied, for example, in studies of
diseases with multiple stages of development, where the time to failure at each stage is
modeled by a different parametric family (see e.g. Boag [1949]) or when a proportion
of patients recovering after treatment can be defined and estimated (see, for example,
[De Angelis et al., 1999]. Mixture models allow one to build probabilistic models in a wide
variety of phenomena in various fields of knowledge, e.g., engineering, economics [Mosler,
2003] and hydrology, among others (see, Titterington et al. [1985], McLachlan and Peel
[2000]).

Interest in these models has increased in survival analysis, especially in studies
related to cancer treatment. In general, survival analysis models assume that all individuals
in the population studied are susceptible to the event of interest and will eventually
experience the event if follow-up is long enough. These data can arise from clinical trials
in which, even after prolonged follow-up, no further events of interest are observed. Some
people in the population may be considered cured (or not susceptible). In recent years,
there has been growing interest in modeling survival data for long-term survivors.

Most work has focused on the mixture model with cure fraction, where it is assumed
that the study population is a mixture of susceptible individuals who experience the event
of interest and individuals who will never experience that event. These individuals are not
at risk with respect to the event of interest and are considered immune, non-susceptible,
or cured [Maller and Zhou, 1996]. In light of this, estimating the proportion of cured has
also become a highly relevant objective. The works presented by Boag [1949] and Berkson
and Gage [1952], introduced the standard mixture model, which formed the basis of what
came to be called the long-term survival model or the survival model with fraction of cure.
Different approaches, parametric and nonparametric, have been considered as a model for
the proportion of immune (see, for example, Haybittle, 1965, Farewell, 1982, Tsodikov,
1998, Price and Manatunga, 2001, Cancho and Bolfarine, 2001, Tsodikov et al., 2003, Yu
et al., 2004, Yin and Ibrahim, 2005, Lambert et al., 2006, Lu, 2010, Othus et al., 2012,
Achcar et al., 2012, 2013, Fernandes, 2014).
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1.3 Goals

The main objective of this thesis is in the definition, characterization and compar-
isons of mixture models in survival analysis for left-censored data, extending the number
of possible marginal distributions for its different components. The specific goals are:

• To introduce Tobit-Weibull models as well the main mathematical properties and
inferences under a Bayesian approach using MCMC methods to get the posterior
summaries of interest.

• To provide different analyses for data with left censoring scheme using the proposed
model and comparisons with other existing model approaches.

• To use statistical softwares (R and OpenBUGS), for reproducible research where the
computer codes are available for other researchers working with this class of models.

1.4 Organization of chapters

The thesis is organized as follows: In Chapter 2, it is presented our first study about
Tobit-Weibull model based on a mixture approach to analyze environment data under
left-censoring scheme. The dataset considered in this study is related to ammonia nitrogen
concentrations (in mg/L) in rivers located in the Washington State in the period ranging
from 2011 to 2016. Also, simulation studies were carried out to illustrate the performance
of the parameter estimators of the proposed model. As expected, the results showed that
the Tobit-Weibull model could be useful to describe the behavior of the ammonia nitrogen
concentrations as well to predict the probabilities of those concentrations.

In Chapter 3, it is presented the bivariate Tobit-Weibull model under a hierarchical
Bayesian analysis of a stellar astronomy dataset. A frailty or latent variable is considered
to capture the possible correlation between the bivariate responses for the same sampling
unit. The posterior summaries of interest are obtained using existing (MCMC) methods.
A comparison of the two models using the different likelihood approaches (Weibull or
Weibull-Tobit likelihoods) also is discussed in the application.

In Chapter 4, it is presented the use of the proposed models in other fields of study
as, for example, medical data analysis. To accomplish our goal, we considered two datasets:
cancer survival data and vacine data. In this way, using a left-censored medical data related
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to differentiated thyroid cancer, we fitted the Tobit-Weibull models in two ways: assuming
the data as univariate and bivariate. For instance, the dataset consists in 91 patients
and was used by López et al. [2014] in a descriptive study to evaluate the relationship
between the initial thyroglobulin levels and the presence of recurrence of cancer one year
after receiving treatment. For the second dataset, the goal of the study was to investigate
that the higher titer vaccines could effectively immunize infants as young as 6 months of
age. Neutralization antibody assays were performed in children at 12 months of age, the
dataset was used by Moulton and Halsey [1995].

In Chapter 5, the Tobit-Weibull model in the presence of some covariates with linear
and quadratic effects, under left censoring scheme, is presented. The data set considered is
related to total daily rainfall collected at a climate station located in the city of São Paulo,
Brazil, in the period from 2007 to 2021. Under a Bayesian approach using Markov Chain
Monte Carlo methods to obtain the posterior summaries of interest, we also simultaneously
used a logistic regression model for the occurrence (or not) of daily rainfall over the
follow-up time period. Other climate variables such as daily mean atmospheric pressure,
daily mean temperature, and daily mean humidity are also analyzed over the follow-up
time period.

In Chapter 6, are presented Tobit-generalized Weibull models in the presence of
covariates and excess zeros. A special application of the proposed models is considered
with daily rainfall data obtained from a climate station in the city of São Paulo, Brazil
over the period 2007 to 2021.

Finally, Chapter 7 end this thesis with general conclusions on all studies presented
here from where reinforce the fact that the search of appropriate statistical model could
be extremely difficult depending on the censoring structure of the lifetime data. However,
the proposed methodology could be very useful in the medical data analysis in presence of
left-censored scheme.
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Chapter 2

Environmental data under a left-censoring
mechanism: An application to river ammonia
nitrogen concentrations using Tobit-Weibull

model

2.1 Introduction

Survival data, lifetime data, failure time data, or time-to-event data are terms used
to describe data that measure the time to the occurrence of some event which arises in a
number of applied fields. In medical research, the events of interest might be, for example,
the response time to a treatment or length of stay in the hospital. In reliability analysis,
the event of interest can be related to the time until a machine shuts down. Survival
models can also be used in other applications that do not involve "time to event", for
example, in water quality studies to check if the water is suitable for human consumption;
in medical studies to check the levels of a certain substance increased/decreased in the
blood after a treatment. In these two cases, survival models can be used because of the
asymmetry of the distribution, and also because they have an important feature of survival
analysis, which is censoring.

Censoring in these cases is common because the response variable is measured
by analytical instruments. For example, in water quality studies, censoring can occur
when the level of a chemical trait in a sample is less than the "detection limit" of the
analytical instrument used. Such values are reported as "less than detectable", i.e. there is
a measurement, but its low level has prevented the reporting of a quantitative value. Such
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observations are treated as left censoring.

This Chapter it is presented our first study about Tobit-Weibull model based on a
mixture approach to analyze environment data under left-censoring scheme. It is organized
as follows: In Sections 2.2 the Tobit model and the Tobit-Weibull model are presented
and some associated inference method. Section 2.3 reports the results from a simulation
study done to evaluate the performance of the proposed estimation procedure. Section 2.4
presents an application with a real water river quality dataset related to the concentrations
(mg/L) of ammonia nitrogen (NH3-N) in the rivers located in the Washington state, USA,
in a specified period of time, between the years of 2011 and 2016, where the response of
interest is the amount of ammonia (NH3-N). Finally, Section 2.5 concludes the paper with
some comments and remarks.

2.2 Materials and Methods

Tobit Models for Left-Censored Data

Let 𝑌 = (𝑌1, . . . , 𝑌𝑚, 𝑌𝑚+1, . . . , 𝑌𝑛)⊤ be a sample of size 𝑛, that is, independent
random variables but not necessarily independent identically distributed. Assume that this
sample includes 𝑚 left-censored observations and 𝑛 − 𝑚 observed (complete or uncensored)
data. Thus, such censoring scheme can be visualized under a regression setting with a
censored response 𝑌 *, which is a (unobserved) latent variable. Hence, the 𝑚 censored data
(unobserved) correspond to the values of 𝑌 * less than or equal to a threshold point 𝑦0

(censoring to the left), so that all of these data take the value 𝑦0. The other 𝑛 − 𝑚 data
(observed) are related to values of 𝑌 * greater than 𝑦0, which can be described by a linear
regression structure of the type x⊤

𝑖 𝛽. This modeling approach may be formulated by the
normal Tobit model with censored response to the left as

𝑌𝑖 =

⎧⎪⎨⎪⎩𝑦0, 𝑌 *
𝑖 ≤ 𝑦0 𝑖 = 1, . . . , 𝑚

𝑌 *
𝑖 = x⊤

𝑖 𝛽 + 𝜀𝑖, 𝑌 *
𝑖 > 𝑦0 𝑖 = 𝑚 + 1, . . . , 𝑛

(2.1)

where 𝜀𝑖 ∼ 𝑁(0, 𝜎2) is the model error term, 𝛽 is a vector of regression coefficients
corresponding to unknown parameters to be estimated, and x𝑖 is a vector containing the
covariate values. Observe that 𝑦0 given in (2.1) is a prefixed limiting value that makes the
response of the regression model to be limited (or censored), as mentioned by Tobin [1958].

Tobit models rely on the normality assumption. Proposals of Tobit models that
relax this assumption are extremely important, since it is of common knowledge that most
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of the data available in the real world are often well modeled by non-normal distributions.
A number of authors have noticed that the asymmetry of data for censored responses and
their kurtosis usually are different from the expected for a normal distribution, so that
more flexible Tobit models are needed. The interested reader is referred to Barros et al.,
2010, 2016, Arellano-Valle et al., 2012, Chib, 1992, Martínez-Flórez et al., 2013, Leiva et al.,
2007, Villegas et al., 2011, Moulton and Halsey, 1995, Amemiya, 1984, Thorarinsdottir
and Gneiting, 2010, Desousa, 2016 for some works related to non-normal Tobit models.

Remark 1. The Tobit and probit models are similar in many ways. Each one of them
have the same structural model, just different measurement models that is, how the 𝑌 * is
translated into the observed 𝑦 is different in each model. In the Tobit model, we know the
value of 𝑌 * when 𝑌 * > 𝑦0, while in the probit model we only know if 𝑌 * > 𝑦0. Since there
is more information in the Tobit model, the estimates of the regression parameters 𝛽’s
should be more efficient. The interested reader is referred to [Long et al., 1997] for details
about logit, probit and Tobit models.

Tobit-Weibull Model

From the censoring indicator defined by (1.1), we have, 𝛿 = 1 if T is a complete
observation (𝑌 > 𝐶) and 𝛿 = 0 if T is a left-censored observation (𝑌 ≤ 𝐶). If we have a
complete observation, that is, (𝑌 > 𝐶), let us assume a truncated Weibull distribution
with probability density function given by,

𝑓(𝑡 | 𝑇 > 𝐶) = 𝑓0(𝑡)
𝑆0(𝑡)

(2.2)

where

𝑓0(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
and 𝑆0(𝑡) = 𝑃 (𝑇 > 𝑡) = exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃

where 𝑡 > 0 and 𝛼 > 0, 𝛽 > 0.

Remark 2. The baseline survival function given by

𝑆0(𝐶) = 𝑃 (𝑇 > 𝐶) = exp
{︃

−
(︃

𝐶

𝛽

)︃𝛼}︃

where 𝐶 is a known constant.

Let us assume the mixture model, given by the probability density function

𝑓(𝑡) = 𝑝 + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶) (2.3)



Chapter 2. Environmental data under a left-censoring mechanism: An application to river ammonia
nitrogen concentrations using Tobit-Weibull model 28

where 𝑝 is the mixing parameter,

𝑓0(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃

and
𝑆0(𝐶) = exp

{︃
−
(︃

𝐶

𝛽

)︃𝛼}︃
.

For the proposed model, we could observe that:

• If 𝑇 ≤ 𝐶, then

𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) = 𝑝 + (1 − 𝑝)
∫︁ ∞

𝐶

𝑓0(𝑢)𝑑𝑢

𝑆0(𝐶) = 𝑝 + (1 − 𝑝)𝑆0(𝐶)
𝑆0(𝐶) = 𝑝 + (1 − 𝑝) = 1

• If 𝑇 > 𝐶, then

𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) = 1 − 𝑃 (𝑇 ≤ 𝐶) = 1 − {𝑃 (0 < 𝑇 < 𝐶) + 𝑃 (𝐶 < 𝑇 < 𝑡)}

= 1 −
{︃

𝑝 + (1 − 𝑝)
∫︁ 𝑡

𝐶

𝑓0(𝑢)𝑑𝑢

𝑆0(𝐶)

}︃

where ∫︁ 𝑡

𝐶
𝑓0(𝑢)𝑑𝑢 = 𝑃 (𝑇 > 𝐶) − 𝑃 (𝑇 > 𝑡) = 𝑆0(𝐶) − 𝑆0(𝑡).

Thus,

𝑆(𝑡) = 1 −
{︃

𝑝 + (1 − 𝑝)
𝑆0(𝐶) [𝑆0(𝐶) − 𝑆0(𝑡)]

}︃
= 1 −

{︃
𝑝 + (1 − 𝑝) − [(1 − 𝑝) 𝑆0(𝑡)

𝑆0(𝐶) ]
}︃

.

That is,
𝑆(𝑡) = (1 − 𝑝) 𝑆0(𝑡)

𝑆0(𝐶) .

In summary, the survival function of the proposed Tobit-Weibull model is given by

• If 𝑇 ≤ 𝐶, 𝑆(𝑡) = 1

• If 𝑇 > 𝐶, 𝑆(𝑡) = (1 − 𝑝) 𝑆0(𝑡)
𝑆0(𝐶)

where 𝑆0(𝑡) = exp
{︁
−
(︁

𝑡
𝛽

)︁𝛼}︁
and 𝑆0(𝐶) = exp

{︁
−
(︁

𝐶
𝛽

)︁𝛼}︁
.
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Inference Method for Tobit-Weibull Model

The likelihood function for the parameters 𝑝, 𝛼 and 𝛽 based on one observation is
given from (2.3) by

𝐿(𝑝, 𝛼, 𝛽) = 𝑝 + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶) (2.4)

where
𝑓0(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
and

𝑆0(𝐶) = exp
{︃

−
(︃

𝐶

𝛽

)︃𝛼}︃
.

Now, with the censoring information (1.1), let us define a binary variable 𝛿 = 1 if 𝑇 is a
complete observation (𝑇 > 𝐶) and 𝛿 = 0 if T is a left-censored observation (𝑇 ≤ 𝐶) with
conditional probabilities given by

𝑃 (𝛿 = 0 | 𝑝, 𝛼, 𝛽, 𝑡) = 𝑝

𝑝 + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

(2.5)

which could be assumed as a Bernoulli trial. In this way, the likelihood function for 𝑛

observations, 𝐿(𝑝, 𝛼, 𝛽; 𝑡), is simply given by

𝐿(𝑝, 𝛼, 𝛽; 𝑡) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

[︃
(1 − 𝑝) 𝑓0(𝑡𝑖)

𝑆0(𝐶)

]︃𝛿𝑖

. (2.6)

Now, assuming the truncated Weibull distribution, the likelihood and the log-
likelihood functions for the proposed Tobit-Weibull model 𝑝, 𝛼 and 𝛽 are given respectively
(from (2.6)) by

𝐿(𝑝, 𝛼, 𝛽; 𝑡) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

⎡⎣(1 − 𝑝)
𝛼

𝛽𝛼 𝑡𝛼−1
𝑖 exp

{︁
−
(︁

𝑡𝑖

𝛽

)︁𝛼}︁
exp

{︁
−
(︁

𝐶
𝛽

)︁𝛼}︁
⎤⎦𝛿𝑖

and

ℓ(𝑝, 𝛼, 𝛽; 𝑡) =
𝑛∑︁

𝑖=1

⎧⎨⎩(1 − 𝛿𝑖) log(𝑝) + 𝛿𝑖

⎧⎨⎩ log(1 − 𝑝) + log(𝛼) +

+ (𝛼 − 1) log(𝑡𝑖) − 𝛼 log(𝛽) −
(︃

𝑡𝑖

𝛽

)︃𝛼

+
(︃

𝐶

𝛽

)︃𝛼
⎫⎬⎭
⎫⎬⎭.

For a Bayesian approch of the proposed models, we use MCMC simulation methods,
based on both Gibbs and Metropolis–Hastings sampling, this approach is better known
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as Metropolis-within-Gibbs algorithms, to get the posterior summaries of interest (see,
for example, Chib and Greenberg, 1995, Gelfand and Smith, 1990, Gelman et al., 1995,
Geman and Geman, 1984, Gilks et al., 1995). From where it as assumed Gamma(𝑎, 𝑏)
prior distributions for the parameters 𝛼 and 𝛽 with 𝑎 and 𝑏 known hyperparameters and a
Beta(𝑒, 𝑓) distribution for 𝑝 with 𝑒 and 𝑓 known hyperparameters. Moreover, in presence
of a vector of covariates x = (𝑥1, 𝑥2, . . . , 𝑥𝑝)⊤ let us assume a regression model for the
scale parameter 𝛽 given by

𝛽𝑖 = exp(𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2 + . . . + 𝛾𝑝𝑥𝑝)

where 𝛾 = (𝛾0, 𝛾1, 𝛾2, . . . , 𝛾𝑝)⊤ is the regression parameter vector associated to covariate
vector x = (𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑝)⊤ and a logistic model for the parameter 𝑝, given by

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = log
(︃

𝑝𝑖

1 − 𝑝𝑖

)︃
= 𝜙0 + 𝜙1𝑥1 + 𝜙2𝑥2 + . . . + 𝜙𝑝𝑥𝑝. (2.7)

In this case, it as assumed a Gamma(𝑎, 𝑏) prior distributions for the parameter
𝛼, Normal(𝑐, 𝑑2) prior distributions for the regression parameters 𝛾0, 𝛾1, 𝛾2, . . . , 𝛾𝑝 with 𝑐

and 𝑑 known hyperparameters and Normal(𝑒, 𝑓 2) prior distributions for the regression
parameters 𝜙0, 𝜙1, 𝜙2, . . . , 𝜙𝑝 with 𝑒 and 𝑓 known hyperparameters.

2.3 A Simulation Study

In Section 2.2, it was considered a Bayesian approach as inference method to
get the estimators of the parameters of the proposed models assuming approximately
non-informative priors. Alternatively, it was used maximum likelihood estimation (MLE)
methods to get the estimators for the parameters of interest. In this section, it is presented
the results of a simulation study to evaluate the performance of a MLE estimation procedure
to get the estimators of the proposed models assuming different scenarios and different
sample sizes.

In this way, we present a Monte Carlo simulation study with 1000 replications
to evaluate the performance of the MLE of the Weibull truncated model parameters,
using the R Software [R Development Core Team, 2009]. The sample sizes considered
are 𝑛 = 50, 100, 150, 200, 250, 300, with parameters 𝛼 = 0.5, 1.0, 𝛽 = 0.5, 1.0, 4.0 and
censoring proportions equal to 𝑝 = 0.1, 0.3, 0.5, 0.7. We compute the empirical bias and
mean squared errors (MSE) in order to present the performance evaluation. Tables 1, 2, 3
and 4 present the obtained results for the indicated sample sizes, parameters values and
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censoring proportions. Note that in all tables, the empirical bias and MSE decrease when
𝑛 increases, as expected.

Table 1 – Estimated BIAS/MSE for the MLE estimators of the parameters 𝛼, 𝛽 and 𝑝
considering 𝛼 = 0.5, 𝛽 = 0.5, 𝑐 = 1.0 and proportion of censoring given by 𝜌

𝜌 = 0.1 𝜌 = 0.3
Bias MSE Bias MSE

n 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝
50 0.3704 0.0759 0.0022 0.7115 0.0599 0.0018 0.4334 0.0958 -0.0031 0.8888 0.0830 0.0046
100 0.2096 0.0387 -0.0002 0.3494 0.0281 0.0009 0.2482 0.0496 -0.0024 0.4295 0.0359 0.0022
150 0.1443 0.0245 0.0001 0.2177 0.0172 0.0006 0.1670 0.0311 -0.0004 0.2678 0.0208 0.0015
200 0.1201 0.0210 -0.0001 0.1616 0.0123 0.0004 0.1252 0.0212 0.0001 0.2009 0.0155 0.0011
250 0.0927 0.0161 -0.0003 0.1239 0.0093 0.0004 0.1113 0.0199 0.0002 0.1692 0.0129 0.0009
300 0.0733 0.0123 -0.0007 0.1028 0.0077 0.0003 0.0912 0.0157 0.0002 0.1380 0.0104 0.0007

𝜌 = 0.5 𝜌 = 0.7
Bias MSE Bias MSE

n 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝
50 0.5282 0.1423 -0.0016 1.1664 0.1409 0.0048 0.8508 0.2704 0.0011 2.1061 0.3181 0.0042
100 0.3227 0.0668 -0.0015 0.6192 0.0554 0.0024 0.4882 0.1207 0.0000 1.0112 0.1002 0.0021
150 0.2187 0.0421 -0.0002 0.3885 0.0334 0.0016 0.3487 0.0764 0.0001 0.6586 0.0579 0.0014
200 0.1869 0.0370 0.0003 0.2970 0.0244 0.0012 0.2754 0.0587 -0.0010 0.4831 0.0428 0.0010
250 0.1481 0.0277 0.0004 0.2376 0.0191 0.0010 0.2443 0.0489 -0.0004 0.3982 0.0332 0.0009
300 0.1246 0.0233 -0.0001 0.1888 0.0149 0.0008 0.2202 0.0436 -0.0002 0.3279 0.0267 0.0007

Table 2 – Estimated BIAS/MSE for the MLE estimators of the parameters 𝛼, 𝛽 and 𝑝
considering 𝛼 = 1.0, 𝛽 = 0.5, 𝑐 = 1.0 and proportion of censoring given by 𝜌

𝜌 = 0.1 𝜌 = 0.3
Bias MSE Bias MSE

n 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝
50 0.4539 0.0666 0.0011 1.2760 0.0393 0.0017 0.4843 0.0716 0.0011 1.6041 0.0551 0.0044
100 0.2548 0.0339 -0.0003 0.6705 0.0182 0.0008 0.3072 0.0403 0.0007 0.8626 0.0246 0.0023
150 0.1802 0.0227 -0.0004 0.4467 0.0112 0.0006 0.2031 0.0260 -0.0003 0.5756 0.0155 0.0015
200 0.1243 0.0152 -0.0003 0.3366 0.0082 0.0004 0.1541 0.0209 -0.0004 0.4411 0.0118 0.0011
250 0.1024 0.0131 -0.0006 0.2659 0.0065 0.0004 0.1208 0.0161 0.0001 0.3336 0.0089 0.0009
300 0.0822 0.0104 -0.0005 0.2343 0.0057 0.0003 0.1130 0.0150 0.0009 0.2805 0.0073 0.0008

𝜌 = 0.5 𝜌 = 0.7
Bias MSE Bias MSE

n 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝
50 0.6355 0.1016 -0.0004 2.2790 0.0851 0.0051 1.0053 0.1958 -0.0025 4.0277 0.1995 0.0042
100 0.3652 0.0518 -0.0020 1.0917 0.0337 0.0025 0.6073 0.0949 -0.0005 2.0067 0.0700 0.0022
150 0.2614 0.0362 -0.0019 0.7328 0.0208 0.0017 0.4371 0.0655 0.0000 1.3122 0.0434 0.0014
200 0.2049 0.0274 -0.0008 0.5617 0.0152 0.0013 0.3572 0.0508 -0.0001 1.0346 0.0311 0.0011
250 0.1759 0.0240 -0.0004 0.4666 0.0127 0.0011 0.2890 0.0403 -0.0005 0.7860 0.0228 0.0009
300 0.1535 0.0214 0.0004 0.3963 0.0106 0.0009 0.2320 0.0315 0.0001 0.6091 0.0176 0.0007
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Table 3 – Estimated BIAS/MSE for the MLE estimators of the parameters 𝛼, 𝛽 and 𝑝
considering 𝛼 = 1.0, 𝛽 = 1.0, 𝑐 = 1.0 and proportion of censoring given by 𝜌

𝜌 = 0.1 𝜌 = 0.2
Bias MSE Bias MSE

n 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝
50 0.0968 0.1320 0.0019 0.2438 0.1624 0.0017 0.1187 0.1653 -0.0010 0.3076 0.2233 0.0041
100 0.0311 0.0516 0.0014 0.1343 0.0646 0.0009 0.0522 0.0786 -0.0014 0.1790 0.0945 0.0021
150 0.0223 0.0353 0.0011 0.0982 0.0422 0.0006 0.0391 0.0567 -0.0008 0.1282 0.0627 0.0015
200 0.0190 0.0279 0.0008 0.0740 0.0313 0.0005 0.0251 0.0420 -0.0001 0.0994 0.0455 0.0011
250 0.0116 0.0211 0.0006 0.0625 0.0260 0.0004 0.0223 0.0337 0.0000 0.0848 0.0363 0.0009
300 0.0069 0.0154 0.0002 0.0523 0.0214 0.0003 0.0240 0.0316 0.0008 0.0750 0.0314 0.0008

𝜌 = 0.3 𝜌 = 0.5
Bias MSE Bias MSE

n 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝
50 0.1465 0.2107 0.0046 0.3886 0.3487 0.0050 0.2319 0.4011 0.0006 0.5251 0.7799 0.0038
100 0.0646 0.0979 0.0024 0.2402 0.1439 0.0025 0.0996 0.1668 -0.0008 0.3286 0.2632 0.0021
150 0.0386 0.0582 0.0014 0.1595 0.0786 0.0016 0.0660 0.1152 0.0012 0.2661 0.1767 0.0014
200 0.0338 0.0480 0.0013 0.1258 0.0595 0.0012 0.0624 0.0946 0.0021 0.2099 0.1217 0.0011
250 0.0255 0.0385 0.0012 0.1077 0.0490 0.0010 0.0446 0.0676 0.0011 0.1776 0.0891 0.0008
300 0.0155 0.0289 0.0010 0.0896 0.0393 0.0008 0.0384 0.0591 0.0006 0.1570 0.0767 0.0007

Table 4 – Estimated BIAS/MSE for 𝛼, 𝛽 and 𝑝 considering 𝛼 = 1.0, 𝛽 = 4.0, 𝑐 = 1.0 and
proportion of censoring given by 𝜌

𝜌 = 0.1 𝜌 = 0.3
Bias MSE Bias MSE

n 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝
50 -0.0137 0.4888 -0.0003 0.0284 2.6509 0.0018 -0.0249 0.5725 0.0019 0.0407 3.5365 0.0041
100 -0.0069 0.2316 -0.0002 0.0129 1.1009 0.0009 -0.0177 0.2515 0.0002 0.0200 1.5571 0.0020
150 -0.0064 0.1425 -0.0005 0.0083 0.7108 0.0006 -0.0140 0.1441 -0.0016 0.0124 0.9702 0.0014
200 -0.0035 0.1244 -0.0010 0.0060 0.5484 0.0004 -0.0103 0.1093 -0.0008 0.0090 0.7095 0.0010
250 -0.0015 0.1113 -0.0008 0.0046 0.4420 0.0003 -0.0098 0.0726 -0.0011 0.0071 0.5671 0.0008
300 -0.0028 0.0762 -0.0011 0.0038 0.3578 0.0003 -0.0085 0.0478 -0.0007 0.0053 0.4454 0.0007

𝜌 = 0.5 𝜌 = 0.7
Bias MSE Bias MSE

n 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝 𝛼̂ 𝛽 𝑝
50 -0.0244 0.8678 -0.0019 0.0523 5.6754 0.0051 -0.0413 1.2999 0.0016 0.0829 11.6471 0.0043
100 -0.0143 0.4650 0.0002 0.0274 2.4039 0.0025 -0.0369 0.5362 0.0017 0.0491 4.0309 0.0020
150 -0.0123 0.2881 0.0005 0.0176 1.5071 0.0017 -0.0243 0.3435 0.0010 0.0289 2.3142 0.0013
200 -0.0120 0.1982 0.0006 0.0132 1.1103 0.0012 -0.0184 0.2467 -0.0003 0.0213 1.5676 0.0010
250 -0.0081 0.1662 0.0000 0.0100 0.8534 0.0009 -0.0149 0.1927 -0.0003 0.0161 1.2318 0.0008
300 -0.0048 0.1491 0.0004 0.0078 0.7052 0.0008 -0.0143 0.1587 -0.0001 0.0140 1.0829 0.0007
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2.4 Data Application: River Ammonia Nitrogen

The Washington State Department of Ecology monitoring team collects water
samples from more than 85 long-term rivers and stream stations with 67 stations classified
as long-term, 8 stations classified as sentinel and 12 stations classified as basin. The
freshwater monitoring team collects 24-hour data for dissolved oxygen, temperature, pH,
and conductivity in many rivers and streams statewide. They also collect monthly data on
bacteria, pH, phosphorus, and more. This data displays long-term trends in stream health
and contributes to watershed studies and water quality improvement plans.

For our analysis, it is considered the concentrations (mg/L) of ammonia nitrogen
(NH3-N) in the rivers located in the Washington state, USA between the years of 2011 and
2016. Also, some risk factors are assumed as, for example, pH, oxygen concentration, nitrite
and nitrate (NO2-NO3) concentration, pressure, temperature, turbidity, among others.
The dataset was obtained from the website https://ecology.wa.gov/. To summarize
the descriptive results, Figure 1 presents some boxplots related to the ammonia nitrogen
concentration and the water parameters grouped by eco region. From the boxplots in
Figure 1, it can be seen that for the eco region 3, Columbia Basin, there is higher variability
in the covariates, nitrogen dioxide and nitrate concentrations, phosphorus (sol reactive)
concentration, dissolved oxygen concentration, water pH, water barometric pressure, water
temperature and total persulfate nitrogen when compared to the other eco regions.
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Figure 1 – Boxplots for the ammonia nitrogen concentration and the water parameters
grouped by Eco Region.

In the sample considered in this study, there are 𝑛 = 3141 observations where 2090
observations are left-censored data in the value 0.010 and 1051 observations are complete
observations (values larger than 0.010). The regions of the United States are assumed in
the regression models considering "dummy" variables denoting the Eco Regions (Cascades
= 1 and 0 for other eco region; Coast R. = 1 and 0 for other regions; Columbia B. = 1
and 0 for other regions; Northerm R. = 1 and 0 for other regions; Puget L. = 1 and 0 for
other regions; the Willamet V. eco region is the reference). From the dataset it is observed
2090/3141 = 0, 6654 or 66, 54% of left-censored data.

Use of the Tobit-Weibull model

For the data analysis, we assumed the proposed model and, as prior distributions,
an approximately non-informative Gamma(0.01, 0.01)prior distribution for 𝛼 and 𝛽 an
informative 𝐵𝑒𝑡𝑎(7, 3) prior distribution for the parameter 𝑝 based on the elicitation of
an informative prior distribution given by Carlin and Louis [2010]. Table 5 presents the
posterior summaries of interest based on the final Gibbs sample of size 3,000 choosen
among every 100 simulated sample (300,000 simulations) and considering a burn-in sample
of size 11,000 to eliminate the initial effects of the parameters in the iterative procedure.
Table 5 also presents the maximum likelihood estimators (MLE) and the 95% confidence
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intervals for the parameters of both assumed models, from where it is observed similar
results as obtained under a Bayesian approach.

Table 5 – Posterior summaries and MLE of interest for the Tobit-Weibull model.

Model Parameter posterior Mean (SD) 95% Credible Interval MLE (SD) 95% Confidence Interval

Tobit-Weibull
𝛼 0.3957 (0.0485) (0.3023; 0.4939) 0.3687 (0.0525) (0.2658, 0.4716)
𝛽 0.0006 (0.0004) (0.0001; 0.0016) 0.0003 (0.0003) (-0.0003, 0.0009)
𝑝 0.6772 (0.0084) (0.6605; 0.6937) 0.6572 (0.0074) (0.6428, 0.6716)

Based on the Bayesian estimates for 𝑝, 𝛼 and 𝛽, we can write the estimated survival
function of the proposed model for the estimation of the survival curve (a common feature
when there is the presence of censoring mechanisms). In this way, assuming the Bayesian
estimates, we have that,

• 𝑆(𝑡) = 1 if 𝑡 ≤ 0.01,

• 𝑆(𝑡) = (1 − 0.6772) exp {−(𝑡0.3957 − 𝑐0.3957)/0.0006} if 𝑡 > 0.01

Now, in order to identify which water covariate affects the response ammonia
nitrogen concentration, a regression approach is considered in the presence of the following
covariates:

• 𝑁𝑂2 − 𝑁𝑂3: nitrogen dioxide and nitrate concentrations;

• OP-DIS: phosphorus (sol reactive) concentration;

• Oxygen(𝑂2): dissolved oxygen concentration

• pH: water pH;

• Press: water barometric pressure;

• Temp: water temperature (in 𝑜𝐶)

• TPN: total persulfate nitrogen;

• TURB: turbidity;

• EcoRegion: Cascades (Eco1), Coast Range (Eco2), Columbia Basin (Eco3), Northerm
Rockies (Eco4), Puget Lowland (Eco5), Willamet Valley (Ref).
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The regression structure for the proposed model, in this case, is based on a linear
model for 𝛽 and a logistic model for 𝑝, and is given by,

𝛽𝑖 = exp(𝛾0 + 𝛾1(𝑁𝑂2 − 𝑁𝑂3)𝑖 + 𝛾2(𝑂𝑃 − 𝐷𝐼𝑆)𝑖 + 𝛾3(𝑂𝑥𝑦𝑔𝑒𝑛)𝑖 + 𝛾4(𝑝𝐻)𝑖 + 𝛾5(𝑃𝑟𝑒𝑠𝑠)𝑖

+ 𝛾6(𝑇𝑒𝑚𝑝)𝑖 + 𝛾7(𝑇𝑃𝑁)𝑖 + 𝛾8(𝑇𝑢𝑟𝑏)𝑖 + 𝛾9(𝐸𝑐𝑜1)𝑖 + 𝛾10(𝐸𝑐𝑜2)𝑖 + 𝛾11(𝐸𝑐𝑜3)𝑖

+ 𝛾12(𝐸𝑐𝑜4)𝑖 + 𝛾13(𝐸𝑐𝑜5)𝑖)

and,

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = log
(︃

𝑝𝑖

1 − 𝑝𝑖

)︃
= 𝜙0 + 𝜙1(𝑁𝑂2 − 𝑁𝑂3)𝑖 + 𝜙2(𝑂𝑃 − 𝐷𝐼𝑆)𝑖 + . . . + 𝜙13(𝐸𝑐𝑜5)𝑖

In this case, an approximately non-informative 𝐺𝑎𝑚𝑚𝑎(0.01, 0.01) prior distri-
bution for the parameter 𝛼, an approximately non-informative 𝑁(0, 100) prior distribu-
tions for the regression parameters 𝛾0, 𝛾1, 𝛾2, . . . 𝛾13 and an approximately 𝑁(0, 100) prior
distributions for the regression parameters 𝜙0, 𝜙1, 𝜙2, . . . , 𝜙13 were assumed for better
computational stability. Table 6, presents the posterior summaries of interest based on
the final Gibbs sample of size 2,000 chosen amongst every 100 simulated sample (200,000
simulations) and considering a burn-in sample of size 11,000 to eliminate the initial effects
of the parameters in the iterative procedure as well the MLE estimator.
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Table 6 – Posterior summaries and MLE of interest for the Tobit-Weibull model with
regression structure

Parameter Mean (SD) 95% Credible Interval MLE (SD) 95% Confidence Interval
Shape 𝛼 0.7308 (0.0662) (0.5955; 0.8579) 0.6944 (0.0635) (0.5699; 0.8188)

𝛾0 (Intercept) -1.1747 (1.0456) (-2.8703; 0.7495) 1.4488 (20.2119) (-38.1706; 41.0682)
𝛾1 (NO2 − 𝑁𝑂3) -2.0140 (0.4417) (-2.7485; -1.0314) -3.5631 (0.5430) (-4.6274; -2.4988)
𝛾2 (OP-DIS) 2.3763 (0.8741) (0.6540; 4.0682) 0.2613 (0.0686) (0.1268; 0.3957)
𝛾3 (Oxygen) -0.1584 (0.0341) (-0.2274; -0.0908) -0.1986 (0.0568) (-0.3100; -0.0872)
𝛾4 (pH) 0.0225 (0.1207) (-0.2393; 0.2175) -0.0019 (0.1788) (-0.3524; 0.3486)
𝛾5 (Press) -0.0034 (0.0014) (-0.0061; -0.0010) -0.7554 (3.0859) (-6.8044; 5.2936)

Scale 𝛾6 (Temp) -0.0358 (0.0085) (-0.0520; -0.0192) -0.0468 (0.0150) (-0.0763; -0.0173)
𝛾7 (TPN) 2.0792 (0.4199) (1.1693; 2.7756) 3.4159 (0.5340) (2.3692; 4.4626)
𝛾8 (Turb) 0.0023 (0.0004) (0.0016; 0.0032) 0.1782 (0.0323) (0.1149; 0.2415)
𝛾9 (Eco1) -0.2233 (0.4309) (-1.0184; 0.6207) 1.6020 (0.6293) (0.3685; 2.8355)
𝛾10 (Eco2) 0.0983 (0.4188) (-0.7093; 0.8459) 1.7089 (0.5947) (0.5432; 2.8747)
𝛾11 (Eco3) -0.1177 (0.4145) (-0.8950; 0.6741) 1.1566 (0.6002) (-0.0199; 2.3331)
𝛾12 (Eco4) -0.5037 (0.4429) (-1.2704; 0.3664) 1.2918 (0.6591) (-0.0001; 2.5838)
𝛾13 (Eco5) 0.2307 (0.4010) (-0.5488; 0.9676) 1.5901 (0.5839) (0.4456; 2.7345)
𝜙0 (Intercept) 0.8275 (0.0491) (0.7369; 0.8916) 0.8483 (21.8122) (-41.9079; 43.6046)
𝜙1 (NO2 − 𝑁𝑂3) 0.1784 (0.0187) (0.1266; 0.2029) 11.2456 (1.1454) (9.0003; 13.4909)
𝜙2 (OP-DIS) -1.4587 (0.1436) (-1.7466; -1.1714) -0.9873 (0.0737) (-1.1317; -0.8428)
𝜙3 (Oxygen) 0.0113 (0.0009) (0.0095; 0.0134) 0.2307 (0.0687) (0.0960; 0.3654)
𝜙4 (pH) -0.0001 (0.0026) (-0.0052; 0.0049) 0.6544 (0.1854) (0.2910; 1.0179)
𝜙5 (Press) -0.0004 (0.0001) (-0.0005; -0.0002) -1.6395 (3.3034) (-8.1149; 4.8360)

Mixing 𝜙6 (Temp) 0.0012 (0.0003) (0.0005; 0.0018) -0.0203 (0.0188) (-0.0571; 0.0165)
𝜙7 (TPN) -0.1718 (0.0170) (-0.1958; -0.1246) -11.3945 (1.1103) (-13.5709; -9.2181)
𝜙8 (Turb) -0.0002 (0.0000) (-0.0002; -0.0002) -0.1889 (0.0359) (-0.2591; -0.1186)
𝜙9 (Eco1) 0.0087 (0.0071) (-0.0009; 0.0251) 0.1822 (0.4592) (-0.7179; 1.0823)
𝜙10 (Eco2) -0.0088 (0.0080) (-0.0229; 0.0082) -0.6544 (0.4266) (-1.4905; 0.1818)
𝜙11 (Eco3) -0.0022 (0.0081) (-0.0136; 0.0175) 0.0071 (0.4575) (-0.8897; 0.9039)
𝜙11 (Eco4) -0.0116 (0.0096) (-0.0280; 0.0100) -0.6179 (0.5177) (-1.6328; 0.3969)
𝜙13 (Eco5) -0.0187 (0.0073) (-0.0301; -0.0005) -0.6092 (0.4193) (-1.4311; 0.2126)

Based on the results assuming the Bayesian estimates in Table 6, we could observe
that the ammonia nitrogen is affected by 𝑁𝑂2 − 𝑁𝑂3 concentration (𝛾1), phosphorus
concentration (𝛾2), dissolved oxygen concentration (𝛾3), water barometric pressure (𝛾5),
water temperature (𝛾6), total persulfate nitrogen (𝛾7), turbidity (𝛾8) assuming the linear
structure; and 𝑁𝑂2 − 𝑁𝑂3 concentration (𝜙1), phosphorus concentration (𝜙2), dissolved
oxygen concentration (𝜙3), water barometric pressure (𝜙5), water temperature (𝜙6), total
persulfate nitrogen (𝜙7), turbidity (𝜙8), Puget Lowland eco region (𝜙13) assuming logistic
structure.

Assuming the linear structure which is our interest, it is observe negative relation-
ships for dissolved oxygen and water temperatures, which implies that when dissolved
oxygen concentration and water temperature decreases, the ammonia nitrogen increases.
This result is in accord to Fatimah et al. [2017]. Same behavior occurs to the nitrogen
dioxide and nitrate concentrations, phosphorus concentration and water barometric pres-
sure, implying that the extent to which these covariates decrease, the ammonia nitrogen
increases. Now, for total persulfate nitrogen and turbidity, there is a positive relationship
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that implies that when these covariates increase, the ammonia nitrogen also increases.

The results, assuming the logistic structure is contrary to the linear structure
assuming the previous variables related, that is, if there is a negative relationship, then by
the logistic structure this relationship becomes positive and vice versa. Both results are
important since its depends on the parameter structure of the investigation. If our goal is
the scale parameter, then, we assume the results for linear structure; if the parameter of
interest is the mixing parameter, then we assume the results for logistic structure.

2.5 Concluding remarks

The main goal of this paper was to propose a new Tobit-Weibull model to identify
the main risk factors that affects the ammonia nitrogen concentration for Washington State
rivers. For that, it has been considered a regression structure based on linear and logistic
models which the main advantage of the this model is the dynamic of the, iteration process
and computational stability, to describe the behavior of ammonia nitrogen concentrations.
Our approach was based on adopting the month’s sequential label from which the ammonia
nitrogen concentrations were taken as response.

Moreover, the inclusion of the risk factors provided more accurate model fits; whose
underlying results may offer suggestions on how the concentrations for ammonia nitrogen are
affected in the considered period and its relationship as highlighted for the significant factors
found in the analysis: 𝑁𝑂2 − 𝑁𝑂3 concentration, phosphorus concentration, dissolved
oxygen concentration, water barometric pressure, water temperature, total persulfate
nitrogen, turbidity, Puget Lowland eco region. Nevertheless, the present methodology can
also be applied to data from other rivers to provide a comprehensive understanding of the
risk factors that affect the ammonia nitrogen concentration, which may alert authorities
to keep restrictive strategies to control the advance of this kind of water pollution.
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Chapter 3

Bayesian analysis for bivariate Weibull
distribution under left-censoring scheme

3.1 Introduction

Many parametric regression models were introduced in the literature to analyse
lifetime data in presence of censored data (see for example, [Lawless, 1982]). A very popular
semi-parametric regression model extensively used in survival data analysis was introduced
by Cox [1972] assuming proportional hazards (see also, Cox and Oakes, 1984, Collett,
2003, Kalbfleisch and Prentice, 2002, Klein and Moeschberger, 1997, Lee and Wang, 2003).
In all these models, independent observations are usually assumed, that is, the sample
units are not related to each other.

In many applications, especially in medical survival analysis studies, it is possible
to have dependent bivariate responses (two or more measurements in the same unit).
To capture the correlation between two or more survival times, we could consider the
introduction of "frailties" or latent variables (Clayton and Cuzick, 1985, Oakes, 1986, 1989,
dos Santos and Achcar, 2011, McGilchrist and Aisbett, 1991, Shih, 1992). Random effects
models are largely used to model heterogeneity as the frailty model introduced by Vaupel
[1986] used in multivariate survival analysis.

Other possibility in the statistical analysis of bivariate lifetime data is to assume
existing parametric probability bivariate lifetime distributions as bivariate exponential,
bivariate Weibull, bivariate Lindley or bivariate log-normal distributions (see for example,
Gumbel, 1960, Arnold and Strauss, 1988, Block and Basu, 1974, Hougaard, 1986, Marshall
and Olkin, 1967, 1985, Downton, 1970, Hawkes, 1972, de Oliveira et al., 2018, Oliveira
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et al., 2019, de Oliveira et al., 2021). Other possibility is to use bivariate distributions
derived from copula functions (Nelsen, 2007, Trivedi and Zimmer, 2007, Sklar, 1959).

As an example, and motivation for this study, we consider a stellar astronomy
bivariate dataset https://www.iiap.res.in/astrostat/School08/datasets/censor.
html in presence of left censored observations introduced by Santos et al. [2004] (see
dataset in Appendix 7 at the end of the manuscript). In this example, the authors seek
differences in the properties of stars that do and do not host extrasolar planetary systems
where a previously identified sample of objects (stars, galaxies, quasars, X-ray sources, etc.)
are observed at some new wavelength or for some new property. This dataset is related to
the birth and death of stars where many questions still exist, despite the scientists now
understand over 90% of a star’s life [Collins, 1989, Chiosi, 1998].

Some of the target objects are detected and the value of the new property is
measured, while others are not detected. These are assigned as an upper limit to the
value of the property based on the uncertainty of the unsuccessful measurement, that is,
we have the presence of left-censored data. The probability to find a planet is a steeply
rising function of the star’s metal content, but it is unclear whether this arises from the
metallicity at birth or from later accretion of planetary bodies. The study introduced by
Santos et al. [2004] focuses on two responses associated to the same star: the abundances
of the light elements beryllium (Be) and lithium (Li) that are thought to be depleted by
internal stellar burning, so that excess of Be and Li should be present only in the planet
accretion scenario of metal enrichment. In this way, we have the presence of left censored
bivariate data associated to each star.

The main goal of this study is to introduce a hierarchical Bayesian analysis for
bivariate Weibull data considering usual Weibull likelihood and Tobit likelihood model
approaches based on Weibull distributions for the marginal distributions in presence of
left-censoring mechanism. The paper is organized as follows: Section 3.2 presents the
proposed Weibull model approaches for bivariate data assuming data with left-censoring
mechanism and covariates and inference methods for the parameters of the model. Section
3.3 presents an application of the proposed methodology considering a stellar astronomy
data under a hierarchical Bayesian approach. Finally, Section 3.4 closes the paper with
some concluding remarks and directions for future research.
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3.2 Materials and Methods

Weibull likelihood function considering bivariate data in presence
of left-censored data and covariates

Let us assume Weibull distributions [Weibull, 1951] for the univariate responses
of interest. The Weibull distribution, widely known for its simplicity and flexibility in
accommodating different forms of hazard function, is the most widely used distribution
model for lifetime analysis. The Weibull distribution for a random variable T has probability
density function given by,

𝑓(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
, 𝑡 ≥ 0 (3.1)

where 𝛼 is the shape parameter and 𝛽 the scale parameter, both positive. Let us denote
the Weibull distribution with density (3.1) as Wei(𝛼, 𝛽). For this distribution, the survival
function 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) and the hazard function h(t) are given respectively by,

𝑆(𝑡) = exp
{︃

−
(︃

𝑡

𝛽

)︃𝛼}︃
and ℎ(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 (3.2)

where 𝑡 > 0 and 𝛼 > 0, 𝛽 > 0. The mean of the Weibull distribution with density (3.1)
is given by 𝐸(𝑇 ) = 𝛽Γ(1 + 1/𝛼) where Γ(·) denotes the Gamma function. In this case,
one may have increasing risks (failure rates) if 𝛼 > 1; decreasing if 𝛼 < 1 and constant if
𝛼 = 1, that is, we have great flexibilty of fit for the data.

In the analysis of bivariate data (𝑇1, 𝑇2) in presence of a covariate vector x =
(𝑥1, 𝑥2, ..., 𝑥𝑝)⊤ affecting both dependent random variables assuming Weibull distributions
Wei(𝛼1, 𝛽1) and Wei(𝛼2, 𝛽2), respectively, we consider the use of hierarchical Bayesian
methods. In this way, we assume regression models for the scale parameters 𝛽𝑗 in the
Weibull density (3.1), given by,

𝛽𝑗𝑖 = exp(𝛾𝑗0 + 𝛾𝑗1𝑥1𝑖 + 𝛾𝑗2𝑥2𝑖 + . . . + 𝛾𝑗𝑝𝑥𝑝𝑖 + 𝑤𝑖) (3.3)

where 𝛾𝑗 = (𝛾𝑗0, 𝛾𝑗1, 𝛾𝑗2, . . . , 𝛾𝑗𝑝)⊤ is the regression parameter vector associated to the
covariate vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑝)⊤, 𝑗 = 1, 2; 𝑖 = 1, 2, . . . , 𝑛 (sample size); 𝑤𝑖 is a
random factor which captures extra-Weibull variability and dependence structure between
both dependent variables (𝑇1, 𝑇2). The random factors or latent variables (not-observed)
𝑊𝑖, 𝑖 = 1, . . . , 𝑛, are assumed to be independent random variables with a Normal(0, 𝜎2)
distribution.
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Assuming a left-censored mechanism, the lifetime data is given by 𝑇𝑗 = max(𝐶𝑗, 𝑌𝑗)
where 𝐶𝑗 is a censored time and 𝑌𝑗 is a complete observation, 𝑗 = 1, 2. Define a censorship
indicator variable given by 𝛿𝑗 = 1 if 𝑇𝑗 is a complete observation (𝑌𝑗 > 𝐶𝑗) and 𝛿𝑗 = 0 if
𝑇𝑗 is a left censored observation (𝑌𝑗 ≤ 𝐶𝑗). In this way, the likelihood function based only
in one bivariate observation (𝑡1, 𝑡2) is given by, 𝐹1(𝑡1)𝛿1−1𝑓1(𝑡1)𝛿1𝐹2(𝑡2)𝛿2−1𝑓2(𝑡2)𝛿2 where
𝐹𝑗(𝑡𝑗) = 𝑃 (𝑇𝑗 ≤ 𝑡𝑗) = 1 − 𝑆𝑗(𝑡𝑗) and 𝑓𝑗(𝑡𝑗) is the probability density function, 𝑗 = 1, 2.

Thus, assuming Weibull distributions Wei(𝛼1, 𝛽1) and Wei(𝛼2, 𝛽2) with density
(3.1) for the random variables 𝑇1 and 𝑇2 and the regression models (3.3) for the scale
parameters 𝛽1 and 𝛽2, the likelihood function for the parameters 𝛼1, 𝛼2, 𝜎2 and the
parameter regression vectors 𝛾1 and 𝛾2 in presence of the fixed covariate vector x and the
random factor 𝑤𝑖 based on the ith multivariate observation (𝑡1𝑖, 𝑡2𝑖, 𝛿1𝑖, 𝛿2𝑖) is given, by,

𝐿(𝛼1, 𝛼2, 𝛾1, 𝛾2, 𝑤𝑖, 𝜎2) =
[︃
1 − exp

{︃
−
(︃

𝑡1𝑖

𝛽1𝑖

)︃𝛼1}︃]︃1−𝛿1𝑖
[︃

𝛼1

𝛽𝛼1
1𝑖

𝑡𝛼1−1
1𝑖 exp

{︃
−
(︃

𝑡1𝑖

𝛽1𝑖

)︃𝛼1}︃]︃𝛿1𝑖

×
[︃
1 − exp

{︃
−
(︃

𝑡2𝑖

𝛽2𝑖

)︃𝛼2}︃]︃1−𝛿2𝑖
[︃

𝛼2

𝛽𝛼2
2𝑖

𝑡𝛼2−1
2𝑖 exp

{︃
−
(︃

𝑡2𝑖

𝛽2𝑖

)︃𝛼1}︃]︃𝛿2𝑖

(3.4)

Inferences for the parameters 𝛼1, 𝛼2, 𝛾1, 𝛾2 and 𝜏 = 1/𝜎2 are obtained using a
Bayesian hierarchical approach in two stages. We assume Gamma(a, b) prior distributions
for the parameters 𝛼1, 𝛼2 with a and b known hyperparameters, and Gamma(a, b) denotes a
Gamma distribution with mean a/b and variance a/b2; and 𝑁(𝑐, 𝑑2) prior distributions for
the regression parameters 𝛾𝑗0, 𝛾𝑗1, 𝛾𝑗2, . . . , 𝛾𝑗𝑝, 𝑗 = 1, 2 in the first stage of the hierarchical
Bayesian approach; in the second stage, we assume a Gamma prior distribution for the
parameter 𝜏 = 1/𝜎2 associated to the Normal distribution 𝑁(0, 𝜎2) assumed for the
random factors 𝑤𝑖, 𝑖 = 1, 2, . . . , 𝑛. Let us denote this model as "model 1".

Tobit models for left-censored data

Another possibility in the data analysis in presence of left-censored data is to
consider a Tobit model [Tobin, 1958], that could fit the data by assuming a regression
model whose response variable is censored to a prefixed limiting value. The censoring
occurs when the response of the regression model is not directly observable, but its
independent variables (or covariates) are observed. Tobit models usually assumes the
normality assumption but could be modeled by other probability distributions (see, for
example, [Martínez-Flórez et al., 2013]).
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If we have a complete observation, that is, (𝑇 > 𝐶), let us assume a truncated
Weibull distribution with probability density function given by,

𝑓(𝑡 | 𝑇 > 𝐶) = 𝑓0(𝑡)
𝑃 (𝑇 > 𝐶) (3.5)

where 𝑓0(𝑡) = 𝛼/𝛽𝛼𝑡𝛼−1 exp{−(𝑡/𝛽)𝛼} and 𝑆0(𝑡) = 𝑃 (𝑇 > 𝑡) = exp{−(𝑡/𝛽)𝛼}. In this
way, let us assume the mixture model, given by the probability density function,

𝑓(𝑡) = 𝑝𝛿𝐶(𝑡) + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶) (3.6)

where 𝛿𝐶(𝑡) is the Dirac measure at 𝐶 and 𝑝 is the associated probability of T to be
left-censored for the mixture model and 1-p is the probability to be non-censored data.
In this case, if 𝑇 ≤ 𝐶, S(t) = 1; otherwise, if 𝑇 > 𝐶, 𝑆(𝑡) = (1 − 𝑝)𝑆0(𝑡)/𝑆0(𝐶) where
𝑆0(𝐶) = exp{−(𝐶/𝛽)𝛼}. Observe that for this truncated mixture model the expected value
for 𝑇 > 𝐶, is given by 𝐸(𝑇 ) = (1 − 𝑝)𝛽Γ(1 + 1/𝛼)/𝑆0(𝐶) where C is fixed (left-censoring).
The likelihood function for the parameters p, 𝛼 and 𝛽 based on the 𝑖-th observation is
given by,

𝐿(𝑝, 𝛼, 𝛽; 𝑡𝑖) = 𝑝𝛿𝐶(𝑡𝑖) + (1 − 𝑝) 𝑓0(𝑡𝑖)
𝑆0(𝐶) (3.7)

With the censoring information, let us define a binary variable 𝛿 = 1 if T is a
complete observation (𝑇 > 𝐶) and 𝛿 = 0 if T is a left censored observation (𝑇 ≤ 𝐶) with
conditional probabilities given by

𝑃 (𝛿 = 0 | 𝑝, 𝛼, 𝛽, 𝑡) = 𝑝

𝑝 + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

𝑃 (𝛿 = 1 | 𝑝, 𝛼, 𝛽, 𝑡) =
(1 − 𝑝) 𝑓0(𝑡)

𝑆0(𝐶)

𝑝 + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

(3.8)

In this way, we have a Bernoulli distribution where 𝛿 = 1 (𝑇 > 𝐶) or 𝛿 = 0 (𝑇 ≤ 𝐶).
Thus, the likelihood function 𝐿(𝑝, 𝛼, 𝛽) based on n observations is given by

𝐿(𝑝, 𝛼, 𝛽; t, 𝛿) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

[︃
(1 − 𝑝) 𝑓0(𝑡𝑖)

𝑆0(𝐶)

]︃𝛿𝑖

(3.9)

For our analysis, we assume a truncated Weibull distribution. Moreover, in the analysis
of bivariate data in presence of a covariate vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑝)⊤ affecting both
dependent random variables 𝑇1 and 𝑇2, we also assume Weibull distributions Wei(𝛼1, 𝛽1)
and Wei(𝛼2, 𝛽2), respectively, as considered in section (3.2). In this way, we assume the
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same regression models for the scale parameters 𝛽𝑗 given by (2.3) and logistic models for
the parameters 𝑝𝑗𝑖, given by,

𝑙𝑜𝑔𝑖𝑡(𝑝𝑗𝑖) = log
(︃

𝑝𝑗𝑖

1 − 𝑝𝑗𝑖

)︃
= 𝜁𝑗0 + 𝜁𝑗1𝑥1𝑖 + 𝜁𝑗2𝑥2𝑖 + . . . + 𝜁𝑗𝑝𝑥𝑝𝑖 + 𝑤𝑖 (3.10)

for 𝑗 = 1, 2; 𝑖 = 1, 2, . . . , 𝑛. Observe that we are assuming the same random factor 𝑤𝑖 as-
suming a Normal distribution 𝑁(0, 𝜎2) to capture the possible dependence between the two
responses. Furthermore, the likelihood function for the parameters 𝛼1, 𝛼2, 𝛾1, 𝛾2, 𝜁1 and 𝜁2

, where 𝛾1 = (𝛾10, 𝛾11, 𝛾12, . . . , 𝛾1𝑝)⊤, 𝛾2 = (𝛾20, 𝛾21, 𝛾22, . . . , 𝛾2𝑝)⊤, 𝜁1 = (𝜁10, 𝜁11, 𝜁12, . . . ,

𝜁1𝑝)⊤, 𝜁2 = (𝜁20, 𝜁21, 𝜁22, . . . , 𝜁2𝑝)⊤, assuming different left censoring 𝐶𝑖, based on 𝑛 obser-
vations is given, by,

𝐿(𝛼1, 𝛼2, 𝛾1, 𝛾2, 𝜁1, 𝜁2) =
𝑛∏︁

𝑖=1
𝑝

(1−𝛿1𝑖)
1𝑖

[︃
(1 − 𝑝1𝑖)

𝑓0(𝑡1𝑖)
𝑆0(𝐶1𝑖)

]︃𝛿1𝑖 𝑛∏︁
𝑖=1

𝑝
(1−𝛿2𝑖)
2𝑖

[︃
(1 − 𝑝2𝑖)

𝑓0(𝑡2𝑖)
𝑆0(𝐶2𝑖)

]︃𝛿2𝑖

(3.11)
where 𝛿1𝑖 = 1 (𝑇1𝑖 > 𝐶1𝑖) or 𝛿1𝑖 = 0 (𝑇1𝑖 ≤ 𝐶1𝑖) and 𝛿2𝑖 = 1 (𝑇2𝑖 > 𝐶2𝑖) or 𝛿2𝑖 = 0 (𝑇2𝑖 ≤
𝐶2𝑖). For some applications, we could have same fixed left censoring values in (3.11), that
is, 𝐶1 and 𝐶2 in place of 𝐶1𝑖 and 𝐶2𝑖.

For a hierarchical Bayesian analysis of the model, we assume Gamma(a, b) prior
distributions for the parameters 𝛼1 and 𝛼2 and Normal(𝑐, 𝑑2) prior distributions for the
regression parameters 𝛾10, 𝛾11, . . ., 𝛾1𝑝; 𝛾20, 𝛾21, . . . , 𝛾2𝑝; 𝜁10, 𝜁11, . . . , 𝜁1𝑝 and 𝜁20, 𝜁21, . . . , 𝜁2𝑝

with a, b, c and d known hyperparameters in the first stage of the hierarchical Bayesian
analysis. In the second stage of the hierarchical Bayesian analysis we assume the same
gamma prior for the parameter 𝜏 = 1/𝜎2 assumed in "model 1". Let us denote this model,
as "model 2". We use MCMC simulation methods, Metropolis-within-Gibbs algorithms,
to get posterior summaries of interest for the parameters of the models introduced in
Sections (3.2) and (3.2) (see, for example, Chib and Greenberg, 1995, Gelfand and Smith,
1990, Gelman et al., 2013, Gilks et al., 1996).

3.3 Application to a Stellar Astronomy Dataset

Classical approach assuming standard polynomial regression models

First of all, we assume a preliminary data analysis of the astronomy data introduced
in Appendix 7, assuming the responses abundance of beryllium (Be) and lithium (Li) as
two independent random variables in presence of two covariates Type (Type = 1 indicates
planet-hosting stars and Type = 2 is the control sample) and Teff (in degrees Kelvin) is
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the stellar surface temperature not considering the presence of the censored data (𝑛 = 55
uncensored observations for the response Be and 𝑛 = 36 uncensored observations for the
response Li). Figure 2 shows the scatterplots of the response abundance of beryllium (Be)
and the response lithium (Li) versus Type and Teff in the logarithm scale.

Figure 2 – Scatterplots of Be (upper panels) and Li (lower panels) versus Type and
log(Teff).

From the plots of Figure 2, we observe that the response abundance of beryllium
(Be) is smaller with the control sample (Type = 2) when compared to planet-hosting stars
and increases with larger stellar surface temperature Teff in the logarithm scale. We also
observe that the response lithium (Li) is similar with the control sample (Type = 2) with
the planet-hosting stars and increases with larger stellar surface temperature Teff in the
logarithm scale. From Figure 2, also it is observed the presence of possible curvature for
the relation of both tesponses Be and Li versus log(Teff). Assuming polynomial regression
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models of order three with standard normal errors (linear, quadratic and cubic effects)
for the responses abundance of beryllium (Be) and lithium (Li) in logarithm scale in
presence of the covariate log(Teff), Table 7 shows the least square estimators (LSE) for
the regression parameters of the polynomial regression models. The needed assumptions
for the polynomial regression models were reasonably verified from residual plots.

Table 7 – LSE for the polynomial regression models with the covariate log(Teff).

Source DF SS F p-value

Response: log(Be)

Linear 1 0.715987 28.29 < 0.001
Quadratic 1 0.061542 2.50 0.120

Cubic 1 0.048961 2.03 0.160

Response: log(Li)

Linear 1 3.75767 17.34 < 0.001
Quadratic 1 1.06753 5.59 0.024

Cubic 1 0.02557 0.13 0.720

From the obtained results of Table 7, we see that assuming a significance level
equal to 5%, the linear effect of log(Teff) is significative (p-value < 0.05) in the response
log(Be); the linear and quadratic effects of log(Teff) are significative (p-value < 0.05) in
the response log(Li).

A hierarchical Bayesian analysis assuming the bivariate data in the
original scale and left-censoring

In this section, we assume dependent responses abundance of beryllium (Be) and
lithium (Li) in presence of the two covariates Type (Type = 1 indicates planet-hosting
stars and Type = 2 is the control sample) and Teff (in degrees Kelvin), the stellar surface
temperature, considering all dataset presented in Appendix 7, that is, 𝑛 = 66 observations,
including the non-censored and the left-censored data in the original scale. We assume
Weibull distributions Wei(𝛼1, 𝛽1) and Wei(𝛼2, 𝛽2), for the two responses Be and Li with
regression models 3.3 for the scale parameters in presence of the covariates Type and Teff
and a random factor W which captures the possible dependence between Be and Li under
a hierarchical Bayesian analysis. That is, we assume the regression models given by,

𝛽1𝑖 = exp(𝛾10 + 𝛾11𝑡𝑦𝑝𝑒𝑖 + 𝛾12 log(𝑇𝑒𝑓𝑓 )𝑖 + 𝑤𝑖)
𝛽2𝑖 = exp(𝛾20 + 𝛾21𝑡𝑦𝑝𝑒𝑖 + 𝛾22 log(𝑇𝑒𝑓𝑓 )𝑖 + 𝛾23[log(𝑇𝑒𝑓𝑓 )𝑖]2 + 𝑤𝑖) (3.12)
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where, 𝑖 = 1, 2, ..., 66; 𝑤𝑖 is a random factor which captures extra-Weibull variability and
possible dependence between both dependent variables assumed to be independent random
variables with a Normal(0, 𝜎2) distribution. The inclusion of the factors type, log(Teff)
and [log(Teff)]2 in the regression models for 𝛽1 and 𝛽2 (3.3) was based from the obtained
results in Section (3.2).

For a Bayesian analysis, we assume uniform prior distributions 𝑈(0, 10) for the
parameters 𝛼1 and 𝛼2; U(0, 200) for the parameter 𝜏 = 1/𝜎2; N(0,1) for the parameters
𝛾11, 𝛾12, 𝛾21 and 𝛾22; N(0,10) for the parameter 𝛾23; and N(0, 100) for the parameters 𝛾10

and 𝛾20. That is, we are assuming approximately non-informative prior distributions for all
parameters. We further assume prior independence among the parameters. Inferences for
the parameters of the regression models (3.12) are obtained under a hierarchical Bayesian
approach using existing MCMC methods like the Gibbs and the Metropolis-Hastings
algorithms.

In the simulation of samples of the joint posterior distribution, 𝜋(𝜃/𝑑𝑎𝑡𝑎) where 𝜃

is the vector of all parameters, we use Gibbs or Metropolis-Hastings algorithms (Gelfand
and Smith, 1990, Chib and Greenberg, 1995), where it is needed to sample each parameter
from the posterior conditional distributions 𝜋(𝜃𝑟/𝜃(𝑟), 𝑑𝑎𝑡𝑎), where 𝜃(𝑟) denotes the vector
of all parameters except 𝜃𝑟 and r is associated to each one of the parameters of the model.
In this study, we use the OpenBugs software [Spiegelhalter et al., 2003] in the simulation
of samples of the joint posterior distribution of interest which simplifies the computational
work, since this software only requires the definition of the likelihood function for 𝜃 and
the prior distribution 𝜋(𝜃).

A burn-in sample of size 111,000 was deleted to eliminate the effects of the initial
values in the iterative simulation process and a final Gibbs sample of size 1000 (taken
every 100th simulated Gibbs sample) was used to get the posterior summaries of interest.
Convergence of the simulation algorithm was verified from trace plots of the simulated
Gibbs samples. Table 4 shows the posterior means, posterior standard-deviations and 95%
credible intervals for all parameters of the regression models (OpenBugs code in Appendix
7).

Table 8 shows that the stellar surface temperature Teff (in degrees Kelvin) in
logarithmic scale, that is, log(Teff), has a significative effect on the response abundance of
beryllium (Be) since zero is not included in the 95% credible interval for 𝛾12; the square of
the stellar surface temperature Teff (in degrees Kelvin) in logarithmic scale (quadratic
effect), that is, [log(Teff)𝑖]2 , has a significative effect on the response abundance of lithium
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(Li) since zero is not included in the 95% credible interval for 𝛾23. All other covariates
do not show significative effects on the responses Be and Li since zero is included in the
credible intervals for the correspoding regression parameters. Figure 3 shows the residual
plots of the fitted proposed bivariate Weibull regression model.

Table 8 – Posterior summaries for the bivariate Weibull regression model (model 1).

Parameter Mean Std. Dev. 95% Cred. Int.

Lower Upper

𝛼1 5.0491 0.7201 3.7900 6.5141
𝛼2 0.9637 0.1435 0.6997 1.2640
𝛾10 -14.8623 3.9210 -22.8901 -6.7581
𝛾11 -0.0851 0.0573 -0.2046 0.0295
𝛾12 1.8491 0.4514 0.9307 2.7830
𝛾20 -25.1201 7.5720 -39.7910 -10.2712
𝛾21 0.0734 0.2851 -0.5058 0.6497
𝛾22 -0.8785 0.9969 -2.8601 1.0720
𝛾23 0.4554 0.1263 0.1981 0.6973
𝜏 149.9001 36.8422 67.3620 197.7101
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Figure 3 – Residuals of the fitted proposed bivariate Weibull regression model for the
responses Be (left panel) and Li (right panel).

A hierarchical Bayesian analysis for the Tobit-Weibull model as-
suming the bivariate data

As an alternative model, in this section we also assume the dependent responses
abundance of beryllium (Be) and lithium (Li) in the original scale with Weibull distributions
Wei(𝛼1, 𝛽1) and Wei(𝛼2, 𝛽2), respectively, in presence of the two covariates Type (Type
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= 1 indicates planet-hosting stars and Type = 2 is the control sample) and Teff (in
degrees Kelvin), the stellar surface temperature, considering now the Tobit-Weibull model
introduced in Section 3 given by the following regression models,

𝛽1𝑖 = exp(𝛾10 + 𝛾11𝑡𝑦𝑝𝑒𝑖 + 𝛾12 log(𝑇𝑒𝑓𝑓 )𝑖) + 𝑤𝑖

𝛽2𝑖 = exp(𝛾20 + 𝛾21𝑡𝑦𝑝𝑒𝑖 + 𝛾22 log(𝑇𝑒𝑓𝑓 )𝑖 + 𝛾23[log(𝑇𝑒𝑓𝑓 )𝑖]2) + 𝑤𝑖 (3.13)

and,

𝑙𝑜𝑔𝑖𝑡(𝑝1𝑖) = log
(︃

𝑝1𝑖

1 − 𝑝1𝑖

)︃
= 𝜁10 + 𝜁11𝑡𝑦𝑝𝑒𝑖 + 𝜁12 log(𝑇𝑒𝑓𝑓 )𝑖 + 𝑤𝑖

𝑙𝑜𝑔𝑖𝑡(𝑝2𝑖) = log
(︃

𝑝2𝑖

1 − 𝑝2𝑖

)︃
= 𝜁20 + 𝜁21𝑡𝑦𝑝𝑒𝑖 + 𝜁22 log(𝑇𝑒𝑓𝑓 )𝑖𝜁23[log(𝑇𝑒𝑓𝑓 )𝑖]2) + 𝑤𝑖 (3.14)

where 𝑖 = 1, 2, . . . , 𝑛 (sample size); 𝑤𝑖 is a random factor which captures extra-Weibull
variability and dependence between both dependent variables assumed to be independent
random variables with a N(0, 𝜎2) distribution.

For a Bayesian analysis, we assume Gamma prior distributions G(1,1) for the
parameters 𝛼1 and 𝛼2; U(0,100) for the parameter 𝜏 = 1/𝜎2; 𝑁(0, 0.01) for the parameters
𝛾11, 𝛾12, 𝛾21, 𝛾22 and 𝛾23; 𝑁(0, 1) for the parameters 𝛾10 and 𝛾20; N(0,0.01) for the parameters
𝜁11, 𝜁12, 𝜁21, 𝜁22 and 𝜁23; N(0,1) for the parameters 𝜁10 and 𝜁20. We further assume prior
independence among the parameters. Inferences for the parameters of the regression models
above are also obtained under a hierarchical Bayesian approach using existing MCMC
methods, as Metropolis-within-Gibbs algorithms.

A burn-in sample of size 11,000 was deleted to eliminate the effects of the initial
values in the iterative simulation process and a final Gibbs sample of size 2000 (taking every
100th simulated Gibbs sample) was used to get the posterior summaries of interest. Table
3 shows the posterior means, posterior standard-deviations and 95% credible intervals for
all parameters of the regression models (OpenBugs code in Appendix 7). Figure 4 shows
the residual plots of the fitted Tobit-Weibull proposed model.

Table 9 also shows that using models (3.13) and (3.14), the covariates Type (Type
= 1 indicates planet-hosting stars and Type = 2 is the control sample) and the stellar
surface temperature Teff (in degrees Kelvin) in logarithmic scale, that is, log(Teff), have
a significative effect on the scale parameter of the Weibull distribution assumed for the
response abundance of beryllium (Be) since zero is not included in the 95% credible
intervals for 𝛾11 and 𝛾12; the square of the stellar surface temperature Teff (in degrees
Kelvin) in logarithmic scale (quadratic effect), that is, [log(Teff)𝑖]2 , has a significative effect
on the scale parameter of the Weibull distribution assumed for the response abundance
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of lithium (Li) since zero is not included in the 95% credible interval for 𝛾23. All other
covariates do not show significative effects associated to the responses Be and Li since zero
is included in the credible intervals for the corresponding regression parameters. Figure 4
shows the residual plots of the fitted bivariate Tobit-Weibull model.

Table 9 – Posterior summaries for the Tobit-Weibull model (model 2).

Parameter Mean Std. Dev. 95% Cred. Int.
Lower Upper

𝛼1 10.3869 1.8797 7.4579 15.1100
𝛼2 2.6570 0.2655 2.1640 3.2310
𝛾10 -0.5008 0.3841 -1.2970 0.0984
𝛾11 -0.1282 0.0391 -0.2030 -0.0446
𝛾12 0.2042 0.0431 0.1351 0.2896
𝛾20 -0.6091 1.0391 -2.2260 1.5081
𝛾21 -0.0348 0.0725 -0.1817 0.1054
𝛾22 -0.0592 0.1038 -0.2782 0.1198
𝛾23 0.0467 0.0203 0.0151 0.0833
𝜏 66.6480 18.0801 33.4101 98.4501

𝜁10 -1.1667 0.6690 -2.4241 0.1544
𝜁11 -0.0271 0.0959 -0.2268 0.1633
𝜁12 -0.1162 0.0771 -0.2711 0.0333
𝜁20 0.4024 0.9918 -1.6111 2.2770
𝜁21 0.0429 0.0969 -0.1466 0.2343
𝜁22 0.0202 0.1009 -0.1756 0.2076
𝜁23 -0.0347 0.0175 -0.0687 0.0012
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Figure 4 – Residuals of the fitted proposed bivariate Tobit-Weibull model for the responses
Be (left panel) and Li (right panel).
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From the obtained inference results we observe that the covariate [log(Teff)𝑖] has
significative effect on the responses Be and Li assuming the standard Weibull likelihood
model (model 1) (linear effect on Be and quadratic effect on Li). Assuming the Tobit-Weibull
likelihood model (model 2) it is observed that the covariate [log(Teff)𝑖] has significative
effect on the responses Be (linear effect) and Li (quadratic effect) and the covariate Type
has significative effect on the response Be. Since the residual plots in figures 3 and 4, have
very similar fits, we will make a comparison using the estimated expected values assuming
models 1 and 2 in the next section.

Some remarks on the fit of models 1 and 2 for the astronomy data

To compare both models (model 1 and model 2), we consider plots of the Monte
Carlo Bayesian estimators based on the simulated Gibbs samples of the expected values
for both responses Be and Li versus the observed values assuming the fitted models.
Figure 5 shows the plots of the expected values 𝐸(𝑇𝑗𝑖) = 𝛽𝑖Γ(1 + 1/𝛼𝑗) for model 1 and
approximated 𝐸(𝑇𝑗𝑖) = (1 − 𝑝𝑗𝑖)𝛽𝑖Γ(1 + 1/𝛼𝑗)/𝑆0(𝐶𝑖) for the Tobit-Weibull truncated
model 2, 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2 for the responses Be and Li and observed values considering
the proposed models 1 and 2, where,

i.) Model 1 for the response Be; the expected mean value is given by:

𝐸(𝑇1𝑖) = 𝛽1𝑖Γ
(︂

1 + 1
5.0491

)︂

where 𝛽1𝑖 = exp{−14.8623 − 0.0851𝑡𝑦𝑝𝑒𝑖 + 1.8491 log(𝑇𝑒𝑓𝑓 )𝑖}.

ii.) Model 1 for the response Li; the expected mean value is given by:

𝐸(𝑇2𝑖) = 𝛽2𝑖Γ
(︂

1 + 1
0.9637

)︂

where 𝛽2𝑖 = exp{−25.1201 + 0.0734𝑡𝑦𝑝𝑒𝑖 − 0.8785 log(𝑇𝑒𝑓𝑓 )𝑖 + 0.4554[log(𝑇𝑒𝑓𝑓 )𝑖]2}.

iii.) Model 2 for the response Be; we assume as a simplification the plots of the non-
censored data, that is, with expected mean value given by 𝐸(𝑇𝑗𝑖) = (1 − 𝑝𝑗𝑖)𝛽𝑖Γ(1 +
1/𝛼𝑗), that is,

𝐸(𝑇1𝑖) = (1 − 𝑝1𝑖)𝛽1𝑖Γ
(︂

1 + 1
10.38

)︂
where 𝛽1𝑖 = exp{−0.5008 − 0.1282𝑡𝑦𝑝𝑒𝑖 + 0.2042 log(𝑇𝑒𝑓𝑓 )𝑖} and 𝑝1𝑖 = 𝐴1𝑖/(1 + 𝐴1𝑖),
where 𝐴1𝑖 = exp{−1.166 − 0.02712𝑡𝑦𝑝𝑒𝑖 − 0.1162 log(𝑇𝑒𝑓𝑓 )𝑖}.
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iv.) Model 2 for the response Li; the expected mean value is given by:

𝐸(𝑇2𝑖) = (1 − 𝑝2𝑖)𝛽2𝑖Γ
(︂

1 + 1
2.65

)︂
where 𝛽2𝑖 = exp{−0.6091 − 0.03487𝑡𝑦𝑝𝑒𝑖 − 0.0592 log(𝑇𝑒𝑓𝑓 )𝑖 + 0.04675[log(𝑇𝑒𝑓𝑓 )𝑖]2}
and 𝑝2𝑖 = 𝐴2𝑖/(1+𝐴2𝑖), where 𝐴2𝑖 = exp{0.4024+0.04295𝑡𝑦𝑝𝑒𝑖 +0.02027 log(𝑇𝑒𝑓𝑓 )𝑖 −
0.03474[log(𝑇𝑒𝑓𝑓 )𝑖]2}.

From the plots of Figure 5, we observe that model 1 gives, in general, estimated
expected means closer to the observed data Be an Li, indicating better fit of model 1 for
the astronomy data when compared to model 2.

Figure 5 – Plots of the expected values and the responses Be and Li assuming model 1
and model 2.

3.4 Concluding remarks

In the application with the astronomy data, we observed that the obtained Bayesian
inference results lead to similar results considering both proposed models, in terms of
discovering the significative effects of the covariates Type (Type = 1 indicates planet-
hosting stars and Type = 2 is the control sample) and Teff (in degrees Kelvin) is the
stellar surface temperature on both astronomy responses abundance of beryllium (Be)
and lithium (Li) and with similar computational costs to simulate samples for the joint
posterior distributions of interest using the free OpenBugs software.

In the application considered in this study, we observed that assuming the standard
Weibull likelihood approach, we obtained better model fit for the data (see Figure 4).
Other applications and possibly, some simulation studies, should be considered in future
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studies to compare the adequability and performance of the two proposed models (models
1 and 2) in each application.

The great advantage of the proposed hierarchical Bayesian methodology in the
analysis of bivariate data is the simple form of the likelihood given by product of the
likelihood functions and the dependence structure given by a non-observed latent factor or
frailty which also could be generalized to other structures.

Other point, especially in applications, in favor of our approach: the use of para-
metric bivariate probability models derived from copula functions, usually depends on
the choice of a particular copula function among hundreds of existing copula functions,
since each copula represents different dependence structure for the dataset. It is also
interesting to point out that the Tobit model gives better interpretations of interest to
researchers. Usually, mixture models as considered in the Tobit model given by 3.7, have
some advantages in the interpretations, in the same way as obtained with the use of cure
fraction models where it is possible to get estimator for susceptible and non-susceptible
individuals that can die from some diseases (Maller and Zhou, 1996, Achcar et al., 2012,
de Oliveira et al., 2019).

In addition, other existing parametric lifetime distributions as exponential, gamma,
log-normal or generalizations of the Weibull distribution could be considered to model
the univariate distributions for the two responses of the bivariate data in presence of
left-censored data. Finally, it is important to point out that the use of existing Bayesian
simulation softwares like the OpenBugs software leads to great simplification in obtaining
the Bayesian inferences of interest. Another advantage of the Bayesian methodology: it
is possible to use expert opinion in the elicitation of prior distributions that can lead to
more accurate inference results.



54

Chapter 4

A Bayesian approch for univariate or bivariate
lifetime data in presence of left-censored data

assuming a Weibull-Tobit model

4.1 Introduction

In many applications, especially in medical or engineering studies we could have two
lifetimes associated to the same individual. In some cases, these two lifetimes are assumed
to be independent, but the lifetime of one component could influence the lifetime of the
other component in which case it becomes necessary to introduce a dependence structure
between the two variables. This is the case, for example, considering the failure times
of paired organs like kidney, lungs, eyes, ears, dental implants among many others. To
analyse bivariate lifetimes we could assume different parametric distributions introduced
in the literature (see Freund, 1961, Marshall and Olkin, 1985, Gumbel, 1960, Hawkes,
1972, Hougaard, 1986, Arnold and Strauss, 1988) or to use Bayesian hierarchical methods.
The main goal of this paper is to introduce a hierarchical Bayesian analysis for bivariate
lifetimes assuming Tobit-Weibull models for their marginal distributions in presence of
left-censoring mechanism. The possible dependence structure between the bivariate data
is modeled by the introduction of a frailty or latent variable. The main reason for the use
of the Weibull distribution, usually the most used lifetime distribution in lifetime data
applications is due to the great flexibility of fit for the data. Besides the great flexibility
of fit, the Weibull distribution usually assumed in lifetime data analysis has only two
parameters, which implies in great simplicity to get the inferences of interest, especially
assuming a left-censored scheme.
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In this study, we to introduce the univariate and bivariate models based on the
Tobit-Weibull distribution as an alternative to left-censored data analysis. The Chapter
is organized as follows: Section 4.2 presents the proposed Tobit-Weibull model approach
for univariate and bivariate data assuming data with left-censoring mechanism and some
inference methods for the parameters of the model. Section 4.3 presents medical applications
of the proposed methodology under a hierarchical Bayesian approach. Finally, Section 4.4
closes the paper with some concluding remarks and directions for future research.

4.2 Materials and Methods

Univariate Tobit-Weibull Model

Suppose Y is a random variable denoting the lifetime of an unit or patient such
that the lifetime data is given by 𝑇 = max(𝐶, 𝑌 ) where C is a censored time and Y is a
complete observation. Thus, we could define a indicator variable as,

𝛿 =

⎧⎪⎨⎪⎩1, if T is a complete observation (𝑌 > 𝐶)

0, if T is a left censored observation (𝑌 ≤ 𝐶)
(4.1)

Notice that 𝛿 = 1 if T is a complete observation (𝑌 > 𝐶) and 𝛿 = 0 if T is a left censored
observation (𝑌 ≤ 𝐶). If we have a complete observation, that is, (𝑌 > 𝐶), let us assume a
truncated Weibull distribution with probability density function given by,

𝑓(𝑡 | 𝑇 > 𝐶) =

𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃

exp
{︃

−
(︃

𝐶

𝛽

)︃𝛼}︃ (4.2)

Using the mixing approach, the density function of Tobit-Weibull model is given
by the equation,

𝑓(𝑡) = 𝑝𝛿𝑐(𝑡) + (1 − 𝑝)

𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃

exp
{︃

−
(︃

𝐶

𝛽

)︃𝛼}︃ (4.3)

where 𝛿𝑐(𝑡) is the Dirac measure at (0, 𝐶), that is, 𝛿𝑐(𝑡) = 1/𝐶 if 0 < 𝑡 < 𝐶 and 𝛿𝑐(𝑡) = 0
if 𝑡 > 𝐶, which guarantees that 𝑓(𝑡) is a probability density function, 𝑝 is the associated
probability of 𝑇 to be left-censored for the mixture model and 1 − 𝑝 is the probability to
be non-censored. In this way, we have:
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• If 𝑇 ≤ 𝐶, 𝑆(𝑡) = 1

• If 𝑇 > 𝐶, 𝑆(𝑡) = (1 − 𝑝) 𝑆0(𝑡)
𝑆0(𝐶)

where 𝑆0(𝑡) = exp
{︁
−
(︁

𝑡
𝛽

)︁𝛼}︁
and 𝑆0(𝐶) = exp

{︁
−
(︁

𝐶
𝛽

)︁𝛼}︁
.

In terms of statistical inference, the likelihood function for the parameters 𝑝, 𝛼 and
𝛽 based on one observation is given from (4.3) by,

𝐿(𝑝, 𝛼, 𝛽) = 𝑝𝛿𝑐(𝑡) + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶) (4.4)

where 𝑓0(𝑡) and 𝑆0(𝑡) are defined by,

𝑓0(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
and 𝑆0(𝑡) = 𝑃 (𝑇 > 𝑡) = exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃

With the censoring information (4.1), we get the conditional probabilities,

𝑃 (𝛿 = 0 | 𝑝, 𝛼, 𝛽, 𝑡) = 𝑝

𝑝 + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

𝑃 (𝛿 = 1 | 𝑝, 𝛼, 𝛽, 𝑡) =
(1 − 𝑝) 𝑓0(𝑡)

𝑆0(𝐶)

𝑝 + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

(4.5)

which could be assumed as a Bernoulli trial. In this way, by equations (4.4) and (4.5), the
likelihood function based on 𝑛 observations is reduced to,

𝐿(𝑝, 𝛼, 𝛽) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

[︃
(1 − 𝑝) 𝑓0(𝑡)

𝑆0(𝐶)

]︃𝛿𝑖

(4.6)

Assuming the truncated Weibull distribution, the likelihood function and the log-
likelihood function for the parameters of the Tobit-Weibull model are given respectively
by,

𝐿(𝑝, 𝛼, 𝛽) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

⎡⎣(1 − 𝑝)
𝛼

𝛽𝛼 𝑡𝛼−1 exp
{︁
−
(︁

𝑡
𝛽

)︁𝛼}︁
exp

{︁
−
(︁

𝐶
𝛽

)︁𝛼}︁
⎤⎦𝛿𝑖

(4.7)
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and

ℓ(𝑝, 𝛼, 𝛽) =
𝑛∑︁

𝑖=1

⎧⎨⎩(1 − 𝛿𝑖) log(𝑝) + 𝛿𝑖

⎧⎨⎩ log(1 − 𝑝) + log(𝛼)

+ (𝛼 − 1) log(𝑡𝑖) − 𝛼 log(𝛽) −
(︃

𝑡𝑖

𝛽

)︃𝛼

+
(︃

𝐶

𝛽

)︃𝛼
⎫⎬⎭
⎫⎬⎭ (4.8)

Maximum likelihood and Bayesian inference approaches are considered to get the
inferences of interest for the proposed model. Maximum likelihood estimators (MLE) for
the parameters of the proposed model are obtained using existing numerical optimization
procedures as for example, the Gauss-Newton iterative method. The MLE are obtained
solving the equations obtained from the first derivatives of the log-likelihood function with
respect to the parameters of the model being equal to zero. For a Bayesian approach of the
proposed model, we use existing MCMC simulation methods, as Metropolis-within-Gibbs,
to get the posterior summaries of interest (see, for example, Chib and Greenberg, 1995,
Gelfand and Smith, 1990, Gelman et al., 1995, Geman and Geman, 1984, Gilks et al.,
1995) assuming independent Gamma(𝑎, 𝑏) prior distributions for the parameters 𝛼 and
𝛽 with 𝑎 and 𝑏 known hyperparameters and a Beta(𝑒, 𝑓) distribution for 𝑝 with 𝑒 and 𝑓

known hyperparameters.

In presence of covariates, based on this model, we could also introduce the following
linear regression structure for a vector of covariates x = (𝑥1, 𝑥2, . . . , 𝑥𝑝)⊤ in the scale
parameter 𝛽 given by,

𝛽 = exp(𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2 + . . . + 𝛾𝑝𝑥𝑝) (4.9)

where 𝛾 = (𝛾0, 𝛾1, 𝛾2, . . . , 𝛾𝑝)⊤ is the regression parameter vector associated to covariate
vector x = (𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑝)⊤. However, since the mixing parameter is also our target,
we assume a logistic regression model for the parameter 𝑝 given by,

logit(𝑝) = log
(︃

𝑝

1 − 𝑝

)︃
= 𝜙0 + 𝜙1𝑥1 + 𝜙2𝑥2 + . . . + 𝜙𝑝𝑥𝑝 (4.10)

Bivariate Tobit-Weibull Model

For the analysis of bivariate data (𝑇1, 𝑇2) in presence of a covariate vector x =
(𝑥1, 𝑥2, ..., 𝑥𝑝)⊤ affecting both dependent random variables, assume two Weibull distri-
butions, denoted respectively by Wei(𝛼1, 𝛽1) and Wei(𝛼2, 𝛽2), for the use of hierarchical
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Bayesian methods. Thus, a linear regression structure as considered in the univariate case
is assumed for the scale parameters 𝛽𝑗 in the Weibull density, that is,

𝛽𝑗𝑖 = exp(𝛾𝑗0 + 𝛾𝑗1𝑥1𝑖 + 𝛾𝑗2𝑥2𝑖 + . . . + 𝛾𝑗𝑝𝑥𝑝𝑖 + 𝑤𝑖) (4.11)

where 𝛾𝑗 = (𝛾𝑗0, 𝛾𝑗1, 𝛾𝑗2, . . . , 𝛾𝑗𝑝)⊤ is the regression parameter vector associated to the
covariate vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑝)⊤, 𝑗 = 1, 2; 𝑖 = 1, 2, . . . , 𝑛 (sample size); 𝑤𝑖 is a
random factor which captures extra-Weibull variability and dependence structure between
both dependent variables (𝑇1, 𝑇2). The random factors or latent variables (non-observed)
𝑊𝑖, 𝑖 = 1, . . . , 𝑛, are assumed to be independent random variables with a Normal 𝑁(0, 𝜎2)
distribution.

However, our goal is to work with a bivariate Tobit-Weibull model. In this case, we
also assume a regression structure based on logistic models for the mixing parameters 𝑝𝑗𝑖

given by

logit(𝑝𝑗𝑖) = log
(︃

𝑝𝑗𝑖

1 − 𝑝𝑗𝑖

)︃
= 𝜙𝑗0 + 𝜙𝑗1𝑥1𝑖 + 𝜙𝑗2𝑥2𝑖 + . . . + 𝜙𝑗𝑝𝑥𝑝𝑖 + 𝑤𝑖 (4.12)

for 𝑗 = 1, 2; 𝑖 = 1, 2, . . . , 𝑛. Observe that we are assuming the same random factor 𝑤𝑖 consid-
ered for the regression models of the scale parameters with a Normal distribution 𝑁(0, 𝜎2)
to capture the possible dependence between the two responses. Furthermore, the likelihood
function for the parameters 𝛼1, 𝛼2, 𝛾1, 𝛾2, 𝜙1 and 𝜙2 , where 𝛾1 = (𝛾10, 𝛾11, 𝛾12, . . . , 𝛾1𝑝)⊤,
𝛾2 = (𝛾20, 𝛾21, 𝛾22, . . . , 𝛾2𝑝)⊤, 𝜙1 = (𝜙10, 𝜙11, 𝜙12, . . . , 𝜙1𝑝)⊤, 𝜙2 = (𝜙20, 𝜙21, 𝜙22, . . . , 𝜙2𝑝)⊤,
assuming different left censoring 𝐶𝑖, based on n observations is given by

𝐿(𝛼1, 𝛼2, 𝛾1, 𝛾2, 𝜙1, 𝜙2) =
𝑛∏︁

𝑖=1
𝑝

(1−𝛿1𝑖)
1𝑖

[︃
(1 − 𝑝1𝑖)

𝑓0(𝑡1𝑖)
𝑆0(𝐶1𝑖)

]︃𝛿1𝑖 𝑛∏︁
𝑖=1

𝑝
(1−𝛿2𝑖)
2𝑖

[︃
(1 − 𝑝2𝑖)

𝑓0(𝑡2𝑖)
𝑆0(𝐶2𝑖)

]︃𝛿2𝑖

where 𝛿1𝑖 = 1(𝑇1𝑖 > 𝐶1𝑖) or 𝛿1𝑖 = 0(𝑇1𝑖 ≤ 𝐶1𝑖) and 𝛿2𝑖 = 1(𝑇2𝑖 > 𝐶2𝑖) or 𝛿2𝑖 = 0(𝑇2𝑖 ≤ 𝐶2𝑖).
For some applications, we could have same fixed left censoring values in (12), that is, 𝐶1

and 𝐶2 in place of 𝐶1𝑖 and 𝐶2𝑖.

4.3 Application to health datasets

4.3.1 Thyroid Cancer Data

In this application we consider a left-censored medical data related to differentiated
thyroid cancer, fitting the Tobit-Weibull models in two ways: assuming the data as
univariate independent data or assuming bivariate dependent data in presence of three
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covariates: size, sex and persistence. For instance, the dataset consists in 91 patients and
it was also used López et al. [2014] in a descriptive study to evaluate the relationship
between the initial thyroglobulin levels and the presence of recurrence of cancer one year
after receiving treatment (this dataset is presented in Appendix 7). Basically, each patient
received surgery to remove the thyroid gland and then they were treated with radioiodine
I-131. The random variables of interest for our goal are: immediately before starting
therapy with iodine, a sample of blood was obtained to measure the thyroglobulin level
(𝑇1) of each patient; and after receiving the therapy, the measure of the thyroglobulin level
was reported approximately a year after the last therapy session (𝑇2). The information
about thyroglobulin levels data are left censored, since the measuring instrument does
not detect values less than 0.1. Also the study considered three covariates which coud
be related to the two responses of interest: sex (male=0; female =1); size measures as
millimeter (if size < 40𝑚𝑚 = 0 and size ≥ 40𝑚𝑚 = 1) and persistence measures as
nanograms per milliliter (if 𝑇𝐺 < 2𝑛𝑔/𝑚𝑙 = 0 and 𝑇𝐺 ≥ 2𝑛𝑔/𝑚𝑙 = 1).

The statistical analysis was carried out in the R software (R Core Team, 2015) and
the R2jags package was used to obtain the Bayesian estimates for the model parameters.
The computer code is presented in Appendix 3.2. In a Bayesian framework, one may
assume that no specialized information is available to justify the choice of non-informative
prior distributions for the model parameters. In this context, we specify prior distributions
such that, even for moderate sample sizes, the information provided by the data should
dominate the prior information. The non-informative prior distributions adopted in
this work are given by, 𝛼𝑗 ∼ Gamma(0.001, 0.001), 𝜙𝑗 ∼ Normal𝑞+1(0, 102ℐ𝑞) and 𝛾𝑗 ∼
Normal𝑞+1(0, 102ℐ𝑞) where ℐ𝑞+1 is a identity matrix of size 𝑞 + 1. The results for each
fitted model are presented in Table 10.

Based on the obtained results assuming the Bayesian estimates for the parameters
of the independent univariate Tobit-Weibull models presented in Table 10, we observe
from the obtained 95% credible intervals (the zero value are not inside the intervals),
that the thyroglobulin level before starting therapy (𝑇1) is affected by size of tumor
with positive regression parameter estimative 0.0645 considering the linear structure and
negative regression parameter estimative −0.27009 considering the logistic structure. We
also observe that the thyroglobulin level after the last therapy session (𝑇2) is affected
by the covariates sex (negative parameter regression estimative −1.5462) and persistence
(positive parameter regression estimative 4.1276) assuming the linear regression model
and persistence (negative parameter regression estimative −1.9554) assuming the logistic
regression model.
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Table 10 – Summary of the fitted Tobit-Weibull models for thyroid cancer data.

Approach Parameter Estimate Std. Dev. 95% Cred. Int.
Lower Upper

Univariate (𝑇1)

𝛼 0.2785 0.0296 0.2216 0.3371
𝛾0 (Intercept) 0.0011 0.0995 -0.1941 0.1960
𝛾1 (Sex) -0.0352 0.0989 -0.2293 0.1586
𝛾2 (Size) 0.0645 0.0195 0.0243 0.1010
𝛾3 (Persistence) 0.0623 0.0998 -0.1326 0.2588
𝜙0 (Intercept) -0.0389 0.0989 -0.2322 0.1554
𝜙1 (Sex) -0.0364 0.0992 -0.2310 0.1577
𝜙2 (Size) -0.2709 0.0547 -0.3884 -0.1751
𝜙3 (Persistence) -0.0015 0.1001 -0.1987 0.1945

Univariate (𝑇2)

𝛼 0.6062 0.0867 0.4448 0.7849
𝛾0 (Intercept) -0.9599 0.5925 -2.1692 0.1567
𝛾1 (Sex) -1.5462 0.4722 -2.4907 -0.6313
𝛾2 (Size) 0.0164 0.0138 -0.0091 0.0456
𝛾3 (Persistence) 4.1276 0.4458 3.2435 5.0016
𝜙0 (Intercept) 0.2316 0.5526 -0.8540 1.3133
𝜙1 (Sex) 0.0385 0.4979 -0.9311 1.0241
𝜙2 (Size) -0.0260 0.0180 -0.0629 0.0076
𝜙3 (Persistence) -1.9554 0.6518 -3.3015 -0.7411

Bivariate (𝑇1, 𝑇2)

𝛼1 0.99061 0.02158 0.94095 1.02923
𝛼2 0.89352 0.09215 0.70891 1.06788
𝛾10 (Intercept) -1.34905 0.42210 -2.26651 -0.56162
𝛾11 (Sex) -0.51200 0.43559 -1.31960 0.45562
𝛾12 (Size) 0.03684 0.53783 -0.99534 1.10657
𝛾13 (Persistence) -0.27181 0.69470 -1.67177 1.11800
𝛾20 (Intercept) 1.54971 0.54668 0.44780 2.58645
𝛾21 (Sex) 0.85854 0.55499 -0.29043 1.90740
𝛾22 (Size) -0.03191 0.67645 -1.39659 1.23435
𝛾23 (Persistence) -0.10521 0.73191 -1.51705 1.34707
𝜙10 (Intercept) -1.71107 0.74075 -3.17986 -0.28288
𝜙11 (Sex) -1.13751 0.80809 -2.75314 0.44813
𝜙12 (Size) -0.18099 0.92916 -2.02692 1.59450
𝜙13 (Persistence) -0.35372 0.90625 -2.14058 1.40667
𝜙20 (Intercept) -1.09469 0.51498 -2.10679 -0.05940
𝜙21 (Sex) -0.61495 0.50759 -1.52946 0.45569
𝜙22 (Size) -0.25864 0.63970 -1.53312 0.99333
𝜙23 (Persistence) -0.53058 0.87497 -2.28888 1.16768

Assuming the dependence bivariate structure for the Tobit-Weibull model all
covariates do not indicate significative effects on both responses of interest (all 95%
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credibility intervals include the zero value).
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Figure 6 – Envelope for the residuals the Tobit-Weibull model for T1 (left) and T3 (rigth)
– thyroid cancer data.

Figure 6 shows the Half-Normal plot with simulated envelope of the residual for the
Tobit-Weibull model, assuming the presence of all covariates, for thyroglobulin level before
starting therapy (𝑇1) and after the last therapy session (𝑇2). It is important to point out
that for the response thyroglobulim level (𝑇2) there are the presence of 62.64% left censored
data, which could imply that the proposed model could not be able to detect significative
risk factors. as observed in the obtained results of Table 10. However, around of 70% of the
observed values are inside of the 95% credible interval for the proposed regression model
which is a indication of accuracy even using non-informative prior distributions. Moreover,
the results could be more accurate assuming informative prior distributions, using the
reduced model eliminating the non significative factors or removing the outlier’s values.

4.3.2 Vaccine Data

In this application, we consider a safety and immunogenicity study of measles
vaccines conducted in Haiti during the years 1987-1990 [Job et al., 1991]. The goal of the
study was to show that the higher titer vaccines could effectively immunize infants as
young as 6 months of age. The immunogenicity analyses indicated much higher antibody
responses among high titer recipients, as had been anticipated, and among recipients of the
Edmonston-Zagreb vaccine strain as compared to Schwarz strain. Re-analysis of these data
was prompted by findings in several countries of higher than expected mortality 2-3 years
post vaccination among high titer vaccine recipients, with most of the excess mortality
among girls. Neutralization antibody assays were performed on serum from 330 children
at 12 months of age [Moulton and Halsey, 1995]. The detection limit was 0.1 international
units.
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Considering this left-censored data related to vaccine, we fitted the univariate
Tobit-Weibull model introduced in Section 4.2. We considered as covariates the type of
vaccine used (Schwartz or Edmonston-Zagreb), the level of the dosage (medium or high)
and the children’s gender (male or female).

The statistical analysis was carried out in the R software [R Core Team, 2015] and
the R2jags package was used to obtain the Bayesian estimates for the model parameters.
In this application, we also assume non-informative distributions for the parameters of the
proposed model, since we do not have expert opinion. The non-informative distributions
assumed in this study are the same as those considered in the previous application. The
results for each fitted model are presented in Table 11.

Table 11 – Summary of the fitted Tobit-Weibull model for vaccine data.

Parameter Estimate Std. Dev. 95% Cred. Int.
Lower Upper

𝛼 0.6427 0.0544 0.5362 0.7496
𝛾0 0.0007 0.2364 -0.4897 0.4382
𝛾1 (type) -0.2285 0.1987 -0.6208 0.1608
𝛾2 (level) -0.2942 0.1973 -0.6804 0.0948
𝛾3 (sex) 0.2597 0.1906 -0.1116 0.6347
𝜙0 -0.5991 0.2203 -1.0365 -0.1724
𝜙1 (type) -0.7181 0.2549 -1.2246 -0.2251
𝜙2 (level) -0.3877 0.2481 -0.8748 0.0956
𝜙3 (sex) 0.0810 0.2302 -0.3760 0.5290

Based on the obtained results assuming the Bayesian estimates in Table 11, we
observe from the obtained 95% credible intervals (zero value is not inside the intervals),
that the neutralization antibody levels are affected by type of vaccine used (Schwartz or
Edmonston-Zagreb) assuming the logistic structure.
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Figure 7 – Envelope for the residuals the Tobit-Weibull model for vaccine data.

Figure 7 shows the Half-Normal plot with simulated envelope of the residual for
the Tobit-Weibull model, assuming the presence of all covariates. We observed that despite
the presence of about 57.6% left censored observations, the predictions obtained for both
models were well adjusted. Most of these values are within the 95% credibility range
for both the model without covariate and the proposed regression model, which is an
indication of good accuracy.

4.4 Concluding remarks

This study introduced univariate and bivariate models based on the Tobit-Weibull
distribution as an alternative to the left-censoring data analysis. The proposed model was
considered to analyze two medical survival dataset related to cancer and vaccine. We found
promising results in discovering the significant risk factors affecting the survival times.

We have considered a fully Bayesian approach for model estimation. The adopted
method was based on the Metropolis-within-Gibbs algorithm for sampling pseudo-random
values from the posterior distribution of model parameters. We acknowledge the remarkable
computational simplicity of estimating cure rate models baseline by the Tobit-Weibull
distribution. Furthermore, Bayesian techniques allow incorporating prior information from
experts, leading to much more insightful inferential results. Besides, such methods also
provide straightforward interpretations based on the estimated model parameters, which
is a prominent concern in medical applications.

Using the proposed models, we found the results obtained from univariate analysis
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is more accurate than the multivariate. This fact is directly related to adopting a regression
structure or the dependence structure between both times. Our study identified only two
significant factors for the analyzed data. Noticeably, the observed differences highlight the
importance of using appropriate statistical models, especially in clinical studies. These
models can be an alternative to the widely used Cox proportional hazards model.
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Chapter 5

Use of a Tobit-Weibull model in the analysis
of daily rain precipitation data for São Paulo

city, Brazil (2007- 2021)

5.1 Introduction

The climatic changes observed in recent decades have led to great concern, as the
effects of these changes could be catastrophic across the planet. From different statistical
analyzes for climatic data collected in climate stations around the planet, it is possible
to observe the loss of sea ice, accelerated sea level rise and longer and more intense heat
waves around the world, as pointed out by the Intergovernmental Panel on Climate Change
[IPCC, 2007, 2013].

The effects of climate change has being observed worldwide particularly in tem-
perature and rain precipitation. Many papers were introduced in the literature in recent
decades related to climate change (precipitation, temperature, level of the oceans among
many others) and its implications (see for example, Arnell, 2014, Alexander et al., 2006,
Bonan, 2008, Costello et al., 2009, Hawkins et al., 2017, Lineman et al., 2015, Kabir et al.,
2016, Kaczan and Orgill Meyer, 2020, Levermann et al., 2013, Zhiying and Fang, 2016,
Matthews, 2018, Poloczanska et al., 2013, Rahmstorf et al., 2007, Serdeczny et al., 2017,
Springmann et al., 2016, Turner et al., 2020, Karl, T. R. et al., 2009, Zhao et al., 2017,
Richards, 1993).

Climatic variables, in particular, the occurrence of rainfall and its intensity, have
a great impact on populations, especially in agriculture and urban centers where great
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irregularity in rainfall has been observed in the last years, sometimes with long dry periods
and lack of water for agriculture and urban centers and other times with long wet periods
with large amounts of rain in small areas leading to great floods, great destruction and great
human losses. The statistical modeling of precipitation data (occurrence and intensity) is
needed for forecasting, planning, and also for the management of water resources systems
[Dzupire et al., 2018]. In addition, the amount of rainfall and its occurrence is fundamental
for agricultural production [Lobell and Burke, 2010].

Rainfall data in general are given by binary data (occurrence or not of precipitation
in a day) and a positive real measure (total amount of rain in a given day). In practice,
statistical modeling of rain precipitation has an important particularity: the occurrence of
excess of zeros, that is, the occurrence of many dry days (no rain) that can make it difficult
to use traditional statistical techniques, possibly using parametrical models in presence of
standard left-censoring mecanisms. This requires the use of appropriate probability models
to describe precipitation data. Some work linked to daily precipitation data can be viewed
at Wilks, 1998, Dzupire et al., 2018, Benestad et al., 2019, Auestad et al., 2012, Stern and
Coe, 1984, Yeo et al., 2019, George et al., 2016, Bárdossy et al., 2021, Latifoglu, 2021.

In this Chapter, the response variable we will work with is the total daily precip-
itation collected at a climate station located in the city of São Paulo. A Tobit-Weibull
model is fitted, under a Bayesian approach, to verify if the behavior of the total daily
rainfall in the period, are changing in the follow-up period, that is, if there are linear
and quadratic effects in the covariates years and months. A logistic regression model for
the occurrence (or not) of daily rainfall will be fitted in the mixture component of the
Tobit-Weibull model. Other climate variables such as daily mean atmospheric pressure,
daily mean temperature and daily mean humidity are also analyzed considering standard
regression models with normal errors or Weibull distributions for the case of asymmetric
data as observed for daily mean humidity. Thus, the Section 5.2 introduces the dataset;
Section 5.2 presents the Tobit model assuming a Weibull distribution; Section 5.4 presents
the obtained results; finally Section 5.5 presents some concluding remarks.

5.2 Materials and Methods

Tobit model assuming a Weibull distribution

Tobin [1958] proposed a methodology, named the Tobit model, that could fit the
data appropriately by assuming a regression model whose response variable was censored
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to a pre-fixed limiting value or could be given by a repeated fixed number. This is the
case with daily rain precipitation data where there are many days in a month (or year)
without or with very small amount of rain precipitation, that is, with zero values in the
dataset. The censoring occurs when the response of the regression model is not directly
observable, but its independent variables (or covariates) are observed.

Tobit models usually rely on the normality assumption. Proposals of Tobit models
that relax this assumption are extremely important, since it is common knowledge that most
of the data available in the real world are often well modeled by non-normal distributions.
A number of authors have noticed that the asymmetry of data of censored responses and
their kurtosis usually are different from the expected for a Normal distribution, so that
more flexible Tobit models are needed (see, for example, Martínez-Flórez et al. [2013]).

From the definition of the indicator of censoring variable, 𝛿 = 1 if 𝑇 (total
precipitation observed in a day) is a complete observation (𝑇 > 𝐶) and 𝛿 = 0 if 𝑇 is a
left censored observation (𝑇 ≤ 𝐶). Here we assume as left-censoring the zero value (no
precipitation in a day) and 𝐶 is arbitrary fixed as the value 0.01.

If we have a complete observation, that is, (𝑇 > 𝐶), in this work we assume a
truncated generalized form of the Weibull distribution for the random variable 𝑇 with
probability density function given by,

𝑓(𝑡 | 𝑇 > 𝐶) = 𝑓0(𝑡)
𝑃 (𝑇 > 𝐶) (5.1)

where

𝑓0(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
and, the probability of 𝑇 > 𝑡 is given by,

𝑆0(𝑡) = 𝑃 (𝑇 > 𝑡) = exp
{︃

−
(︃

𝑡

𝛽

)︃𝛼}︃

Remark: 𝑆0(𝐶) = 𝑃 (𝑇 > 𝐶) = exp
{︃

−
(︃

𝐶

𝛽

)︃𝛼}︃
where C is a known constant.

Let us assume a mixture model, given by the probability density function,

𝑓(𝑡) = 𝑝[𝑑𝐶(𝑡)] + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶) (5.2)
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where 𝑓0(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
and 𝑆0(𝐶) = exp

{︃
−
(︃

𝐶

𝛽

)︃𝛼}︃
and 𝑑𝐶(𝑡) is the

Dirac measure at (0, 𝐶) (in the mixture model, we are assuming a degenerated probability
distribution 𝑃 (𝑇 = 0) = 1).

Remarks: 𝑆0(𝐶) = 𝑃 (𝑇 > 𝐶) = exp
{︃

−
(︃

𝐶

𝛽

)︃𝛼}︃
where C is a known constant.

• If 𝑇 ≤ 𝐶, 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) = 𝑝+(1−𝑝)
∞∫︀
𝐶

𝑓0(𝑢)𝑑𝑢
𝑆0(𝐶) = 𝑝+(1−𝑝)𝑆0(𝐶)

𝑆0(𝐶) = 𝑝+(1−𝑝) = 1,
where 𝑝 = 𝑃 (𝑇 ≤ 𝐶) and 1 − 𝑝 = 𝑃 (𝑇 > 𝐶)

• If 𝑇 > 𝐶, 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) = 1 − 𝑃 (𝑇 ≤ 𝐶) = 1 − {𝑃 (0 < 𝑇 < 𝐶) + 𝑃 (𝐶 < 𝑇 <

𝑡)} = 1 − {𝑝 + (1 − 𝑝)
𝑡∫︀

𝐶

𝑓0(𝑢)𝑑𝑢
𝑆0(𝐶)}

where
𝑡∫︀

𝐶
𝑓0(𝑢)𝑑𝑢 = 𝑃 (𝑇 > 𝐶) − 𝑃 (𝑇 > 𝑡) = 𝑆0(𝐶) − 𝑆0(𝑡). Thus,

𝑆(𝑡) = 1 − {𝑝 + (1 − 𝑝)
𝑆0(𝐶) [𝑆0(𝐶) − 𝑆0(𝑡)]} = 1 − {𝑝 + (1 − 𝑝) − [(1 − 𝑝) 𝑆0(𝑡)

𝑆0(𝐶) ]}

That is,
𝑆(𝑡) = (1 − 𝑝) 𝑆0(𝑡)

𝑆0(𝐶)

In summary, the survival function is given by,

• If 𝑇 ≤ 𝐶, 𝑆(𝑡) = 1

• If 𝑇 > 𝐶, 𝑆(𝑡) = (1 − 𝑝) 𝑆0(𝑡)
𝑆0(𝐶)

where 𝑆0(𝑡) = exp
{︁
−
(︁

𝑡
𝛽

)︁𝛼}︁
and 𝑆0(𝐶) = exp

{︁
−
(︁

𝐶
𝛽

)︁𝛼}︁
.

The likelihood function for the parameters 𝑝, 𝛼 and 𝛽 based on one observation 𝑡

is given from (5.2), by,

𝐿(𝑝, 𝛼, 𝛽) = 𝑝[𝑑𝐶(𝑡)] + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶) (5.3)



Chapter 5. Use of a Tobit-Weibull model in the analysis of daily rain precipitation data for São Paulo
city, Brazil (2007- 2021) 69

where 𝑓0(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
and 𝑆0(𝐶) = exp

{︃
−
(︃

𝐶

𝛽

)︃𝛼}︃
.

With the censoring information, let us define a binary variable 𝛿 = 1 if 𝑇 is a
complete observation (𝑇 > 𝐶) and 𝛿 = 0 if 𝑇 is a left censored observation (𝑇 ≤ 𝐶) with
conditional probabilities given by,

𝑃 (𝛿 = 0 | 𝑝, 𝛼, 𝛽, 𝑡) = 𝑝

𝑝+(1−𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

and,

𝑃 (𝛿 = 1 | 𝑝, 𝛼, 𝛽, 𝑡) =
(1−𝑝) 𝑓0(𝑡)

𝑆0(𝐶)

𝑝+(1−𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

(5.4)

In this way, we have a Bernoulli distribution with probability function,

𝑃 (𝛿) =
⎧⎨⎩ 𝑝

𝑝 + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

⎫⎬⎭
(1−𝛿)⎧⎨⎩ (1 − 𝑝) 𝑓0(𝑡)

𝑆0(𝐶)

𝑝 + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

⎫⎬⎭
𝛿

(5.5)

where 𝛿 = 1 (𝑇 > 𝐶) or 𝛿 = 0 (𝑇 ≤ 𝐶).

The likelihood function 𝐿(𝑝, 𝛼, 𝛽) based on 𝑛 observations is given by,

𝐿(𝑝, 𝛼, 𝛽; t) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

[︃
(1 − 𝑝) 𝑓0(𝑡𝑖)

𝑆0(𝐶)

]︃𝛿𝑖

(5.6)

Assuming the truncated Weibull distribution, the log-likelihood function for 𝑝, 𝛼

and 𝛽 is given (from (5.6)) by,

ℓ(𝑝, 𝛼, 𝛽; t) =
𝑛∑︁

𝑖=1

⎧⎨⎩(1 − 𝛿𝑖) log(𝑝) + 𝛿𝑖

⎧⎨⎩ log(1 − 𝑝) + log(𝛼) +

+ (𝛼 − 1) log(𝑡𝑖) − 𝛼 log(𝛽) −
(︃

𝑡𝑖

𝛽

)︃𝛼

+
(︃

𝐶

𝛽

)︃𝛼
⎫⎬⎭
⎫⎬⎭ (5.7)

Remark: For the daily precipitation data we have 𝛿 = 1 (day with rain precipitation) or
𝛿 = 0 (day without rain precipitation, that is, 𝑇 = 0).

Inferences for the parameters of the models are obtained under a Bayesian approach
using existing MCMC methods like the as Metropolis-within-Gibbs algorithms. In this way,
in the simulation of samples of the joint posterior distribution [Gelfand and Smith, 1990],
𝜋(𝜃|𝑑𝑎𝑡𝑎) where 𝜃 is the vector of all parameters, we use Gibbs or Metropolis-Hastings
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algorithms, where it is needed to sample each parameter from the posterior conditional
distributions 𝜋(𝜃𝑟|𝜃(𝑟)), where 𝜃(𝑟) denotes the vector of all parameters except 𝜃𝑟 and 𝑟 is
associated to each one of the parameters of the model. To simplify the computational work
in the iterative procedure to get the Bayesian inferences, the literature presents different
free softwares to simulate samples of the joint posterior distribution of interest.

For a Bayesian analysis it as assumed uniform 𝑈(𝑎, 𝑏) prior probability distributions
for the parameters 𝛼 and 𝛽 with 𝑎 and 𝑏 known hyperparameters and a 𝐵𝑒𝑡𝑎(𝑒, 𝑓) or
a 𝑈(0, 1) prior probability distribution for 𝑝 with 𝑒 and 𝑓 known hyperparameters. We
further assume prior independence among the three parameters.

In presence of a vector of covariates 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑝)⊤ let us assume a regression
model for the scale parameter 𝑏𝑒𝑡𝑎 given by,

𝛽 = exp(𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2 + . . . + 𝛾𝑝𝑥𝑝) (5.8)

where 𝛾 = (𝛾0, 𝛾1, 𝛾2, . . . , 𝛾𝑝)⊤ is the regression parameter vector associated to covariate
vector x = (𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑝)⊤ and a logit model for the parameter 𝑝, given by,

𝑙𝑜𝑔𝑖𝑡(𝑝) = log
(︃

𝑝

1 − 𝑝

)︃
= 𝜙0 + 𝜙1𝑥1 + 𝜙2𝑥2 + . . . + 𝜙𝑝𝑥𝑝 (5.9)

For a Bayesian analysis it as assumed a uniform 𝑈(𝑎, 𝑏) prior distribution for
the parameter 𝛼, Normal 𝑁(𝑐, 𝑑2) prior distributions for the regression parameters
𝛾0, 𝛾1, 𝛾2, . . . , 𝛾𝑝 with 𝑐 and 𝑑 known hyperparameters and Normal 𝑁(𝑒, 𝑓 2) prior distribu-
tions for the regression parameters 𝜙0, 𝜙1, 𝜙2, . . . , 𝜙𝑝 with 𝑒 and 𝑓 known hyperparameters.

For a Bayesian approch of the proposed models we use MCMC simulation methods
to get the posterior summaries of interest (see, for example, Chib and Greenberg, 1995,
Gelfand and Smith, 1990, Gelman et al., 1995, Geman and Geman, 1984, Gilks et al.,
1995).

5.3 Application to a climatic dataset

The original climatic data considered in this study (total rainfall per hour in 𝑚𝑚;
atmospheric pressure at the station level in milibar (𝑚𝐵); temperature per hour in 𝑜𝐶;
relative air humidity per hour in %) was obtained from the Mirante climate station located
in the city of São Paulo, Brazil (latitude = -23.59; longitude = -46.52 and altitude =
785.64 meters) for the period from January 1, 2007 to December 31, 2021 (𝑛 = 5479
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measurements). Dataset obtained in https://portal.inmet.gov.br/dadoshistoricos.
This site presents climate data for several cities in Brazil. Missing observations were
imputed as means (previous and posterior observed values) for the variables temperature
and humidity; for total missing precipitation, the value zero was considered. The possible
limitation of the data is related to an apparently short period (15 years) as many weather
stations in Brazil given by INMET (Instituto Nacional de Meteorologia, Brasil) were
created recently, a common fact in third world countries where it is usually difficult to
obtain longer series of climatic observations.

Table 12 shows the averages of the hourly climate variables per year, standard
deviations, medians, maximums and minimums in each year (2007 to 2021). The number
of observations per year is given by N. Figure 8 shows the boxplot of the observed values
in each year for each climate variable.
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Table 12 – Hourly means, medians, standard-deviations, maximuns and minimuns in each
year (2007 to 2021)

Climate variable Year N Mean Std. Dev. Minimum Median Maximum

Total rainfall

2007 8760 0.1757 1.4275 0.0000 0.0000 54.4000
2008 8784 0.1777 1.4660 0.0000 0.0000 54.4000
2009 8760 0.2242 1.5771 0.0000 0.0000 42.4000
2010 8760 0.2093 1.6064 0.0000 0.0000 57.6000
2011 8760 0.1887 1.5852 0.0000 0.0000 58.4000
2012 8784 0.2082 1.5330 0.0000 0.0000 45.6000
2013 8760 0.1552 1.0124 0.0000 0.0000 29.6000
2014 8760 0.1393 1.2685 0.0000 0.0000 45.2000
2015 8760 0.2158 1.7504 0.0000 0.0000 77.8000
2016 8784 0.1724 1.3696 0.0000 0.0000 39.6000
2017 8760 0.1849 1.5494 0.0000 0.0000 64.6000
2018 8760 0.1348 1.0894 0.0000 0.0000 29.2000
2019 8760 0.2000 1.5403 0.0000 0.0000 67.6000
2020 8782 0.1971 1.5171 0.0000 0.0000 44.4000
2021 8759 0.1376 1.0254 0.0000 0.0000 31.0000

Atmospheric pressure

2007 8760 926.84 3.64 915.60 926.60 938.50
2008 8784 926.51 3.55 915.10 926.50 938.00
2009 8760 926.27 3.31 915.10 926.10 935.60
2010 8760 926.74 3.98 913.10 926.40 938.60
2011 8760 926.48 3.67 915.50 926.50 938.40
2012 8784 927.11 3.68 916.90 926.70 938.10
2013 8760 927.05 3.42 917.80 926.90 937.50
2014 8760 927.53 3.27 918.30 927.10 938.60
2015 8760 927.34 3.32 916.30 927.20 940.30
2016 8784 927.35 3.65 914.90 927.20 938.60
2017 8760 927.60 4.03 915.30 927.40 940.30
2018 8760 927.18 3.58 916.60 927.00 937.30
2019 8760 927.48 3.52 918.30 927.10 939.40
2020 8783 927.23 3.51 914.70 927.00 938.40
2021 8759 926.92 3.71 915.70 926.70 938.90

Temperature

2007 8760 20.340 4.660 5.200 20.300 34.300
2008 8784 19.607 4.171 8.500 19.300 33.800
2009 8760 20.210 4.270 6.800 20.100 33.400
2010 8760 20.128 4.578 8.800 20.100 33.300
2011 8760 19.847 4.636 6.500 19.700 33.300
2012 8784 20.509 4.399 8.900 20.100 36.000
2013 8760 19.927 4.426 5.700 19.700 33.900
2014 8760 21.060 4.704 9.200 20.600 37.000
2015 8760 21.078 4.312 11.100 20.700 36.300
2016 8784 20.336 4.831 4.100 20.300 35.200
2017 8760 20.455 4.351 7.900 20.300 34.600
2018 8760 20.454 4.286 9.200 20.200 33.200
2019 8760 21.045 4.651 6.700 20.800 35.700
2020 8783 20.474 4.461 8.300 20.100 37.300
2021 8759 20.083 4.603 4.400 19.700 35.400

Relative air humidity

2007 8760 70.780 17.416 16.000 76.000 97.000
2008 8784 71.690 16.496 14.000 77.000 96.000
2009 8760 73.822 15.319 10.000 79.000 95.000
2010 8760 71.536 18.878 13.000 78.000 97.000
2011 8760 73.564 19.245 12.000 80.000 100.000
2012 8784 72.225 18.634 12.000 78.000 100.000
2013 8760 73.172 18.296 15.000 79.000 98.000
2014 8760 67.290 18.936 13.000 72.000 97.000
2015 8760 69.653 16.634 12.000 75.000 95.000
2016 8784 68.467 16.226 13.000 74.000 95.000
2017 8760 68.059 16.661 12.000 73.000 94.000
2018 8760 68.504 15.888 15.000 74.000 92.000
2019 8760 67.861 16.666 14.000 73.000 92.000
2020 8783 67.484 17.652 13.000 73.000 96.000
2021 8758 68.345 17.876 12.000 74.000 98.000
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Figure 8 – Maximum measures in each year for climate variables obtained per hour (2007
to 2021).

In general, the greatest implications of climate change are caused by the maximums
of climatic variables observed in each hour of a large period of time, such as the maximum
values of precipitation per hour or the maximum values of temperature per hour. Figure
10 shows the graphs of the maximum observed in each year for each climate variable (the
plots also have fitted polynomial models of order 3).
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Figure 9 – Maximum measures in each year for climate variables obtained per hour (2007
to 2021).

From the graphs in Figure 9, we have some preliminary conclusions:

• A very large maximum hourly precipitation value was observed in the year 2015
(77.8000𝑚𝑚/ℎ), which is a very large volume of rain in a very short period of time
that can have catastrophic effects for the locality.

• A maximum value of atmospheric air pressure per hour was also observed in the
years 2015 and 2017 (940.3𝑚𝐵/ℎ).

• The maximum hourly temperature value has been increasing consistently in the
period from 2007 to 2021, an indication that the temperature of the city of São
Paulo has been increasing in recent years despite the short follow-up period.

• The maximum values of humidity per hour increased until the year 2011; after that
year there was a fall; in the last years of the observed period there is an increase in
the maximum humidity per hour.

Table 13 shows the total rainfall for each year (sum of the amount of rain observed
in each hour) and the total number of hours in each year with the presence of rain in the
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period from 2007 to 2021, from which it is observed that in the year 2015, we have the
highest amount of total rainfall (1890.6 mm) observed in the 15-year follow-up period.
Likewise, it is observed that the number of hours with the presence of rain has become
smaller in the last years of follow-up.

Table 13 – Rainfall totals for each year (sum of the amount of rain observed in each hour)
and the total number of hours with the presence of rain in each year in the
period from 2007 to 2021.

Years Hours Total rainfall Hours with rainfall

2007 8760 1539.4 663
2008 8784 1561.0 668
2009 8760 1964.4 856
2010 8760 1833.6 794
2011 8760 1653.2 661
2012 8784 1828.8 782
2013 8760 1359.6 738
2014 8760 1220.6 528
2015 8760 1890.6 753
2016 8784 1514.4 658
2017 8760 1619.6 671
2018 8760 1180.8 612
2019 8760 1752.2 679
2020 8782 1730.8 677
2021 8759 1205.2 612

Figure 10 shows the graphs of the total hours with the presence of rain in each
year in the period from 2007 to 2021, where a decline in the number of hours in the year
with the presence of rain can be observed. We also have in Figure 10, the graph of the
total precipitation accumulated in each year in the period from 2007 to 2021.

Figure 10 – Total hours with presence of rain in each year and total precipitation accumu-
lated in each year in the period from 2007 to 2021.
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Daily climatic data

From the hour climate data of São Paulo city, we obtained the daily climate data
for the period 2007 − 2021. Histograms of daily precipitation, daily mean temperature,
daily mean air pressure and daily mean humidity in the period from 2007 to 2021 are
presented in Figure 11. From these histograms, we observe that the histogram of the
daily precipitations shows a zero excess indicating that it is needed an appropriate model
which captures this particularity (2323 days with rain and 3156 days without rain; total
of 𝑛 = 5479 days). It is important to point out that we could assume in a first modeling
approach, the zero data (days with no rain) as left censored data with the same probability
distribution as the complete data, but this approach could lead to very poor inferences
when there is a great proportion of left censored data as in our case of daily precipitation
data.

For the cases of daily mean air pressure and daily mean temperatures we see from
Figure 11, approximately symmetry for the histograms, indicating the possibility to fit a
Normal distribution for the data. For the case of daily mean humidity we see the need to
fit an asymmetrical model, as for example, a Weibull distribution with two parameters.
Figure 12 shows the scatter plots of daily rain precipitation, daily mean temperature, daily
mean air pressure and daily mean humidity versus months in the period from 2007 to
2021, from where it is observed the need of a statistical model wich captures the quadratic
effects of months in the climate variables.
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Figure 11 – Histograms of daily precipitation, daily mean temperature, daily mean air
pressure and daily mean humidity in the period from 2007 to 2021.
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Figure 12 – Scatter plots of daily precipitation, daily mean temperature, daily mean air
pressure and daily mean humidity versus months in the period from 2007 to
2021.

5.4 Results

Daily rain precipitation

Assuming the Tobit-Weibull model defined by (5.2), for the daily precipitation data
not considering the presence of covariates we considered the following prior distributions
for the parameters 𝛼, 𝛽 and 𝑝: 𝛼 ∼ 𝑈(0.1, 2), 𝛽 ∼ 𝑈(0.1, 100) and 𝑝 ∼ 𝑈(0, 1). We also
assumed prior independence among the parameters. Using the R software [R Core Team,
2015] and the R2jags package, we simulated a total of 11, 000 Gibbs samples (the first
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1, 000 samples considered as a burn-in-sample deleted to eliminate the effect of the initial
values and using 1, 000 final samples chosen from every 10𝑡ℎ sample) to get the posterior
summaries of interest from the joint posterior distribution for 𝛼, 𝛽 and 𝑝. Convergence of
the simulation algorithm was verified from trace plots of the generated samples for each
parameter. The computer code is presented in Appendix 7. Table 14 shows the posterior
summaries of interest. Considering the data with observed rain precipitations the mean and
median of the Weibull distribution (5.1) are given, respectively, by, 𝐸(𝑇 ) = 𝛽Γ(1 + 1/𝛼)
and 𝑚𝑒𝑑𝑖𝑎𝑛 = 𝛽(𝑙𝑜𝑔(2))1/𝛼 (obtained from the equation 𝑆(𝑡) = 1

2). Thus, from the Bayes
estimators we get the Bayesian estimatives for the mean given by 10.1842 and for the
median given by 4.05991. The sample mean and sample median are given, respectively,
by 10.269 and 4.000. That is, we have an indication of good fit for the dataset. Also
the observed proportion of days with rain is given by 2323/5479 = 0.42398 (close to the
Bayesian estimator of 1 − 𝑝 given by 0.4240).

Figure 13 shows the histogram of the data associated to days with rain and the
fitted Weibull density with parameters 𝛼 = 0.6628 and 𝛽 = 7.6353. From this figure we
observe a very good fit of the Weibull distribution to the dataset (total rain precipitation
in each day).
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Figure 13 – Histogram of the data (total daily precipitation) and the fitted Weibull density
with parameters 𝛼 = 0.6628 and 𝛽 = 7.6353

Now, assuming the Tobit-Weibull model defined by (5.2) and (5.8), for the daily
precipitation data in presence of covariates years (linear effects) and months (linear and
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quadratic effects) we considered the following regression models:

𝛽𝑖 = 𝛾0 + 𝛾1(𝑦𝑒𝑎𝑟𝑠𝑖) + 𝛾2(𝑚𝑜𝑛𝑡ℎ𝑠𝑖) + 𝛾3(𝑚𝑜𝑛𝑡ℎ𝑠𝑖)2 (5.10)

and
𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝜁0 + 𝜁1(𝑦𝑒𝑎𝑟𝑠𝑖) + 𝜁2(𝑚𝑜𝑛𝑡ℎ𝑠𝑖) + 𝜁3(𝑚𝑜𝑛𝑡ℎ𝑠𝑖)2 (5.11)

where 𝑖 = 1, 2, . . . , 5479 (number of days from January 01, 2007 to 31 December, 2021).

Table 14 – Posterior summaries for the Tobit-Weibull model (daily rain precipitation
data)

Parameter Estimate Std. Dev. 95% Cred. Int.
Lower Upper

𝛼 0.6506 0.0108 0.6294 0.6714
𝛾0 7.7432 0.5616 6.6966 8.8188
𝛾1 0.0796 0.0486 -0.0145 0.1753
𝛾2 -0.6475 0.2036 -1.0697 -0.2542
𝛾3 0.0498 0.0161 0.0201 0.0830
𝜁0 -1.7949 0.1124 -2.0082 -1.5689
𝜁1 0.0069 0.0067 -0.0064 0.0201
𝜁2 0.7940 0.0360 0.7207 0.8584
𝜁3 -0.0572 0.0027 -0.0619 -0.0518

We assumed the following prior distributions for the parameters 𝛼, 𝛾𝑗 and 𝜁𝑗:
𝛼 ∼ 𝑈(0.1, 2), 𝛾0 ∼ 𝑁(0, 1), 𝜁0 ∼ 𝑁(0, 1), 𝛾𝑗 ∼ 𝑁(0, 10),and 𝜁𝑗 ∼ 𝑁(0, 10), 𝑗 = 1, 2, 3.
We also assumed prior independence among the parameters. Using the R software ([R
Core Team, 2015]), we first simulated a total of 121, 000 Gibbs samples (the first 101, 000
samples considered as a burn-in-sample deleted to eliminate the effect of the initial
values and using 1, 000 final samples chosen from every 20𝑡ℎ sample) to get the posterior
summaries of interest. Convergence of the simulation algorithm was verified from trace
plots of the generated samples for each parameter. The computer code is presented in
Appendix 7. Table 14 shows the posterior summaries of interest. From the results, we
observe that the covariate months (linear effects) show significant effects on the scale of
the Weibull distribution (negative linear effects on months, that is, decreasing in daily
total precipitations in the last months of the year) since the value zero is not inside the
95% credible interval for the regression parameter 𝜁2; the same conclusions are observed
for the probabilities to have days with rain.
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Daily mean air pressure

Considering the daily mean air pressure data in São Paulo city in the same period
of time (2007 − 2021) we assumed a Normal distribution 𝑁(𝜇, 𝜎2) in the data analysis,
motivated by the histogram of the daily mean air pressure presented in Figure 14. Under
a Bayesian approach we assumed the following prior (data not considering the presence
of covariates) distributions for the parameters of the model: 𝜇 ∼ 𝑁(900, 0.001) and
𝜏 = 1/𝑠 = 𝜎2 ∼ 𝑈(0, 1). From the R software ([R Core Team, 2015]) (burn-in sample
1, 000 and 1, 000 additional Gibbs samples (every 10𝑡ℎ from 10, 000 generated samples) we
obtained the Monte Carlo estimates for the posterior means of 𝜇 and 𝜏 (between parentheses
the corresponding 95% credible intervals) given, respectively by 927.00 (926.9; 927.1) and
0.0850 (0.0819; 0.0879). That is, the variance 𝜎2 is estimated by 11.7578 and the standard-
deviation 𝜎 is estimated by 3.42896. It is interesting to observe that the sample average
and sample deviation of the daily mean air pressure data are given, respectively, by 927.04
and 3.43. That is, we have a indication of excelent fit of the Normal distribution for the
data. Figure 14 shows the histogram of the daily mean air pressure and the fitted Normal
density with parameters 𝜇 = 927 and 𝜎 = 3.43. We observe a very good fit of the Normal
distribution to the daily mean air pressure.
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Figure 14 – Histogram of the data (daily mean air pressure) and the fitted Normal density
with parameters 𝜇 = 927 and 𝜎 = 3.43

Assuming the presence of covariates years (linear effects) and months (linear and
quadratic effects) for the daily mean air pressure data we considered the following regression
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model in the mean 𝜇 of the Normal distribution 𝑁(𝜇, 𝜎2):

𝜇𝑖 = 𝛽0 + 𝛽1(𝑦𝑒𝑎𝑟𝑠𝑖) + 𝛽2(𝑚𝑜𝑛𝑡ℎ𝑠𝑖) + 𝛽3(𝑚𝑜𝑛𝑡ℎ𝑠𝑖)2 (5.12)

where 𝑖 = 1, 2, . . . , 5479 (number of days from January 01, 2007 to 31 December, 2021).

We assumed the following prior distributions for the parameters 𝛽0, 𝛽𝑗, 𝑗 = 1, 2, 3
and 𝜏 = 1/𝜎2: 𝛽0 ∼ 𝑁(900, 0.01), 𝛽𝑗 ∼ 𝑁(0, 1) and 𝜏 ∼ 𝑈(0, 1). We also assumed prior
independence among the parameters. Using the R software ([R Core Team, 2015]) and the
R2jags package, we simulated a total of 121, 000 Gibbs samples (the first 11, 000 samples
considered as a burn-in-sample deleted to eliminate the effect of the initial values and
using 1, 000 final samples chosen from every 100𝑡ℎ sample) to get the posterior summaries
of interest. Convergence of the simulation algorithm was verified from trace plots of the
generated samples for each parameter. Table 15 shows the posterior summaries of interest.
From the results, we observe that the covariates years and months (linear effects and
quadratic effects) show significant effects on the mean of the Normal distribution (positive
linear effects of years, positive linear effects on months and negative quadratic effects of
months) since the value zero is not inside the 95% credible interval for the regression
parameters 𝛽𝑗, 𝑗 = 1, 2, 3.

Table 15 – Posterior summaries (daily mean air pressure data)

Parameter Estimate Std. Dev. 95% Cred. Int.
Lower Upper

𝜁0 920.7825 0.1509 920.4821 921.0780
𝜁1 0.0604 0.0085 0.0434 0.0772
𝜁2 2.4654 0.0472 2.3736 2.5584
𝜁3 -0.1893 0.0035 -0.1963 -0.1825
𝜏 0.1304 0.0025 0.1257 0.1353

Daily mean temperature

Considering now, the daily mean temperature data in São Paulo city in the same
period of time (2007 − 2021) we also assumed a Normal distribution 𝑁(𝜇, 𝜎2) in the data
analysis, motivated by the histogram of the daily mean air pressure presented in Figure
15. Under a Bayesian approach we assumed the following prior (data not considering the
presence of covariates) distributions for the parameters of the model: 𝜇 ∼ 𝑁(22, 0.001) and
𝜏 = 1/𝜎2 ∼ 𝑈(0, 1). From the R software ([R Core Team, 2015]), (burn-in sample=1, 000;
1, 000 additional Gibbs samples (every 10𝑡ℎ from 10, 000 generated samples) we obtained
the Monte Carlo estimates for the posterior means 𝜇 and 𝜏 (between parentheses the
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corresponding 95% credible intervals) given, respectively by 20.37 (20.28; 20.45) and 0.09009
(0.08683; 0.09316). That is, the variance 𝜎2 is estimated by 11, 10 and the standard-deviation
𝜎 is estimated by 3.3317. The sample average and sample-deviation of the daily mean
temperature data are given, respectively, by, 20.37 and 3.3317.
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Figure 15 – Histogram of the data (daily mean temperature) and the fitted Normal density
with parameters 𝜇 = 20.37 and 𝜎 = 3.3317

Figure 15 shows the histogram of the daily mean mean temperature and the fitted
Normal density with parameters 𝜇 = 20.37 and 𝜎 = 3.3317. We observe a very good fit of
the Normal distribution to the daily mean temperature.

Assuming the presence of covariates years (linear effects) and months (linear and
quadratic effects) for the daily mean air pressure data we considered the same regression
model 5.12 in the mean 𝜇 of the Normal distribution 𝑁(𝜇, 𝜎2). We assumed the following
prior distributions for the parameters 𝛽0, 𝛽𝑗, 𝑗 = 1, 2, 3 and 𝜏 = 1/𝜎2: 𝛽0 ∼ 𝑁(22, 0.01),
𝛽𝑗 ∼ 𝑁(0, 1) and 𝜏 ∼ 𝑈(0, 1). We also assumed prior independence among the parameters.
Using the R software ([R Core Team, 2015]), we simulated a total of 121, 000 Gibbs samples
(the first 11, 000 samples considered as a burn-in-sample deleted to eliminate the effect of
the initial values and using 1, 000 final samples chosen from every 100𝑡ℎ sample) to get
the posterior summaries of interest. Convergence of the simulation algorithm was verified
from trace plots of the generated samples for each parameter. Table 16 shows the posterior
summaries of interest. From the results, we observe that the covariates years and months
(linear effects and quadratic effects) show significant effects on the mean of the Normal
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distribution (positive linear effects of years, negative linear effects on months and positive
quadratic effects of months) since the value zero is not inside the 95% credible interval for
the regression parameters 𝛽𝑗, 𝑗 = 1, 2, 3.

Table 16 – Posterior summaries (the daily mean temperatures data)

Parameter Estimate Std. Dev. 95% Cred. Int.
Lower Upper

𝜁0 26.3464 0.1350 26.1192 26.6146
𝜁1 0.0412 0.0082 0.0295 0.0568
𝜁2 -2.4102 0.0499 -2.4927 -2.3113
𝜁3 0.1729 0.0039 0.1662 0.1799
𝜏 0.1348 0.002 0.1303 0.1395

Daily mean humidity

Considering now the daily mean humidity data in São Paulo city in the same period
of time (2007 − 2021) we assumed a Weibull distribution with density,

𝑓(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
, 𝑡 ≥ 0 (5.13)

In the data analysis, motivated by the histogram of the daily mean humidity
presented in Figure 11. Under a Bayesian approach we assumed the following prior
(data not considering the presence of covariates) distributions for the parameters of
the model:𝛼 ∼ 𝑈(0.1, 100) and 𝛽 ∼ 𝑈(0.1, 1000). From the R software ([R Core Team,
2015]), (burn-in sample=11, 000; 1, 000 additional Gibbs samples (every 100𝑡ℎ from 100, 000
generated samples) we obtained the Monte Carlo estimates for the posterior means of 𝛼

and 𝛽 (between parentheses the corresponding 95% credible intervals) given, respectively
by 7.822 (7.672; 7.976) and 74.59 (74.33; 74.87).

Figure 16 shows the histogram of the daily mean humidity and the fitted Weibull
density with parameters 𝛼 = 7.822 and 𝛽 = 74.59. From this figure we observe a very
good fit of the Weibull distribution to the dataset (daily mean humidity).
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Figure 16 – Histogram of the data (daily mean humidity) and the fitted Weibull density
with parameters 𝛼 = 7.822 and 𝛽 = 74.59

Assuming the presence of covariates years (linear effects) and months (linear and
quadratic effects) for the daily mean humidity data we considered the following regression
model in the mean 𝛽 of the Weibul distribution 𝑊𝑒𝑖(𝛼, 𝛽):

𝛽𝑖 = 𝛾0 + 𝛾1(𝑦𝑒𝑎𝑟𝑠𝑖) + 𝛾2(𝑚𝑜𝑛𝑡ℎ𝑠𝑖) + 𝛾3(𝑚𝑜𝑛𝑡ℎ𝑠𝑖)2 (5.14)

where 𝑖 = 1, 2, . . . , 5479 (number of days from January 01, 2007 to 31 December, 2021).

Table 17 – Posterior summaries (the daily mean humidity data)

Parameter Estimate Std. Dev. 95% Cred. Int.
Lower Upper

𝛼 7.9453 0.0838 7.7823 8.1094
𝛾0 4.3793 0.0070 4.3656 4.3930
𝛾1 -0.0055 0.0004 -0.0062 -0.0047
𝛾2 -0.0078 0.0022 -0.0121 -0.0035
𝛾3 0.0005 0.0002 0.0002 0.0008

We assumed the following prior distributions for the parameters 𝛾0, 𝛾𝑗, 𝑗 = 1, 2, 3
and 𝛼: 𝛾0 ∼ 𝑁(3, 0.1), 𝛾𝑗 ∼ 𝑁(0, 1) and 𝛼 ∼ 𝐺𝑎𝑚𝑚𝑎(60, 10), where 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏),
denotes a Gamma distribution with mean 𝑎/𝑏 and variance 𝑎/𝑏2. We also assumed prior
independence among the parameters. Using the R software [R Core Team, 2015], we
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simulated a total of 411, 000 Gibbs samples (the first 211, 000 samples considered as a burn-
in-sample deleted to eliminate the effect of the initial values and using 20, 000 final samples
chosen from every 10𝑡ℎ sample) to get the posterior summaries of interest. Convergence
of the simulation algorithm was verified from trace plots of the generated samples for
each parameter. Table 17 shows the posterior summaries of interest. From the results, we
observe that the covariates years and months (linear effects and quadratic effects) show
significant effects on the parameter 𝛽 of the Weibull distribution (negative linear effects of
years, negative linear effects on months and positive quadratic effects of months) since
the value zero is not inside the 95% credible interval for the regression parameters 𝛾𝑗 ,
𝑗 = 1, 2, 3 (or for the means 𝐸(𝑇𝑖) = 𝛽𝑖Γ(1 + 1/𝛼) of the Weibull distribution given the
values of the covariates).

5.5 Concluding remarks

The results of this study showed that the use of a Tobit-Weibull model under a
Bayesian approach can be useful for analyzing daily rainfall data, as observed for data from
the city of São Paulo, Brazil. Other climate variables such as mean daily temperature, mean
daily air pressure and mean daily humidity for the city of São Paulo from 2007 to 2021
were also analyzed under a Bayesian approach using traditional models as regression model
with normal errors (temperature and air pressure) and Weibull regression for asymmetric
data (air humidity).

The inferences of interest were obtained from the simulation of samples for the joint
posterior distribution of the parameters of each model using MCMC simulation methods
that were greatly facilitated using the R software [R Core Team, 2015] which does not
require much computation effort to obtain the a posterior summaries of interest.

Some important conclusions were obtained from the data analysis:

• Considering the daily precipitation data, we observed that the covariate months
(linear effects) show significant effects on the scale of the Weibull distribution
(negative linear effects on months, that is, decreasing in daily total precipitations
in the last months of the year) since the value zero is not inside the 95% credible
interval for the regression parameter 𝛾2; the same conclusions are observed for the
probabilities to have days with rain using a logistic regression model.

• Considering the daily mean temperatures, we observed that the covariates years
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(linear effects) and months (linear effects and quadratic effects) show significant
effects on the mean of the Normal distribution (positive linear effects of years,
negative linear effects on months and positive quadratic effects of months) since the
value zero is not inside the 95% credible interval for the regression parameters 𝛽𝑗,
𝑗 = 1, 2, 3.

• Considering the daily mean air pressures, we observed that the covariates years (linear
effects) and months (linear effects and quadratic effects) show significant effects on
the mean of the Normal distribution (positive linear effects of years, negative linear
effects on months and positive quadratic effects of months) since the value zero is
not inside the 95% credible interval for the regression parameters 𝛽𝑗, 𝑗 = 1, 2, 3.

• Considering the daily mean air humidity, we observed that the covariates years and
months (linear effects and quadratic effects) show significant effects on the parameter
𝛽 of the Weibull distribution (negative linear effects of years, negative linear effects
on months and positive quadratic effects of months) since the value zero is not inside
the 95% credible interval for the regression parameters 𝛾𝑗, 𝑗 = 1, 2, 3 (or for the
means 𝐸(𝑇𝑖) = 𝛽𝑖Γ(1 + 1/𝛼) of the Weibull distribution given the values of the
covariates).
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Chapter 6

Tobit-generalized Weibull models under a
Bayesian approach applied to daily rain

precipitation data

6.1 Introduction

In this chapter we will use the same dataset as in the previous chapter with a
different approach. The daily rainfall data have excess zeros, i.e. many days without rain,
which requires special statistical models for data analysis. Two generalized forms of the
Weibull distribution will be used: the exponentiated Weibull (EW) model [Mudholkar
and Srivastava, 1993] and the generalized modified Weibull model [Carrasco et al., 2008]
assuming a Tobit structure. Given the large number of zero values (days without rainfall),
the proposed models will be used as alternatives to the standard Weibull model (with two
parameters) in the presence of left-censored data.

The paper is organized as follows: section 2 presents the Tobit model assuming a
Weibull distribution and generalizations of the Weibull distribution; section 3 presents the
data set; section 4 presents the Bayesian results obtained; finally section 5 presents some
concluding remarks.
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6.2 Materials and Methods

Mixture model

If we have a complete observation, that is, (𝑇 > 𝐶), in this work we assume a
truncated generalized form of the Weibull distribution for the random variable 𝑇 with
probability density function given by,

𝑓(𝑡 | 𝑇 > 𝐶) = 𝑓0(𝑡)
𝑃 (𝑇 > 𝐶) (6.1)

where
𝑆0(𝑡) = 𝑃 (𝑇 > 𝑡) = exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃

Let us assume a mixture model, given by the probability density function,

𝑓(𝑡) = 𝑝[𝑑𝐶(𝑡)] + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶) (6.2)

where 𝑑𝐶(𝑡) is the Dirac measure at (0, 𝐶) (in the mixture model, we are assuming a
degenerated probability distribution 𝑃 (𝑇 = 0) = 1).

The likelihood function for the parameters 𝑝, 𝛼 and 𝛽 based on one observation 𝑡

is given from (5.2), by

𝐿(𝑝, 𝛼, 𝛽) = 𝑝[𝑑𝐶(𝑡)] + (1 − 𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

where 𝑓0(𝑡) = 𝛼

𝛽𝛼
𝑡𝛼−1 exp

{︃
−
(︃

𝑡

𝛽

)︃𝛼}︃
and 𝑆0(𝐶) = exp

{︃
−
(︃

𝐶

𝛽

)︃𝛼}︃
.

With the censoring information (see (5.1)), let us define a binary variable 𝛿 = 1 if
𝑇 is a complete observation (𝑇 > 𝐶) and 𝛿 = 0 if 𝑇 is a left censored observation (𝑇 ≤ 𝐶)
with conditional probabilities given by

𝑃 (𝛿 = 0 | 𝑝, 𝛼, 𝛽, 𝑡) = 𝑝

𝑝+(1−𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

and,

𝑃 (𝛿 = 1 | 𝑝, 𝛼, 𝛽, 𝑡) =
(1−𝑝) 𝑓0(𝑡)

𝑆0(𝐶)

𝑝+(1−𝑝) 𝑓0(𝑡)
𝑆0(𝐶)

In this way, we have a Bernoulli distribution. The likelihood function 𝐿(𝑝, 𝛼, 𝛽)
based on 𝑛 observations is given by

𝐿(𝑝, 𝛼, 𝛽; t) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

[︃
(1 − 𝑝) 𝑓0(𝑡𝑖)

𝑆0(𝐶)

]︃𝛿𝑖

(6.3)
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Remark: For the daily precipitation data we have 𝛿 = 1 (day with rain precipitation) or
𝛿 = 0 (day without rain precipitation, that is, 𝑇 = 0).

The Tobit-generalized modified Weibull model (TGMW)

A generalized modified Weibull (GMW) distribution with four parameters for the
amount of daily rain precipitation is defined by a probability density function given by,

𝑓(𝑡) =
𝛼𝛽𝑡𝛾−1(𝛾 + 𝜆𝑡) exp

(︁
𝜆𝑡 − 𝛼𝑡𝛾𝑒𝜆𝑡

)︁
{1 − exp (−𝛼𝑡𝛾𝑒𝜆𝑡)}(1−𝛽) (6.4)

where 𝑡 > 0, 𝛼, 𝛽, 𝛾 and 𝜆 are positive parameters and the survival function 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡)
is given by,

𝑆(𝑡) = 1 −
{︁
1 − exp

(︁
−𝛼𝑡𝛾𝑒𝜆𝑡

)︁}︁𝛽
(6.5)

From the equations 6.3, 6.4 and 6.5, the likelihood function, for n observations, for
the Tobit-GMW model is given by

𝐿(𝑝, 𝛼, 𝛽, 𝛾, 𝜆; t) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

⎡⎢⎢⎢⎣(1 − 𝑝)

𝛼𝛽𝑡𝛾−1
𝑖 (𝛾+𝜆𝑡𝑖) exp(𝜆𝑡𝑖−𝛼𝑡𝛾

𝑖 𝑒𝜆𝑡𝑖)
{1−exp(−𝛼𝑡𝛾

𝑖 𝑒𝜆𝑡𝑖)}(1−𝛽)

1 − {1 − exp (−𝛼𝐶𝛾𝑒𝜆𝐶)}𝛽

⎤⎥⎥⎥⎦
𝛿𝑖

(6.6)

The Tobit-exponentiated Weibull model (TEW)

A exponentiated Weibull (EW) distribution with three parameters for the amount
of daily rain precipitation is obtained from (6.4) assuming 𝜆 = 0 , with probability density
function given by,

𝑓(𝑡) = 𝛼𝛽𝛾𝑡𝛾−1 exp (−𝛼𝑡𝛾)
{1 − exp (−𝛼𝑡𝛾)}1−𝛽 (6.7)

where 𝑡 > 0, 𝛼, 𝛽 and 𝛾 are positive parameters and the survival function 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡)
is given by,

𝑆(𝑡) = 1 − {1 − exp (−𝛼𝑡𝛾)}𝛽 (6.8)

From the equations 6.3, 6.7 and 6.8, the likelihood function, for n observations, for
the Tobit-EW model is given by
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𝐿(𝑝, 𝛼, 𝛽, 𝛾; t) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

⎡⎢⎢⎢⎣(1 − 𝑝)

𝛼𝛽𝛾𝑡𝛾−1
𝑖 exp(−𝛼𝑡𝛾

𝑖 )
{1−exp(−𝛼𝑡𝛾

𝑖 )}1−𝛽

1 − {1 − exp (−𝛼𝐶𝛾)}𝛽

⎤⎥⎥⎥⎦
𝛿𝑖

(6.9)

The Tobit-Weibull model (TW)

A popular probability distribution for the amount of daily rain precipitation is
obtained from (6.4) assuming 𝜆 = 0 and 𝛽 = 1 (a Weibull distribution with two parameters),
with probability density function given by,

𝑓(𝑡) = 𝛼𝛾𝑡𝛾−1 exp (−𝛼𝑡𝛾) (6.10)

where 𝑡 > 0, 𝛼 and 𝛾 are positive parameters and the survival function 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) is
given by,

𝑆(𝑡) = exp (−𝛼𝑡𝛾) (6.11)

From the equations 6.3, 6.10 and 6.11, the likelihood function, for n observations,
for the Tobit-Weibull model is given by

𝐿(𝑝, 𝛼, 𝛽, 𝛾; t) =
𝑛∏︁

𝑖=1
𝑝(1−𝛿𝑖)

[︃
(1 − 𝑝)𝛼𝛾𝑡𝛾−1

𝑖 exp (−𝛼𝑡𝛾
𝑖 )

exp (−𝛼𝐶𝛾)

]︃𝛿𝑖

(6.12)

Inferences for the parameters of the models are obtained under a Bayesian approach
using existing MCMC methods like the Metropolis-within-Gibbs algorithms. In this way,
in the simulation of samples of the joint posterior distribution [Gelfand and Smith, 1990],
𝜋(𝜃 | 𝑑𝑎𝑡𝑎) where 𝜃 is the vector of all parameters, we use Gibbs or Metropolis-Hastings
algorithms, where it is needed to sample each parameter from the posterior conditional
distributions 𝜋(𝜃𝑟 | 𝜃(𝑟), 𝑑𝑎𝑡𝑎), where 𝜃(𝑟) denotes the vector of all parameters except 𝜃𝑟 and
𝑟 is associated to each one of the parameters of the model. To simplify the computational
work in the iterative procedure to get the Bayesian inferences, the literature presents
different free softwares to simulate samples of the joint posterior distribution of interest.

For a Bayesian analysis we assume uniform 𝑈(𝑎, 𝑏) prior probability distributions
for the parameters of the proposed generalized forms of the Weibull distribution assuming a
and b known hyperparameters and a 𝐵𝑒𝑡𝑎(𝑒, 𝑓) or a 𝑈(0, 1) prior probability distribution
for 𝑝 with 𝑒 and 𝑓 known hyperparameters in the Tobit form of the model. We further
assume prior independence among the three parameters.
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In presence of a vector of covariates x = (𝑥1, 𝑥2, ...., 𝑥𝑝)⊤ let us assume a logit
model for the parameter 𝑝, given by,

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = log
(︃

𝑝𝑖

1 − 𝑝𝑖

)︃
= 𝜁0 + 𝜁1𝑥1 + 𝜁2𝑥2 + . . . + 𝜁𝑝𝑥𝑝 (6.13)

For a Bayesian analysis it assumed a uniform 𝑈(𝑎, 𝑏) prior distribution for the
parameter 𝛼 and Normal 𝑁(𝑐, 𝑑2) prior distributions for the regression parameters
𝛾0, 𝛾1, 𝛾2, . . . , 𝛾𝑝 in (6.13) with 𝑐 and 𝑑 known hyperparameters and Normal 𝑁(𝑒, 𝑓 2)
prior distributions for the regression parameters 𝜁0, 𝜁1, 𝜁2, . . . , 𝜁𝑝 with 𝑒 and 𝑓 known hy-
perparameters. We use MCMC simulation methods to get posterior summaries of interest
for the parameters of the models (see, for example, Chib and Greenberg [1995], Gelfand
and Smith [1990], Gelman et al. [1995], Geman and Geman [1984], Gilks et al. [1995]).

6.3 Application to a climatic dataset

The original climatic data considered in this study (total rainfall per hour in 𝑚𝑚;
atmospheric pressure at the station level in 𝑚𝐵; temperature per hour in 𝑜𝐶; relative
air humidity per hour in %) was obtained from the Mirante climate station located
in the city of São Paulo, Brazil (latitude = -23.59; longitude = -46.52 and altitude =
785.64 meters) for the period from January 1, 2007 to December 31, 2021 (n = 5479
measurements). Dataset obtained in https://portal.inmet.gov.br/dadoshistoricos.
This site presents climate data for several cities in Brazil. Missing observations were
imputed as means (previous and posterior observed values) for the variables temperature
and humidity; for total missing precipitation, the value zero was considered. The possible
limitation of the data is related to an apparently short period (15 years) as many weather
stations in Brazil given by INMET (Instituto Nacional de Meteorologia, Brasil) were
created recently, a common fact in third world countries where it is usually difficult to
obtain longer series of climatic observations.

The dataset contains 2323 days with rain and 3156 days without rain (total of
n = 5479 days). It is important to point out that we could assume in a first modeling
approach, the zero data (days with no rain) as left censored data with the same probability
distribution as the complete data, but this approach could lead to very poor inferences
when there is a great proportion of left censored data as in our case of daily precipitation
data.
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Figure 17 – Histogram of daily amount of rain (2323 days) in São Paulo city for the period
2007-2021

Figure 17 shows the histogram of daily amount of rain (2323 days) in São Paulo
city for the period 2007-2021. We observe an asymmetric form for the histogram indicating
the need for a probability distribution for continuous positive data that captures the
asymmetric behavior of the dataset.

We define an indicator of censoring variable, 𝛿 = 1 if a positive random variable
𝑇 has a complete observation (𝑇 > 𝐶) and 𝛿 = 0 if 𝑇 is a left censored observation
(𝑇 ≤ 𝐶). Here we could assume as left-censoring considering, as a special case, the daily
rain precipitation data with the zero value (no precipitation in a day) and 𝐶 is arbitrary
value fixed as the value 0.01, as a special case.
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6.4 Results

In this section we present the results of a Bayesian analysis for the daily precipitation
in São Paulo from 2007 to 2021, considering the Tobit model assuming the three probability
distributions introduced in section 6.2. The statistical analysis was carried out in the R
software [R Core Team, 2015] and the R2jags package was used to obtain the Bayesian
estimates for the models parameters.

Assuming Tobit-Weibull, Tobit-Exponentiated Weibull (TEW) and Tobit-generalized
modified Weibull (TWG) mixture models for the daily precipitation data not considering
the presence of covariates, we simulated Gibbs samples, for each model, using final sample
sizes of 1, 000 to obtain the summaries of interest from the joint parameter distribution,
which are available in Table 18. Note that in all three models, the estimates for the mixture
part, 𝑝 = 0.5760, exactly the proportion of days without rain (3156/5479 = 0.5760).

Table 18 – Posterior summaries for the Tobit-Weibull, Tobit-Exponentiated Weibull and
Tobit-modified generalized Weibull models for the daily precipitation data not
considering the presence of covariates

Model Parameter Estimate Std. Dev. 95% Cred. Int.
Lower Upper

TW
𝛼 0.2680 0.0096 0.2516 0.2884
𝛾 0.6537 0.0111 0.6309 0.6762
𝑝 0.5766 0.0064 0.5635 0.5875

TEW
𝛼 0.5135 0.1328 0.2980 0.8081
𝛽 1.5737 0.3616 1.0399 2.4326
𝛾 0.2082 0.0168 0.4086 0.6246
𝑝 0.5760 0.0065 0.5634 0.5887

TGMW
𝛼 1.9067 0.1883 1.5180 2.2625
𝛽 8.9640 1.8324 5.7285 12.9800
𝛾 0.2082 0.0168 0.1789 0.2457
𝜆 0.0053 0.0005 0.0044 0.0062
𝑝 0.5760 0.0068 0.5633 0.5894

In constructing the posterior summaries, we considered the following prior distri-
butions: 𝛼 ∼ 𝑈(0, 1), 𝛾 ∼ 𝑈(0, 2) and 𝑝 ∼ 𝑈(0, 1) for the parameters for Tobit-Weibull
model; 𝛼 ∼ 𝑈0, 1), 𝛽 ∼ 𝑈(0, 100), 𝛾 ∼ 𝑈(0, 2) and 𝑝 ∼ 𝑈(0, 1) for the parameters for TEW
model and 𝛼 ∼ 𝐺(1, 2), 𝛽 ∼ 𝐺(3, 2), 𝛾 ∼ 𝐺(1, 2), 𝜆 ∼ 𝑈(0, 0.1) and 𝑝 ∼ 𝑈(0, 1) for the
parameters for TGW model. We also assumed prior independence among the parameters.
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Use of Tobit structure

The Tobit structure for the daily precipitation data in presence of covariates years
(linear effects) and months (linear and quadratic effects) is gives by

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝜁0 + 𝜁1(𝑦𝑒𝑎𝑟𝑠𝑖) + 𝜁2(𝑚𝑜𝑛𝑡ℎ𝑠𝑖) + 𝜁3(𝑚𝑜𝑛𝑡ℎ𝑠𝑖)2 (6.14)

where 𝑖 = 1, 2, . . . , 5479 (number of days from January 01, 2007 to 31 December, 2021).

Assuming Tobit structure in the Weibull, Exponentiated Weibull and modified
generalized Weibull models for the daily precipitation data, we first simulated, for each
model, a total of 110, 000 Gibbs samples considered as a burn-in-sample deleted to eliminate
the effect of the initial values and using 1, 000 final samples to get the posterior summaries
of interest. We assume the following prior distributions for the models parameters:

• 𝛼 ∼ 𝑈(0, 10), 𝛾 ∼ 𝑈(0, 2), 𝜁0 ∼ 𝑁(0, 1) and 𝜁𝑗 ∼ 𝑁(0, 100), 𝑗 = 1, 2, 3 for Tobit
Weibull model;

• 𝛼 ∼ 𝑈(0, 100), 𝛽 ∼ 𝑈(0, 20000), 𝛾 ∼ 𝑈(0, 2), 𝜁0 ∼ 𝑁(0, 1) and 𝜁𝑗 ∼ 𝑁(0, 100),
𝑗 = 1, 2, 3, for Tobit-Exponentiated Weibull model and

• 𝛼 ∼ 𝑈(0, 100), 𝛽 ∼ 𝑈(0, 100000), 𝛾 ∼ 𝑈(0, 2), 𝜆 ∼ 𝑈(0, 10), 𝜁0 ∼ 𝑁(0, 1) and
𝜁𝑗 ∼ 𝑁(0, 100), 𝑗 = 1, 2, 3 Tobit-modified generalized Weibull.

• We also assumed prior independence among the parameters.
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Table 19 – Posterior summaries for the Tobit-Weibull, Tobit-Exponentiated Weibull and
Tobit-modified generalized Weibull models for the daily precipitation data.

Model Parameter Estimate Std. Dev. 95% Cred. Int.
Lower Upper

TW

𝛼 0.2704 0.0099 0.2502 0.2896
𝛾 0.6498 0.0113 0.6279 0.6735
𝜁0 -0.2926 1.3578 -3.6535 1.7215
𝜁1 -0.0006 0.0007 -0.0016 0.0010
𝜁2 0.7150 0.0329 0.6484 0.7783
𝜁3 -0.0514 0.0024 -0.0562 -0.0467

TEW

𝛼 0.4996 0.1240 0.2894 0.7652
𝛽 1.5332 0.3317 1.0076 2.2888
𝛾 0.5189 0.0548 0.4227 0.6340
𝜁0 -0.2834 1.0037 -2.2758 1.6218
𝜁1 -0.0006 0.0005 -0.0016 0.0004
𝜁2 0.7120 0.0340 0.6431 0.7786
𝜁3 -0.0512 0.0025 -0.0560 -0.0461

TGMW

𝛼 9.0326 0.0407 8.9288 9.0966
𝛽 9621.2129 333.5861 8746.4723 9988.5013
𝛾 0.0598 0.0010 0.0579 0.0619
𝜆 0.0028 0.0002 0.0024 0.0032
𝜁0 -3.5043 2.2515 -6.9452 -0.4028
𝜁1 0.0015 0.0011 0.0001 0.0032
𝜁2 0.4139 0.0316 0.3560 0.4801
𝜁3 -0.0317 0.0024 -0.0367 -0.0271

Table 19 also shows the posterior summaries of interest. From the results, we observe
that the covariate months (linear effects) show a significant effect on the probabilities of
having days with rain, since the zero value is not within the 95% credible interval for the
regression parameter 𝜁2; the same conclusions are observed for the quadratic effects of the
mont

Discrimination of the proposed models

A Bayesian discrimination method can be used to compare the three forms of the
Tobit models (Tobit-Weibull, Tobit EW, and Tobit GMW models). Thus, to select the
best model, we consider the use of the posterior Bayes factor and use the Gibbs samples
generated for the parameters of each model to obtain Monte Carlo estimates of the Bayes



Chapter 6. Tobit-generalized Weibull models under a Bayesian approach applied to daily rain
precipitation data 97

factor.

The posterior Bayes factor is as a discrimination criterion between two models 𝑖

and 𝑗 given by 𝐵𝑖𝑗 = 𝑉𝑖/𝑉𝑗 where 𝑉𝑘 is the posterior mean of the likelihood function under
model 𝑘 given by

𝑉𝑘 =
∫︁

𝐿(𝐷 | 𝜃𝑘)𝑃 (𝜃𝑘 | 𝐷)𝑑𝜃𝑘 (6.15)

where 𝐿(𝐷 | 𝜃𝑘) is the likelihood function under model 𝑘 and 𝑃 (𝜃𝑘 | 𝐷) is the joint
posterior distribution of the vector of parameters 𝜃𝑘. If 𝐵𝑖𝑗 = 𝑉𝑖/𝑉𝑗 > 1, then the Bayes
factor criterion favors model 𝑖.

We use the Monte Carlo estimation of the expected value of the likelihood function
(or the log-likelihood function) for each model. That would correspond to the values 𝑉𝑖

given in (6.15). Once the values of 𝑉𝑖 are obtained for each model, 𝑖 = 1, 2, the quantity
𝐵𝑖𝑗 = 𝑉𝑖/𝑉𝑗, may also be obtained. Assuming the Tobit-Weibull (model 1) and Tobit-EW
(model 2) not considering the presence of covariates, we obtain 𝐵12 = 0.9952. Assuming the
Tobit-Weibull (model 1) and Tobit-GMW (model 3), we get 𝐵13 = 0.9852 and assuming
Assuming the Tobit-EW (model 2) and Tobit-GMW (model 3), we get 𝐵23 = 0.99, an
indication that the three models have similars fit for the data in presence of left-censored
data. Therefore, we can conclude that the use of Tobit Weibull model (model 1) is preferable
to the other two models considered (Tobit-EW and Tobit-GMW).

Comparing the three proposed models in presence of the covariates, we get 𝐵12 =
0.9979, an indication that both models 1 and 2, (Tobit-Weibull model) and (Weibull-EW
model) have similar fit for the data in presence of left-censored data. In the same way, we
get 𝐵13 = 1.9007, an indication that model 1 (Tobit-Weibull model) is better fitted by the
data when compared to model 3 (Weibull-GMW model) in presence of left-censored data)
and 𝐵23 = 1.9048, an indication that model 2 (Weibull-EW model) is better fitted by the
data when compared to model 3 (Tobit-GMW model) in presence of left-censored data.
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Figure 18 – Envelope for the residuals in presence of covariate and left-censored data for
the model 1 – Tobit-Weibull, model 2 – Tobit-EW and model 3 – Tobit-GMW.

Figure 18 shows the Half-Normal plot with simulated envelope of the residual for
the three models, in presence of covariates and of left-censored data. The predictions
obtained from the model 3 could be inaccurate since there are many non-significant factors
that could disturb the model estimates. This may be related to the fact that there is the
presence of about 57.6% left censored observations. However, the model 1 the majority of
the observed values are within the 95% credible range for the proposed regression model
which is an indication of good accuracy.

6.5 Concluding remarks

In this study we explored the use of Tobit models assuming generalized forms of
the Weibull distribution, a model widely used in the area of reliability in engineering and
industry or in the area of survival analysis to analyze daily rainfall data. Daily rainfall
data in general have many days without the presence of rain, that is, zero observations,
indicating the need for specific models that incorporate the excess of zeros. In particular,
we used and compared three special models in the analysis of rainfall data in the city
of São Paulo, Brazil under a Bayesian approach. The use of the three models without
considering the presence of covariates led to similar Bayesian results from which it is
concluded that the use of a Weibull model that only has two parameters (parsimony) is
preferable to the other two models considered (Tobit-EW and Tobit-GMW).

It is important to point out that some recent generalizations of the Weibull distri-
bution with three or four parameters introduced in the literature show non-identifiability
problems leading to instability in the determination of usual point estimators for the
parameters of the models under classical or Bayesian approaches. These problems were
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observed in the Bayesian analysis of the daily rain precipitation data of São Paulo city,
where the convergence of the MCMC simulation algorithm used to simulate samples of
the joint posterior distribution for the parameters of the Tobit-GMW model only was
obtained using very informative prior distributions for the parameters of the model from
information of the obtained results assuming the Tobit-EW model. For the other two
proposed models (Tobit-Weibull and Tobit-EW models) the convergence of the simulation
algorithm was easily obtained assuming approximately non-informative prior distributions.
From these results, we must emphasize that the use of generalized models such as the
assumed Tobit-GMW model in the analysis of daily precipitation data obtained from the
the city of São Paulo must be done carefully. Assuming the three proposed models, we
observed that the Bayesian estimators for p (probability of day without rain) are very
similar and close to the empirical estimator given by the ratio of the number of days with
no rain over the total observed number of days (3176/5479 = 0, 5760).

In presence of covariates we found similar inference results assuming the Tobit-
Weibull and Tobit-EW models with the covariate months (linear effect) in the logistic
regression model showing significant effect on the amount of daily rain precipitation (95%
credible interval does not contain the zero value); assuming the Tobit-GMW model we
also found that the covariate month (linear and quadratic effects) shows significant effect
on on the amount of daily rain precipitation. As concluding remarks, it is important to
point out that the use of the proposed Tobit model assuming the Weibull or generalized
forms of the Weibull distribution for the statistical analysis of the amount of daily rain
precipitation could be very useful in climate data studies, with simple interpretations and
simple computational work to get the posterior sumaries of interest under a Bayesian
approach especially using the free existing R software (R Core Team, 2015). A weak point of
the obtained results in the application of the proposed methodology to daily precipitation
in São Paulo city could be the short time of follow-up (January 2007 to December, 2021),
showing that the covariate year do not show significant effect on the probability of daily
rain precipitation in São Paulo city. Better results could be obtained assuming longer
follow-up periods.
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Chapter 7

General Conclusions

The search of appropriate probability distributions for data analysis still is a great
problem in most studies, especially assuming the left-censoring data structure. In this thesis,
it was presented some techniques to model this kind of data based on Tobit and Weibull
structure. Initially, we worked with environmental data related to ammonia nitrogen
concentrations in U.S. rivers where we introduced a univariate Tobit-Weibull based on a
mixture approach. Some properties of this new distribution were also discussed in this study
and an extensive simulation study was performed to verify the effectiveness of the maximum
likelihood estimation method assuming different fixed values for the parameters of the
model and different sample sizes. The results obtained from Monte Carlo studies showed
that the biases and RMSEs of the Tobit-Weibull model are asymptotically non-biased.
Also, based on regression structure adopted, we identified important factors according to
the literature that affects the ammonia nitrogen concentrations even using non-informative
prior distributions for the regression parameters which implies the proposed model could
be a great alternative for left-censored data analysis.

In a second approach, it was proposed a bivariate Tobit-Weibull model under left-
censoring scheme in order to analyzes a stellar data which is common the presence of
left-censored data. Since the bivariate model inherits most of properties of the univariate
model, we expected that the bivariate as able to identify some covariates assuming non-
informative prior distributions for the regression structure. Thus, based on the data
analysis, we found that the proposed model was accurate to accomplish our goal and do a
good prediction, especially for marginal means.

In a third approach, we introduced both proposed models, univariate and bivariate
Tobit-Weibull, for the analysis of left-censored medical data related to cancer and vaccines.
The obtained results of this study showed many advantages for the use of Tobit-Weibull
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models in terms of great accuracy for the obtained point and interval inferences, great
computational simplicity to get the inferences of interest under hierarchal Bayesian
approach as well simple interpretations for the model parameters.

A fourth approach considered an analysis of rainfall data, where the response variable
was the total daily precipitation of a climate station located in the city of São Paulo,
Brazil, over the 24-year period (2007 until 2021). We fitted a Tobit-Weibull model in the
presence of some covariates (linear effects of years, linear and quadratic effects of months).
The results showed that the use of a Tobit-Weibull model under a Bayesian approach can
be useful for the analysis of daily rainfall data. We also simultaneously used a logistic
regression model for the occurrence (or not) of daily rainfall over the follow-up time period.
Other climate variables such as mean daily temperature, mean daily atmospheric pressure
and mean daily humidity for the city of São Paulo in the same period were also analyzed
under a Bayesian approach using traditional models such as regression with normal errors
for data with asymmetry - temperature and air pressure) and Weibull regression for
asymmetric data such as air humidity data.

Finally, an approach for data with excess zeros was considered. We explored the use
of Tobit models assuming generalized forms of the Weibull distribution, to analyze daily
rainfall data. Daily rainfall data in general have many days without the presence of rain,
i.e. zero observations, indicating the need for specific models that incorporate excess
zeros. Using the three models without considering the presence of covariates led to similar
Bayesian results, from which we conclude that using a Weibull model that has only two
parameters (parsimony) is preferable to the other two models considered (Tobit-EW and
Tobit-GMW). In presence of covariates, we find similar inference results assuming the
Tobit-Weibull and Tobit-EW models with the covariate months (linear effect) in the logistic
regression model showing a significant effect on the amount of daily rainfall. the Tobit-
GMW model, we also find that the covariate month (linear and quadratic effect) shows a
significant effect on the amount of daily rainfall. As concluding remarks, it is important
to note that the use of the proposed Tobit model assuming the Weibull distribution or
generalized forms of the Weibull distribution for the statistical analysis of the amount
of daily rainfall could be very useful in climate data studies, with simple interpretations
and simple computational work to obtain the subsequent summaries of interest under a
Bayesian approach.

In conclusion, the results emerging from this study reinforce the fact that the search
of appropriate statistical model could be extremely difficult depending on the censoring
structure of the lifetime data. However, the proposed methodology could be very useful in
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the medical data analysis in presence of left-censored scheme. In addition, the identification
of important covariates was also easily obtained assuming the proposed models even using
non-informative priors for the parameters of the model, under a hierarchal Bayesian
approach. The results could be also extended to other cross-over trials in clinical research;
reliability analysis in engineering; risk analysis in economics; among many others areas.
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Appendix- R codes

Appendix 1

# Tobit Weibull model no covariates

model.jags.weib.tobit <- function()
{
c <- 0.01
for(i in 1:n)

{
phi[i] <--(L[i])
zeros[i]~dpois(phi[i])

pdf[i] <- log(alpha)-alpha*log(beta)+(alpha)*log(x[i])-(x[i]/beta)^alpha
surv[i] <- -(c/beta)^alpha

L[i] <- (1 - delta[i]) * log(p) + (delta[i]) * (log(1-p) +
pdf[i] - surv[i])

}

# Priors
alpha~dgamma(0.01,0.01)
beta~dgamma(0.01,0.01)
p~dbeta(7,3)
}
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# Tobit Weibull Model with covariates

model.jags.weib <-function()
{
c <- 0.01
for(i in 1:n)

{
phi[i] <--log(L[i])
zeros[i]~dpois(phi[i])

beta[i] <- exp(omega0 + omega1 * cov1[i] + omega2 * cov2[i] +
+ omega3 * cov3[i] + omega4 * cov4[i] + omega5 * cov5[i] +
+ omega6 * cov6[i] + omega7 * cov7[i] + omega8 * cov8[i] +
+ omega9 * cov9[i] + omega10 * cov10[i]+omega11 * cov11[i] +
+ omega12 * cov12[i] + omega13 * cov13[i])

logit(p[i]) <- psi0 + psi1 * cov1[i] + psi2 * cov2[i] +
+ psi3 * cov3[i] + psi4 *cov4[i] + psi5 * cov5[i] +
+ psi6 * cov6[i] + psi7 * cov7[i] + psi8 * cov8[i] +
+ psi9 * cov9[i] + psi10 * cov10[i] + psi11 * cov11[i] +
+ psi12 * cov12[i] + psi13 * cov13[i]

L1[i] <- (1 - delta[i]) * log(p[i]) + (delta[i]) * (log(1-p[i]) +
log(alpha)-alpha*log(beta[i])+(alpha)*log(x[i]) +
- (x[i]/beta[i])^alpha + (c/beta[i])^alpha)

L[i] <- exp(L1[i])
}

# Prioris
alpha~dgamma(0.01,0.01)
omega0~dnorm(0,1)
omega1~dnorm(0,1)
omega2~dnorm(0,1)
omega3~dnorm(0,1)
omega4~dnorm(0,1)
omega5~dnorm(0,1)
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omega6~dnorm(0,1)
omega7~dnorm(0,1)
omega8~dnorm(0,1)
omega9~dnorm(0,1)
omega10~dnorm(0,1)
omega11~dnorm(0,1)
omega12~dnorm(0,1)
omega13~dnorm(0,1)
psi0~dbeta(7,3)
psi1~dnorm(0,1)
psi2~dnorm(0,1)
psi3~dnorm(0,1)
psi4~dnorm(0,1)
psi5~dnorm(0,1)
psi6~dnorm(0,1)
psi7~dnorm(0,1)
psi8~dnorm(0,1)
psi9~dnorm(0,1)
psi10~dnorm(0,1)
psi11~dnorm(0,1)
psi12~dnorm(0,1)
psi13~dnorm(0,1)
}
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Appendix 2.1 - Stellar Dataset

The columns of the dataset in Table 20 are: star name; Type = 1 indicates planet-hosting
stars and Type = 2 is the control sample; Teff (in degrees Kelvin) is the stellar surface
temperature; log N(Be), log of the abundance of beryllium scaled to the Sun’s abundance
(i.e., the Sun has log N(Be) = 0.0); log N(Li), log of the abundance of lithium scaled to
the Sun’s abundance. The indicator variables of left-censoring are given by 𝛿𝑗 = 1 if T is a
complete observation and 𝛿𝑗 = 0 if T is a left censored observation, j = 1 (Be) and j = 2 (Li).

Table 20 – Stellar astronomy data set.

Row Star Type Teff 𝛿1 log[N(Be)] 𝛿2 log[N(Li)]
1 HD-6434 1 5835 1 1.08 0 0.80
2 HD-9826 1 6212 1 1.05 1 2.55
3 HD-10647 1 6143 1 1.19 1 2.80
4 HD-10697 1 5641 1 1.31 1 1.96
5 HD-12661 1 5702 1 1.13 0 0.98
6 HD-13445 1 5613 0 0.40 0 -0.12
7 HD-16141 1 5801 1 1.17 1 1.11
8 HD-17051 1 6252 1 1.03 1 2.66
9 HD-19994 1 6109 1 0.93 1 1.99
10 HD-22049 1 5073 1 0.77 0 0.25
11 HD-27442 1 4825 0 0.30 0 -0.47
12 HD-38529 1 5674 0 -0.10 0 0.61
13 HD-46375 1 5268 0 0.80 0 -0.02
14 HD-52265 1 6103 1 1.25 1 2.88
15 HD-75289 1 6143 1 1.36 1 2.85
16 HD-82943 1 6016 1 1.27 1 2.51
17 HD-92799 1 5821 1 1.19 1 1.34
18 HD-95128 1 5924 1 1.23 1 1.83
19 HD-108147 1 6248 1 0.99 1 2.33
20 HD-114762 1 5884 1 0.82 1 2.20
21 HD-117176 1 5560 1 0.86 1 1.88
22 HD-121504 1 6075 1 1.33 1 2.65
23 HD-130322 1 5392 1 0.95 0 0.13
24 HD-134987 1 5776 1 1.22 0 0.74
25 HD-143761 1 5853 1 1.11 1 1.46
26 HD-145675 1 5311 0 0.65 0 0.03
27 HD-169830 1 6299 0 -0.40 0 1.16
28 HD-179949 1 6260 1 1.08 1 2.65
29 HD-187123 1 5845 1 1.08 1 1.21
30 HD-192263 1 4947 0 0.90 0 -0.39
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cont...
Row Star Type Teff 𝛿1 log[N(Be)] 𝛿2 log[N(Li)]
31 HD-195019 1 5842 1 1.15 1 1.47
32 HD-202206 1 5752 1 1.04 1 1.04
33 HD-209458 1 6117 1 1.24 1 2.70
34 HD-210277 1 5532 1 0.91 0 0.30
35 HD-217014 1 5804 1 1.02 1 1.30
36 HD-217107 1 5646 1 0.96 0 0.40
37 HD-222582 1 5843 1 1.14 0 0.59
38 HD-870 2 5447 1 0.80 0 0.20
39 HD-1461 2 5768 1 1.14 0 0.51
40 HD-1581 2 5956 1 1.15 1 2.37
41 HD-3823 2 5948 1 1.02 1 2.41
42 HD-4391 2 5878 1 0.75 0 1.09
43 HD-7570 2 6140 1 1.17 1 2.91
44 HD-10700 2 5344 1 0.83 0 0.41
45 HD-14412 2 5368 1 0.80 0 0.44
46 HD-20010 2 6275 1 1.01 1 2.13
47 HD-20766 2 5733 0 -0.09 0 0.97
48 HD-20794 2 5444 1 0.91 0 0.52
49 HD-20807 2 5843 1 0.36 0 1.07
50 HD-23249 2 5074 0 0.15 1 1.24
51 HD-23484 2 5176 0 0.70 0 0.40
52 HD-26965A 2 5126 1 0.76 0 0.17
53 HD-30495 2 5768 1 1.16 1 2.44
54 HD-36435 2 5479 1 0.99 1 1.67
55 HD-38858 2 5752 1 1.02 1 1.64
56 HD-43162 2 5633 1 1.08 1 2.34
57 HD-43834 2 5594 1 0.94 1 2.30
58 HD-69830 2 5410 1 0.79 0 0.47
59 HD-72673 2 5242 1 0.70 0 0.48
60 HD-74576 2 5000 1 0.70 1 1.72
61 HD-76151 2 5803 1 1.02 1 1.88
62 HD-85117 2 6167 1 1.11 1 2.64
63 HD-189567 2 5765 1 1.06 0 0.82
64 HD-192310 2 5069 0 0.60 0 0.20
65 HD-211415 2 5890 1 1.12 1 1.92
66 HD-222335 2 5260 1 0.66 0 0.31
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Appendix 2.2 - OpenBugs Codes

Model 1

model
{
for (i in 1:N)
{

zeros[i] <- 0
dummy[i] <- 0
dummy[i] ~ dloglik(logLike[i])
a1[i]<- Be[i]/beta1[i]
a2[i]<- Li[i]/beta2[i]

logLike[i] <- (1-delta.Be[i])*log(1-exp(-pow(a1[i], alpha1))) +
delta.Be[i]*(log(alpha1)-alpha1*log(beta1[i]) +
(alpha1-1)*log(Be[i])-pow(a1[i],alpha1)) +
(1-delta.Li[i])*log(1-exp(-pow(a2[i],alpha2))) +
delta.Li[i]*(log(alpha2)-alpha2*log(beta2[i]) +
(alpha2-1)*log(Li[i])-pow(a2[i],alpha2))

log(beta1[i]) <- gamma10 + gamma11*type[i] + gamma12*log(teff[i]) + w[i]
log(beta2[i]) <- gamma20 + gamma21*type[i] + gamma22*log(teff[i]) =

+ gamma23*pow(log(teff[i]),2)+w[i]
w[i] ~ dnorm(0,tau)

}
alpha1 ~ dunif(0,10)
alpha2 ~ dunif(0,10)
gamma10 ~ dnorm(0,0.01)
gamma11 ~ dnorm(0,1)
gamma12 ~ dnorm(0,1)
gamma20 ~ dnorm(0,0.01)
gamma21 ~ dnorm(0,1)
gamma22 ~ dnorm(0,1)
gamma23 ~ dnorm(0,10)
tau ~ dunif(0,200)
}
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Model 2

model
{
for (i in 1:N)

{
dummy[i] <- 0
dummy[i] ~ dloglik(logLike[i])

a11[i] <- (Be[i]/beta1[i])
a12[i] <- pow(a11[i],alpha1)
b11[i] <- (c1[i]/beta1[i])
b12[i] <- pow(b11[i],alpha1)
a21[i] <- (Li[i]/beta2[i])
a22[i] <- pow(a21[i],alpha2)
b21[i] <- (c2[i]/beta2[i])
b22[i] <- pow(b21[i],alpha2)

log(beta1[i]) <- gamma10+gamma11*type[i]+gamma12*log(teff[i])+w[i]
log(beta2[i]) <- gamma20+gamma21*type[i]+gamma22*log(teff[i])
+gamma23*pow(log(teff[i]),2)+w[i]

logit(p1[i]) <- tau10 + tau11*type[i] + tau12*log(teff[i]) + w[i]
logit(p2[i]) <- tau20 + tau21*type[i] + tau22*log(teff[i]) + + tau23*pow(log(teff[i]),2) + w[i]
w[i] ~ dnorm(0,tau)

logLike[i] <- (1-delta.Be[i])*log(p1[i]) + (delta.Be[i])*(log(1-p1[i])+
log(alpha1) + (alpha1-1)*log(Be[i]) - alpha1*log(beta1[i]) -
a12[i]+b12[i]) + (1-delta.Li[i])*log(p2[i]) +
delta.Li[i])*(log(1-p2[i]) + log(alpha2) + (alpha2-1)*log(Li[i]) -
alpha2*log(beta2[i]) - a22[i]+b22[i])

log(v1[i]) <- log(1-p1[i]) + log(alpha1) + (alpha1-1)*log(Be[i]) -
alpha1*log(beta1[i]) - a12[i] + b12[i]
log(v2[i]) <- log(1-p2[i]) + log(alpha2) + (alpha2-1)*log(Li[i]) -
alpha2*log(beta2[i]) - a22[i]+b22[i]
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theta1[i] <- v1[i]/(p1[i]+v1[i])
theta2[i] <- v2[i]/(p2[i]+v2[i])
delta.Be[i] ~ dbern(theta1[i])
delta.Li[i] ~ dbern(theta2[i])
}

alpha1 ~ dgamma(1,1)
alpha2 ~ dgamma(1,1)
gamma10 ~ dnorm(0,1)
gamma11 ~ dnorm(0,100)
gamma12 ~ dnorm(0,100)
gamma20 ~ dnorm(0,1)
gamma21 ~ dnorm(0,100)
gamma22 ~ dnorm(0,100)
gamma23 ~ dnorm(0,100)
tau10 ~ dnorm(0,1)
tau11 ~ dnorm(0,100)
tau12 ~ dnorm(0,100)
tau20 ~ dnorm(0,1)
tau21 ~ dnorm(0,100)
tau22 ~ dnorm(0,100)
tau23 ~ dnorm(0,100)
tau ~ dgamma(0,100)
}
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Appendix 3.1 - Thyroid Cancer Data

The data set consists of 91 patients from a descriptive study to assess the relationship between initial
thyroglobulin levels and the presence of cancer recurrence one year after treatment. The variables in the
data set are: each patient’s thyroglobulin level before starting iodine therapy (𝑇1); the thyroglobulin mea-
surement approximately 6 months after the last session (𝑇2) and (𝑇3) the thyroglobulin level measurement
approximately one year after the last therapy session. The information on thyroglobulin levels is censored,
since the measurement instrument does not detect values below 0.1. Other covariates: sex (male=0; female
=1); size measurements in millimeters, dosis and persistence measurements as nanograms per milliliter (if
𝑇𝐺 < 2𝑛𝑔/𝑚𝑙 = 0 and 𝑇𝐺 ≥ 2𝑛𝑔/𝑚𝑙 = 1).

row age sex size dosis131 persist Tg1 delta1 Tg2 delta2 Tg3 delta3

1 53 1 1 150 0 0.4 1 0.1 1 0.1 0
2 60 1 1 150 0 0.6 1 0.1 0 0.1 0
3 43 1 3 173 0 13 1 0.9 1 0.6 1
4 26 1 4 150 0 5.6 1 2.4 1 0.3 1
5 50 1 4 150 0 23.6 1 0.43 1 0.1 0
6 57 1 5 150 0 3.5 1 0.1 0 0.1 0
7 50 1 6 119 0 0.5 1 0.1 0 0.1 0
8 48 1 6 150 0 1.5 1 0.2 1 0.2 1
9 39 1 7 150 0 3.3 1 0.3 1 0.3 1
10 43 1 9 150 0 1 1 0.1 1 0.1 0
11 49 1 9 150 0 8.4 1 1.2 1 0.4 1
12 57 1 10 170 0 0.6 1 0.5 1 0.1 1
13 50 1 10 156 1 2.7 1 0.1 1 2.1 1
14 52 1 10 150 0 11 1 0.1 1 0.1 0
15 46 1 10 152 0 184 1 0.7 1 0.2 1
16 65 1 11 151 0 0.2 1 0.1 0 0.1 0
17 45 1 11 157 0 0.8 1 0.2 1 0.2 1
18 51 1 11 153 0 1.4 1 0.1 1 0.1 1
19 50 1 11 153 0 1.4 1 0.1 1 0.1 1
20 56 1 11 150 0 23.8 1 0.1 0 0.1 0
21 66 1 12 110 0 0.1 1 0.2 1 0.1 1
22 55 1 12 178 0 0.2 1 0.1 0 0.1 0
23 64 1 12 154 0 0.3 1 0.2 1 0.1 0
24 35 0 12 150 0 1.6 1 0.1 0 0.1 0
25 64 1 12 155 0 2.4 1 16.6 1 0.1 0
26 42 1 12 160 0 3.1 1 0.54 1 0.1 0
27 52 0 12 164 1 24 1 4 1 2.2 1
28 62 1 12 154 0 27 1 1.4 1 0.6 1
29 21 1 13 112 0 0.1 1 0.3 1 0.84 1
30 28 1 13 150 0 0.1 1 0.1 0 0.1 0
31 52 1 13 150 0 0.4 1 0.1 0 0.1 0
32 27 1 13 125 0 1.2 1 0.2 1 0.2 1
33 63 1 14 155 0 3.3 1 0.6 1 0.2 1
34 42 1 14 104 0 11.8 1 0.3 1 0.1 1
35 54 1 15 173 0 0.1 1 0.1 1 0.1 1
36 31 1 15 50 0 0.7 1 0.1 0 0.2 1
37 52 1 15 150 0 1.4 1 0.2 1 0.1 1
38 49 1 15 160 0 2.1 1 0.1 0 0.1 0
39 71 1 15 220 0 2.6 1 0.4 1 0.4 1
40 53 1 15 150 0 6.9 1 0.1 0 0.1 0
41 72 1 15 150 0 139 1 21 1 0.1 0
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cont...
row age sex size dosis131 persist Tg1 delta1 Tg2 delta2 Tg3 delta3

42 27 1 17 152 0 0.6 1 0.2 1 0.2 1
43 41 1 17 150 0 5.1 1 0.1 1 0.2 1
44 75 1 17 130 1 275 1 20 1 55 1
45 31 0 17 150 1 3000 1 89 1 142 1
46 46 1 18 170 0 0.9 1 0.1 0 0.1 0
47 31 0 18 150 0 3.5 1 0.2 1 0.1 1
48 56 0 18 143 1 10 1 0.6 1 2.6 1
49 24 1 19 153 0 8.2 1 0.1 1 0.2 1
50 47 1 19 150 0 11 1 0.2 1 0.1 0
51 26 0 19 165 0 11.5 1 0.1 1 0.1 0
52 81 0 19 200 1 2474 1 462 1 586 1
53 44 1 20 157 0 0.5 1 0.1 0 0.1 0
54 65 1 20 150 0 0.5 1 0.4 1 0.49 1
55 47 1 20 161 0 2.5 1 0.2 1 0.1 0
56 59 1 20 151 0 3.2 1 0.1 0 0.1 0
57 30 0 20 50 0 3.4 1 0.1 0 0.1 0
58 36 0 20 163 0 5 1 0.1 0 0.1 0
59 26 0 20 152 0 5.8 1 0.49 1 0.1 0
60 55 1 20 170 1 10.9 1 25 1 19.9 1
61 55 0 20 150 0 18 1 0.8 1 0.6 1
62 54 1 22 150 0 304 1 0.1 0 0.1 0
63 64 1 24 150 1 26.1 1 1.5 1 16.7 1
64 39 0 24 168 1 562 1 19.4 1 8.9 1
65 39 0 24 168 1 562 1 19 1 18.9 1
66 48 1 25 150 0 9.7 1 1.6 1 1.4 1
67 56 1 25 155 1 82.5 1 4.8 1 5.2 1
68 42 0 26 150 0 16.5 1 0.64 1 0.13 1
69 33 1 27 150 0 2.5 1 0.6 1 0.1 0
70 41 1 28 150 0 0.3 1 1.6 1 0.27 1
71 23 1 28 152 1 24.8 1 1.6 1 7.2 1
72 40 1 28 154 1 24.9 1 2.4 1 8.1 1
73 41 1 30 150 0 2.7 1 0.1 0 0.1 0
74 54 1 30 154 0 24 1 0.66 1 0.62 1
75 12 1 30 152 1 59 1 8.9 1 11 1
76 64 1 30 153 1 220.2 1 12 1 3.6 1
77 48 1 32 171 0 7.5 1 0.2 1 0.1 1
78 52 1 35 172 0 5.4 1 0.1 0 0.1 0
79 86 1 36 157 1 44.6 1 13 1 6.8 1
80 23 0 38 150 0 0.3 1 0.1 1 0.1 1
81 59 1 42 157 1 123 1 2.6 1 2.6 1
82 50 1 45 151 0 0.1 1 0.37 1 0.1 1
83 52 1 46 150 0 3.9 1 0.42 1 0.1 1
84 29 1 50 150 0 12 1 1.85 1 1.46 1
85 51 1 50 151 0 15.5 1 2.7 1 0.1 0
86 46 1 55 156 0 19 1 0.5 1 0.6 1
87 18 1 55 150 1 112 1 22.6 1 24 1
88 44 1 57 150 0 18.2 1 0.1 0 0.1 0
89 50 0 60 150 0 3.2 1 0.6 1 0.3 1
90 65 0 62 150 1 672 1 101 1 220 1
91 60 1 85 172 1 281 1 33 1 14.3 1
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Appendix 3.2 - R Codes

# Tobit-Weibull Bivariate - Thyroid cancer data

model.jags <- function()
{
for (i in 1:n)

{
phi[i] <--log(logLike[i])
zeros[i]~dpois(phi[i])

a11[i] <- (t1[i]/beta1[i])
a12[i] <- pow(a11[i],alpha1)
b11[i] <- (c1[i]/beta1[i])
b12[i] <- pow(b11[i],alpha1)
a21[i] <- (t2[i]/beta2[i])
a22[i] <- pow(a21[i],alpha2)
b21[i] <- (c2[i]/beta2[i])
b22[i] <- pow(b21[i],alpha2)

log(beta1[i]) <- gamma10 + gamma11*cov1[i] + gamma12*cov2[i] +
+ gamma13*cov3[i] + w[i]

log(beta2[i]) <- gamma20 + gamma21*cov1[i] + gamma22*cov2[i] +
+ gamma23*cov3[i] + w[i]

logit(p1[i]) <- tau10 + tau11*cov1[i] + tau12*cov2[i] +
+ tau13*cov3[i] + w[i]

logit(p2[i]) <- tau20 + tau21*cov1[i] + tau22*cov2[i] +
+ tau23*cov3[i] + w[i]

w[i] ~ dnorm(0,tau)

logLike[i] <- exp((1 - delta1[i]) * log(p1[i]) +
(delta1[i]) * (log(1-p1[i]) +
log(alpha1) + (alpha1-1) * log(t1[i]) -
alpha1 * log(beta1[i]) - a12[i] + b12[i]) +
(1 - delta2[i]) * log(p2[i]) +
(delta2[i]) * (log(1-p2[i]) +
log(alpha2) + (alpha2-1) * log(t2[i]) -
alpha2 * log(beta2[i]) - a22[i] + b22[i]))

}
# Priors
alpha1 ~ dgamma(0.001,0.001)
alpha2 ~ dgamma(0.001,0.001)
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gamma10 ~ dnorm(0,100)
gamma11 ~ dnorm(0,100)
gamma12 ~ dnorm(0,100)
gamma13 ~ dnorm(0,100)
gamma20 ~ dnorm(0,100)
gamma21 ~ dnorm(0,100)
gamma22 ~ dnorm(0,100)
gamma23 ~ dnorm(0,100)
tau10 ~ dnorm(0,100)
tau11 ~ dnorm(0,100)
tau12 ~ dnorm(0,100)
tau13 ~ dnorm(0,100)
tau20 ~ dnorm(0,100)
tau21 ~ dnorm(0,100)
tau22 ~ dnorm(0,100)
tau23 ~ dnorm(0,100)
tau ~ dgamma(1,100)
}

## Tobit-Weibull model - Vaccine data ##

model.jags.weib <- function()
{

c <- 0.01
for(i in 1:n)
{

phi[i] <--(L[i])
zeros[i]~dpois(phi[i])

beta[i] <- exp(gamma0 + gamma1*x1[i] + gamma2*x2[i] + gamma3*x3[i])

logit(p[i]) <- psi0 + psi1*x1[i] + psi2*x2[i] + psi3*x3[i]

pdf[i] <- (alpha/beta[i]^alpha) * ((x[i])^(alpha-1))*exp(-(x[i]/beta[i])^alpha)
surv[i] <- exp(-c/beta[i])^alpha

L[i] <- (1 - delta[i]) * log(p[i]) + (delta[i]) * (log(1-p[i])
+ log(pdf[i]) - log(surv[i]))

a1[i] <- (x[i]/beta[i])^alpha
a2[2] <- (c/beta[i])^alpha
cdfwei[i] <- 1 - ((1-p[i]) * exp(-a1[i])/exp(-a2[i]))
Res[i] <- -log(cdfwei[i])

}
# Priors
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alpha~dgamma(1,2)
gamma0~dnorm(0,1)
gamma1~dnorm(0,1)
gamma2~dnorm(0,1)
gamma3~dnorm(0,1)
psi0~dnorm(0,1)
psi1~dnorm(0,1)
psi2~dnorm(0,1)
psi3~dnorm(0,1)
}
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Appendix 4 - R Codes

## Weibull Mixture Model - No covariates ##

## Precipitation

model.jags.weib <- function()
{

c <- 0.01
for(i in 1:n)

{
phi[i] <--(L[i])
zeros[i]~dpois(phi[i])

pdf[i] <- log(alpha)-alpha*log(beta)+
(alpha-1)*log(x[i])-(x[i]/beta)^alpha

surv[i] <- -(c/beta)^alpha

L[i] <- (1 - delta[i]) * log(p) +
(delta[i]) * (log(1-p) + pdf[i]- surv[i])

}

## Priors
alpha~dunif(0.1,2)
beta~dunif(0.1,100)
p~dunif(0,1)

}

## Pressure

model.jags.m2 <- function()
{

for (i in 1:n)
{

x[i] ~ dnorm(mu,tau)
}
variance <- 1/tau
desvpad <- sqrt(variance)

mu ~ dnorm(900,0.001)
tau~ dunif(0,1)

}
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## Temperature

model.jags.m3 <- function()
{

for (i in 1:n)
{

x[i] ~ dnorm(mu,tau)
}
variance <- 1/tau
desvpad <- sqrt(variance)

mu ~ dnorm(22,0.001)
tau~ dunif(0,1)

}

## Humidity

model.jags.m4 <- function()
{

for(i in 1:n)
{
phi[i] <--(L[i])
zeros[i]~dpois(phi[i])

a[i] <- x[i]/beta
L[i] <- log(alpha) - alpha*log(beta) +

(alpha-1)*log(x[i]) - a[i]^alpha
}
alpha ~ dunif(0.1,100)
beta ~ dunif(0.1,1000)

}

## Weibull Mixture Model - With covariates ##

## Precipitation

model.jags.weib1 <- function()
{

c <- 0.001
for(i in 1:n)
{

phi[i] <--(L[i])
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zeros[i]~dpois(phi[i])

beta[i] <- gamma0 + gamma1 * (cov1[i]-2006) +
gamma2 * cov2[i] + gamma3 * cov2[i]^2

logit(p[i]) <- psi0 + psi1 * (cov1[i]-2006) + psi2 * cov2[i] +
psi3 * cov2[i]^2

pdf[i] <- log(alpha) - alpha * log(beta[i]) +
(alpha-1) * log(x[i]) - (x[i]/beta[i])^alpha

surv[i] <- -(c/beta[i])^alpha

L[i] <- (1 - delta[i]) * log(p[i]) +
+ (delta[i]) * (log(1-p[i]) + pdf[i]- surv[i])

}

## Priors
alpha~dunif(0.1,2)
gamma0~dnorm(0,1)
gamma1~dnorm(0,10)
gamma2~dnorm(0,10)
gamma3~dnorm(0,10)
psi0~dnorm(0,1)
psi1~dnorm(0,10)
psi2~dnorm(0,10)
psi3~dnorm(0,10)

}

# Parameters JAGS
cov1 <- dados$years
cov2 <- dados$months



Bibliography 133

Appendix 5 - R Codes

##################
## No covariates
##################

## Tobit-Weibull Model

model.jags.weib11 <- function()
{
c <- 0.01
for(i in 1:n)
{
phi[i] <--(L[i])
zeros[i]~dpois(phi[i])
pdf[i] <- log(alpha)+log(gamma)+(gamma-1)*log(x[i])-(alpha*x[i]^gamma)
surv[i] <- -alpha*c^gamma

L[i] <- (1 - delta[i]) * log(p) + (delta[i]) * (log(1-p) + pdf[i]- surv[i])

cdfwei[i] <- log(1-p) + pdf[i]- surv[i]
res[i] <- -(cdfwei[i])
}
media <- mean(L[])

## Priors
alpha~dunif(0,1)
gamma~dunif(0,2)
p~dunif(0,1)
}

## Tobit Exponentiated Weibull Model

model.jags.weib12 <- function()
{
c <- 0.01
for(i in 1:n)
{

phi[i] <--(L[i])
zeros[i]~dpois(phi[i])

a2[i] <- -alpha*x[i]^gamma
a3[i] <- 1-exp(a2[i])
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pdf[i] <- log(alpha)+log(beta)+log(gamma)+(gamma-1)*log(x[i])+
+ a2[i]-log(a3[i]^(1-beta))

surv[i] <- log(1-(1-exp(-alpha*c^gamma))^beta)

L[i] <- (1 - delta[i]) * log(p) + (delta[i]) * (log(1-p) +
pdf[i] - surv[i])

cdfwei[i] <- log(1-p) + pdf[i]- surv[i]
res[i] <- -(cdfwei[i])
}
media <- mean(L[])

## Priors
alpha~dunif(0,1)
gamma~dunif(0,2)
beta~dunif(0,100)
p~dunif(0,1)
}

## Tobit Generalized modified Weibull Model

model.jags.weib13 <- function()
{
c <- 0.01
for(i in 1:n)
{
phi[i] <--(L[i])
zeros[i]~dpois(phi[i])
a2[i] <- -alpha*x[i]^gamma
a4[i] <- lambda*x[i]
a5[i] <- a2[i]*exp(a4[i])
a6[i] <- 1-exp(a5[i])

pdf[i] <- log(alpha) + log(beta) + (gamma-1)*log(x[i]) +
log(gamma+a4[i]) + a4[i] + a5[i] - log(a6[i]^(1-beta))
surv[i] <- log(1-(1-exp(-alpha*c^gamma*exp(lambda*c)))^beta)

L[i] <- (1 - delta[i]) * log(p) + (delta[i]) * (log(1-p) + pdf[i]- surv[i])

cdfwei[i] <- log(1-p) + pdf[i]- surv[i]
res[i] <- -(cdfwei[i])
}
media <- mean(L[])
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## Priors
alpha~dgamma(1,2)
beta~dgamma(3,2)
gamma~dgamma(1,2)
lambda~dgamma(0,0.1)
p~dunif(0,1)
}

##################
## With covariates
##################

## Tobit-Weibull Model

model.jags.weib21 <- function()
{
c <- 0.01

for(i in 1:n)
{
phi[i] <--(L[i])
zeros[i]~dpois(phi[i])

pdf[i] <- log(alpha) + log(gamma) + (gamma-1)*log(x[i]) -
(alpha*x[i]^gamma)

surv[i] <- -(alpha*c)^gamma

logit(p[i]) <- psi0 + psi1 * cov1[i] + psi2 * cov2[i] +
psi3 * cov2[i]^2

L[i] <- (1 - delta[i]) * log(p[i]) + (delta[i]) * (log(1-p[i]) +
pdf[i]- surv[i])

cdfwei[i] <- log(1-p[i]) + pdf[i]- surv[i]
res[i] <- -cdfwei[i]
}
media <- mean(L[])

# Priors
alpha~dunif(0,10)
gamma~dunif(0,2)
psi0~dnorm(0,1)
psi1~dnorm(0,100)
psi2~dnorm(0,100)
psi3~dnorm(0,100)
}
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## Tobit Exponentiated Weibull Model

model.jags.weib22 <- function()
{
c <- 0.01

for(i in 1:n)
{
phi[i] <--(L[i])
zeros[i]~dpois(phi[i])
a2[i] <- -alpha*x[i]^gamma
a3[i] <- 1-exp(a2[i])

pdf[i] <- log(alpha) + log(beta) + log(gamma) +
(gamma-1)*log(x[i]) + a2[i] - log(a3[i]^(1-beta))

surv[i] <- log(1-(1-exp(-alpha*c^gamma))^beta)

logit(p[i]) <- psi0 + psi1 * cov1[i] + psi2 * cov2[i] +
psi3 * cov2[i]*cov2[i]

L[i] <- (1 - delta[i]) * log(p[i]) +
(delta[i]) * (log(1-p[i]) + pdf[i]- surv[i])

cdfwei[i] <- log(1-p[i]) + pdf[i]- surv[i]
res[i] <- -cdfwei[i]
}

media <- mean(L[])

## Priors
alpha~dunif(0,100)
gamma~dunif(0,20000)
beta~dunif(0,2)
psi0~dnorm(0,1)
psi1~dnorm(0,100)
psi2~dnorm(0,100)
psi3~dnorm(0,100)
}

## Tobit Generalized modified Weibull Model

model.jags.weib23 <- function()
{
c <- 0.01
for(i in 1:n)
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{
phi[i] <--L[i]
zeros[i]~dpois(phi[i])
b1[i] <- exp(lambda*c)
b2[i] <- c^gamma
b3[i] <- exp(-alpha*b2[i]*b1[i])
b4[i] <- 1-(1-b3[i])^beta
a1[i] <- exp(lambda*x[i])
a2[i] <- (x[i])^gamma
a3[i] <- exp(-alpha*a2[i]*a1[i])
a4[i] <- log(alpha)+log(beta)-(gamma-1)*log(x[i])
a5[i] <- log(gamma+lambda*x[i])
a6[i] <- lambda*x[i]-(alpha*a2[i]*a1[i])
a7[i] <- (1-beta)*log(1-a3[i])
a8[i] <- a4[i] + a5[i] + a6[i] - a7[i]
logit(p[i]) <- psi0 + psi1 * cov1[i] + psi2 * cov2[i] + psi3 * cov2[i]^2

L[i] <- (1 - delta[i]) * log(p[i]) + delta[i]*(log(1-p[i])
+ a8[i] - log(b4[i]))

cdfwei[i] <- log(1-p[i]) + a8[i] - log(b4[i])
res[i] <- -(cdfwei[i])
}
media <- mean(L[])

## Priors
alpha ~dunif(0,100)
beta ~dunif(0,100000)
gamma ~dunif(0,2)
lambda~dunif(0,10)
psi0 ~dnorm(0,1)
psi1 ~dnorm(0,100)
psi2 ~dnorm(0,100)
psi3 ~dnorm(0,100)
}


